¹⁴C DATABASE AND GEOGRAPHIC INFORMATION SYSTEM FOR WESTERN SIBERIA

LYOBOV A. ORLOVA, 1 YAROSLAV V. KUZMIN2 and IVAN D. ZOLNIKOV1

ABSTRACT. We illustrate here the combined use of geographic information system (GIS) technology and a radiocarbon database for analysis of the environmental components and ancient sites in Western Siberia during the period 10-45 ka BP. In total, 230 ¹⁴C dates from 75 Late Pleistocene outcrops and Paleolithic sites were used to generate paleolandscape maps and to establish the features of the spatiotemporal distribution of Paleolithic sites.

Introduction

We aim here to examine the interrelations between the natural environment and ancient people in the territory of Western Siberia from 10 to 45 ka BP, a period of rapid and severe environmental change throughout the Northern Hemisphere (e.g., Wright 1983; Velichko 1984). Because Late Pleistocene and Early Holocene humans were hunter-gatherers, environmental conditions greatly affected the their lifestyle, economy and cultural development. The Late Pleistocene landscapes and climatic changes also influenced the peopling of different parts of Northern Asia. Western Siberia, including the southern part of the West Siberian Lowland and the Altai and Sayany Mountains, is a promising area for the study of human-environment interaction because a large body of data is available for both Quaternary geology and archaeology. Our radiocarbon database and geographic information system (GIS) technology for data processing and map generation are being used by scientists to establish a new approach for geoarchaeological research in Siberia.

The time interval under consideration, 10–45 ka BP, includes two major climato-stratigraphic subdivisions, the Karginian and Sartan horizons. The Karginian Interglacial has been ¹⁴C dated between 50 and 23 ka BP (Kind 1974), and corresponds in general to the Middle Wisconsin Interglacial in North America. The Karginian period includes several warm intervals, such as an early warming at 45–50 ka BP, the Malaya Kheta warming/optimum, 35–41 ka BP, and the Lipovka-Novoselovo warming, 23–30 ka BP. The cold events are dated to 41 to 45 ka BP (the early cooling), and 30–35 ka BP (the Konoschelye cooling) (Arkhipov 1984; Arkhipov *et al.* 1986). The Sartan Glaciation dates to 10–23 ka BP and corresponds in general to the Late Wisconsin in North America.

METHODS

As sources of information, we use both our own data (Panychev 1979; Firsov, Panychev and Orlova 1985; Orlova and Panychev 1993; Orlova 1995) and the results published previously by other investigators (Tseitlin 1979; Arkhipov *et al.* 1980; Derevianko *et al.* 1990; Abramova *et al.* 1991; Derevianko and Markin 1992; Goebel 1993; Goebel, Derevianko and Petrin 1993; Arkhipov and Volkova 1994). The Western Siberian Radiocarbon Database, developed from 1995–1997, focuses on information about the environment and archaeological sites, divided into a "geological" and "archaeological" categories, respectively. Some "archaeological" data may be included in the "geological" category if they have paleoenvironmental information as well. In total, we collected 95 ¹⁴C dates associated with natural environmental records from 36 Late Pleistocene outcrops, and 135 ¹⁴C dates from 41 Paleolithic sites in Western Siberia (Figs. 1, 2; Appendix: Tables 3, 4).

¹United Institute of Geology, Geophysics and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Universitetsky Pr., 3, Novosibirsk 630090 Russia

²Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Radio St. 7, Vladivostok 690041 Russia

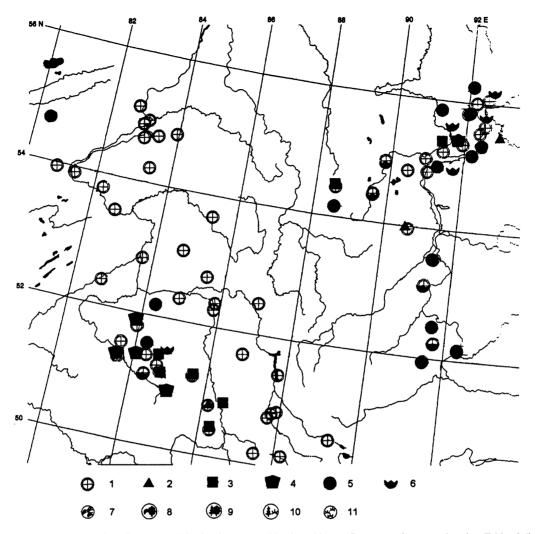


Fig. 1. Spatial distribution of the Paleolithic sites in Western Siberia and key to figure: 1. reference points (see Tables 3,4); 2. Early Karginian (42–55 ka BP) sites; 3. Middle Karginian (32–42 ka BP) sites; 4. Late Karginian (24–32 ka BP) sites, 5. Sartan (14–24 ka BP) sites; 6. Late Glacial (10–14 ka BP) sites; 7. steppe; 8. forest steppe; 9. taiga; 10. forest tundra; 11. tundra.

All reference points are assigned geographic coordinates and are placed on a chronological scale based on ¹⁴C dates (Tables 3, 4). Each "geological" reference point is characterized by several kinds of information, separated into three blocks: 1) spatial coordinates, including latitude and longitude with degrees and minutes as decimal values, absolute elevation above sea level, and the depth below surface in the section; 2) a chronological component (i.e., ¹⁴C dates); and 3) paleoenvironmental information such as geomorphic features (e.g., relief type, form and microfeatures), sediments (including data on lithology, stratigraphy, and the genesis of deposits), biotic features (vegetation type, faunal ecotype, and paleolandscape type), and paleoclimatic data (humidity and temperature) (Table 1). For "geological" points (Table 3), we combined the ¹⁴C dates from each outcrop together, even if they belong to different strata. In the computer database, each ¹⁴C date, or set of them, corresponds to a particular paleoenvironmental record subdivided into layers.

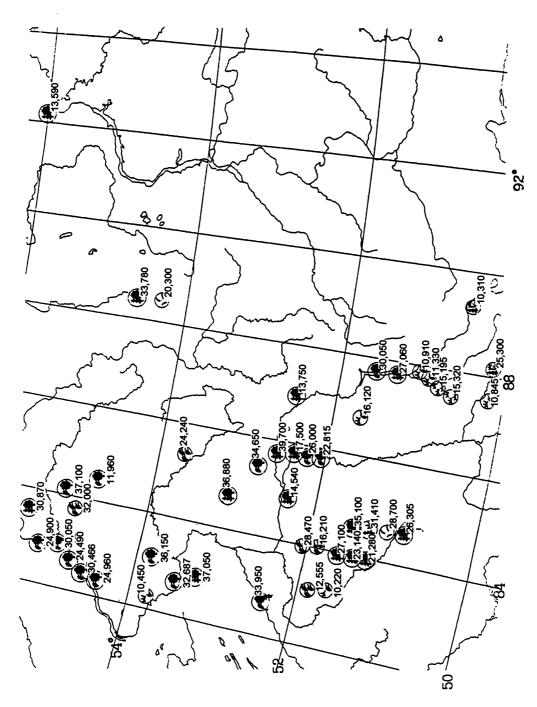


Fig. 2. Distribution of the reference points (paleoenvironmental and radiocarbon data) in Western Siberia

TABLE 1. Features of Environment on Key Points

316

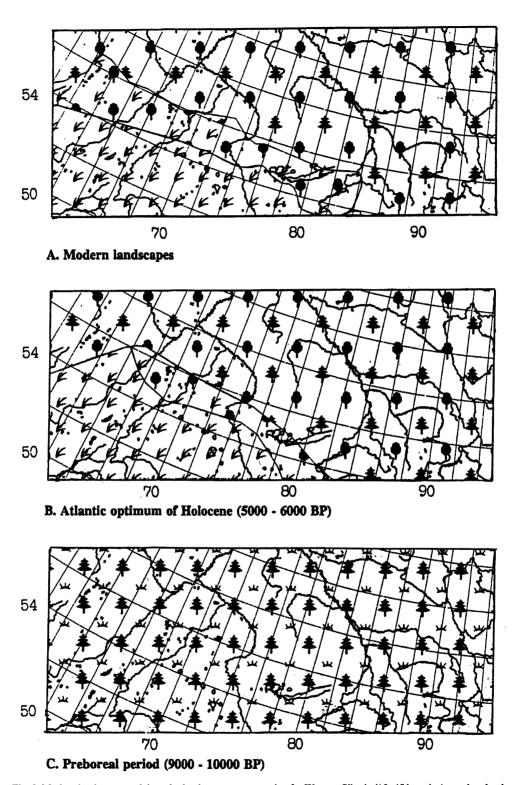
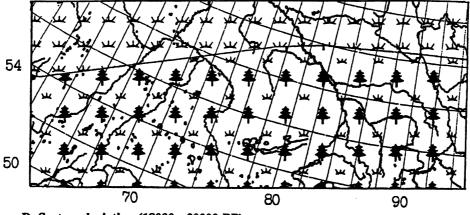
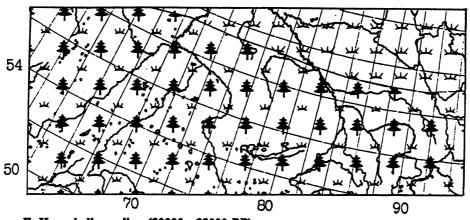
Name Denisova L	over 21	Typeages			2.00 Amount 14C	dates 2.00
Name Denisova L	ayer 21	Typeuges			2.00 12.00 2.70	
I4C datenames	SOAN	I-2488, SOAN-	2489			
Weithmeanage	37,827.0) Deviation		Maxage	34,700.00 Minage	39,310.0
Longitude	84.70	Latitude	51.20	Surfacehe	ight	
Distancetop	3.20			Insection	eight	
Typerelief Iow-mountain	1	Formrelie, cave in origi		cent	Elementrelief tral hall of cave	
Code typerelie	Code forms	elief	(Code elementrelief		
dark-g	<i>Litholog</i> grey humid	c sandy loam		<i>Stratigraphy</i> Karginskii		
Fı	Frost process				Code	e of genes.
Vegetation typ	pe	Veget.code		Fauna typ	pe Fauna cod steppe and silvan sp	-
Tempercondition	ıs	Н	umidity	8	Paleolandsc	ape
Tempercode		Ca	odehumid	îty	Paleolandsca	pe code

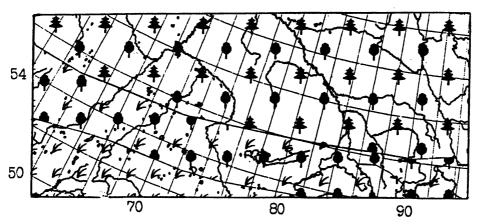
TABLE 2. Archaeological Database

	FEATURES OF HUMAN	SITES				
Site name Denisova Lay	ver 21	Epoch	Middle Palaeolith (Mousterian-Acheulian)			
Exposition of slope SW	Thickness of overlying deposits 3.20	its				
Lithology of u	underlying deposits and blocks	Epoch code Culture code				
Code of genesis o	of underlying deposits	<i>Culture</i> Mousterian				
Genesis of us	nderlying deposits	Traces of human activity hearth Material and raw material stone and bone Environmental peculiarities strategic position, cover, illumination (across natural well), nearness of water, lateral galleries				
Code of genesis	of overlying deposits					
Genesis of o cave-dwelling deposits	verlying deposits					
	overlying deposits 1 dark grey sandy-loam					

For "archaeological" points incorporated into the database, we added as characteristics the traces of human activity (e.g., dwellings, fireplaces) and cultural affiliation (epoch and culture) (Table 2). All ¹⁴C-dated archaeological sites were subdivided into five groups in terms of climatostratigraphy: 1) Early Karginian, 45–50 ka BP; 2) Middle Karginian, 30–33 BP; 3) Late Karginian, 24–30 ka BP; 4) Sartan, 15–20 ka BP; and 5) Late Glacial, 10–15 ka BP. The first group corresponds to the Mousterian, and the groups 3 through 5 belong to different stages of the Upper Paleolithic. Group 2 contains both terminal Mousterian and early Upper Paleolithic sites. There are two major geographic groups of ancient sites located quite far from each other, one in the Yenisei River basin and the other in the Altai Mountains foothills (Fig. 1).

To analyze the Late Pleistocene biotic and non-biotic environmental components and their influences on the spatial and temporal distribution of ancient sites, a Regional GIS Atlas was compiled. This Atlas is supported by several software packages, including GIS "ARC/INFO-ARCVIEW" (ESRI, Inc.), GIS "SOCRAT-GEO" (created at the Novosibirsk Regional Center for GISTechnologies, Siberian Branch of the Russian Academy of Sciences), and the Paradox® (Borland International, Inc.) database management system (DBMS). At the core of the GIS Atlas are the numerical and textual databases. The numerical database contains the morphological description and geographic position of the reference points, and this information may be processed by both ARC/INFO-ARC/VIEW and SOCRAT-GEO software. The textual database contains the information about the chronological, paleoenvironmental, and archaeological characteristics of the reference points, which are manipulated using the Paradox DBMS (Dementyev et al. 1997). The analytical functions of the GIS Atlas were executed through different types of requests to the Paradox DBMS, and the data processing results output on worksheets (Zabadaev and Zolnikov 1996). These results were combined with the numerical database to create computer maps within the GIS. The presentation of results is pictorial and easy to understand, allowing analysis of the data in many different combinations.


Fig. 3. Modern landscapes and the paleolandscape reconstruction for Western Siberia (10-45 ka BP). A. modern landscapes; B. Holocene Climatic Optimum (5-6 ka BP) landscapes; C. Preboreal period (9-10 ka BP) landscapes.

D. Sartan glaciation (18000 - 20000 BP)

E. Konoshelie cooling (30000 - 33000 BP)

F. Early Karginian warming (45000 - 50000 BP)

Fig. 3 (continued). D. Sartan Glaciation (18–20 ka BP) landscapes; E. Konoschelye cooling (30–32 ka BP); F. Early Karginian warming (45–50 ka BP).

RESULTS AND DISCUSSION

Using the Radiocarbon Database and GIS technology, maps of paleovegetation and ancient site distributions for several chronological intervals within the Karginian-Sartan period were generated. Maps of both modern landscapes and Holocene Climatic Optimum paleolandscapes, derived from published sources (Bukreeva et al. 1995; Arkhipov and Volkova 1994), are also presented (Fig. 3A,B). We present here the maps for the Early, Middle and Late Karginian, Sartan, and Late Glacial intervals (Fig. 3C-F).

Karginian Interglacial, 20-45 ka BP

For the Early Karginian, 45–50 ka BP, we have only a few ¹⁴C-dated Paleolithic sites in the Altai Mountains, such as Kara-Bom and Okladnikov Cave. The paleolandscape reconstruction for this interval (Fig. 3, F), however, shows quite favorable climatic conditions for human occupation. The climate was even warmer than today, and similar to the Holocene Climatic Optimum (Fig. 3B). Despite this fact, we have only two ¹⁴C-dated sites corresponding to the Early Karginian warming. Later, ca. 42–33 ka BP, the number of sites in the Altai increased slightly (these include Denisova Cave, Kara-Tenesh, and Malyi Yaloman) but the number of sites remains very low compared with the Late Karginian, 24–30 ka BP, when environmental conditions were similar. No ¹⁴C-dated sites have been found in the Yenisei River basin for the Early Karginian period. This scarcity of the Mousterian and early Upper Paleolithic sites is probably due to the fact that this was the period of the initial human colonization of Western Siberia.

During the Middle Karginian period, 30–33 ka BP, the environmental conditions in Western Siberia were very unfavorable for human habitation. The vegetation in the vicinity of the Ust-Karakol 1 and 2 sites in the Altai foothills, dated to ca. 31,400 BP, consisted of a "cold steppe" and forest-tundra (Fig. 3, E). We have quite a few sites for this time interval in the Altai, such as Okladnikov Cave, Strashnaya Cave, Kara-Tenesh, Kara-Bom and Ust-Karakol 1-2. No Middle Karginian sites were found in the Yenisei River basin. The Malaya Syia site in the Sayany Mountains foothills, western Yenisei River basin, yielded three ¹⁴C dates—20,300 BP, 33,060 BP and 34,500 BP (Table 4). The two oldest dates we consider less reliable because material dated was animal bone (Kuzmin and Tankersley 1996: 583). The most reliable ¹⁴C date for this site is 20,300 ± 350 BP (SOAN-1124), from charcoal (Table 4).

In the Late Karginian, 24–30 ka BP, the conditions for human existence were more favorable than in the Middle Karginian. The vegetation cover during the occupation of the Okladnikov Cave, Strashnaya Cave, and Denisova Cave sites was characterized by steppe in the Altai piedmont zone and by taiga-like forests in the river valleys within the mountainous Altai. In the southern part of the West Siberian Lowland, the main vegetation type during the entire Late Karginian time period was forest-steppe and steppes. This landscape situation was almost identical to present (Fig. 3A). The first well-documented sites in the Yenisei River basin, such as Kurtak 4 (layers 11–12) and Kashtanka 1 (layer 1), date to the Late Karginian period.

Sartan Glaciation and Late Glacial, 10-20 ka BP

In the Sartan interval, 20–15 ka BP, the geographic distribution of ancient sites was quite different from that of the Late Karginian. There is a cluster of five sites in the Yenisei River valley, and there are a few sites in the southern West Siberian Lowland (Mogochino and Tomsk). The concentration of sites in the Yenisei valley may be explained by comparatively favorable environmental conditions

at this time. Evidence of severe environment, such as "cold steppe" vegetation, is known in the Yenisei valley only for the maximal Sartan climatic deterioration, ca. 20 ka BP (Fig. 3D). Within the interval 19,300–14,750 BP, the main vegetation types were forest-steppes in the upper Yenisei River and taiga in the lower part of the Yenisei basin to the north (Kind 1974).

In the Altai Mountains and the southern West Siberian Lowland, during all of the Sartan period and in most of Late Glacial (12–20 ka BP), the vegetation was mostly forest-tundra and tundra (Fig. 3D). Both taiga and forest-steppe have survived as separate "islands". The distinct feature for this time interval is the absence of Paleolithic sites in the Altai Mountains and their foothills. Human occupation of the Volchiya Griva and Chernoozerie sites ca. 14,200–14,500 BP probably correlates with the general climatic amelioration shortly after 15 ka BP and the rather favorable environmental situation in the southern part of the West Siberian Lowland, compared with Altai Mountains.

In the Late Glacial, 10–15 ka BP, the environmental situation in the Yenisei River basin was quite favorable for human existence. Here we have a cluster of ca. 17 ¹⁴C-dated Late Paleolithic sites (Table 4). The main vegetation type near the Maininskaya (Layers 1–4), Tashtyk 1 (Layer 1), and the Bolshoi Kemchug sites was pine and pine-birch forest with an admixture of dwarf birch. In the Altai region, however, the vegetation in the vicinity of Kaminnaya and Denisova Caves between 9300 and 11,900 BP was mostly tundra-steppe (or "cold steppe"). The paleolandscape reconstruction for the Pleistocene-to-Holocene transition in Western Siberia (Fig. 3C) shows that in Preboreal times, ca. 9–10 ka BP, entire area south from 64°N was covered by forest-tundra, whereas the area north of 64°N was occupied by tundra.

The Dynamics of Human Colonization of Western Siberia

Using the most updated information on the spatiotemporal distribution of the Paleolithic sites, it is possible to establish the general features of the human settlement of Western Siberia. It seems that the first human settlements appeared in the Altai Mountains ca. 42,500–46,000 BP, as shown by Okladnikov Cave and Kara-Bom. There is one Mousterian site known in the western part of Yenisei River basin, Dvuglazka Cave (Abramova 1989), without ¹⁴C determinations. In the Altai region, the earliest Upper Paleolithic sites such as Kara-Bom (Layer 2 a-b), Kara-Tenesh, and Malyi Yaloman, very probably coexisted with the latest Mousterian sites during the time interval of ca. 33–43 ka BP (Table 4). It is quite clear that in Western Siberia we have "overlapping" in ¹⁴C chronologies for the Mousterian and early Upper Paleolithic, rather than the very early (pre-43 ka BP) Middle-to-Upper Paleolithic transition suggested by Goebel (1993).

In the Yenisei River basin, the first well-documented evidence of human occupation known so far is from the Kurtak 4 site, ¹⁴C-dated to ca. 27,500 BP. After this time we have evidence of a permanent human presence in the Yenisei River basin. In the Altai and Sayany Mountains, however, there is a marked gap in the sequence of dates from the Upper Paleolithic sites from ca. 20 ka BP to ca. 12 ka BP. This probably reflects the unfavorable natural environment for human occupation during this time in the foothills and intramontane areas of the heavily glaciated Altai Mountains (Serebryanny 1984; Arkhipov et al. 1986). After ca. 12 ka BP, human populations returned to the Altai and Sayany Mountains

Conclusion

This paper illustrates the application of a Radiocarbon Database and GIS technology for the analysis of both natural environments and ancient site distributions. The employment of a GIS Atlas allows us to create maps of the paleoenvironment for different time intervals. Data on the spatiotemporal

distribution of Paleolithic sites can then be superimposed on the paleoenvironmental maps. The simultaneous analysis of both kinds of information helps to reveal the peculiarities of human existence in the natural environments of Pleistocene Western Siberia. In the near future, similar research will be carried out for the entire territory of Siberia and the Russian Far East.

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Fundamental Investigations (RFFI), Grant #96-05-64837, and by the Fulbright Program, USA, Grant #21230 (1997). We are grateful to Dr. Steven Kuhn, University of Arizona, Tucson, and Prof. Charles T. Keally, Sophia University, Tokyo, Japan, for the correction of English. We also thank Drs. Vyacheslav N. Dementyev, Nikolai N. Dobretsov and Igor S. Zabadaev, Novosibirsk Regional Center for GIS Technologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, for assistance with the GIS software developed here.

REFERENCES

- Abramova, Z. A. 1989 The Paleolithic of Northern Asia. In Boriskovsky, P. I., ed., The Paleolithic of Caucasus and Northern Asia. Leningrad, Nauka: 145-243 (in Russian).
- Abramova, Z. A., Astakhov, S. N., Vasiliev, S. A., Ermolova, N. M. and Lisitsyn, N. F. 1991 *The Paleolithic of Yenisei*. Leningrad, Nauka Publishers: 159 p. (in Russian).
- Arkhipov, S. A. 1984 Late Pleistocene Glaciation of Western Siberia. In Velichko, A. A., ed., Late Quaternary Environments of the Soviet Union. Minneapolis, University of Minnesota Press: 13-19.
- Arkhipov, S. A., Astakhov, V. I., Volkov, I. A., Volkova, V. S. and Panychev, V. A. 1980 Paleogeography of Western Siberian Plain at the Late Zyryanka Glaciation Maximum. Novosibirsk, Nauka Publishers: 110 p. (in Russian).
- Arkhipov, S. A., Isayeva, L. L., Bespaly, V. G. and Glushkova, O. Y. 1986 Glaciation of Siberia and Northeast USSR. In Sibrava, V., Bowen, D. Q. and Richmond, G. M., eds., Quaternary Glaciations in the Northern Hemisphere. Quaternary Science Reviews 5: 463-474.
- Arkhipov, S. A. and Volkova, V. S. 1994 Geological History, Pleistocene Landscapes and Climate in West Siberia. Novosibirsk, United Institute of Geology, Geophysics and Mineralogy Press: 105 p. (in Russian).
- Bukreeva, G. F., Arkhipov, S. A., Volkova, V. S. and Orlova, L. A. 1995 Climate of Western Siberia: Past and future. Geology and Geophysics 36(11): 3-22 (in Russian).
- Dementyev, V. N., Dobretsov, N. N., Zabadaev, L. S., Zolnikov, L. D. and Patrenina, M. A. 1997 Spatial data semantic in geoinformation modeling of complex objects and structures. GIS for Environmentally Sustainable Development. Proceedings of the International Conference "Intercarto 3". Novosibirsk: United Institute of Geology, Geophysics and Mineralogy Press:

- 220-230 (in Russian).
- Derevianko, A. P., Grichan, Y. V., Dergacheva, M. I., Zenin, A. N., Laukhin, S. A., Levkovskaya, G. M., Maloletko, A. M., Markin, S. V., Molodin, V. I, Ovodov, N. D., Petrin, V. T. and Shunkov, M. V. 1990 Archaeology and Paleoecology of the Paleolithic of Mountainous Altai. Novosibirsk, Institute of Archaeology and Ethnography Press: 159 p. (in Russian).
- Derevianko, A. P. and Markin, S. V. 1992 The Mousterian of Mountainous Altai. Novosibirsk, Nauka Publishers: 224 p. (in Russian).
- Firsov, L. V., Panychev, V. A. and Orlova, L. A. 1985 The Catalogue of Radiocarbon Dates. Novosibirsk, United Institute of Geology, Geophysics and Mineralogy Press: 88 p. (in Russian).
- Goebel, T. (ms.) 1993 The Middle to Upper Paleolithic transition in Siberia. Ph.D. dissertation, The University of Alaska, Fairbanks: 382 p.
- Goebel, T., Derevianko, A. P. and Petrin, V. T. 1993 Dating the Middle-to-Upper Paleolithic Transition at Kara-Bom. Current Anthropology 34: 452-458.
- Kind, N. V. 1974 Geochronology of the Late Anthropogene according to isotopic data. Proceedings of the Geological Institute, USSR Academy of Sciences 275: 1-274 (in Russian).
- Kuzmin, Y. V. and Tankersley, K. B. 1996 The colonization of Eastern Siberia: An evaluation of the Paleolithic age radiocarbon dates. *Journal of Archaeolog*ical Science 23: 577-585.
- Orlova, L. A. 1995 Radiocarbon dating of archaeological sites from Siberia and the Russian Far East. In Derevianko, A. P. and Kholushkin, Y. P., eds., Methods of Natural Sciences in Archaeological Reconstructions. Novosibirsk, Institute of Archaeology and Ethnography Press: 207-232 (in Russian).
- Orlova, L. A. and Panychev, V. A. 1993 The reliability of radiocarbon dating buried soils. *Radiocarbon* 35(3): 369-377.

Panychev, V. A. 1979 Radiocarbon Chronology of the Altai Piedmont Plain Alluvial Deposits. Novosibirsk, Nauka Publishers: 104 p. (in Russian).

Serebryanny, L. R. 1984 Mountain glaciation in the USSR in the Late Pleistocene and Holocene. In Velichko, A. A., ed., Late Quaternary Environments of the Soviet Union. Minneapolis, University of Minnesota Press: 45-54.

Tseitlin, S. M. 1979 Geology of the Paleolithic of Northern Asia. Moscow, Nauka Publishers: 285 p. (in Russian).

Velichko, A. A., ed. 1984 Late Quaternary Environments

of the Soviet Union. Minneapolis, University of Minnesota Press: 327 p.

Wright, H. E., Jr., ed. 1983 Late Quaternary Environments of the United States, Vol. 1. In Porter, S. C., ed. The Late Pleistocene. Minneapolis, University of Minnesota Press: 407 p.

Zabadaev, I. S. and Zolnikov, I. D. 1996 Representation of subdefinite spatial objects in geological GIS. Proceedings of the 2nd Joint European GIS-Conference, Barcelona, Spain, March 27-29, 1996. Vol. 1. Barcelona, University of Barcelona Press: 547-554

APPENDIX

TABLE 3. 14C Dates for the Late Quaternary Sections in Western Siberia

9	Lat.	Long.	¹⁴ C date		
Section name	(°N)	(°E)	(yr BP)	Sample no.*	Material
Western Siberian L	owland				
Taradanov	53.77	81.83	$35,050 \pm 450$ $38,850 \pm 2200$	SOAN-1069 SOAN-1069G	Wood Humates
Iskitimskaya Lower soil Lower soil Upper soil	54.63	83.37	33,100 ± 1600 32,780 ± 670 29,000 ± 450 26,300 ± 700	SOAN-165 SOAN-629 IGAN-168 IGAN-167	Charcoal Bone Humates Humates
Kargapolovo	53.70	81.95	32,400 ± 2000 33,450 ± 550 32,275 ± 420	SOAN-23 SOAN-744 SOAN-1254	Plant detritus Plant detritus Plant detritus
Ogurtsovo	54.85	83.00	>34,360 30,050 ± 850 24,490 ± 320	SOAN-1586 SOAN-1587 SOAN-1623	Charcoal Charcoal Charcoal
Mamonovo	54.47	84.09	11,100 ± 330 12,450 ± 55 12,820 ± 495 37,100 ± 2000	SOAN-112 SOAN-411 SOAN-11 SOAN-10	Wood Wood Peat Wood
Kytmanovo	53.45	85.43	$24,240 \pm 2700$	SOAN-31	Plant detritus
Malyshevo	53.73	82.07	$40,450 \pm 1000$ $35,350 \pm 470$	SOAN-1632 SOAN-1633	Wood
Nizhni Suzun	53.72	82.15	$12,140 \pm 50$ $10,450 \pm 50$ $33,600 \pm 2400$ $36,600 \pm 310$ $28,000 \pm 620$ $12,660 \pm 130$ $10,950 \pm 150$ $12,050 \pm 50$ $12,640 \pm 50$	SOAN-2152 SOAN-2153 SOAN-29 SOAN-741 SOAN-30 SOAN-1638 SOAN-54 SOAN-2148 SOAN-2149	Plant detritus Plant detritus Wood Wood Wood Peat Peat Peat Peat

TABLE 3. ¹⁴C Dates for the Late Quaternary Sections in Western Siberia (Continued)

	Lat.	Long.	¹⁴ C date	Comple so *	Material
Section name	(°N)	(°E)	(yr BP)	Sample no.*	
Verkhnii Suzun	53.72	82.15	39,400 ± 1100	SOAN-737	Wood
			$35,300 \pm 800$	SOAN-738	Wood
			$46,100 \pm 2300$	SOAN-1636	Wood
			$28,800 \pm 310$	SOAN-740	Wood
			$26,650 \pm 200$	SOAN-739	Wood
			$26,800 \pm 200$	SOAN-1637	Wood
Novy Syrt	52.25	85.98	$39,900 \pm 3100$	SOAN-53	Wood
• •			39,600 ± 1200	SOAN-748	Wood
			$17,500 \pm 100$	SOAN-746	Peat
			$35,400 \pm 700$	SOAN-747	Plant detritus
			$15,850 \pm 680$	LG-14	Peat
Anuiskoe	52.29	84.82	14,540 ± 365	SOAN-16	Plant detritus
			$13,600 \pm 120$	SOAN-69	Plant detritus
Bolshaya Rechka	53.03	84.80	$35,980 \pm 720$	SOAN-436	Wood
Doishaya Rooma	00.00	0 1.00	$37,340 \pm 660$	SOAN-1258	Wood
			$24,750 \pm 300$	SOAN-152	Wood
			$24,870 \pm 260$	SOAN-153	Wood
			25,970 ± 180	SOAN-1257	Wood
			$27,900 \pm 600$	LG-68	Wood
			$23,300 \pm 200$	SOAN-39	Wood
			$23,080 \pm 190$	SOAN-154	Wood
Kalistratikha	52.53	83.38	$32,270 \pm 500$	SOAN-396	Wood
			$31,000 \pm 600$	MGU-203	Wood
Bobkovo	52.47	82.75	$21,700 \pm 900$	SOAN-446	Plant detritu
Koinihinskoye	54.02	81.53	$21,700 \pm 900$	SOAN-12	Humates
•			19,550 ± 900	SOAN-164	Humates
Bekhtemirka	52.34	83.24	$19,480 \pm 300$	SOAN-76	Humates
Krasnyi Yar	55.13	82.83	$29,410 \pm 250$	SOAN-1456	Wood
			29,640 ± 2750	SOAN-15	Wood
			$28,600 \pm 340$	SOAN-1065G	Wood
			$30,870 \pm 300$	SOAN-1457	Wood
			$33,060 \pm 1030$	SOAN-1458	Wood
			$32,930 \pm 1540$	BashGI-52	Plant detritu
			$41,530 \pm 1650$	SOAN-1459	Wood
Volchii Log	52.67	85.67	34,650±2100	SOAN-161	Peat
Srostki	52.17	85.72	$25,140 \pm 170$	SOAN-2405	Wood
			$25,030 \pm 380$	SOAN-2405A	Wood
			$24,800 \pm 200$	SOAN-2405B	Humates
			$26,090 \pm 180$	SOAN-2406	Wood
			$26,700 \pm 140$	SOAN-2407A	Wood
			$25,300 \pm 400$	SOAN-2407B	Humates
			25,815 ± 160	SOAN-2408	Gyttja

TABLE 3. 14C Dates for the Late Quaternary Sections in Western Siberia (Continued)

	Lat.	Long.	¹⁴ C date	<u> </u>	
Section name	(°N)	(°E)	(yr BP)	Sample no.*	Material
Belovo	54.03	83.17	$23,160 \pm 550$	SOAN-2499	Humates
Baryshevo	54.04	83.91	$24,900 \pm 380$	IGAN-199	Humates
Kozyulino	56.50	84.99	44,700 ± 2300	SOAN-334	Peat
			44,990 ± 2100	SOAN-335	Peat
Altai Mountains					
Bele 1	51.42	87.78	$30,050 \pm 435$	SOAN-2725	Charcoal
			$27,060 \pm 850$	SOAN-3119	Carbonates
Bele 2	51.42	87.78	11,450 ± 145	SOAN-3118	Carbonates
Elinovo	51.31	83.24	$20,100 \pm 240$	SOAN-2872	Mollusk shells
Karakudur	50.65	87.75	$11,840 \pm 100$	SOAN-2185	Carbonates
			10,650 ± 110	SOAN-2186	Carbonates
			10,820 ± 100	SOAN-2101	Mollusk shells
Dalah amanata	50.50	00.45	15,195 ± 65	SOAN-2100	Carbonates
Rakhomysty	50.50	88.17	42,080 ± 1675	SOAN-2102A	Gyttja
Kuekhtanar	50.15	88.32	40,870 ± 1255	SOAN-2383	Gyttja
Eshtykhkol	50.20	87.73	$10,845 \pm 80$	SOAN-2346	Plant detritus
Kubadru	50.58	87.87	15,320 ± 105	SOAN-2187	Carbonates
Tabunka	51.42	83.36	$10,220 \pm 90$	SOAN-2599	Mollusk shells
			12,555 ± 55	SOAN-2598	Wood
			13,945 ± 50	SOAN-2597	Plant detritus
Bashkaus	50.75	87.82	$10,910 \pm 70$	SOAN-2089	Charcoal
Bogoyash	50.47	89.47	$10,310 \pm 90$	SOAN-2705	Plant detritus
Lozhok	54.80	83.09	$30,000 \pm 1000$	IGAN-169	Humates
Turochak	52.25	87.12	$13,750 \pm 70$	SOAN-576	Wood
Bolshoye Eniseiskoye	52.66	85.67	$26,200 \pm 620$	SOAN-51	Wood
			$25,900 \pm 340$	SOAN-52	Wood

^{*}Lab codes: SOAN=Institute of Geology and Geophysics; IGAN=Institute of Geography; LG=All-Union Research Geological Institute, Leningrad (inactive); BashGI=Geological Institute of the Bashkirian Scientific Center, Ufa (inactive); MGU=Moscow State University.

TABLE 4. 14C Dates for the Paleolithic Sections in Western Siberia

Site name	Lat.	Long. (°E)	¹⁴ C date (yr BP)	Sample no.*	Material
Layer	(°N)	(E)	(At RL)	Sample no.	IVIAICIIAI
Western Siberian Lo					_
Mogochino	57.75	83.52	$20,150 \pm 240$	SOAN-1513	Bone
Tomsk	56.48	84.92	$18,300 \pm 1000$	GIN-2100	Charcoal
Volchiya Griva	54.63	80.25	14,450 ± 110 14,200 ± 150	SOAN-111 SOAN-78	Bone Bone
Cheroozierye 2 Layer 2	56.23	73.50	14,500 ± 500	GIN-622	Charcoal
Altai Mountains					
Okladnikov Cave Layer 1 Layer 3 Layer 3 Layer 2 Layer 1 Layer 1 Layer 1	51.67	84.00	43,300 ± 1500 40,700 ± 1100 32,400 ± 500 37,750 ± 750 33,500 ± 700 >16,210 28,470 ± 1250	RIDDL-722 RIDDL-720 RIDDL-721 RIDDL-719 RIDDL-718 SOAN-2458 SOAN-2459	Bone Bone Bone Bone Bone Bone
Strashnaya Cave	51.75	83.84	>25,000 31,510 ± 2615	SOAN-785 SOAN-3219	Bone Bone
Denisova Cave Layer 21 Layer 21 Layer 11	51.20	84.70	>34,700 39,390 ± 1310 >37,235	SOAN-2488 SOAN-2489 SOAN-2504	Humates Humates Bone
Kara-Bom Layer 2a Layer 2b Layer 2c Layer 2c Layer 2c Layer 2c(?) Layer 2d Layer 2d	50.10	86.40	43,200 ± 1500 43,300 ± 1600 33,800 ± 600 34,180 ± 640 33,780 ± 570 32,000 ± 600 38,080 ± 910 30,990 ± 460	GX-17597 GX-17596 GIN-5935 GX-17595 GX-17594 GIN-5934 GX-17592 GX-17593	Charcoal Charcoal Charcoal Charcoal Bone Charcoal Charcoal
Kara-Tenesh	50.10	85.90	$42,165 \pm 4170$ $31,400 \pm 410$	SOAN-2485 SOAN-1160	Charcoal Bone
Malyi Yaloman	49.80	86.30	33,350 ± 1145	SOAN-2500	Charcoal
Ust-Karakol 1 Layer 6 Layer 5 Layer 5 Layer 5 Layer 5 Layer 5 Layer 5 Layer 4	51.10	84.70	29,860 ± 355 29,720 ± 360 31,410 ± 1160 31,345 ± 1275 30,460 ± 2035 29,900 ± 2070 26,305 ± 280	SOAN-3358 SOAN-3359 SOAN-2515 SOAN-2869 SOAN-3260 IGAN-837 SOAN-3261	Charcoal Charcoal Charcoal Charcoal Charcoal Charcoal

TABLE 4. ¹⁴C Dates for the Paleolithic Sections in Western Siberia (Continued)

Site name	Lat.	Long.	¹⁴ C date		
Layer	(°N)	(°E)	(yr BP)	Sample no.*	Material
Layer 4			27,020 ± 435	SOAN-3356	Charcoal
Layer 4			$26,920 \pm 310$	SOAN-3357	Charcoal
Layer 4			$26,920 \pm 310$	SOAN-3356	Humates
Layer 3			$33,400 \pm 1285$	SOAN-3257	Charcoal
Layer 2			$28,700 \pm 850$	SOAN-2614	Bone
Ust-Karakol 2					
Layer 5			$31,430 \pm 1180$	IGAN-1077	Bone
Anyi 2	51.30	84.60			
Layer 12		01.00	26,810 ± 290	SOAN-3005	Charcoal
Layer 8			$24,205 \pm 420$	SOAN-3006	Charcoal
Layer 3 (4?)			$27,125 \pm 580$	SOAN-2868	Charcoal
Layer 3			$21,280 \pm 440$	SOAN-3007	Charcoal
Layer 3			$20,350 \pm 290$	SOAN-2863	Charcoal
Layer 3			$22,610 \pm 140$	SOAN-2862	Charcoal
Denisova Cave, pit	51.20	84.70	10,800 ± 40	SOAN-2865	Charcoal
, p	01.20	01170	10,690 ± 65	SOAN-2866	Charcoal
Kaminnaya Cave	50.90	84.30	10,000 1 00	501 E \ 2000	Charcoar
Layer A	30.90	04.50	11,900 ± 140	SOAN 2551	Characal
Layer A2			9335 ± 190	SOAN-2551 SOAN-2553	Charcoal
Layer 11			$10,310 \pm 330$	SOAN-3402	Charcoal Charcoal
Sayany Mountains			10,510 ± 550	30A11-3402	Charcoar
• •					
Mokhovo 2	54.40	86.60	$30,330 \pm 445$	SOAN-2861	Bone
Shestakovo	55.64	88.00	$20,770 \pm 560$	SOAN-3218	Bone
Malaya Syia	54.50	89.42	$20,300 \pm 350$	SOAN-1124	Charcoal
			$33,060 \pm 300$	SOAN-1287	Bone
Dolohoi Vomelus	54.45	00.50	34,500 ± 450	SOAN-1286	Bone
Bolshoi Kemchug	54.45	89.50	10,980 ± 55	SOAN-1125	Charcoal
			$10,890 \pm 60$	SOAN-1126	Charcoal
Yenisei River basin					
Kurtak 4	55.17	91.58			
Layers 11-12			$27,470 \pm 200$	LE-2833	Charcoal
Layer 11			$24,890 \pm 670$	LE-3357	Bone
Layer 11			$24,800 \pm 400$	GIN-5350	Charcoal
Layer 11			$24,170 \pm 230$	LE-3351	Charcoal
Layer 11			$24,000 \pm 2950$	LE-4156	Bone
Layer 11			$23,800 \pm 900$	LE-4155	Charcoal
Layer 11			$23,470 \pm 200$	LE-2833a	Charcoal
Kashtanka 1	55.13	91.42			
Layer 1			$24,805 \pm 425$	SOAN-2853	Charcoal
Layer 1			$24,400 \pm 1500$	IGAN-1048	Charcoal
Layer 1			$23,830 \pm 850$	IGAN-1050	Charcoal
Layer 2			$21,800 \pm 200$	IGAN-1049	Charcoal
Layer 2			$20,800 \pm 600$	GIN-6968	Charcoal

TABLE 4. ¹⁴C Dates for the Paleolithic Sections in Western Siberia (Continued)

Site name	Lat.	Long.	¹⁴ C date	O1	Matarial
Layer	(°N)	(°E)	(yr BP)	Sample no.*	Material
Ui 1 Layer 2 Layer 2 Layer 2 Layer 2	52.93	91.50	22,830 ± 530 19,280 ± 200 17,520 ± 130 16,760 ± 120	LE-4189 LE-4257 LE-3359 LE-3358	Charcoal Bone Bone Bone
Novoselovo 13 Layer 3	55.08	91.00	22,000 ± 700	LE-3739	Charcoal
Afontova Gora 2 Layer 5 Layer 4 Layer 3	56.00	92.75	20,900 ± 300 11,330 ± 270 15,130 ± 795 14,070 ± 110 14,330 ± 95	GIN-117 Mo-343 SOAN-3251 SOAN-3075 SOAN-3077	Charcoal Charcoal Bone Bone Bone
Shlenka	55.20	92.05	$20,100 \pm 300$	GIN-3017	Bone
Nizhny Idzhyr 1	52.08	92.33	17,200 ± 140	LE-1984	Charcoal
Mayninskaya Layer B Layer A-1 Layer A Layer 5 Layer 4 Layer 3 Layer 3 Layer 2-2 Layer 2-1 Layer 1	52.22	91.50	$15,200 \pm 150$ $12,110 \pm 220$ $11,700 \pm 100$ $16,540 \pm 170$ $13,690 \pm 390$ $12,910 \pm 100$ $12,330 \pm 150$ $12,120 \pm 650$ $10,800 \pm 200$ $12,120 \pm 220$ $15,500 \pm 150$	LE-2383 LE4255 LE-3019 LE-2135 LE-4251 LE-2133 LE-2149 LE-4252 LE-2378 LE-2300 LE-2299	Charcoal Bone Charcoal Bone Bone Bone Charcoal Bone Charcoal Bone Bone
Kurtak 3 Pit 1 Pit 1 Pit 2 Pit 2	55.17	91.58	16,900 ± 700 14,390 ± 100 14,600 ± 200 14,300 ± 100	GIN-2102 LE-1456 GIN-2101 LE-1457	Charcoal Charcoal Charcoal
Novoselovo 7	55.07	91.00	$15,000 \pm 300$	GIN402	Charcoal
Kokorevo 4a Layer 2	54.83	90.92	15,460 ± 320	LE-540	Charcoal
Kokorevo 4 Layers 3–5	54.83	90.92	14,320 ± 330	LE-469	Charcoal
Kokorevo 1 Layer 3 Layer 3 Layer 3 Layer 3 Layer 2 Layer 2 Layer 2 Layer 2	54.83	90.92	$15,900 \pm 250$ $14,450 \pm 150$ $13,300 \pm 50$ $13,000 \pm 500$ $15,200 \pm 200$ $13,100 \pm 500$ $12,940 \pm 270$	IGAN-104 LE-628 GIN-91 IGAN-102 IGAN-105 IGAN-103 LE-526	Charcoal Charcoal Bone Charcoal Bone Charcoal

TABLE 4. ¹⁴C Dates for the Paleolithic Sections in Western Siberia (Continued)

Site name	Lat.	Long.	¹⁴ C date		
Layer	(°N)	(°E)	(yr BP)	Sample no.*	Material
Oznachennoye 1	53.10	91.50	15,020 ± 150	LE-1404	Bone
Tashtyik 4	54.70	90.85	$14,700 \pm 150$	GIN-262	Charcoal
Listvenka	55.92	92.33			
Layer 8			$12,750 \pm 140$	IGAN-1078	Charcoal
Layer 7			$14,750 \pm 250$	GIN-6092	Charcoal
Layer 6			13,590 ± 350	IGAN-1079	Charcoal
			$13,850 \pm 485$	SOAN-3463	Charcoal
Golubaya 1	53.00	91.50			
Layer 3			13,650 ± 180	LE-1101d	Bone
•			$13,050 \pm 90$	LE-1101a	Charcoal
			$12,980 \pm 140$	LE-1101c	Bone
			12,900 ± 150	LE-1101b	Bone
Kokorevo 2	54.83	90.92	$13,300 \pm 100$	GIN-90	Charcoal
Bolshaya Slizneva	55.95	92.30			
Layer 8			$13,540 \pm 500$	SOAN-3315	Charcoal
Layer 7			$12,930 \pm 60$	SOAN-3009	Bone
Kokorevo 3	54.83	90.92	12,690 ± 140	LE-629	Charcoal
Tashtyik 1, Layer 1	54.70	90.85	$12,180 \pm 120$	LE-771	Charcoal
Eleneva Cave, pit	55.93	92.30	13,665 ± 90	SOAN-3333	Bone
Layer 21			10,380 ± 85	SOAN-3255	Bone
Layer 20			$10,460 \pm 95$	SOAN-3254	Bone
Layer 19			$11,250 \pm 335$	SOAN-3253	Bone
Layer 18			$12,040 \pm 150$	SOAN-3252	Bone
Layers 16-17			$10,485 \pm 310$	SOAN-2948	Charcoal
Paleolithic			1000	00 437 6565	C1 1
Layer 1			12,050 ± 325	SOAN-3307	Charcoal
Layer 1			12,040 ± 160	SOAN-3308	Charcoal
Layer 1			12,085 ± 105	SOAN-3309	Charcoal
Layer 1			11,430 ± 115	SOAN-3310	Charcoal
Paleolithic			13,665 ± 90	SOAN-3333	Bone
Layer 2			•		
Novoselovo 6	54.70	90.85	11,600 ± 500	GIN-403	Charcoal

^{*}Lab codes: SOAN=Institute of Geology and Geophysics; GIN=Geological Institute; RIDDL= Radioisotope Direct Detection Laboratory, Simon Fraser University (inactive); GX=Geochron Laboratories; IGAN=Institute of Geography; LE=St. Petersburg; Mo=Institute of Geochemistry, Moscow (inactive).