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Abstract We extend results of Bowen and Manning on systems with good symbolic
dynamics In particular we identify the class of dynamical systems that admit Markov
partitions For these systems the Manning-Bowen method of counting penodic
points is explained in terms of topological coincidence numbers We show, in
particular, that an expansive system with a finite cover by rectangles has a rational
zeta function

We first recall some of the theory of expansive homeomorpmsms, as presented for
instance in [DGS] Let ft be a compact topological space, / Q-»fta homeomorph-
lsm We say / is expansive if there is a closed neighbourhood V <= ft x ft of the
diagonal An such that F=fxf ftxft-»ftxft satisfies

One calls V an expansive index for / We will see that / expansive => ft metnzable
(Lemma 2) In terms of a metric d on ft this means that there is an expansive
constant c > 0 such that

p, qe f t , p# q => for some ieZ, d(f'p,f'q)> c

For e > 0 and x e ft define the e-stable set to be

WUx) = {y\d(f'x,ry)<e for i>0}

and the e-unstable set to be

W"s (x) = {y | d(fx,fy) < B for i < 0}
If E S C / 2 then for any x,yeil the intersection of Ws

E(x) with W"(y) consists of
at most one point Let

DF = {(x, y) e ft x ft | Ws
e(x) meets W"(y)}

and define [ , ] De -> ft so that

[x,y~\eWs
c(x)nW»(y)

Then De is closed in ft x ft and [ , ] is continuous, as is easily checked We say
R c ft is a rectangle if Rx Rcz De Then if x 6 R one has the sets

Ws
e{x, R) = Rn Ws

e(x), W"(x, R) = Rn Wu
s(x)
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490 D Fried

and a natural homeomorphism (justifying the name rectangle)

R=W"(x, R)x Wl(x,R)

sending the point y e R to the pair {[y, x], [x, y]) and the pair (y, z) to the point
[y, z] If D, is a finite union of rectangles we say / is FR this is a local property of
/ 1 e it is enough that every x e Q have a neighbourhood that is a finite union of
rectangles

Next we study factors of subshifts Take if a finite set of 'symbols' and consider
the shift map a(sn) = (sn+1) on sequences (sn), neZ, s n e ^ When the sequence
space ifz is endowed with the product topology it is compact and metnzable and
a is expansive If 2 <= if1 is a closed cr-invanant subset we say a 2 -» 2 (or 2 itself)
is a subshift with symbol set 5̂  If/ fi-»fi is a factor of 2 by a surjective semicon-
jugacy 77 2 -» D, then the equivalence relation £ c S x 2 c y z x ^ z = ( y x ^ ) z

x £ v <=> 77-x = Try

is o-x o--invariant, so £ is a subshift with symbol set ify* Sf A subshift 2 is defined
completely by saying which cylinders are disjoint from 2, where a cylinder C is a
closed-open subset of if1 whose coordinates are specified in finitely many places
If there are finitely many cylinders C, such that

^ Z -2 = U U <r"C,

then 2 is a subshift of finite type (SFT) If both 2 (as a subshift on Sf) and E (as a
subshift on Sfx.Sf) are of finite type we say / is finitely presented (FP) This is
Gromov's terminology, suggested by a loose analogy with groups 2 is analogous
to the free group F on a finite set, E to the normal closure R of a finite set, so 2 / £
is like the finitely presented group F/R

Suppose 2 is an SFT and il is a factor of 2 We will show

LEMMA 1 Q, is expansive o £ is of finite type

Thus if H — 1./E — 'L'/E' is a factor of SFT's in two ways and E is of finite type
then E' is of finite type (In group theory, if F/R — F'/R', with F, F' free groups
on finitely many generators and R is the normal closure of a finite set then so is
R', so Gromov's analogy holds up) Actually we will show

THEOREM 1 f is FP<=>fis FR

so that FP systems have a local dynamical characterization and each FR system has
a finite symbolic description

Following Bowen's book [Bl] we define a Markov partition for an expansive
homeomorphism/ fl->fi to be a finite cover M by proper rectangles (R is proper
if R = int R) with diameter <e such that if x e int R, fx e int R', R, R'eM, then

(M) f{W'r(x,R))cR' and /"'(W"e(fx, R'))<= R

If / has a Markov partition we say it is MP We will show

THEOREM 2 f is FPofis MP
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Here the backward implication is essentially a remark of Bowen ([B2, p 13])
from which the notion of a finitely presented system originates Altogether we have

FP<=> FRO MPO expansive factor of SFT

The primary example of FP systems are Smale's Axiom A basic sets Here ft is
expansive and has canonical coordinates (CC) 1 e De is a neighbourhood of An so
that [x, y] makes sense if x, y e ft are sufficiently close (this reflects the uniform
transversahty of the stable and unstable manifolds) Also ft has a metric d (induced
from a well-chosen Riemanman metric) that contracts e-stable sets and expands
e-unstable sets uniformly, 1 e 3A e (0,1) so that if ye Ws

E(x) and ze W"{x), x,y,ze
ft, then

From (*) and CC, Bowen deduced the pseudo-orbit tracing property (shadowing),
and from this he exhibited ft as a factor of an SFT Then using this presentation
and CC he obtained a Markov partition [Bl] We will essentially follow this last
step in our proof of the forward implication in Theorem 2

Ruelle defined a Smale space to be a compact metric space and an expansive
homeomorphism, with CC and (*) [R] He observed that these properties were
enough to produce Markov partitions In fact the metric comes for free We will show

LEMMA 2 Given an expansive system/ ft-» fl there is a metric d on ft such that (*)
holds and f is a Lipschitz isomorphism The Lipschitz class of d is determined by an
expansive index V for f and the Holder class of d is uniquely determined by f If
/ ' ft' -* ft' is another expansive system endowed with a metric d' in this natural Holder
class then any semwonjugacy IT ft-»ft' 15 Holder continuous

In particular there is an intrinsic notion of exponential convergence for an expansive
system These natural metrics will be used in our proof of Theorem 1 For a Smale
space they were constructed in [F3] in terms of a finite presentation

Our second motivating example arises when ft is zero-dimensional Then ft is a
subshift (partition ft into finitely many small closed-open sets) and so we obtain
the class of subshifts that are factors of SFT's These are just Weiss's sofic systems
([We], [CP]) It is known that a sofic ft has a finite-to-one extension IT 2-»ft with
1 an SFT that is s-resolving, 1 e TT IS 1 - 1 on each Ws

e(x) For an FR ft we will
show the corresponding result

LEMMA 3 ft has a finite-to-one s-resolvmg extension G -» ft such that G has CC

This is also used in Theorem 1
The third example of FP systems in the literature is Thurston's pseudo-Anosov

homeomorphisms These obviously satisfy FR For them Markov partitions were
first constructed by direct means [FLP] Our method amounts to DAing, taking the
Markov partition for the resulting hyperbolic repeller, and collapsing back down
to a Markov partition for ft itself, except that we work externally the repeller is
replaced by the s-resolution of Lemma 3
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The results discussed so far are proven in § 1 In § 2 we turn to counting periodic
points The zeta function of an expansive / ft -> ft

= exp I Np-,
p>0 P

Np = \{x\f»x = x}\,

is a generating function for the sequence of numbers of periodic points of various
periods We will go over the Manning-Bowen argument for / FP to express Np in
terms of traces of certain linear maps ([M], [B2]) and we take a step towards
comparing this method to the enumeration of Np for a basic set ft via the Lefschetz
fixed point theorem ([Gl], [F2]) Namely the traces give the coincidence number
of a certain simphcial correspondence depending on the presentation £1 = 1./ E, this
coincidence number counts the components in the coincidence set of this correspon-
dence and each component corresponds to a unique fixed point of f (see Theorem
3) This partially settles a question of Bowen ([B2, pp 14-15]) of how Manning's
work was related to Lefschetz theory (see also [R, problem B 9]) The end result is
a formula for £f(t) that shows it is rational in t

This paper is intended to add some steps to Bowen's program of using symbolic
dynamics to study basic sets ([B2, pp 10-15]) and to integrate the three FP examples
cited above into one theory One can view FP systems as higher dimensional sofic
systems or as a generalization of Smale spaces (every point has a neighbourhood
that is a finite union of rectangles)

We thank Douady, Gromov, Kitchens and Marcus for their helpful conversations
and Shishikura for his result cited in § 2 We are especially grateful to the late Rufus
Bowen for his stimulation and encouragement

The author was partially supported by the National Science Foundation, the
Sloan Foundation, the IHES, and the University of Warwick

1 Proofs of Theorems 1 and 2
We begin by deducing Theorem 1 from the above lemmas Suppose ft is FP with
a surjective semiconjugacy n 2-* ft Lemma 1 shows ft is expansive Partition 1
into cylinder sets C by specifying the coordinates of a sequence between —n and n,
n large Then each C is a rectangle since X has finite type If n is large enough
then TT(C) will be a small rectangle The cover {TT(C)} shows / is FR

Conversely suppose ft is FR Lemma 3 gives an extension X with CC Give X
the metric of Lemma 2 Then X is a Smale space, hence Bowen's arguments give
shadowing and a finite presentation for X So ft is a factor of an SFT, so Lemma
1 shows ft is FP

To prove Lemma 1, recall that an invariant set / for a homeomorphism h is
isolated if / is the largest invariant set in some open set U l e if I = (~},eZ h'U
One easily shows

(A) / ft-»ft is expansive <=>Ancflxft is isolated for h =fxf ftxft^ftxft
This is the definition of expansive with U an expansive index

(B) A subshift S c 5^z is isolated for the full shift h = a on / o S is an SFT
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This is the definition of SFT together with the fact that unions of cylinders form a
neighbourhood basis for &>z

(C) Given a surjective semiconjugacy p X -* Y of homeomorphisms of compact
Hausdorff spaces and an invariant set / c Y, I is isolated <£>p~xI is isolated

This uses the definition of isolated and the fact that p~lI is the intersection of sets
p~xG, 6 open in Y Now apply (C) to p = TTX TT £x£-»f lxf l with / = An and use
(A) and (B) Lemma 1 follows

Now we prove Lemma 2 Let Vn=p|"=-n F~'V for n>0, with F=fxf Then
each Vn is a neighbourhood of An and n Vn = An so fl is Hausdorff Now a compact
Hausdorff space has a unique uniformity consisting of all neighbourhoods of the
diagonal [K] Thus if n is sufficiently large Vn ° Vn c V We call the least n > 1 with
this property the lag «(V) We have Vn+k ° Vn+fc c Vfc for all fc>0, with n = n(V)
The sets t/m = V2mn, m >0, satisfy the condition

l/mo[/moi/M <=[/„,_,

of the Fnnk Metnzation Lemma ([K, p 185]) and so there is a metric d on fl such
that onflxfl

(F) {(x,y)|d0c,>0<2-m}<z (/mc:{(x,>;)|d(x,>')<21-'"}

Now take/' fl'-»fl' expansive and in the same way construct d' from an expansive
index V with some lag n' Then to any continuous semiconjugacy v ft-»fl' there
is a ft such that P = TTXTT (1 X fl -» fl' X O' satisfies pVM <= V Then pVM+1 c VJ for
all isO and so pC/mc t/'m if 2m'n'<2m«-/i Given (x, y)e V, x#>>, we take a > 0
so that m = an' satisfies 2~m~"'<d(x,y)<2~m Then (x,j>)e Um and p(x,y)e t/^,
with m'= an-n0, with noeZ+ depending only on /x and n' Thus

where c depends only on fi, n and n' Thus TT IS Holder with exponent n/n' the
ratio of lags for V and V

As a special case suppose fl' = fl, V = V, 7r = id We see that 2 metrics d, d'
satisfying (F) are Lipschitz equivalent, as n/n'=\ If fl' = fl, V = V, v=f:tl we
see likewise that/*1 are Lipschitz Finally changing V leaves the Holder class of
d unchanged

Next take (x, y) £ V such that ye W\{x) Then ( x ^ e f l - o o F'V If d(x,y)<2~m

then (x, y) e P|!.T F'V Thus if a eZ+ one has

so that d(f2nax,f2nay)<2x'm~a Assuming that x *>> and M is chosen so d(x, >>)
2-'~m this gives

In particular the iterate / 6 " contracts W^(x) by a factor \
Now we use an argument of Mather to alter d within its Lipschitz class so that

/ contracts these stable sets directly Take a = 21/6n> 1 and define

e(x, y) = d(x, y) + ad(fx,fy)+ + a6"
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Then e and d are Lipschitz equivalent metrics and for (x, y) as above

Thus (*) holds for e with A = a~1 = 2~1/6n and e sufficiently small This proves
Lemma 2

We now prove Lemma 3 Take the metric d given in Lemma 2 and cover O by
finitely many rectangles Rs, seSf As De is closed, the closure of any rectangle is
again a rectangle and so we may assume that each Rs is closed Also we may suppose
diam (Rs) < c/10, where c is an expansive constant To each x e fl we have a symbol
set, a core, a star and a second star as follows

Star2(x) = IJStar(>>), ye Star (x)

Clearly xeCore (x)<= Star (x )c Star2 (x)<^il Core (x) is open and veCore (x)<=>
Star (_y)c Star (x)=>Star2 (>»)<= Star2 (x) Choose 5 > 0 so that disjoint rectangles
Rs, R,, s, teV, satisfy d(Rs, R,) > 25 and so that for any zeQ there is an x 6 O, with
#2«(z)c Core (x), l e 25 is a Lebesgue number for the open cover of O by cores
The first property of 5 implies that B2S(z)c Star2 (z)

The relation y ~ z O j e W"(z) defines an equivalence relation ~ on Star2 (x) To
y £ Star2 (x) we define the projection P(y, x) c Star2 (x ) /~ to be the image of WE(y) n
Star2 (x) The set $>{x) = {P(y, x)\ye Star2 x} is finite and indeed so is

We define an s-germ at x to be a sequence P, e SP(f'x), i eZ, such that Vm, neZ
with m<n, 3ymn eD"=mf~' Star2 (fx) with P{fymn,fx) = P, for m < i < n Clearly
P, = P(f'x,f'x) defines an s-germ (take all ymn = x) that we call trivial An s-germ
at x describes a possible behaviour for the stable sets at points near x Clearly
g = (P,) is determined by its values for large i Thus if Gx denotes the set of s-germs
atx, |GX|<K

Let G = U Gx, xGfl, be the set of all s-germs and let n G->£1 be the natural
projection We see that ir is onto and has bounded fibers There is a natural bijection
h G^G that lifts/, namely h(P,) = (P,+l)eGfx for g = (P,)€Gv For Z G H define
V(z) <= G x G so that with the relation ~ on Star2(z), g = (P,) G Gx and g' = (P[) e Gx

one has (g, g')e V(z) if

(a) Bs(x)uBs(x')ciCore(z),
(p) Bs(x, P 0 ) / ~ c p j / ~ and Bs(x', P i ) / ~ c P o /~ ,

where Bs(x, P), P G S^(X), denotes the intersection of P with the image of Ws
s(x)

We will regard g,g'eB as close if (g,g')e V(z) for some z more precisely we
define V = U 2 V(z)c G x G and H = hxh GxG-*GxG and we prove that the
sets Vn =O"=-n W"V are a basis for a uniformity on fl This defines a topology on
fl and we will see that the various properties required for Lemma 3 hold
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First we show that if n is sufficiently large then V , °V ,cV Say (g, g')e Vn and
(s\ g") e Vn If n is large then x = irg, x' = -n-g', and x" = Trg" are very close and so
by our choice of S we can find z' e O so that B2s(x) u B2S{x") <= Core (z') We also
have (h'g,/i'g')e VfzJ'), (ft'g', h'g")e V(z.) for zj', z, eil, |r |<n By symmetry, it
suffices to show that in Star2(z')/~, with g = (Pl), g' = {P\) and g" = (P") one has
B«(x, Po)l~^Pol- But if we W|(x) and Wi(w) meets Po we have in Star2(zS)
the relation w~w', w'eP'o (use (B) on (g, g')e V(ZQ)) Applying/" gives/"w'e
Bs(fx', P'n), if n is sufficiently large Then (ft"g', /i"g") e V(zn) implies/"w'~/"w"
for some point/"w"e PJJ Thus w" = [x", w] exists Again we assume n large enough
so that d(x", w")<28 (note (x", w") is near (x, w) for x" close enough to x) Then,
by our choice of S, w" is an interior point of Star2 (x") Thus w" e P'£ and w ~ w" in
Star2 (z'), as desired

From Vn ° Vn c V follows Vn+(l ° Vn+^ <= V̂  for k a 0, so the Vn are indeed a basis
for a uniformity Clearly h G -» G is a homeomorphism

Next we show that AG = p) Vk Surely (g, g) e V for all g e G by our choice of 5
Thus Ao<= Vk for all k If (h'g, h'g') e V for all i e Z then g, g'£ Gx for some xeft
since (TT x TT)( V) is an expansive index for Cl (this also shows TT IS continuous) We
have

B5(/XP,) = B5(/XP:)
for g = (P,), g' = (PI), i eZ Taking M »0 one sees that P,_M = P;_M Thus letting
i^+oo we see g = g', as desired (This also shows that distinct s-germs at x cannot
be forward asymptotic, so TT IS. 1-1 on stable sets)

Next we show G is sequentially compact Take g0 )e G We may assume ng{J) =
Xj->xe£l For j large, x,eCore(x) and the Pj/'e ^(x,)^ ^*(x) have a constant
subsequence A standard diagonal argument gives a subsequence jn -»oo so that
x j , , e n ! n / " Core(/'x) and P^'/~<= Star2 ( / 'x) /~ is constant for n > i, for each
i>0 Then g0-' converges in G

Thus we see that G is compact and h is an expansive homeomorphism We next
show h has CC Say (g, g') e V(z) and x = irg is close to x' = vrg' With _ymn -» x and
^ L -* x' as in the definition of s-germ we see by (j8) that [ymn, y'mn] = y"mn is defined
for m«0, n » 0 Thus x" = hm y"mn = [x, x'] exists Let g"eGx. be g" = (PI') where
PI is the value of P{fYmn,f'x") for m« 0, n »0 A little thought shows that P", is
well defined, that g" e Gx and that g" = [g, g'] This gives a neighbourhood of AG

on which [ , ] is defined so h has CC This finishes the proof of Lemma 3, so
Theorem 1 is proven

While the details of Lemma 3 are foul the idea is quite intuitive Consider, say,
the case Q. a surface, / pseudo-Anosov Then we must break up the prongs since
canonical coordinates break down there But one cannot just alter the prongs one
must split open their stable sets, as shown in Figure 1 This can be done by
distinguishing the different sides of these stable sets, which are just s-germs The
prong singularity p has 3 nontnvial s-germs, other points xe Ws(p) have only 2
Note that the shaded region X <^ G is the closure of the singleton fibers of IT X
can be identified with the DA repeller obtained by converting prongs into sinks
The canonical coordinates on G and the s-resolving property of TT are plainly visible
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FIGURE 1

Remark 1 The s-germ extension IT G->fl constructed above is canonical First
suppose 5 is changed to 8' < S Then the set G is unchanged and the new uniformity
is defined by a V that clearly contains V As a continuous bijection of compact
Hausdorff spaces is a homeomorphism we see that the topology of G is independent
of S Second suppose one changes the cover {-RJ it is enough to consider the case
of adding a new rectangle Then the cores become smaller and the stars become
larger so there is a restriction map G''-* G from new s-germs to old ones (here we
fix 5 very small) One easily can check that this map is bijective and continuous so
G is unchanged Likewise one can alter the choice of d without changing G

For sofic systems (l e dim fl = 0) this sort of extension is known but by explicit
symbolic constructions [Kr] We believe the .s-germs represent the latent geometry
in the notion of future-resolving extensions of sofic systems

Now we will prove Theorem 2, I e MPoFP If M is a Markov partition then to
each sequence RneJl for which /(int Rn) meets int J?n+i for all neZ there is a
unique point ir{Rn) e C^\nezf~"^» These sequences form an SFTE with symbol set
M and re represents / as a factor This is proven just like the basic set case, e g
[Bl, pp 84-86] In this case the equivalence relation E on 2 defined by TT IS

(Rn)E(R'n) « Rn m e e t s R'n, a l l n e Z

as noted by Bowen [B2, p 13] Clearly E is an SFT Thus MP=>FP
Conversely, suppose we are given an expansive / Cl -* il with expansive constant

c = 2e, an SFT o- 2 -> X, and a semiconjugacy n £-»Q We will follow [Bl, pp 78-
83], to construct a Markov partition

By symbol splitting (I e passing to new symbols that are consecutive JV- strings
of old symbols, N large) we may suppose that 2 is defined by relations on consecutive
pairs of symbols, l e by a graph A a if x SP of allowed transitions

snAsn neZ
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We may also assume that for each seif the cylinder Cs = {(sn)ei\s0 = s} has an
image Ts — v(Cs) in il of diameter <e/2 Then Ts is a closed rectangle, since (sn),
(sj,)e Cs imply

n>0,
[s'n, «^0

The T5 clearly form a cover 5" of il Also if x e Ts and sAf then the Markov property

(M) fWKx, T,) c Ws
e(/x, T,), / " ' ^ ( / x , T,) c W^(x, Ts)

holds We must, however, modify 5" to produce a Markov partition since we do
not know whether the Ts are proper or have disjoint interiors

Consider any closed rectangle T We must analyze how T decomposes relative
to the cover 3T For k e if let the unstable k-boundary of T be

d£T = {xG T|x = hm x,, x, G W^(x)n Tk - T}

and define 9s
kT accordingly (with x,e W"(x)) Then

For if x e dT, say x = hm >>,, y, & T, then by passing to a subsequence we can assume
all y, £ Tk, some fc Then x e Tk and we can form y\ = [x, ̂ ,] e Tk and y" = [yn x] G Tk

Since [y", y',] = y,£T either y ^ T o r y" £ T Passing to a subsequence, assume say
that y\£ T for all i Then y[e Ws

€(x)nTk-T, y'.^x so xed"kT If y"£ T for all i

then xed^T
From T we form the quotient space H in which x, y e T are identified if x G W^y)

and the corresponding space V of a-unstable sets The natural map T^-Hx V is
a homeomorphism and we will identify T with H x V For k e y define closed
subspaces H*^Hk<^H to be the projections of dkTa Tn Tk<= T, and define
VfcVfcCiV accordingly Then one sees 3ir=H£xVf c and afcT=HkxVf are
rectangles, as follows Say x = hmx,, x,e W"(x)nTk-T, and yeTknT Then
[x,,y]f£T, since otherwise x, = [[x,,y], X]G T Thus [x, y] = hm[x,, y], [x,,y]e
W"e([x,y])nTk-T, so [x,y]eds

kT
Define rectangles Tk c T by

r l = intH (tft - Hjf) x intv (Vk - Vf)

T2
k = mtH (H-Hk)xmtv (Vk)

T\ = mtH (Hk)xmtv (V- Vk)

Ti = mtH(H-Hk)xmtv(V-Vk)

where intH, intv denote interior relative to H, V respectively Then each T"k is open
as a subset of T For v 5̂ -» {1, 2, 3,4} the rectangle T" = f \ T£(fc) is open in T and
disjoint from dT = Uk (^* x ^it)u (̂ «c x V*)> hence T is open in Cl Also the error
set

= U
is closed, nowhere dense in 0. and contains dT See Figure 2
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Vf

r; n

FIGURE 2

Now let® = f t - U J £ y %{Tj) Then ® is open and dense Forxefl welet5^(x)<= if
consist of those j for which x e T; Then

O Vj€ S?(x), fc€ 5̂ , 3n = n(x,j, fc) such that x e

and for such x the rectangle i?(x) denned by

= n n (T7)z
(jyfc)

is open and contains x We have ( c f [B l , p p 81-82]

LEMMA 4 For x,_ye®, /?(*) and R(y) are either disjoint or equal The set 91 =
|xe 3)} is a finite cover of il by proper rectangles with disjoint interiors

LEMMA 5 For x,ye3> nf~*3s with R(x) = R(y) and ye Wl(x) one has R(fx) =
R(fy)
Proof of Lemma 4 If ze3)nR(x) then if(z) = if(x) Also if jeif(x) and keif
then ze(Tj)l for the same value of n, l e n(x,j, k) = n(z,j, k), so R{x) = R(z) Thus
if R(x) n R(y) * 0 there i s a z e @ n R(x) n R(y) so that R(x) = R(z) = R(y)

Proof of Lemma 5 First we write fx= Tr(cr(qn)) where qt=j, qo = s Thus fxeTj,
xeTs As ye Ws

e(x, Ts), (M) implies fye Ws
e(fx, 7]) So fxe T^fye T}, and, by

symmetry, if{fx) = if{fy)
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Next we show n{fx,j, k) = n(fy,j, k) for ke if As Ws
e(fy, TJ) = W\{fx, T}) we see

these M'S are of the same parity We must show that if W"(fx, T}) meets Tk then
the same holds for fy by symmetry, this will prove the lemma

Say fz&Tkn Wu
E(fx, TJ) By (M), ze W"(x, T,) As fze Tk we have z = ir(q'n)

with g', = k Let t = q'oeif Again (M) gives

fW'e(z,T,)^W'B(fz,Tk)

Since 7", 6 if{x) = S^y) and T, meets W"(x, TJ at z, T, also meets W"(>>, TJ at
some point z' Let z"=[z,y] Then z" = [z, Z']G Ws

e(z, T,)nW"(y, TJ In TJ then
fz" = [fz,fy]e WKfz, Tk)n W (̂./y, TJ, showing W (̂/>>, TJ meets Tt, as desired

By Lemma 4 we must only show 01 has the Markov property For Rx, R2e 3R. (I e
R, = R(p,), p, e 3)),f~\mt R2) meets mt R^f'1 R{p2) meets R(pt) By continuity
and symmetry (I e arguing with / " ' instead o f / ) it suffices to show for xe
(R(Pi)nrlR{p2)) = O

Say ze W€(x, Ry) Write x = hm w,, w,e€n3)nf~'3> (6 is open and 3) is dense)
Then [w,, z]^> z Choose y, very near [w,, z] so y, e i? (pJn S nf~l3> and so that
*i = [ji, wi] is still i n i 9 n S n /" 1 ® Then y, -» z, x, -» x and Lemma 6 above, applied
to x, and y,, shows fy, e R(p2) Thus fz = lim^, e R2, as was to be shown

While this proof is substantially the same as the Bowen argument we note some
differences The major problem is that if T is a rectangle int (T) may not be a
rectangle' Indeed although each SkT is a rectangle there may be xe Ws

e(y, T),
yeds

kT, with xeint T Our (Tj)"k substitute for the mt(T"k) of [Bl, p 81], which
may not be rectangles in our setup Also the set Z* of [Bl, p 80], may not be dense
here so we have to use 3> instead

2 Cohomology and periodic points
We will introduce a refined symbolic dynamics to study the topology of a factor of
a subshift, especially its Cech cohomology This will enable us to analyze Manning's
counting argument in terms of coincidence numbers A useful reference for this
section is the classic book of Eilenberg and Steenrod [ES]

Let 2 be a subshift on symbol set if and ft a factor of 2 For a&b, a,beZ,
define an (a, b) cylinder set v <= 2 to be a nonempty subset of 2 obtained by specifying
the sequence (sn) e 2 for n = a, ,b These form a partition ifab of 1 whose images
form a finite cover STab of ft by compact sets TT(V) indexed by ve ifab Let Nab be
the nerve of STab, so Nab is the finite simphcial complex with one j-simplex for each
O + l)-element subset of ifab whose images under TT have nonempty intersection
Let Fab be the filled-in complex with one7-simplex for every {j + l)-element subset
of ifah whose images under ir intersect pairwise The 1-skeleton Tab of Nab is also
the 1-skeleton of Fab and Tab determines Fab since a subset of ifab spans a simplex
in Fab if and only if its two element subsets span an edge in Tab We have

yab
 c r a b <= Nab c Fab

I f a < a s b < / 3 then ifa/3 refines ifab, 3~afi refines STab and one has a simphcial
map 4>ah Naf}-> Nab These maps form an inverse system indexed by integer pairs
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as b and we form the inverse limit space JV = lim Nab in which a point p = (pah)
consists of a point pab e Nab for all a < b such that 4>Zt pap = Pab As the maps in
the inverse system preserve skeleta JV is filtered by the inverse limits JV1 of the
i-skeleta N'ah Since No

ab = ^ab we see that JV° = 2 is the shift we began with We
can likewise form the inverse system of simplicial maps i/»"f Fa/3 -> Fah and take its
inverse limit to obtain a space F, filtered by F' = lim F'ab We have so far

2 c JV'c JV2<= c N
II II n n
I c F ' c F2<= c F

We can obtain more by embedding F in the space MS of regular Borel measures
on 2 as follows To q = (qah)eF we associate the measure ( i , e M I whose value
on the cylinder set v e ifab is the barycentnc coordinate of qab at the vertex v

pq(v) = qab(v) (a,beZ,a<b,veyab)

Since barycentnc coordinates are a probability measure on the vertex set Sfab and
since <l>a

ab qaf3 = qab, those assignments of measures to cylinder sets satisfy Kol-
mogorov's consistency conditions ([DGS, p 41]) and so determine a measure on
Sfz with support on 2 , which gives the desired /j,q

Let Supp (qu) <= ^ab be the support of the measure qab Then the set

Tab= U 7T{V)^€1
LE Supp (<)„(,)

has small diameter if b » 0 » a since then each n(v) has small diameter and any
two TT{V) in this union intersect If « < a < f t < / 3 then raj3 <=• rab Thus there is a
unique point g(q)efi that lies in all the rab, a<b One sees easily that the pushed
forward measure (MTr)nq on (I is the point mass at g(q) If M^ c: M S denotes the
closed set of measures on 2 that are supported on level sets of IT then we see that
/j.q e Mv for all q e F

Next given a measure /A e Mw we let pab be the probability measure on yab with
Pab(v) = n(v) Then Supp (p a b ) c {v\xe TT(V)} SO p a b e iVab Clearly the point pM =
(pab) belongs to N and defines an embedding of Mw in JV We have shown altogether
that F—N — Mv A little thought shows that the subspace M'w of measures with
support on at most i +1 points and contained in some level set of 77 is closed and
that our isomorphisms identify F' and JV' with M'n We have then (identifying F
with JV)

This I is the refined symbolic dynamics mentioned earlier A level set £ '(*) consists
of all the formal averages of the symbolic names of a point x, 1 e the simplex with
vertices ^" ' (x )

The advantage of $ over TT IS that it induces an isomorphism £* on Cech
cohomology (with any coefficient group G) Namely the covers Tah have mesh that
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tends to zero as a ->• -oo, b -> +00 and so

by the continuity property of Cech cohomology The advantage of F over N is that
F is a priori determined by the inverse system of graphs Tab, so higher order
intersections can be ignored when computing H*ft = hrn H*Fab

Of course the cohomology H*ft carries more structure than that of a group (or
algebra, if G is a ring) namely it has an automorphism/* This can also be identified
in these inverse limits as the cohomology automorphism induced by the shift
homeomorphism . . . .

(Pab)^(Pa + \b+l)

of JV We can group the Nab with a fixed value of b - a together and identify H*Nab

with f"H*b_a for some indeterminate t to obtain

H*fi = l i m / / * N O p [ r ) r 1 ] ,

where the maps in the limit are of the form Ap + tBp, with Ap, Bp H*N0 p-> H*NQ p+i

induced by the simphcial maps

NOp+l-+ No p, NOp+l-» Nlp+l^NOp

respectively Here the action of/* on H*ft corresponds to multiplication by t on
the direct limit So, replacing Nab by Fah throughout, we see that the inverse system
of graphs Fab determines H*ft and the action of/*

Also one has a cochain complex for computing H*ft whose ith group is

H'(M'n, M^1) = hm C'(Nab) = lim C'(Fab)

and whose coboundary operators arise from the triples (M^+1, M',, M'~x) Thus the
'skeleta' M'n play the same role as the skeleta of a finite complex for cohomology
computations Note that these relative cohomology groups carry the / * action,
unlike the finitely generated groups C'(Nab) and C'(Fab)

As an application we study the space Cft of connected components of ft, 1 e the
largest zero-dimensional quotient of / By Stone's theorem Cft is the space of
maximal ideals in the Boolean algebra of closed-open subsets of ft, which in turn
is just the cohomology group H°(ft, Z2) Thus the above cohomology computation
implicitly computes Cft and one obtains easily the explicit formula

C n = l imC(r f l b )

Here the map Cf on components corresponds to the shift map {pab)*-*(pa+\,b+\)
on the inverse limit For ra>0we identify all the C(Fah) with b-a = m with some
finite set Sm, so (pab) determines a point {pn n+m) e S^ This defines a factor 1m of
Cft that is a subshift on symbol set Sm One clearly has

Cft = hm 2 m

and so C/is an inverse limit of subshifts Note that each map 2 m + 1 -> 1m is surjective
We now show that Cft is expansiveOSm is eventually constant More generally,

given an inverse system of expansive systems Xm with Xm+1 -» Xm surjective, the
inverse limit X is expansive<=>Xm+1-» Xm is bijective for m sufficiently large For
consider the equivalence relation Em c X x X defined by the surjective X -» Xm Em
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is isolated, Em+i<^ Em and P)£m=A is the diagonal in X xX Thus AisisolatedoA =
Em for m large, as desired

This criterion suggests that for most FPO the system CO, is not expansive, yet
no example of this behavior is in the literature In particular all the usual Axiom
A basic sets have an SFT as their component map Indeed if Cl has canonical
coordinates and CO is expansive then Cil is an SFT

Counterexamples can be found by using a construction of Guckenheimer Begin
with the Julia set J for a hyperbolic rational map / and form the inverse limit O.
of -> J -» J ^ J Then il is a basic set [G2] Shishikura has shown us, however,
that for / a polynomial, CD. is expansive<=> either J is connected or J is zero
dimensional In all other cases there is an infinite component Y of / which surrounds
a critical point of/, and one can choose a one-point component {z}c j arbitrarily
near/V Then z has distinct preimages z', z" which he very near Y In CJ the points
z', z" are very close and become equal after one iterate, so CJ is not positively
expansive Even upon passage to the inverse limit certain prehistones of z', z" stay
very close in CD, and so violate expansiveness

Note that for deg/ large the generic behavior seems to be for Cfl not to be
expansive, as suggested by the above analysis The symbolic description of CJ for
cubic polynomials has been carried out by Blanchard and Branner-Hubbard, where
already this nonexpansive behaviour arises [Bl], [BH]

Now we consider the FP case and show how to compute cohomology from
transition and incidence data Suppose O, = 1A/E where A c yxSf is a transition
relation and where the equivalence relation E = E, is

(sn)E(s'n) O sjs'n, al lneZ,

where / <= £f x Sf is a generalized incidence relation We do not require that / be
the actual incidence relation defined by the cover of O by images of cylinder sets
in yx (c f the proof of Theorem 2), although / must clearly include the latter
relation There is a certain compatabihty necessary between / and A to make E an
equivalence relation, a situation analyzed in [F3]

A cylinder set v e yab corresponds to a sequence of specified values sn e Sf,
a< n< b, with snAsn+l, a<n<b We denote this by v(sa, , sb) Define a sym-
metric, reflexive relation Iab on 5̂ afc by

v(sa, ,sb)Iabv(s'a, ,s'b) <=> sjs'n, a<n<b

Then Iab determines a 1-complex ra b with vertex set S âb and an edge joining
v, v'e yab if and only if v ^ v' and vlabv' Clearly Yab <= f ab We fill in fab to obtain
a finite complex Kab with an i-simplex for every set of i+ 1 vertices v any two of
which are / related Clearly Fab <= Kab and f ab is the 1-skeleton of Kab tab and Kab

are inverse systems of simphcial complexes and one sees easily that

For the relation snls'n, neZ, implies n(sn) = v(s'n) and so the measure determined
by a point (rah)ehmfafc is supported on at most 2 points in the same fiber of ir
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Thus hm f ab = M\. Similarly

hm K 'ab = M I, \\mKab = Mv

and consequently

H*Cl = hm H*Kab = hm H*KOp[t, r 1 ]

This gives an expression for H*Cl in terms of the incidence and transition data /,
A alone, in which / * corresponds as before to multiplication by t

Now consider a simphcial map L X -» Y of two finite simphcial complexes For
each i>0 one has induced maps I* C"( Y)-> C"(X), L,* C,(X)^C,(Y) and
natural identifications C'(Y) = Cl(Y), C'(X) = C,(X) where C" denotes i-
dimensional cochains, C, denotes i-dimensional chains and we use Z coefficients
Then if R X-* Y is another simphcial map we can define (L, R), =Tr LfR,^.=
Tr L,^.Rf to be the i-dimensional inner product of L and /? The alternating sum
#(L, R) = 1. (—\)'(L, R), \s the coincidence number of the simphcial correspondence
Y «- X -» y If the maps in question are understood we write #(T«-X-» V) for
this coincidence number

In our setting the most important case is V = Kaa = Kbb, X = Kab for a < b, L is
the natural map Kab-* Kaa, and /? is the natural map Kab-> Kbb If m = b-a we
write # m for #(Kaa«- Khh -» Kbb)

There is in fact a commutative diagram of simphcial maps of finite complexes
where the left-bound arrows represent the maps L and right-bound arrows represent

*^^ K~'~'
K 2

FIGURE 3

the maps R (Figure 3) The numbers #m measure coincidences between complexes
on the bottom row with spacing m, as we shall see

Consider the diagram

This diagram commutes thanks to the construction of K For instance a 1-simplex
in Ka-i<b is a figure

sa_!AsaA Asb

7 / /

s'a^xAs'aA As'b

where the horizontal rows are A related and the vertical columns are / related, as
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shown This maps (either through R%L* or L*R%) to the sum of all 1-simphces

saA AS{,Ast,+i

I II

saA As'bAs'b+i

for sb+l, s'b+1ey satisfying the indicated A, I relations
This commutativity allows one to replace the inverted V composition

L*L* L*R^R^ R*(m R's,m Us) in the definition of # m by the zigzag
L*R%L*Rj. L*R%. Under our identifications of all the Faa to one complex we
can view L*R^ as a chain map of the complex Koo and find

#m=Z(-l)"Tr(Lf/?, : ( ; )
m

The right hand side of this expression resembles a Lefschetz number of the ruth
iterate of a map it is, however, the coincidence number of the mth iterate of the
self-correspondence

This alternating sum is exactly that found by Bowen [B2] in his interpretation of
the Manning formula for the number of fixed points of fm We now have a chain
level interpretation of this sum as a coincidence number and must explain why it
in fact counts fixed points To do so, we must assume that ir 1.A -» O has finite fibers

Consider again a simplicial self-correspondence X *- Y -» X Define the coin-

cidence set {yeY\Ly = Ry}=c€{L,R) = (€(X^Y^X) <€(L, R) meets every
simplex of Y in a convex subspace and Y could be subdivided so as to make
<€{L, R) a subcomplex Instead we consider the smallest subcomplex "f (L, R) of Y
that contains <£(L, R)

LEMMA 6 If^iL, R) is the union of disjoint simphces A,, / = 1, , k, and L, R are
1-1 on each A, then #(L, R) = k is the number of components of ^(L, R)

Proof One immediately reduces to the case Y = {JA,, since other simphces con-
tribute neither to ^(L, R) nor to #(L, R) Then one must have LA, = i?A, since
LA, n /?A, contains L(A, n ^(L, R)) and no subsimplex of A, contains A, n ^(L, R)
By the Lefschetz fixed point formula applied to the simplicial isomorphism RL'1

of the simplex LA,, A, contributes 1 to #(L, R), as desired

Note that we used exactly the tnvial case of the Lefschetz formula that Bowen
predicted would help topologize the Manning formula [B2] For a related application
of the Lefschetz formula for a simplex to Axiom A flows see [Fl] Note that simplicial
maps L# R from a 3-simplex Y to a 1-simplex X that are two to one on vertices
have #(L, R) = 2, so one must assume L, R 1-1 on A, in Lemma 6

We now show that Lemma 6 applies to the correspondence Koo *- KQm -» Kmm =
Xoo and that each component of ^(L, R) corresponds to a fixed point of/"1 Take
a coincidence point y e KOm The support of y consists of certain vertices v, =
(v{

0'\ , v'm) e ifom, and the following coincidence condition holds

Take some v, for which y(v,) is smallest By the above equation c'J,1 is v(
0
J) for some
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j , cSi1 is Vok) for some k, etc By forming a nonrepeating cycle i,j, k, , i and
subtracting y(v,)(vol) + v(

o
j) + v{

o
k) + ) from both sides one obtains a similar

equation with fewer terms In this way one finds that y is a convex combination of
certain barycenters b with Supp b c Supp y, and where each b has the form

b=-^v, ZeSuppb, n = |Supp b\
n i

and where all the v^ are distinct and equal (as a set) to the v(^ Then b determines
a cycle of transitions of length mn by concatenating the sequences Vo\ , v[^ =
Vo\ , c'i1, and hence a periodic point z in SA fixed by crmn The points
z, crmz, , (rM"~l)z are a periodic orbit of am that projects to a periodic orbit of
fm but by expansiveness (in the form (s,)I(s[) all I=$TT(S,) = ir(s',)) this orbit is in
fact a single point x b eFix( / m ) For the same reason the fixed points xb ansing
from the various barycenters occurring in y must all be equal, so xb = xy The
coincidence points y with a given value of xv = x must he in the simplex A* c jVOm

spanned by the various cylinders that meet 7r~'x By expansiveness Ax and Ax- are
disjoint for x, x'e Fix ( /m) , X'I^X Conversely each xeF ix ( / m ) is covered by a
periodic point of crm which determines a barycenter fee Axn ^(L, R) So fixed
points correspond to components of ̂ (L, R) and we have shown all but the assertion
that L, R are 1-1 on each simplex in ^(L, R)

Only here must we use our assumption that TT IS finite to one If say L is not 1-1
on the set Ax n ^(L, R) then Ax contains two barycenters as above

b=-lv, b' = -,lv,
n n

with Uo() = Vo') for some /, /' But then one can splice the periodic sequences in 2
corresponding to b, b' at any common occurrence of VQ1) to obtain infinitely many
distinct sequences in 7r~'x, a contradiction Thus we have (with A, = Lf /?,,,.)

THEOREM 3 For il = 'LA/ E, with the equivalence classes of Et finite

|Fix/m| = \C^(KW^ KOm -> Kmm)\ = #m = 1 (-1)1 Tr (A,)m

Moreover £f(t) = U, det (/-fA,)(~1)+1is rational in t

Only the last equation needs to be shown but it follows as usual from the standard
algebraic result

.m
explTr(Bm) — = det (I-tB)~\

m

together with the Manning-Bowen formula

| F i x / m | = I ( - l ) 1 T r ( A , r

that we have just reproven To those already familiar with their formula it will be
clear that all we have done is to make evident the inverse system of finite complexes
Kab whose ghost haunted their purely combinatorial arguments

Remark 2 The transformation Ao= L*ROil. is just the transition matrix of the
transition relation A For large m it makes the dominant contribution to the
alternating sum and one can view the other terms as higher dimensional corrections
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Remark 3 Suppose / is transitive Then the equivalence classes form a set if/1 and
ft embeds in the shift (if/I)z and so is sofic Conversely every sofic ft can be
presented with / transitive Then the matrix A decomposes as a sum of blocks Bjk,
j,keif/1 The exterior powers A'Bjk of these blocks form a block decomposition
of A, and so

£(0=ndet(/-f(A'B,k))(-l)'+1

This is a readily computable formula for the zeta function of a sofic system

Remark 4 When IT has bounded fibers, a theorem of Hurewicz [H] implies that ft
has finite dimension In particular this holds for FP ft In fact one only needs ft
expansive [Ma] A more direct proof for FP systems can be found in the exercises
in [R, Chap 7], and it also follows from the fact that the dimension of the complexes
in the inverse system Kab are bounded We conjecture that the metric d of Lemma
2 has finite Hausdorff dimension

Remark 5 We mention a simple formula for the cohomology of a finite complex
K Form the exterior ring EK° with generators the vertices v of K and the relations
v2 = vv'+v'v = 0 Thus EK° is a free abelian group of rank 2|K°' Let 3 c EK° be
the span of the products of nonincident vertices, I e sets of vertices that do not
span a simplex Clearly $ is an ideal in EK°, which we call the nomncidence ideal
The quotient ring EK°/J> is the cochain complex of K with Z coefficients The
differential d is multiplication by the vertex sum £ueKo v

For a complex such as Fab, Kab defined by filling in a graph, the nomncidence
ideal 3 is generated by quadratic relations vv' = 0 for v, v' not joined by an edge
This gives a simple presentation of the cochain complexes used in this section
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