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Let Ω ⊂ RN (N � 3) be a C2 bounded domain and Σ ⊂ ∂Ω be a C2 compact
submanifold without boundary, of dimension k, 0 � k � N − 1. We assume that
Σ = {0} if k = 0 and Σ = ∂Ω if k = N − 1. Let dΣ(x) = dist (x, Σ) and
Lµ = Δ + μ d−2

Σ , where μ ∈ R. We study boundary value problems (P±)
−Lµu ± |u|p−1u = 0 in Ω and trµ,Σ(u) = ν on ∂Ω, where p > 1, ν is a given
measure on ∂Ω and trµ,Σ(u) denotes the boundary trace of u associated to Lµ.
Different critical exponents for the existence of a solution to (P±) appear according
to concentration of ν. The solvability for problem (P+) was proved in [3, 29] in
subcritical ranges for p, namely for p smaller than one of the critical exponents. In
this paper, assuming the positivity of the first eigenvalue of −Lµ, we provide
conditions on ν expressed in terms of capacities for the existence of a (unique)
solution to (P+) in supercritical ranges for p, i.e. for p equal or bigger than one of
the critical exponents. We also establish various equivalent criteria for the existence
of a solution to (P−) under a smallness assumption on ν.

Keywords: Hardy potentials; boundary singularities; capacities; critical exponents;
removable singularity; Keller–Osserman estimates
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1. Introduction

1.1. A survey of the relevant literature

Let N � 3, Ω ⊂ RN be a C2 bounded domain and Σ ⊂ ∂Ω be a C2 compact
submanifold in RN without boundary, of dimension 0 � k � N − 1. We assume that
Σ = {0} if k = 0 and Σ = ∂Ω if k = N − 1. Let d∂Ω(x) = dist (x, ∂Ω) and dΣ(x) =
dist (x,Σ). Two typical semilinear elliptic equations involving power nonlinearities
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2 K. T. Gkikas and P.T. Nguyen

and Hardy-type potentials are of the form

Lμu± |u|p−1u = 0 in Ω, (E±)

where p > 1, μ ∈ R is a parameter and

Lμu := Δu+
μ

d2
Σ

u.

The nonlinearity |u|p−1u in (E±) is referred to as an absorption or a source
depending whether the plus sign or minus sign appears in (E±).

Boundary value problems for (E±) with μ = 0 became a central research subject
in the area of partial differential equations with abundant literature. A rich theory
has been developed for a boundary value problem with a power absorption in the
case μ = 0, namely for the problem{−Δu+ |u|p−1u = 0 in Ω,

u = ν on ∂Ω, (1.1)

where ν is a measure on ∂Ω. Throughout this paper, we denote by M(∂Ω) and
M+(∂Ω) the space of finite measures on ∂Ω and its positive cone respectively. The
first study of (1.1) was carried out by Gmira and Véron in [22] where the existence
of a solution is obtained for any ν ∈ M(∂Ω) in the subcritical case 1 < p < N+1

N−1 .
In the supercritical case p � N+1

N−1 , a breakthrough was achieved by Marcus and
Véron [32], asserting that problem (1.1) possesses a solution if and only if ν is
absolutely continuous with respect to the capacity Cap∂Ω

2
p ,p

′ , namely ν(E) = 0 for

any Borel set E ⊂ ∂Ω such that Cap∂Ω
2
p ,p

′(E) = 0 [see (2.9) for the definition of the
above capacities and see (2.10) for the meaning of the absolute continuity].

When μ �= 0, let CΩ,Σ be the optimal Hardy constant defined by

CΩ,Σ := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx∫

Ω
|u|2 d−2

Σ dx
(1.2)

and put

H :=
N − k

2
.

It is known that CΩ,Σ ∈ (0,H2] (see e.g. [7, 26] for k = N − 1 and [14] for 0 � k �
N − 2).

Consider the eigen problem

λμ,Σ := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx− μ

∫
Ω
|u|2d−2

Σ dx∫
Ω
|u|2 dx

. (1.3)

Note that λμ,Σ > −∞ if μ � H2, and λμ,Σ > 0 if μ < CΩ,Σ. Moreover, when
μ < H2, problem (1.3) admits a minimizer φμ,Σ ∈ H1

0 (Ω) which satisfies Lμφμ,Σ =
λμ,Σφμ,Σ in Ω (see [14, corollary 1.3]). When μ = H2, there is no minimizer of prob-
lem (1.3) in H1

0 (Ω), but there exists a function φμ,Σ ∈ H1
loc(Ω) such that Lμφμ,Σ =
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Semilinear elliptic equations 3

λμ,Σφμ,Σ in Ω in the sense of distributions. In addition, by [3, proposition A.2]
(see also [29, lemma 2.2]), for any μ � H2, there holds

φμ,Σ ≈ d∂Ω d
−α−
Σ in Ω \ Σ, (1.4)

where

α± := H ±
√
H2 − μ. (1.5)

It is known that, when μ < CΩ,Σ, there exists a Green function associated with
−Lμ, denoted by Gμ (see e.g. [2, 24] for more general potentials, and [17] for
Σ = ∂Ω and μ � 1

4 ). In addition, by Ancona [2], there exists a Martin kernel asso-
ciated with −Lμ, denoted by Kμ, which is unique up to a normalization. Marcus
and Nguyen [28] applied results for a class of more general Schrödinger operators in
[24] to the model case Lμ and showed two-sided estimates of Gμ and Kμ. Recently,
Barbatis et al. [3] followed a different approach to obtain the existence and sharp
two-sided estimates of Gμ and Kμ for the whole range μ � H2 provided λH2 > 0.
These estimates will be quoted in § 3.1.

We denote by M(Ω;φμ,Σ) the space of measures τ such that
∫
Ω
φμ,Σ d|τ | < +∞

and by M+(Ω;φμ,Σ) the positive cone of M(Ω;φμ,Σ). The Green operator and the
Martin operator are respectively defined by

Gμ[τ ](x) :=
∫

Ω

Gμ(x, y) dτ(y), τ ∈ M(Ω;φμ,Σ),

Kμ[ν](x) :=
∫
∂Ω

Kμ(x, y) dν(y), ν ∈ M(∂Ω).

These operators are an important tool in the study of nonhomogenous linear equa-
tions involving −Lμ. Main properties of the above operators were established in [3]
and will be presented in subsections 3.2.

There is a vast literature on boundary value problems for (E±). We list below
some relevant works.

The extreme case Σ = {0} ⊂ ∂Ω was considered by Chen and Véron in [8] in
which necessary and sufficient conditions in terms of suitable capacities for the
existence of a solution to (E+) with a prescribed boundary measure were established
under the condition μ � H2.

In the other extreme case Σ = ∂Ω, Marcus and Nguyen [28] introduced a notion
of normalized boundary trace to study a boundary value problem for equation (E+)
with 0 < μ < CΩ,∂Ω. In this range of μ, they showed that if 1 < p < N−α−+1

N−α−−1 then
the problem admits a unique solution for any ν ∈ M+(∂Ω). Marcus and Moroz
[27] extended the notion of normalized boundary trace and the results in [28] to
the range −∞ < μ < 1/4. Independently, under the assumption λμ,∂Ω > 0, Gkikas
and Véron [21] investigated a boundary value problem for (E+) with a prescribed
boundary trace defined in a dynamic way and obtained various existence results.
Then it was shown in [18] that the two notions of boundary trace in [28] and in
[21] coincide.

Afterwards, Marcus and Nguyen [29] generalized the notion of normalized bound-
ary trace in [28] to the case Σ � ∂Ω with dimension 0 � k � N − 2, under the
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4 K. T. Gkikas and P.T. Nguyen

restriction μ < min {CΩ,Σ,H − 1/4}. They proved the solvability for the bound-
ary value problem for (E+) with any prescribed normalized boundary trace ν ∈
M+(∂Ω) in subcritical ranges for p, namely for 1 < p < N+1

N−1 if ν has compact
support in ∂Ω \ Σ or for 1 < p < N−α−+1

N−α−−1 if ν has compact support in Σ. They
also showed that the problem has no solution either if ν = δy (the Dirac measure
concentrated at y) in supercritical ranges for p, namely p � N+1

N−1 if y ∈ ∂Ω \ Σ or
p � N−α−+1

N−α−+1 if y ∈ Σ. Very recently, under the condition λμ,Σ > 0, Barbatis et al.
[3] obtained similar existence results in subcritical ranges for p and for the whole
range μ � H2.

For boundary value problems with more general potentials singular on ∂Ω, we
refer to Marcus [25] and Bhakta et al. [4].

The case of source nonlinearity is sharply different from the case of absorption
nonlinearity in the sense that existence results hold under a smallness condition of
boundary data, while nonexistence results hold if boundary data are large enough,
even in subcritical ranges of p. When μ = 0, this phenomenon can be seen in [6].
When Σ = ∂Ω, Bidaut-Véron et al. [5] established existence results for a boundary
value problem with measure for (E−) in a capacity framework under a smallness
condition on boundary data. Afterwards, various necessary and sufficient conditions
for the existence of a solution to (E−) were obtained by Nguyen [33], Gkikas and
Nguyen [18].

When Σ ⊂ Ω, the corresponding boundary problems involving operator Lμ with
an absorption and with a source were extensively studied by Gkikas and Nguyen
in [19, 20] respectively. See also the papers by Dávila and Dupaigne [11, 12],
Dupaigne and Nedev [13], Fall [15] and Chen and Zhou [9] for related results on
semilinear equations with a source term.

1.2. Aim of the paper

Motivated by the above mentioned works, in the present paper, we aim to study
boundary value problems for (E±), where Σ ⊂ ∂Ω of dimension 0 � k � N − 2, for
μ � H2.

• First, we will establish removability results for equation (E+) when p �
N−α−+1
N−α−−1 or p � N+1

N−1 . We will also provide conditions in terms of suitable
capacities for the existence of a solution to boundary value problems for (E+).

• Then we will give various criteria for the existence of a solution to boundary
value problems for (E−).

The precise statement of these results will be presented in § 2.

2. Main results

2.1. Boundary trace, capacitary setting and main results

Throughout this paper, we assume that

0 � k � N − 2, μ � H2 and λμ,Σ > 0. (2.1)
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Under assumption (2.1), a theory for linear equations involving Lμ was established
in [3, 29], which forms a basis for the study of equation (E±). We also note that
the first and second inequalities in (2.1) imply that α+ � H � 1. Moreover α+ = 1
if and only if k = N − 2 and μ = 1; in this case, we have α− = 1.

First we focus on the equation with an absorption power nonlinearity

− Lμu+ |u|p−1u = 0 in Ω. (E+)

Before stating the main results for equation (E+), we introduce some notations.
For any β > 0, we set

Σβ := {x ∈ RN \ Σ : dΣ(x) < β} and Ωβ := {x ∈ Ω : d∂Ω(x) < β}. (2.2)

It is well known that (see appendix A.1) there is a small enough number β0 > 0
such that for any x ∈ Ωβ0 there exists a unique ξx ∈ ∂Ω satisfying d∂Ω(x) = |x− ξx|.
Now set

d̃Σ(x) :=
√
|dist∂Ω(ξx,Σ)|2 + |x− ξx|2, (2.3)

where dist ∂Ω denotes the geodesic distance on ∂Ω.
Let β3 > 0 be the constant in proposition A.1. (One may choose β3 < β0.) Let

ηβ3 be a smooth cut-off function such that 0 � ηβ3 � 1 such that ηβ3 = 1 in Σ β3
4

with compact support in Σβ3
2

. We define

W (x) :=

{
(d∂Ω(x) + d̃Σ(x)2)d̃Σ(x)−α+ , if μ < H2,

(d∂Ω(x) + d̃Σ(x)2) dΣ(x)−H | ln d̃Σ(x)|, if μ = H2,
x ∈ Ω ∩ Σβ3 ,

where α+ is defined in (1.5), and define

W̃ (x) := (1 − ηβ3(x)) + ηβ3(x)W (x), x ∈ Ω. (2.4)

In the particular case μ = 0 and Σ = ∂Ω, we have α+ = 1, whence W̃ (x) ≈ 1. We
note that W̃ is an appropriate function to describe the boundary behaviour in a
normalization sense of solutions to (E±). For more detail, see (4.1) and (4.2) (see
also [3, lemma 6.8]).

Our first theorem provides a removability result when p � α++1
α+−1 in the sense that

if a nonnegative solution ‘vanishes’ on ∂Ω \ Σ as in (2.5), then it must be identically
zero.

Theorem 2.1. Assume μ � H2 if k < N − 2 or μ < H2 if k = N − 2, and p �
α++1
α+−1 . We additionally assume that Ω is a C3 open bounded domain. If u ∈ C2(Ω)
is a nonnegative solution of (E+) such that

lim
x∈Ω, x→ξ

u(x)
W̃ (x)

= 0, ∀ξ ∈ ∂Ω \ Σ, (2.5)

locally uniformly in ∂Ω \ Σ, then u ≡ 0 in Ω.

We remark that if k = 0 the result in the theorem 2.1 coincides with the result
in [8, theorem J with h = 0]. In addition, when p � α++1

α+−1 , boundary behaviour of
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6 K. T. Gkikas and P.T. Nguyen

solutions on Σ is not imposed. However, when N−α−+1
N−α−−1 � p < α++1

α+−1 , zero boundary
condition on Σ is additionally required for the removability of isolated singularities,
as stated in the following theorem.

Theorem 2.2. Assume k � 1, μ � H2, z ∈ Σ and N−α−+1
N−α−−1 � p < α++1

α+−1 if α+ > 1
or N

N−2 � p if α+ = 1. We additionally assume that Ω is a C3 bounded domain. If
u ∈ C2(Ω) is a nonnegative solution of (E+) such that

lim
x∈Ω, x→ξ

u(x)
W̃ (x)

= 0 ∀ξ ∈ ∂Ω \ {z}, (2.6)

locally uniformly in ∂Ω \ {z}, then u ≡ 0.

Next, we discuss existence results for a boundary value problem for (E+). In order
to formulate the boundary value problem for (E+), we use a notion of boundary
trace, introduced in [3], the definition of which is recalled below.

A family {Ωn} is called a C2 exhaustion of Ω if Ωn is a C2 bounded domain,
Ωn � Ωn+1 � Ω for any n ∈ N and ∪n∈NΩn = Ω.

Let x0 ∈ Ω be a fixed reference point.

Definition 2.3 Boundary trace. We say that a function u ∈W 1,κ
loc (Ω) (κ > 1) pos-

sesses a boundary trace if there exists a measure ν ∈ M(∂Ω) such that for any C2

exhaustion {Ωn} of Ω containing x0, there holds

lim
n→∞

∫
∂Ωn

φudωx0
Ωn

=
∫
∂Ω

φdν ∀φ ∈ C(Ω).

The boundary trace of u is denoted by trμ,Σ(u). Here ωx0
Ωn

is the Lμ-harmonic
measure on ∂Ωn relative to x0 (see § 4.1).

It is known by [3, lemmas 8.1 and 8.2] that

trμ,Σ(Kμ[ν]) = ν ∀ν ∈ M(∂Ω) and trμ,Σ(Gμ[τ ]) = 0 ∀τ ∈ M(Ω;φμ,Σ).
(2.7)

For q ∈ [1,+∞), denote by Lq(Ω;φμ,Σ) the weighted Lebesgue space

Lq(Ω;φμ,Σ) :=

{
u : Ω → R measurable such that ‖u‖Lq(Ω;φμ,Σ)

:=
(∫

Ω

|u|qφμ,Σ dx
) 1

q

< +∞
}
.

Let H1(Ω;φ2
μ,Σ) be the weighted Sobolev space

H1(Ω;φ2
μ,Σ) :=

{
u ∈ H1

loc(Ω) : ‖u‖H1(Ω;φ2
μ,Σ)

:=
(∫

Ω

|u|2φ2
μ,Σ dx+

∫
Ω

|∇u|2φ2
μ,Σ dx

) 1
2

< +∞
}
.
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We also denote by H1
0 (Ω;φ2

μ,Σ) the closure of C∞
0 (Ω) with respect to the

norm ‖·‖H1(Ω;φ2
μ,Σ) . It is worth mentioning here that H1

0 (Ω;φ2
μ,Σ) = H1(Ω;φ2

μ,Σ)
(see [3, theorem 4.5]).

Weak solutions of the boundary value problem for (E+) with prescribed boundary
trace are defined below.

Definition 2.4. Let p > 1. We say that u is a weak solution of{−Lμu+ |u|p−1u = 0 in Ω,
trμ,Σ(u) = ν.

(P+)

if u ∈ L1(Ω;φμ,Σ), |u|p ∈ L1(Ω;φμ,Σ) and

−
∫

Ω

uLμζ dx+
∫

Ω

|u|p−1uζ dx = −
∫

Ω

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(Ω),

where

Xμ(Ω) := {ζ ∈ H1
loc(Ω) : φ−1

μ,Σζ ∈ H1(Ω;φ2
μ,Σ), φ−1

μ,ΣLμζ ∈ L∞(Ω)}. (2.8)

We remark that in light of [3, theorem 2.12], a function u is a weak solution to
problem (P+) if and only if

u+ Gμ[|u|p−1u] = Kμ[ν] a.e. in Ω.

It was known by [3, theorem B.4 (b)] (see also [29, theorem 1.18]) that, in the
subcritical case 1 < p <N−α−+1

N−α−−1 , problem (P+) admits a unique weak solution for

any ν ∈ M(∂Ω) with support in Σ. The supercritical case p �N−α−+1
N−α−−1 is more

challenging. In order to treat this case, we will make use of appropriate capacities.
For θ ∈ R, we define the Bessel kernel of order α in Rd by Bd,θ(ξ) := F−1((1 +

|.|2)− θ
2 )(ξ), where F is the Fourier transform in the space S ′(Rd) of moderate

distributions in Rd. For κ > 1, the Bessel space Lθ,κ(Rd) is defined by

Lθ,κ(Rd) := {f = Bd,θ ∗ g : g ∈ Lκ(Rd)},
with norm

‖f‖Lθ,κ
:= ‖g‖Lκ = ‖Bd,−θ ∗ f‖Lκ .

The Bessel capacity is defined for compact set A ⊂ Rd by

CapR
d

θ,κ(A) := inf{‖f‖κLθ,κ
: g ∈ Lκ+(Rd), f = Bd,θ ∗ g � 1A},

and is extended to open sets and arbitrary sets in Rd in the standard way. Here 1A
denotes the indicator function of A.

We denote by Bd(x, r) the open ball of centre x ∈ Rd and radius r > 0 in Rd.
Using the Bessel capacities, we are able to define capacities for subsets of ∂Ω

as follows. If Γ ⊂ ∂Ω is a C2 submanifold without boundary, of dimension d with
1 � d � N − 1 then there exist open sets O1, . . . , Om in RN , diffeomorphisms Ti :
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8 K. T. Gkikas and P.T. Nguyen

Oi → Bd(0, 1) ×BN−d−1(0, 1) × (−1, 1), i = 1, . . . ,m, and compact setsK1, ...,Km

in Γ such that

(i) Ki ⊂ Oi, 1 � i � m and Γ = ∪mi=1Ki;

(ii) Ti(Oi ∩ Γ) = Bd(0, 1) × {(xd+1, . . . , xN−1) = 0RN−d−1} × {xN = 0}, Ti(Oi ∩
Ω) = Bd(0, 1) ×BN−d−1(0, 1) × (0, 1);

(iii) For any x ∈ Oi ∩ Ω, there exists y ∈ Oi ∩ Γ such that dΓ(x) = |x− y| (here
dΓ(x) denotes the distance from x to Γ).

We then define the CapΓ
θ,κ−capacity of a compact set E ⊂ Γ by

CapΓ
θ,κ(E) :=

m∑
i=1

CapR
d

θ,κ(T̃i(E ∩Ki)), (2.9)

where Ti(E ∩Ki) = T̃i(E ∩Ki) × {(xd+1, . . . , xN−1) = 0RN−d−1} × {xN = 0}.
We remark that the definition of the capacities does not depend on Oi,

i = 1, . . . ,m.
In the sequel, we will say that ν ∈ M+(∂Ω) is absolutely continuous with respect

to a capacity C if

∀ Borel set E ⊂ ∂Ω such that C (E) = 0 =⇒ ν(E) = 0. (2.10)

Our next main result gives a sufficient condition in terms of appropriate capacities
for the solvability of problem (P+) in the range N−α−+1

N−α−−1 � p < α++1
α+−1 when the

boundary trace is supported in Σ.

Theorem 2.5. Assume k � 1, μ � H2, N−α−+1
N−α−−1 � p < α++1

α+−1 if α+ > 1 or N
N−2 � p

if α+ = 1. Let ν ∈ M+(∂Ω) with compact support in Σ. If ν is absolutely continuous
with respect to CapΣ

ϑ,p′ , where p′ = p
p−1 , then problem (P+) admits a unique weak

solution.

When ν has support in ∂Ω \ Σ, we provide a necessary and sufficient condi-
tion on the boundary trace for the existence of a solution to problem (P+) in the
supercritical range p � N+1

N−1 .

Theorem 2.6. Assume μ � H2, p � N+1
N−1 and ν ∈ M+(∂Ω) with compact support

in ∂Ω \ Σ. Then problem (P+) admits a unique weak solution if and only if 1F ν is
absolutely continuous with respect to Cap∂Ω

2
p ,p

′ for any compact set F ⊂ ∂Ω \ Σ.

Next we investigate boundary value problem for (E−) of the form{−Lμu− |u|p−1u = 0 in Ω,
trμ,Σ(u) = σν,

(Pσ−)

where σ > 0 is a parameter and ν ∈ M+(∂Ω).
Weak solutions to problem (Pσ– ) are defined similarly as in definition 2.4 with

obvious modifications.
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In the following theorems, for any ν ∈ M+(∂Ω), we extend it to be a measure
defined on Ω by setting ν(Ω) = 0 and use the same notation ν for the extension.

When ν is concentrated on Σ, various equivalent criteria for the existence of a
weak solution to problem (Pσ– ) are described in the following result.

Theorem 2.7. Assume that μ < N2

4 and

1 < p <
α− + 1
α− − 1

if α− > 1 or p > 1 if α− � 1. (2.11)

Let ν ∈ M+(∂Ω) with compact support in Σ. Then the following statements are
equivalent.

1. Problem (Pσ– ) has a positive weak solution for σ > 0 small.

2. For any Borel set E ⊂ Ω, there holds∫
E

Kμ[1Eν]pφμ,Σ dx � C ν(E). (2.12)

3. The following inequality holds

Gμ[Kμ[ν]p] � C Kμ[ν] < +∞ a.e. in Ω. (2.13)

Assume, in addition, that k � 1 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{

1,
N − k − α− + 1
N − 1 − α−

}
< p <

α+ + 1
α+ − 1

if α+ > 1

or max
{

1,
N − k

N − 2

}
< p if α+ = 1.

(2.14)

Put

ϑ :=
α+ + 1 − p(α+ − 1)

p
. (2.15)

Then any of the above statements is equivalent to the following statement

4. For any Borel set E ⊂ Σ, there holds

ν(E) � C CapΣ
ϑ,p′(E).

We remark that the case Σ = {0} and μ = N2

4 is treated in § 6.3 with slightly
modified capacities; see in particular remark 6.15.

When ν is concentrated on ∂Ω \ Σ, we obtain necessary and sufficient conditions
for the existence of a weak solution of (Pσ– ) for the whole range μ � N2

4 .

Theorem 2.8. Assume that μ � N2

4 , p satisfies (Pσ– ) and ν ∈ M+(∂Ω) with
compact support in ∂Ω \ Σ. Then the following statements are equivalent.

1. Equation (Pσ– ) has a positive solution for σ > 0 small.
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2. For any Borel set E ⊂ Ω, (2.12) holds.

3. Estimate (2.13) holds.

4. For any Borel set E ⊂ ∂Ω, there holds ν(E) � C Cap∂Ω
2
p ,p

′(E).

We note that the case p � α−+1
α−−1 (if α− > 1) is still open and requires a different

method.

2.2. Proof strategies and comparison with relevant works in the
literature

The distinctive feature of the problems (P+) and (Pσ– ) is characterized by the
interplay between the concentration of Σ, the type of nonlinearity, the exponent
p and the parameter μ. By employing a fine analysis in capacitary setting, we are
able to obtain existence and nonexistence results in the supercritical ranges for p
and the critical case for the parameter μ, which justifies the novelty of our paper
in comparison with related works in the literature. This is discussed in more detail
below.

To establish the removability results (theorems 2.1 and 2.2), we treat the
cases p � α−+1

α−−1 and p � N−α−+1
N−α−−1 separately. When p � α−+1

α−−1 , we provide a proof
the heart of which is the assertion that all nonnegative solutions u of problem
(E+)–(2.5) are dominated by W̃ in light of Keller–Osserman type estimates (see
proposition 5.2), hence are uniformly bounded in Lp(Ω;φμ,Σ). Consequently, thanks
to the representation theorem (see theorem 3.3), these solutions admit bound-
ary traces concentrated on Σ with uniformly bounded total mass. Therefore, by
contradiction, if there is a nontrivial nonnegative solution with positive bound-
ary trace then there is a sequence of solutions whose total mass are unbounded,
which clearly contradicts the above assertion. In the larger range p � N−α−+1

N−α−−1 , the
above assertion is no longer valid and we focus on solutions with possible isolated
boundary singularities concentrated at a point on Σ depicted by (2.6). We offer a
proof, which relies on a combination of localization techniques, Keller–Osserman
type estimates and weak formulation for nonhomogneous linear equations, to show
the removability of isolated singularities. Our results are new and cover [29,
theorem 1.17].

We prove the solvability for problem (P+) (theorems 2.5 and 2.6) by extend-
ing the method in [31]. When the boundary trace ν has support in Σ, a crucial
ingredient in the proof of theorem 2.5 is the equivalence between the quantities
‖Kμ[ν]‖Lp(Ω;φμ,Σ) and ‖ν‖B−ϑ,p(Σ), where B−ϑ,p(Σ) is the dual of an appropriate
Besov space (see theorem 5.4). This allows us to utilize an approximation argu-
ment to prove the existence of a (unique) weak solution to problem (P+). When
ν has support in ∂Ω \ Σ, we construct the Poisson kernel associated to −Lμ and
adapt the idea in [32] to prove theorem 2.6. In this case, the effect of the potential
d−2
Σ is not pivotal as it can be seen that the critical exponent and the involved

capacities are the same as in the free potential case. To our knowledge, theorems
2.5 and 2.6 are the first existence results for problem (P+) expressed in terms
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of capacities in case 1 � k � N − 2, which complements or extends the results
in [21, 29, 32].

The source case is sharply different from the absorption case in several aspects
due to the distinct effect of the source nonlinearity and hence require a completely
different approach. Theorems 2.7 and 2.8 provide various necessary and sufficient
conditions for the existence of a weak solution to problems with source nonlinearity
(Pσ– ) for supp ν ⊂ Σ and supp ν ⊂ ∂Ω \ Σ respectively. The proofs are in the spirit
of [5], requiring several sharp estimates to adapt nontrivially an abstract result in
[23] to our setting. Our theorems extend the existence results in [5, 6, 18, 33] and
can be regarded as a counterpart of the results in [20].

It is worth pointing out that the optimal Hardy constant CΩ,Σ defined in (1.2),
as well as the asymptotic behaviour of the first eigenfunction φμ,Σ in (1.4), the
Green function and the Martin kernel, are different from those in the case where
the potentials blow up on subsets of Ω. As a result, the critical exponents for the
existence of a solution to (P+) and (Pσ– ) and the employed capacities are different
from those in the [19, 20].

Organization of the paper. In § 3, we quote two-sided estimates of the Green
function and the Martin kernel from [3], recall the representation theorem and
results for linear and semilinear equations with an absorption established in [3].
In § 4, we give the definition of the Lμ-harmonic measures and show identi-
ties regarding the Poisson kernel and Martin kernel. Section 5 is devoted to
the derivation of various results for equation (E+) such as a prior estimate,
removable singularities (theorems 2.1 and 2.2) and existence results (theorems
2.5 and 2.6). In § 6, we demonstrate necessary and sufficient conditions for
the existence of a weak solution to (Pσ– ) (theorems 2.7 and 2.8). Finally, in
appendix A, we provide the local representation of Σ and Ω and construct
a barrier function for solutions under assumption that Ω is a C3 bounded
domain.

Notations. We denote by c, c1, C... the constants which depend on initial param-
eters and may change from one appearance to another. The notation A � B (resp.
A � B) means A � cB (resp. A � cB) where c is a positive constant depending
on some initial parameters. If A � B and A � B, we write A ≈ B. Throughout the
paper, most of the implicit constants depend on some (or all) of the initial param-
eters such as N,Ω,Σ, k, μ and we will omit these dependencies in the notations
(except when it is necessary). For a set D ⊂ RN , 1D denotes the indicator function
of D.

3. Preliminaries

3.1. Two-sided estimates on Green function and Martin kernel

In this subsection, we recall sharp two-sided estimates on the Green function Gμ
and the Martin kernel Kμ associated to −Lμ in Ω, as well as the representation
formula for nonnegative Lμ-harmonic functions.

Proposition 3.1 [3, proposition 5.3]. Assume that μ � H2 and λμ,Σ > 0.
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(i) If μ < H2 or μ = H2 and k > 0 then for any x, y ∈ Ω and x �= y, there holds

Gμ(x, y) ≈ min
{

1
|x− y|N−2

,
d∂Ω(x) d∂Ω(y)

|x− y|N
}

×
(

(dΣ(x) + |x− y|) (dΣ(y) + |x− y|)
dΣ(x) dΣ(y)

)α−

. (3.1)

(ii) If k = 0 and μ = H2 then for any x, y ∈ Ω and x �= y, there holds

Gμ(x, y) ≈ min
{

1
|x− y|N−2

,
d∂Ω(x) d∂Ω(y)

|x− y|N
}

×
(

(|x| + |x− y|) (|y| + |x− y|)
|x||y|

)−N
2

+
d∂Ω(x) d∂Ω(y)

(|x||y|)N
2

∣∣ln (min
{|x− y|−2, (d∂Ω(x) d∂Ω(y))−1

})∣∣ .
(3.2)

Proposition 3.2 [3, theorem 2.8]. Assume that μ � H2 and λμ,Σ > 0.

(i) If μ < H2 or μ = H2 and k > 0 then

Kμ(x, ξ) ≈ d∂Ω(x)
|x− ξ|N

(
(dΣ(x) + |x− ξ|)2

dΣ(x)

)α−

for all x ∈ Ω, ξ ∈ ∂Ω.

(3.3)

(ii) If k = 0 and μ = H2 and then

Kμ(x, ξ) ≈ d∂Ω(x)
|x− ξ|N

(
(|x| + |x− ξ|)2

|x|

)N
2

+
d∂Ω(x)

|x|N
2

|ln (|x− ξ|)| , for all x ∈ Ω, ξ ∈ ∂Ω. (3.4)

Recall that the Green operator and Martin operator are respectively defined by

Gμ[τ ](x) =
∫

Ω

Gμ(x, y) dτ(y), τ ∈ M(Ω;φμ,Σ),

Kμ[ν](x) =
∫
∂Ω

Kμ(x, y) dν(y), ν ∈ M(∂Ω).

A function u ∈ L1
loc(Ω) is called an Lμ-harmonic function in Ω if Lμu = 0 in the

sense of distributions in Ω.
Next we state the representation theorem which provides a bijection between the

class of positive Lμ-harmonic functions in Ω and the measure space M+(∂Ω).

Theorem 3.3 [3, theorem 2.9]. For any ν ∈ M+(∂Ω), the function Kμ[ν] is a posi-
tive Lμ-harmonic function in Ω. Conversely, for any positive Lμ-harmonic function
u in Ω, there exists a unique measure ν ∈ M+(∂Ω) such that u = Kμ[ν] a.e. in Ω.
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3.2. Boundary value problems for linear equations and semilinear
equations

We recall the existence, uniqueness and Kato-type inequalities for solutions to
boundary value problems for linear equations.

Theorem 3.4 [3, theorem 2.12]. Let τ ∈ M(Ω;φμ,Σ) and ν ∈ M(∂Ω). Then there
exists a unique weak solution u ∈ L1(Ω;φμ,Σ) of

{−Lμu = τ in Ω,
trμ,Σ(u) = ν,

in the sense

−
∫

Ω

uLμξ dx =
∫

Ω

ξ dτ −
∫

Ω

Kμ[ν]Lμξ dx ∀ξ ∈ Xμ(Ω),

where Xμ(Ω) has been defined in (2.8). Furthermore

u = Gμ[τ ] + Kμ[ν] a.e. in Ω,

and for any ζ ∈ Xμ(Ω), there holds

‖u‖L1(Ω;φμ,Σ) � 1
λμ

‖τ‖M(Ω;φμ,Σ) + C‖ν‖M(∂Ω),

where C = C(N,Ω,Σ, μ). In addition, if dτ = fdx+ dρ with ρ ∈ M(Ω;φμ,Σ) and
f ∈ L1(Ω;φμ,Σ), then, for any 0 � ζ ∈ Xμ(Ω), the following Kato-type inequalities
are valid

−
∫

Ω

|u|Lμζ dx �
∫

Ω

sign(u)fζ dx+
∫

Ω

ζ d|ρ| −
∫

Ω

Kμ[|ν|]Lμζ dx,

−
∫

Ω

u+Lμζ dx �
∫

Ω

sign+(u)fζ dx+
∫

Ω

ζ dρ+−
∫

Ω

Kμ[ν+]Lμζ dx.
(3.5)

Here u+ = max{u, 0}.

Proposition 3.5 [3, theorem 9.7]. Let ν ∈ M(∂Ω) and g ∈ C(R) be a nondecreas-
ing function such that g(0) = 0 and g(Kμ[ν+]), g(Kμ[ν−]) ∈ L1(Ω;φμ,Σ). Then there
exists a unique weak solution u ∈ L1(Ω;φμ,Σ) of

{ −Lμu+ g(u) = 0 in Ω,
trμ,Σ(u) = ν,

in the sense that g(u) ∈ L1(Ω;φμ,Σ) and

−
∫

Ω

uLμζ dx+
∫

Ω

g(u)ζ dx = −
∫

Ω

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(Ω).
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4. Lµ-harmonic measures and Poisson kernel

4.1. Lµ-harmonic measures

Let h ∈ C(∂Ω). Then by [3, lemma 6.8], there exists a unique solution vh of the
Dirichlet problem {

Lμv = 0 in Ω
v = h on ∂Ω. (4.1)

Let W̃ be as in (2.4). The boundary value condition in (4.1) is understood as

lim
dist (x,F )→0

v(x)
W̃ (x)

= h for every compact set F ⊂ ∂Ω. (4.2)

Let z ∈ Ω and set Lμ,z(h) := uh(z), then the mapping h �→ Lμ,z(h) is a linear pos-
itive functional on C(∂Ω). Thus, there exists a unique Borel measure on ∂Ω, called
Lμ-harmonic measure on ∂Ω relative to z and denoted by ωzΩ, such that

vh(z) =
∫
∂Ω

h(y) dωzΩ(y).

Let x0 ∈ Ω be a fixed reference point. Let {Ωn} be a C2 exhaustion of Ω, i.e. {Ωn}
is an increasing sequence of bounded C2 domains such that

Ωn ⊂ Ωn+1, ∪nΩn = Ω, HN−1(∂Ωn) → HN−1(∂Ω),

where HN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN .
Then −Lμ is uniformly elliptic and coercive in H1

0 (Ωn) and its first eigenvalue
λΩn

μ,Σ in Ωn is larger than its first eigenvalue λμ,Σ in Ω.
For h ∈ C(∂Ωn), the following problem

{−Lμv = 0 in Ωn
v = h on ∂Ωn,

admits a unique solution which allows to define the Lμ-harmonic measure ωx0
Ωn

on
∂Ωn by

v(x0) =
∫
∂Ωn

h(y) dωx0
Ωn

(y).

Let GΩn
μ (x, y) be the Green kernel of −Lμ on Ωn. Then GΩn

μ (x, y) ↑ Gμ(x, y) for
x, y ∈ Ω, x �= y.

Proposition 4.1 [3, proposition 7.7]. Assume x0 ∈ Ω1. Then for every Z ∈ C(Ω),

lim
n→∞

∫
∂Ωn

Z(x)W̃ (x) dωx0
Ωn

(x) =
∫
∂Ω

Z(x) dωx0
Ω (x).
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4.2. Poisson kernel

By the standard elliptic theory, we can easily show that for any x ∈ Ω, Gμ(x, ·) ∈
C1,γ(Ω \ (Σ ∪ {x})) ∩ C2(Ω \ {x}) for all γ ∈ (0, 1). Therefore, we may define the
Poisson kernel associated to −Lμ in Ω × (∂Ω \ Σ) as

Pμ(x, y) := −∂Gμ
∂n

(x, y), x ∈ Ω, y ∈ ∂Ω \ Σ, (4.3)

where n is the unit outer normal vector of ∂Ω. This kernel satisfies the following
properties.

Proposition 4.2. Let x0 ∈ Ω be a fixed reference point.

(i) Then there holds

Pμ(x, y) = Pμ(x0, y)Kμ(x, y), x ∈ Ω, y ∈ ∂Ω \ Σ. (4.4)

(ii) For any h ∈ L1(∂Ω; dωx0
Ω ) with compact support in ∂Ω \ Σ, there holds

∫
∂Ω

h(y) dωx0
Ω (y) = Pμ[hW̃ ](x0). (4.5)

Here

Pμ[hW̃ ](x) :=
∫
∂Ω

Pμ(x, y)h(y)W̃ (y) dS∂Ω(y), x ∈ Ω,

where S∂Ω is the (N − 1)-dimensional surface measure on ∂Ω.

Proof.

(i) We note that Pμ(·, y) is Lμ-harmonic in Ω and

lim
x∈Ω, x→ξ

Pμ(x, y)
W̃ (x)

= 0 for all ξ ∈ ∂Ω \ {y} and y ∈ ∂Ω \ Σ.

Hence, Pμ(x,y)
Pμ(x0,y)

is a kernel function with pole at y and basis at x0 in the sense
of [3, definition 2.7]. This, together with the fact that any kernel function
with pole at y and basis at x0 is unique (see [3, proposition 7.3]), implies
(4.4).

(ii) Let ζ ∈ C(∂Ω) with compact support in ∂Ω \ Σ such that dist (supp ζ,Σ) =
r > 0. Let Z ∈ C(Ω) be such that Z(y) = ζ(y) for any y ∈ ∂Ω and Z(y) = 0
in Σ r

2
. Set r0 = 1

4 min{β2, r} where β2 is the constant in (A.7). We consider
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a decreasing sequence of bounded C2 domains {Σn} such that

Σ ⊂ Σn+1 ⊂ Σn+1 ⊂ Σn ⊂ Σn ⊂ Σ r0
4
, ∩nΣn = Σ. (4.6)

Let φ∗ be the unique solution of{−Lμφ∗ = 0 in Ω
φ∗ = 1 on ∂Ω, (4.7)

where the boundary condition in (4.7) is understood as

lim
dist (x,F )→0

φ∗(x)
W̃ (x)

= 1 for every compact set F ⊂ ∂Ω.

Then, by [3, lemma 6.8 and estimate (6.21)], there exist constants
c1 = c1(Ω,Σ,Σn, μ) and c2 = c2(Ω,Σ, N, μ) such that 0 < c1 � φ∗(x) �
c2dΣ(x)−α+ for all x ∈ Ω \ Σn. By the standard elliptic theory, φ∗ ∈ C2(Ω) ∩
C1,γ(Ω \ Σ) for any 0 < γ < 1.

Now, for any η ∈ C(∂Ω), we can easily show that uη is a solution of{−Lμv = 0 in Ω \ Σn
v = η on ∂(Ω \ Σn)

if and only if wη = uη

φ∗
is a solution of

{−div(φ2
∗∇w) = 0 in Ω \ Σn

w =
η

φ∗
on ∂(Ω \ Σn).

Since the operator Lφ∗w := −div(φ2
∗∇w) is uniformly elliptic and has smooth coef-

ficients, we may deduce the existence of Lμ-harmonic measure ωxn on ∂(Ω \ Σn) and
the Green kernel Gnμ of −Lμ in Ω \ Σn.

Let vn be the unique solution of{−Lμv = 0 in Ω \ Σn
v = ZW̃ on ∂(Ω \ Σn).

(4.8)

Then by the representation formula we have

vn(x) =
∫
∂(Ω\Σn)

ZW̃ dωxn(y) =
∫
∂Ω∩supp ζ

ζW̃ dωxn(y).

Proceeding as in the proof of [3, proposition 7.7], we may show that

vn(x) →
∫
∂Ω∩supp ζ

ζ(y) dωxΩ(y) =: v(x) as n→ ∞.

On the other hand, the Poisson kernel Pnμ of −Lμ in Ω \ Σn is well defined and
given by

Pnμ (x, y) = −∂G
n
μ

∂nn
(x, y), x ∈ Ω \ Σn, y ∈ ∂(Ω \ Σn),
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where nn is the unit outer normal vector to ∂(Ω \ Σn). Hence,

vn(x) =
∫
∂(Ω\Σn)

Pnμ (x, y)Z(y)W̃ (y) dS∂Ω(y)

=
∫
∂Ω∩supp ζ

Pnμ (x, y)ζ(y)W̃ (y) dS∂Ω(y),

where S∂Ω is the (N − 1)-dimensional surface measure on ∂(Ω \ Σn). Combining
all above, we obtain∫

∂Ω∩supp ζ

ζ(y) dωxn(y) =
∫
∂Ω∩supp ζ

Pnμ (x, y)W̃ (y)ζ(y) dS∂Ω(y). (4.9)

Put β = 1
2 min{d∂Ω(x), r0}. Since Gnμ(x, y) ↗ Gμ(x, y) for any x �= y and x, y ∈

Ω, {Gnμ(x, ·)}n is uniformly bounded in W 2,κ(Ωβ \ Σr0) for any κ > 1. Thus, by the
standard compact Sobolev embedding, there exists a subsequence, still denoted by
index n, which converges to Gμ(x, ·) in C1(Ωβ \ Σr0) as n→ ∞. This implies that
Pnμ (x, ·) → Pμ(x, ·) uniformly on ∂Ω \ Σr0 as n→ ∞.

Therefore, by letting n→ ∞ in (4.9), we obtain∫
∂Ω

ζ(y) dωxΩ(y) = lim
n→∞

∫
∂Ω

ζ(y)W̃ (y) dωxn(y)

= lim
n→∞

∫
∂Ω

Pnμ (x, y)ζ(y)W̃ (y) dS∂Ω(y)

=
∫
∂Ω

Pμ(x, y)ζ(y)W̃ (y) dS∂Ω(y). (4.10)

By (4.10) and the fact that infy∈∂Ω\Σr
Pμ(x0, y) > 0 ∀ r > 0, we deduce that

ωxΩ(E) = Pμ[1EW̃ ](x)

for any Borel set E ⊂ E ⊂ ∂Ω \ Σ. This implies in particular that ωx0
Ω and S∂Ω are

mutually absolutely continuous with respect to compact subsets of ∂Ω \ Σ.
Now, assume 0 � h ∈ L1(∂Ω; dωx0

Ω ) has compact support in ∂Ω \ Σ and
dist (supph,Σ) = 4r > 0. Then there exists a sequence of nonnegative functions
{hn} ⊂ C(∂Ω) with compact support in ∂Ω \ Σ such that dist (supphn,Σ) = 2r > 0
for any n ∈ N and hn → h in L1(∂Ω; dωx0

Ω ) as n→ ∞.
Applying (4.10) with ζ replaced by |hn − hm| for m,n ∈ N and using the fact

that infy∈Σr∩∂Ω(Pμ(x0, y)W̃ (y)) > 0, we have∫
∂Ω

|hm(y) − hn(y)|dωx0
Ω (y) =

∫
∂Ω

Pμ(x0, y)|hn(y) − hn(y)|W̃ (y) dS∂Ω(y)

� c

∫
∂Ω

|hn(y) − hn(y)|dS∂Ω(y).

This implies that {hn} is a Cauchy sequence in L1(∂Ω). Therefore, there exists
h̃ ∈ L1(∂Ω) such that hn → h̃ in L1(∂Ω). Since ωx0

Ω and S∂Ω are mutually absolutely
continuous with respect to compact subsets of ∂Ω \ Σ and h and h̃ have compact
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support in ∂Ω \ Σ, we deduce that h = h̃ ωx0
Ω -a.e. and S∂Ω-a.e. in ∂Ω. In particular,

h ∈ L1(∂Ω).
Applying (4.10) with ζ replaced by hn, for any n ∈ N, we have∫

∂Ω

hn(y) dωx0
Ω (y) =

∫
∂Ω

Pμ(x0, y)hn(y)W̃ (y) dS∂Ω(y). (4.11)

By letting n→ ∞ in (4.11), we obtain (4.5).
Next, we assume h ∈ L1(∂Ω; dωx0

Ω ) and drop the assumption that h � 0, then
we write h = h+ − h− where h± ∈ L1(∂Ω; dωx0

Ω ). By applying (4.5) for h±, we
deduce that (4.5) holds true for h ∈ L1(∂Ω; dωx0

Ω ). Moreover, we can show that
h± ∈ L1(∂Ω), which implies h ∈ L1(∂Ω). �

Proposition 4.3.

(i) For any h ∈ L1(∂Ω; dωx0
Ω ) with compact support in ∂Ω \ Σ, there holds

−
∫

Ω

Kμ[hdωx0
Ω ]Lμη dx = −

∫
∂Ω

∂η

∂n
(y)h(y)W̃ (y) dS∂Ω(y), ∀η ∈ Xμ(Ω).

(4.12)

(ii) For any ν ∈ M(∂Ω) with compact support in ∂Ω \ Σ, there holds

−
∫

Ω

Kμ[ν]Lμη dx = −
∫
∂Ω

∂η

∂n
(y)

1
Pμ(x0, y)

dν(y), ∀η ∈ Xμ(Ω), (4.13)

where Pμ(x0, y) is defined in (4.3) and Xμ(Ω) is defined by (2.8).

Proof.

(i) Let ζ ∈ C(∂Ω) with compact support in ∂Ω \ Σ such that dist (supp ζ,Σ) =
r > 0. We consider a function Z ∈ C(Ω) such that Z(y) = ζ(y) for any y ∈
C(∂Ω) and Z(y) = 0 in Σ r

2
. Set r0 = 1

4 min{β2, r} where β2 is the constant
in (A.7). Let {Σn} be as in (4.6), η ∈ Xμ(Ω) and vn be the solution of (4.8).
In view of the proof of proposition 4.2, vn ∈ C(Ω \ Σn) and

vn(x) =
∫
∂Ω

ζ(y)W̃ (y) dωxn(y) =
∫
∂Ω

Pnμ (x, y)W̃ (y)ζ(y) dS∂Ω(y).

Put

v(x) =
∫
∂Ω

ζ(y) dωxΩ(y) and w(x) =
∫
∂Ω

|ζ(y)|dωxΩ(y).

Then vn(x) → v(x) for any x ∈ Ω and |vn(x)| � w(x) in Ω \ Σn. By [30,
proposition 1.3.7],

−
∫

Ω\Σn

vnLμZ̃ dx = −
∫
∂Ω

W̃ ζ
∂Z̃

∂n
dS∂Ω, ∀Z̃ ∈ C2

0 (Ω \ Σn). (4.14)

By approximation, the above equality is valid for any Z̃ ∈ C1,γ(Ω \ Σn), for
some γ ∈ (0, 1) and ΔZ̃ ∈ L∞(Ω \ Σn). Hence, we may choose Z̃ = ηn in
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(4.14), where ηn satisfies{ −Lμηn = −Lμη in Ω \ Σn
ηn = 0 on ∂(Ω \ Σn)

to obtain

−
∫

Ω\Σn

vnLμη dx = −
∫
∂Ω

W̃ ζ
∂ηn
∂n

dS∂Ω. (4.15)

We note that ηn → η locally uniformly in Ω and in C1(Ω \ Σ1). Therefore, by
the dominated convergence theorem, letting n→ ∞ in (4.15), we obtain

−
∫

Ω

vLμη dx = −
∫
∂Ω

W̃ ζ
∂η

∂n
dS∂Ω. (4.16)

Now, let h ∈ L1(∂Ω; dωxΩ) with compact support in ∂Ω \ Σ such that
dist (supph,Σ) = 4r > 0. By (4.5) we may construct a sequence {hn} ⊂
C(∂Ω) such that hn has compact support in ∂Ω \ Σ with dist (supphn,Σ) > r
for any n ∈ N. In addition, the same sequence can be constructed such that
hn → h in L1(∂Ω; dωx0

Ω ) and in L1(∂Ω).
Set

un(x) =
∫
∂Ω

Kμ(x, y)hn(y) dωx0
Ω (y) = Kμ[hn dωx0

Ω ](x), x ∈ Ω.

Since Kμ(·, y) ∈ C2(Ω) for any y ∈ ∂Ω, by the above equality, we deduce that
un → u locally uniformly in Ω, where

u(x) =
∫
∂Ω

Kμ(x, y)h(y) dωx0
Ω (y) = Kμ[hdωx0

Ω ](x), x ∈ Ω.

By (4.16) with v = un and ζ = hn, there holds

−
∫

Ω

unLμη dx = −
∫
∂Ω

W̃hn
∂η

∂n
dS∂Ω. (4.17)

Now, by [3, theorem 9.2], there exists a positive constant C = C(N,Ω,Σ, μ, κ)
such that ‖un‖Lκ(Ω;φμ,Σ) � C

∫
Ω
|hn|dωx0

Ω (y) for all n ∈ N and for any 1 <

κ < min
{
N+1
N−1 ,

N+α−+1
N+α−−1

}
. This in turn implies that {un} is equi-integrable

in L1(Ω;φμ,Σ). Therefore, by Vitali’s convergence theorem, un → u in
L1(Ω;φμ,Σ). Letting n→ ∞ in (4.17), we obtain (4.12).

(ii) Assume dist (supp ν,Σ) = 4r > 0 and let {hn} be a sequence of functions in
C(∂Ω) with compact support in ∂Ω \ Σ such that dist (supphn,Σ) � r and
hn ⇀ ν, i.e. ∫

∂Ω

ζhn dS∂Ω →
∫
∂Ω

ζdν ∀ζ ∈ C(∂Ω). (4.18)
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In addition, we assume that ‖hn‖L1(∂Ω) � C‖ν‖M(∂Ω) for every n � 1, for
some positive constant C independent of n.
Set

un(x) =
∫
∂Ω

Kμ(x, y)
hn(y)

W̃ (y)Pμ(x0, y)
dωx0

Ω (y).

By (4.5) and (4.18), we have

un(x) =
∫
∂Ω

Kμ(x, y)hn(y) dS∂Ω(y) →
∫
∂Ω

Kμ(x, y) dν(y) =: u(x).

It means un → u a.e. in Ω.
Finally, equality (4.13) can be obtained by proceeding as in the proof of (i)
and hence we omit its proof. �

5. Semilinear equations with a power absorption nonlinearity

5.1. Keller–Osserman estimates

In this section, we prove Keller–Osserman type estimates for nonnegative
solutions of equation (E+).

Lemma 5.1. Assume p > 1. Let u ∈ C2(Ω) be a nonnegative solution of equation
(E+). Then there exists a positive constant C = C(Ω,Σ, μ, p) such that

0 � u(x) � Cd∂Ω(x)−
2

p−1 , ∀x ∈ Ω. (5.1)

Proof. Let β0 be as in § A.1 and ηβ0 ∈ C∞
c (RN ) such that

0 � ηβ0 � 1, ηβ0 = 1 in Ω β0
4

and supp ηβ0 ⊂ Ω β0
2
,

where Ωε is defined in (2.2). For ε ∈
(
0, β0

16

)
, we define

Vε := 1 − ηβ0 + ηβ0(d∂Ω − ε)−
2

p−1 in Ω \ Ωε.

Then Vε � 0 in Ω \ Ωε. It can be checked that there exists C = C(Ω, β0, μ, p) > 1
such that the function Wε := CVε satisfies

− LμWε +W p
ε = C(−LμVε + Cp−1V pε ) � 0 in Ω \ Ωε. (5.2)

Combining (E+) and (5.2) yields

− Lμ(u−Wε) + up −W p
ε � 0 in Ω \ Ωε. (5.3)
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We see that (u−Wε)+ ∈ H1
0 (Ω \ Ωε) and (u−Wε)+ has compact support in Ω \

Ωε. By using (u−Wε)+ as a test function for (5.3), we deduce that

0 �
∫

Ω\Ωε

|∇(u−Wε)+|2dx− μ

∫
Ω\Ωε

[(u−Wε)+]2

d2
Σ

dx

+
∫

Ω\Ωε

(up −W p
ε )(u−Wε)+ dx

�
∫

Ω\Ωε

|∇(u−Wε)+|2 dx− μ

∫
Ω\Ωε

[(u−Wε)+]2

d2
Σ

dx

� λμ,Σ

∫
Ω\Ωε

|(u−Wε)+|2 dx.

This and the assumption λμ,Σ > 0 imply (u−Wε)+ = 0, whence u � Wε in Ω \ Ωε.
Letting ε→ 0, we obtain the desired result. �

The following theorem is the main tool in the study of the boundary removable
singularities for nonnegative solutions of equation (E+). We assume additionally
that Ω is a C3 domain which is needed to apply proposition A.2.

Theorem 5.2. Let p > 1, F ⊂ Σ be a compact subset of Σ and dF (x) = dist (x, F ).
We additionally assume that Ω is a C3 bounded domain. If u ∈ C2(Ω) is a
nonnegative solution of (E+) satisfying

lim
x∈Ω, x→ξ

u(x)
W̃ (x)

= 0 ∀ξ ∈ ∂Ω \ F, locally uniformly in ∂Ω \ F, (5.4)

then there exists a positive constant C = C(N,Ω,Σ, μ, p) such that

u(x) � Cd∂Ω(x) dΣ(x)−α−dF (x)−
2

p−1+α−−1 ∀x ∈ Ω, (5.5)

|∇u(x)| � CdΣ(x)−α−dF (x)−
2

p−1+α−−1 ∀x ∈ Ω. (5.6)

Proof. The proof is in the spirit of [30, proposition 3.4.3]. Let β5 be the positive con-
stant defined in proposition A.2. Let ξ ∈ (Σβ5 ∩ ∂Ω) \ F and put dF,ξ = 1

16dF (ξ) <
1. Denote

Ωξ :=
1
dF,ξ

Ω = {y ∈ RN : dF,ξ y∈Ω} and Σξ :=
1
dF,ξ

Σ = {y∈RN : dF,ξ y∈Σ}.

If u is a nonnegative solution of (E+) in Ω then the function

uξ(y) := d
2

p−1
F,ξ u(dF,ξy), y ∈ Ωξ,

is a nonnegative solution of

− Δuξ − μ

|dist(y,Σξ)|2u
ξ +
(
uξ
)p

= 0 (5.7)

in Ωξ.
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Now we note that uξ is a nonnegative Lμ subharmonic function and satisfies
[by (5.4)]

lim
y∈Ωξ, y→P

uξ(y)
W̃ ξ(y)

= 0 ∀P ∈ B

(
1
dF,ξ

ξ, 2
)
∩ ∂Ωξ,

where

W̃ ξ(y) = 1 − η β3
dF,ξ

+ η β3
dF,ξ

W ξ(y) in Ωξ \ Σξ,

η β3
dF,ξ

is the scaled version of the function ηβ3 defined before (2.4), and

W ξ(y) =

{
(d∂Ωξ(y) + dΣξ(y))2dΣξ(y)−α+ if μ < H2,

(d∂Ωξ(y) + dΣξ(y))2dΣξ(y)−H | ln dΣξ(y)| if μ = H2,
x ∈ Ωξ \ Σξ.

Set R0 = min{β5, 1}. In view of the proof of [3, lemma 6.2 and estimate (6.7)],
there exists a positive constant c depending on Ω,Σ, μ and∫

B
(

1
dF (ξ) ξ,2R0

)
∩Ωξ

uξ(y) d∂Ωξ(y) dΣξ(y)−α− dy (5.8)

such that

uξ(y) � c d∂Ωξ(y) dΣξ(y)−α− ∀y ∈ B

(
1

dF (ξ)
ξ,R0

)
∩ Ωξ. (5.9)

Let r0 = R0
16 and let wr0,ξ be the supersolution of (5.7) in B( 1

dF,ξ
ξ, r0) ∩ Ωξ

constructed in proposition A.2 with R = r0 and z = 1
dF,ξ

ξ.
Taking into account of (5.9) and using a similar argument as in the proof of

lemma 5.1, we can show that

uξ(y) � wr0,ξ(y) ∀y ∈ B

(
1
dF,ξ

ξ, r0

)
∩ Ωξ.

By (5.8), (5.9) and the above inequality, we may deduce that

uξ(y) � c d∂Ωξ(y) dΣξ(y)−α− ∀y ∈ B

(
1

dF (ξ)
ξ,
r0
16

)
∩ Ωξ, (5.10)

where c depends only on Ω,Σ, μ, p, the C3 characteristic of Ωξ and the C2 character-
istic of Σξ. As dF,ξ � 1 the C3 characteristic of Ω (respectively the C2 characteristic
of Σ) is also a C3 characteristic of Ωξ (respectively a C2 characteristic of Σξ),
therefore this constant c can be taken to be independent of ξ. Thus, for any
ξ ∈ (Σβ5 ∩ ∂Ω) \ F such that dF (x) � 16, there holds

u(x) � c d∂Ω(x) dΣ(x)−α−dF (ξ)−
2

p−1+α−−1 ∀x ∈ B (ξ, r1dF (ξ)) ∩ Ω, (5.11)

where r1 = r0
162 .

Now, we consider three cases.
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Case 1: x ∈ Σ r1
32

∩ Ω and dF (x) < 1. If d∂Ω(x) � r1
8+r1

dF (x) then there exits a
unique point in ξ ∈ ∂Ω \ F such that |x− ξ| = d∂Ω(x). Hence,

dF (ξ) � d∂Ω(x) + dF (x) � 2
4 + r1
8 + r1

dF (x) < 16, (5.12)

dF (x) � 8+r1
8 dF (ξ) and d∂Ω(x) � r1

8 dF (ξ). This, combined with (5.11), (5.12) and
the fact that dF (x) ≈ dF (ξ), yields

u(x) � CdΣ(x)−α−dF (ξ)−
2

p−1+α−−1 � CdΣ(x)−α−dF (x)−
2

p−1+α−−1.

If d∂Ω(x) > r1
8+r1

dF (x) � r1
8+r1

dΣ(x) then by (5.1) and the fact that d∂Ω(x) ≈
dF (x) ≈ dΣ(x), we obtain

u(x) � Cd∂Ω(x)−
2

p−1 � Cd∂Ω(x) dΣ(x)−α−dF (x)−
2

p−1+α−−1.

Thus, (5.5) holds for every x ∈ Σ r1
4

such that dF (x) < 1.

Case 2: x ∈ Σ r1
32

∩ Ω and dF (x) � 1. Let ξ be the unique point in ∂Ω \ F such that
|x− ξ| = d∂Ω(x). Since u is an Lμ-subharmonic function in B(ξ, r1) ∩ Ω, in view of
the proof of (5.10), we obtain

u(x) � Cd∂Ω(x)dΣ(x)−α− � Cd∂Ω(x) dΣ(x)−α−dF (x)−
2

p−1+α−−1

∀x ∈ B

(
ξ,
β3

2

)
∩ Ω,

where C depend only on Ω,Σ, μ, p.

Case 3: x ∈ Ω \ Σ r1
32

. The proof is similar to the one of [21, proposition A.3] and
we omit it. (ii) Let x0 ∈ Ω. Put � = d∂Ω(x0) and

Ω� :=
1
�
Ω = {y ∈ RN : �y ∈ Ω} and Σ� :=

1
�
Σ = {y ∈ RN : �y ∈ Σ}.

If x ∈ B
(
x0,

�
2

)
then y = �−1x belongs to B

(
y0,

1
2

)
, where y0 = �−1x0. Also we

have that 1
2 � dΩ	(y) � 3

2 and 1
2 � dΣ	(y) for each y ∈ B

(
y0,

1
2

)
. Set v(y) = u(�y)

for y ∈ B(y0, 1
2 ) then v satisfies

−Δv − μ

d2
Σ	

v + �2 |v|p = 0 in B
(
y0,

1
2

)
.

By the standard elliptic estimates and (5.1) we have

sup
y∈B(y0, 14 )

|∇v(y)| � C sup
y∈B(y0, 13 )

|v(y)| � Cv(y0),

This, together with the equality ∇v(y) = �∇u(x), estimate (5.5) implies

|∇u(x0)| � C�−1d∂Ω(x0)d
−α−
Σ (x0) dF (x0)−

2
p−1+α−−1

� CdΣ(x0)−α−dF (x0)−
2

p−1+α−−1.

Therefore, estimate (5.6) follows since x0 is an arbitrary point. The proof is
complete. �
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5.2. Removable boundary singularities

This subsection is devoted to the study of removable boundary singularities for
nonnegative solutions of equation (E+) in the supercritical range. More precisely
we will prove theorems 2.1 and 2.2.

Proof of theorem 2.1. We will only consider the case μ < H2 and p = α++1
α+−1 , since

the proof in the other cases is very similar. Let u be a nonnegative solution of (E+)
satisfying (2.5). By (5.5) with F = Σ, there holds

u(x) � Cd∂Ω(x) dΣ(x)−α+ ∀x ∈ Ω, (5.13)

for some constant C independent of u.
Let {Ωn} be a C2 exhaustion of Ω and we write

GΩn
μ

[
u

α++1
α+−1

]
(x) =

∫
Ωn

GΩn
μ (x, y)u(y)

α++1
α+−1 dy.

By the representation formula in Ωn, we have that

u(x0) + GΩn
μ

[
u

α++1
α+−1

]
(x0) =

∫
∂Ωn

u(y) dωx0
Ωn

(y). (5.14)

By (5.13), the definition of W̃ in (2.4), estimate (A.9) and proposition 4.1, we
deduce

lim sup
n→∞

∫
∂Ωn

u(y) dωx0
Ωn

(y) � C lim sup
n→∞

∫
∂Ωn

W̃ (y) dωx0
Ωn

(y) = Cωx0
Ω (∂Ω). (5.15)

Since GΩn
μ (x, y) ↑ Gμ(x, y) for x, y ∈ Ω, x �= y, (5.14) and (5.15) yield

Gμ[u
α++1
α+−1 ](x0) � Cωx0

Ω (∂Ω).

Hence, there exists another positive constant C independent of u such that

∫
Ω

u(y)
α++1
α+−1φμ,Σ(y) dy � C. (5.16)

Consequently, the function v = u+ Gμ[u
α++1
α+−1 ] is a nonnegative Lμ-harmonic in Ω.

This, together with theorem 3.3, implies the existence of a measure ν ∈ M+(∂Ω)
such that

u+ Gμ

[
u

α++1
α+−1

]
= Kμ[ν] in Ω. (5.17)

By proposition 4.1 and (5.13), we may deduce that ν has compact support in Σ.
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Next we will show that ν ≡ 0. Suppose by contradiction that ν �≡ 0. Let 1 < M ∈
N and vM,n be the positive solution of⎧⎪⎪⎨

⎪⎪⎩−LΩn
μ vM,n + v

α+ + 1
α+ − 1
M,n = 0 in Ωn

vM,n = Mu on ∂Ωn.

Since Mu is a supersolution of the above problem, we have that 0 � vM,n � Mu
in Ωn for any n ∈ N. As a result, there exists vM ∈ C2(Ω) such that vM,n → vM

locally uniformly in Ω and LμvM + v

α++1
α+−1

M = 0 in Ω. As vM � Mu, it follows that
vM satisfies (2.5) and hence thanks to theorem 5.2, estimate (5.5) holds for vM
with F = Σ, namely

vM (x) � Cd∂Ω(x) dΣ(x)−α+ ∀x ∈ Ω, (5.18)

for some constant C independent of vM . By using an argument similar to the one
leading to (5.16), we derive∫

Ω

vM (y)
α++1
α+−1φμ,Σ(y) dy � C0, (5.19)

for some constant C0 independent of vM . Also, by the representation formula we
have

vM,n(x) + GΩn
μ

[
v

α++1
α+−1

M,n

]
(x) = M

∫
∂Ωn

u(y) dωxΩn
(y), ∀x ∈ Ω. (5.20)

From (5.17), we have∫
∂Ωn

u(y) dωxΩn
(y) =

∫
∂Ωn

(Kμ[ν](y) − Gμ

[
u

α++1
α+−1

]
(y)) dωxΩn

(y)

= Kμ[ν](x) −
∫
∂Ωn

Gμ

[
u

α++1
α+−1

]
(y) dωxΩn

(y).

By proposition 2.7 (ii), we find

lim
n→∞

∫
∂Ωn

Gμ

[
u

α++1
α+−1

]
(y) dωxΩn

(y) = 0.

Hence, letting n→ ∞ in (5.20), we obtain

vM + Gμ

[
v

α++1
α+−1

M

]
= MKμ[ν] in Ω, ∀M > 0.

We see that the above display contradicts with (5.18) and (5.19). The proof is
complete. �

Next we turn to
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Proof of theorem 2.2. Without loss of generality, we may assume that z = 0. Let
ζ : R → [0,∞) be a smooth function such that 0 � ζ � 1, ζ(t) = 0 for |t| � 1 and
ζ(t) = 1 for |t| > 2. For ε > 0, we set ζε(x) = ζ( |x|ε ). Since u ∈ C2(Ω), there holds

Lμ(ζεu) = uΔζε + ζεu
p + 2∇ζε · ∇u in Ω.

By (5.5) and (5.6) with F = {0} ⊂ Σ, (1.4) and the estimate
∫
Σβ
dΣ(x)−α dx �

βN−α for α < N − k, we have∫
Ω

ζεu
pφμ,Σ dx�ε−

2p
p−1+(α−−1)p

∫
Ω∩{|x|>ε}

dΣ(x)(p+1)(1−α−) dx � ε−
2p

p−1+(α−−1)p,

(5.21)

∫
Ω

u|Δζε|φμ,Σ dx � ε−
2

p−1+α−−3

∫
Ω∩{ε<|x|<2ε}

dΣ(x)2−2α− dx

� εN− 2
p−1−α−−1 � 1, (5.22)

∫
Ω

|∇ζε||∇u|φμ,Σ dx � ε−
2

p−1+α−−2

∫
Ω∩{ε<|x|<2ε}

dΣ(x)−2α−+1 dx

� εN− 2
p−1−α−−1 � 1. (5.23)

The estimates in (5.21) hold because of the assumption p > 1 if α+ = 1 or p < α++1
α+−1

if α+ > 1. For the last estimate in (5.22) and (5.23), we have used the assumption
p � N−α−+1

N−α−−1 .
Estimates (5.21)–(5.23) imply that Lμ(ζεu) ∈ L1(Ω;φμ,Σ). By [3, lemma 8.5], we

have

−
∫

Ω

ζεuLμη dx = −
∫

Ω

(uΔζε + ζεu
p + 2∇ζε · ∇u) η dx, ∀η ∈ Xμ(Ω).

Taking η = φμ,Σ, we obtain

λμ,Σ

∫
Ω

ζεuφμ,Σ dx+
∫

Ω

ζεu
pφμ,Σ dx = −

∫
Ω

(uΔζε + 2∇ζε · ∇u)φμ,Σ dx.

By (5.22)–(5.23), we have

λμ,Σ

∫
Ω

ζεuφμ,Σ dx+
∫

Ω

ζεu
pφμ,Σ dx � CεN− 2

p−1−α−−1.

By letting ε→ 0 and Fatou’s lemma, we deduce that

λμ,Σ

∫
Ω

uφμ,Σ dx+
∫

Ω

upφμ,Σ dx �

⎧⎪⎨
⎪⎩

0 if p >
N + α− + 1
N − α− − 1

,

1 if p =
N + α− + 1
N − α− − 1

.

This implies that u ≡ 0 if p > N−α−+1
N−α−−1 or u ∈ Lp(Ω;φμ,Σ) if p = N−α−+1

N−α−−1 .

The rest of the proof can proceed as in the proof of theorem 2.1 and we omit
it. �
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5.3. Existence of solutions in the supercritical range

In this subsection, we discuss the existence of solutions for the following problem

{
−Lμu+ |u|p−1

u = 0in Ω,

trμ,Σ(u) = ν,
(5.24)

where p > 1 and ν ∈ M(∂Ω). We will focus on the supercritical case p �
min{N+1

N−1 ,
N−α−+1
N−α−−1}. In particular, we will give various sufficient conditions for

the existence of solutions to (5.24).
To this purpose, we use Besov space (see e.g. [1, 35]). For σ > 0, 1 � κ <∞,

we denote by W σ,κ(Rd) the Sobolev space over Rd. If σ is not an integer the
Besov space Bσ,κ(Rd) coincides with W σ,κ(Rd). When σ is an integer we denote
Δx,yf := f(x+ y) + f(x− y) − 2f(x) and

B1,κ(Rd) :=

{
f ∈ Lκ(Rd) :

Δx,yf

|y|1+ d
κ

∈ Lκ(Rd × Rd)

}
,

with norm

‖f‖B1,κ :=
(
‖f‖κLκ +

∫
Rd

∫
Rd

|Δx,yf |κ
|y|κ+d

dxdy
) 1

κ

.

Then

Bm,κ(Rd) :=
{
f ∈Wm−1,κ(Rd) : Dα

xf ∈B1,κ(Rd) ∀α∈Nd such that |α| = m−1
}
,

with norm

‖f‖Bm,κ :=

⎛
⎝‖f‖κWm−1,κ +

∑
|α|=m−1

∫
Rd

∫
Rd

|Dα
xΔx,yf |κ
|y|κ+d

dxdy

⎞
⎠

1
κ

.

These spaces are fundamental because they are stable under the real interpolation
method developed by Lions and Petree.

It is well known that if 1 < κ <∞ and α > 0, Lα,κ(Rd) = Wα,κ(Rd) if α ∈
N. If α /∈ N then the positive cone of their dual coincide, i.e. (L−α,κ′(Rd))+ =
(B−α,κ′

(Rd))+, always with equivalent norms.

Lemma 5.3. Let k � 1, p be as in (2.14), and ν ∈ M+(Rk) with compact support
in Bk

(
0, R2

)
for some R > 0. Set

ϑ :=
α+ + 1 − p(α+ − 1)

p
. (5.25)
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For x ∈ Rk+1, we write x = (x1, x
′) ∈ R × Rk. Then there exists a constant

C = C(R,N, k, μ, p) > 1 such that

C−1 ‖ν‖pB−ϑ,p(Rk)

�
∫
Bk(0,R)

∫ R

0

x
N−k−1−(p+1)(α−−1)
1

×
(∫

Bk(0,R)

(x1 + |x′ − y′|)−(N−2α−) dν(y′)

)p
dx1 dx′

� C ‖ν‖pB−ϑ,p(Rk) .

Proof. The proof is very similar to that of [19, lemma 8.1], and hence we omit
it. �

Theorem 5.4. Let k � 1, p be as in (2.14), and ν ∈ M+(∂Ω) with compact support
in Σ. Then there exists a constant C = C(Ω,Σ, μ) > 1 such that

C−1 ‖ν‖B−ϑ,p(Σ) � ‖Kμ[ν]‖Lp(Ω;φμ,Σ) � C ‖ν‖B−ϑ,p(Σ) ,

where ϑ is given in (5.25).

Proof. By (A.7), there exists ξj ∈ Σ, j = 1, 2, . . . ,m2 (where m2 ∈ N depends on
N,Σ), and β2 ∈ (0, β0

4 ) such that Ω ∩ Σβ2 ⊂ ∪m2
j=1VΣ(ξj , β0

4 ) ∩ Ω.
Assume ν ∈ M+(∂Ω) with compact support in Σ ∩ VΣ(ξj , β0

4 ) for some j ∈
{1, . . . ,m2}.

On one hand, from (1.4), (3.3) and since p < α++1
α+−1 and α+ � α−, we have

∫
Ω∩VΣ(ξj ,

β0
2 )

Kμ[ν]pφμ,Σ dx

� ν(∂Ω)p
∫

Ω∩VΣ(ξj ,
β0
2 )

d∂Ω(x)p+1dΣ(x)−(p+1)α− dx � ν(∂Ω)p.

On the other hand,∫
Ω\VΣ(ξj ,

β0
2 )

Kμ[ν]pφμ,Σ dx

� ν(∂Ω)p
∫

Ω\VΣ(ξj ,
β0
2 )

d∂Ω(x)p+1dΣ(x)−(p+1)α− dx � ν(∂Ω)p.

Combining the above estimates, we obtain∫
Ω

φμ,ΣKμ[ν]p dx =
∫

Ω\VΣ(ξj ,
β0
2 )

φμ,ΣKμ[ν]p dx+
∫

Ω∩VΣ(ξj ,
β0
2 )
φμ,ΣKμ[ν]p dx

≈
∫

Ω∩VΣ(ξj ,
β0
2 )
φμ,ΣKμ[ν]p dx. (5.26)
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For any x ∈ RN , we write x = (x′, x′′′, xN ) where x′ = (x1, . . . , xk), x′′′ =
(xk+1, . . . , xN−1) and define the C2 function

Φ(x) :=(x′, xk+1−Γξ
j

k+1,Σ(x′), . . . , xN−1 − Γξ
j

N−1,Σ(x′), xN − Γξ
j

N,∂Ω(x1, . . . , xN−1)).

Taking into account the local representation of Σ and ∂Ω in § A.1, we may deduce
that Φ : VΣ(ξj , β0) → Bk(0, β0) ×BN−1−k(0, β0) × (−β0, β0) is C2 diffeomorphism
and Φ(x) = (x′, 0RN−k) for x = (x′, x′′′, xN ) ∈ Σ. In view of the proof of [1, lemma
5.2.2], there exists a measure ν ∈ M+(Rk) with compact support in Bk

(
0, β0

4

)
such

that for any Borel E ⊂ Bk
(
0, β0

4

)
, there holds ν(E) = ν(Φ−1(E × {0RN−k})).

Set ψ = (ψ′, ψ′′′, ψN ) = Φ(x) then

ψ′ = x′, ψ′′′ = (xk+1 − Γξ
j

k+1,Σ(x′), . . . , xN−1 − Γξ
j

N−1,Σ(x′)) and ψN

= xN − Γξ
j

N,∂Ω(x1, . . . , xN−1).

By (1.4), (A.6) and (3.3), we have

φμ,Σ(x) ≈ ψN (ψN + |ψ′′′|)−α− ,

Kμ(x, y) ≈ ψN (ψN + |ψ′′′|)−α−(ψN + |ψ′′′| + |ψ′ − y′|)−(N−2α−),

∀x ∈ V(ξj , β0) ∩ Ω, ∀y = (y′, y′′′, yN ) ∈ V(ξj , β0) ∩ Σ.

Therefore,

∫
Ω∩V(ξj ,β0/2)

φμ,ΣKp
μ[ν] dx

≈
∫
Bk(0, β0

2 )

∫ β0
2

0

∫
BN−k−1(0, β0

2 )
ψp+1
N (ψN + |ψ′′′|)−(p+1)α−

(∫
Bk(0,

β0
4 )

(ψN + |ψ′′′| + |ψ′ − y′|)−(N−2α−) dν(y′)

)p
dψ′′′ dψN dψ′ (5.27)

≈
∫
Bk(0, β0

2 )

∫ β0
2

0

rN−k−1−(p+1)(α−−1)

(∫
Bk(0, β0

2 )
(r + |ψ′ − y′|)−(N−2α−−2) dν(y′)

)p
dr dψ′.

Since ν �→ ν ◦ Φ−1 is a C2 diffeomorphism between M+(Σ ∩ VΣ(ξj , β0)) ∩
B−ϑ,p(Σ ∩ VΣ(ξj , β0)) and M+(Bk(0, β0)) ∩B−ϑ,p(Bk(0, β0)), using (5.26), (5.27)
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and lemma 5.3, we derive that

C−1 ‖ν‖B−ϑ,p(Σ) � ‖Kμ[ν]‖Lp(Ω;φμ,Σ) � C ‖ν‖B−ϑ,p(Σ) .

If ν ∈ M+(∂Ω) has compact support in Σ, we may write ν =
∑m2
j=1 νj , where

νj ∈ M+(∂Ω) with compact support in V(ξj , β0
4 ) ∩ Σ. By (5.26), we can show that

‖Kμ[ν]‖Lp(Ω;φμ,Σ)≈
m2∑
j=1

‖Kμ[νj ]‖Lp(Ω;φμ,Σ)≈C
m2∑
j=1

‖νj‖B−ϑ,p(Σ) ≈ Cm2 ‖ν‖B−ϑ,p(Σ) .

The proof is complete. �

Using theorem 5.4 and proposition 3.5, we are ready to prove theorem 2.5.

Proof of theorem 2.5. If ν is a positive measure which vanishes on Borel sets E ⊂ Σ
with CapR

k

ϑ,p′ -capacity zero then there exists an increasing sequence {νn} of positive
measures in B−ϑ,p(Σ) which converges weakly to ν (see [10, 16]). By theorem 5.4,
we have Kμ[νn] ∈ Lp(Ω;φμ,Σ), hence we may apply proposition 3.5 with g(t) =
|t|p−1t to deduce that there exists a unique nonnegative weak solution un of (5.24)
with trμ,Σ(un) = νn.

Since {νn} is an increasing sequence of positive measures, by theorem 3.4, {un}
is increasing and its limit is denoted by u. Moreover,

−
∫

Ω

unLμζ dx+
∫

Ω

upnζ dx = −
∫

Ω

Kμ[νn]Lμζ dx ∀ζ ∈ Xμ(Ω). (5.28)

By taking ζ = φμ,Σ in (5.28), we obtain∫
Ω

(λμ,Σun + upn)φμ,Σ dx = λμ,Σ

∫
Ω

Kμ[νn]φμ,Σ dx,

which implies that {un} and {upn} are uniformly bounded in L1(Ω;φμ,Σ). Therefore,
un → u in L1(Ω;φμ,Σ) and in Lp(Ω;φμ,Σ). By letting n→ ∞ in (5.28), we deduce∫

Ω

−uLμζ dx+
∫

Ω

upζ dx = −
∫

Ω

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(Ω).

This means u is the unique weak solution of (5.24) with trμ,Σ(u) = ν. �

Proof of theorem 2.6.

1. Suppose u is a weak solution of (5.24) with trμ,Σ(u) = ν. Let β > 0. Since

φμ,Σ(x) ≈ C(β) d∂Ω(x) and Kμ(x, y) ≈ C(β) d∂Ω(x)|x− y|−N ,
∀(x, y) ∈ (Ω \ Σβ) × ∂Ω, (5.29)

proceeding as in the proof of [32, theorem 3.1], we may prove that ν is
absolutely continuous with respect to the Bessel capacity CapR

N−1

2
p ,p

′ .
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2. We assume that ν ∈ M+(∂Ω) ∩B− 2
p ,p(∂Ω) has compact support F ∈ ∂Ω \

Σ. Then by (5.29), we may apply [32, Theorem A] to deduce that Kμ[ν] ∈
Lp(Ω \ Σβ ;φμ,Σ) for any β > 0. Denote gn(t) = max{min{|t|p−1t, n},−n}. By
applying proposition 3.5 with g = gn, we deduce that there exists a unique
weak solution vn ∈ L1(Ω;φμ,Σ) of{−Lμvn + gn(vn) = 0 in Ω,

trμ,Σ(vn) = ν,
(5.30)

such that 0 � vn � Kμ[ν] in Ω. Furthermore, by (3.5), {vn} is non-increasing.
Set v = limn→∞ vn, then 0 � v � Kμ[ν] in Ω.
Since vn is a weak solution of (5.30), we have

−
∫

Ω

vnLμζ dx+
∫

Ω

gn(vn)ζ dx = −
∫

Ω

Kμ[νn]Lμζ dx ∀ζ ∈ Xμ(Ω).

By taking φμ,Σ as a test function, we obtain∫
Ω

(λμ,Σvn + gn(vn))φμ,Σ dx = λμ,Σ

∫
Ω

Kμ[ν]φμ,Σ dx, (5.31)

which, together with by Fatou’s lemma, implies that v, vp ∈ L1(Ω;φμ,Σ) and∫
Ω

(λμ,Σv + vp)φμ,Σ dx � λμ,Σ

∫
Ω

Kμ[ν]φμ,Σ dx.

Hence, v + Gμ[vp] is a nonnegative Lμ-harmonic function. By the representa-
tion theorem 3.3, there exists a unique ν ∈ M+(∂Ω) such that v + Gμ[vp] =
Kμ[ν]. Since v � Kμ[ν], by proposition 2.7 (i), ν = trμ,Σ(v) � trμ,Σ(Kμ[ν]) =
ν and hence ν has compact support in F .
Let β > 0 be small enough such that F ∩ Σ4β = ∅. We consider a cut-off
function ψβ ∈ C∞(RN ) such that 0 � ψβ � 1 in RN , ψβ = 1 in Ω \ Σ β

2
and

ψβ = 0 in Σ β
4
. Let φ0 be the eigenfunction associated to −Δ in Ω such that

supx∈Ω φ0 = 1. Let η ∈ C∞(∂Ω) such that η = 0 on ∂Ω ∩ Σ2β . We consider
the lifting R[η] in [32, (1.11)]. Then R ∈ C2(Ω) has compact support in Ωβ0

for some β0 > 0 small enough. In addition, |∇R[η] · ∇φ0| � φ0 in Ω, and
R[η] = η for any x ∈ ∂Ω.
Then the function ψβ,η = ψβR[η]φ0 ∈ C1,γ(Ω) ∩ Xμ(Ω) for any γ ∈ (0, 1),
ψβ,η = 0 on ∂Ω and has compact support in Ω \ Σ β

4
. Hence, by (4.13) and

the fact that ∂ψβ,ζ

∂n = ∂φ0
∂n η on ∂Ω, we obtain∫

Ω

(−vLμψβ,η + vpψβ,η) dx = −
∫
∂Ω

∂φ0

∂n
η

Pμ(x0, y)
dν(y). (5.32)

Also,∫
Ω

(−vnLμψβ,ζ + gn(vn)ψβ,ζ) dx = −
∫
∂Ω

∂φ0

∂n
η

Pμ(x0, y)
dν(y). (5.33)
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Since v � vn � Kμ[ν] and Kμ[ν] ∈ Lp(Ω \ Σ β
16

;φμ,Σ), by letting n→ ∞ in
(5.33), we obtain by the dominated convergence theorem that

∫
Ω

(−vLμψβ,ζ + vpψβ,ζ) dx = −
∫
∂Ω

∂φ0

∂n
η

Pμ(x0, y)
dν(y). (5.34)

From (5.32) and (5.34), we deduce that

−
∫
∂Ω

∂φ0

∂n
η

Pμ(x0, y)
dν(y) = −

∫
∂Ω

∂φ0

∂n
η

Pμ(x0, y)
dν(y),

which implies that ν = ν, since −∂φ0
∂n ≈ 1 in ∂Ω, Pμ(x0, y) ≈ 1 in ∂Ω \ Σ β

4

and ν, ν have compact support in ∂Ω \ Σ4β .

3. If ν ∈ M+(∂Ω) vanishes on Borel sets E ⊂ ∂Ω with zero CapR
N−1

2
p ,p

′ -capacity
and has compact support in ∂Ω \ Σ then there exists a nondecreasing sequence
{νn} of positive measures in B− 2

p ,p(∂Ω) which converges to ν (see [10, 16]).
Let un be the unique weak solution of (5.24) with trμ,Σ(un) = νn. Since {νn} is
nondecreasing, by (3.5), {un} is nondecreasing. Moreover, 0 � un � Kμ[νn] �
Kμ[ν]. Denote u = limn→∞ un. By an argument similar to the one leading to
(5.31), we obtain

∫
Ω

(λμ,Σun + upn)φμ,Σ dx = λμ,Σ

∫
Ω

Kμ[νn]φμ,Σ dx,

which yields that u, up ∈ L1(Ω;φμ,Σ). By the dominated convergence
theorem, we derive∫

Ω

(−uLμζ + upζ) dx = −
∫

Ω

Kμ[ν]Lμζ dx ∀ζ ∈ Xμ(Ω),

and thus u is the unique weak solution of (5.24).

4. If 1F ν is absolutely continuous with respect to CapR
N−1

2
p ,p

′ for any compact set
F ⊂ ∂Ω \ Σ, we set νn = 1∂Ω\Σ 1

n

ν and un the weak solution of (5.24) with

trμ,Σ(un) = νn. By using an argument similar to that in case 3, we obtain the
desired result. �

6. Semilinear equations with a power source nonlinearity

In this section, we study the following problem
{−Lμu = |u|p−1u in Ω,

trμ,Σ(u) = σν,
(BVPσ−)

where p > 1, σ is a positive parameter and ν ∈ M+(∂Ω).
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We remark that a positive function u is a weak solution of (BVPσ– ) if and only if

u = Gμ[up] + σKμ[ν] a.e. in Ω. (6.1)

In the following proposition, we give a necessary and sufficient condition for the
existence of solutions to problem (BVPσ– ).

Proposition 6.1. Assume μ � H2, p > 1 and ν ∈ M+(∂Ω). Then problem
(BVPσ– ) admits a weak solution if and only if there exists a positive constant C > 0
such that

Gμ[Kμ[ν]p] � C Kμ[ν] a.e. in Ω.

Proof. The proof is similar to that of [20, proposition 6.2] with some minor
modifications, and hence we omit it. �

6.1. Preparative results

For α � N , set

Nα(x, y) :=
max{|x− y|, dΣ(x), dΣ(y)}α

|x− y|N−2 max{|x− y|, d∂Ω(x), d∂Ω(y)}2
, (x, y) ∈ Ω × Ω, x �= y,

Nα[ω](x) :=
∫

Ω

Nα(x, y) dω(y), ω ∈ M+(Ω). (6.2)

Let α < N , b > 0, θ > −N + k and s > 1. We define the capacity Capb,θ
Nα,s

by

Capb,θ
Nα,s

(E) := inf
{∫

Ω

db∂Ωd
θ
Σφ

s dx : φ � 0, Nα[db∂Ωd
θ
Σφ] � 1E

}

for any Borel set E ⊂ Ω.

Here 1E denotes the indicator function of E. By [1, theorem 2.5.1], we have

(Capb,θ
Nα,s

(E))
1
s = sup{ω(E) : ω ∈ M+(E), ‖Nα[ω]‖Ls′ (Ω;db

∂Ωd
θ
Σ) � 1}.

If μ < N2

4 and ν ∈ M+(∂Ω), then, by (3.1) and (3.3), we can show that

Gμ(x, y) ≈ d∂Ω(x) d∂Ω(y)(dΣ(x) dΣ(y))−α−N2α−(x, y) ∀x, y ∈ Ω, x �= y (6.3)

and

Kμ(x, y) ≈ d∂Ω(x) dΣ(x)−α−N2α−(x, y) ∀(x, y) ∈ Ω × ∂Ω. (6.4)

Therefore, if the integral equation

v = N2α− [(d∂Ωd
−α−
Σ )p+1vp] + �N2α− [ν] (6.5)

has a solution v for some � > 0 then ṽ = d∂Ωd
−α−
Σ v satisfies

ṽ ≈ Gμ[ṽp] + �Kμ[ν]. (6.6)

This, together with [5, proposition 2.7], implies that equation (6.1) has a positive
solution u for some σ > 0, whence problem (BVPσ– ) has a weak positive solution u
for some σ > 0.
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In order to show that (6.5) possesses a solution, we will apply the results in [23]
which we recall here for the sake of completeness.

Let Z be a metric space and ω ∈ M+(Z). Let J : Z × Z → (0,∞] be a Borel
positive kernel such that J is symmetric and 1/J satisfies a quasi-metric inequality,
i.e. there is a constant C > 1 such that for all x, y, z ∈ Z,

1
J(x, y)

� C

(
1

J(x, z)
+

1
J(z, y)

)
. (6.7)

Under these conditions, one can define the quasi-metric d by

d(x, y) :=
1

J(x, y)

and denote by B(x, r) := {y ∈ Z : d(x, y) < r} the open d-ball of radius r > 0 and
centre x. Note that this set can be empty.

For ω ∈ M+(Z) and a positive function φ, we define the potentials J[ω] and J[φ, ω]
by

J[ω](x) :=
∫
Z

J(x, y) dω(y) and J[φ, ω](x) :=
∫
Z

J(x, y)φ(y) dω(y).

For t > 1 the capacity CapωJ,t in Z is defined for any Borel set E ⊂ Z by

CapωJ,t(E) := inf
{∫

Z

φ(x)t dω(x) : φ � 0, J[φ, ω] � 1E

}
.

Proposition 6.2. ([23]) Let p > 1 and λ, ω ∈ M+(Z) such that∫ 2r

0

ω (B(x, s))
s2

ds � C

∫ r

0

ω (B(x, s))
s2

ds, (6.8)

sup
y∈B(x,r)

∫ r

0

ω (B(y, r))
s2

ds � C

∫ r

0

ω (B(x, s))
s2

ds, (6.9)

for any r > 0, x ∈ Z, where C > 0 is a constant. Then the following statements are
equivalent.

1. The equation v = J[|v|p, ω] + �J[λ] has a positive solution for � > 0 small.

2. For any Borel set E ⊂ Z, there holds
∫
E

J[1Eλ]pdω � C λ(E).

3. The following inequality holds J[J[λ]p, ω] � CJ[λ] <∞ ω − a.e.

4. For any Borel set E ⊂ Z there holds λ(E) � C CapωJ,p′(E).

We will point out below that Nα defined in (6.2) with dω = d∂Ω(x)b dΣ(x)θ1Ω(x)
dx satisfies all assumptions of J in proposition 6.2, for some appropriate b, θ ∈ R.
Let us first prove the quasi-metric inequality.
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Lemma 6.3. Let α � N . There exists a positive constant C = C(Ω,Σ, α) such that

1
Nα(x, y)

� C

(
1

Nα(x, z)
+

1
Nα(z, y)

)
, ∀x, y, z ∈ Ω. (6.10)

Proof. Case 1: 0 < α � N . We first assume that |x− y| < 2|x− z|. Then by the
triangle inequality, we have dΣ(z) � |x− z| + dΣ(x) � 2max{|x− z|, dΣ(x)} hence

max{|x− z|, dΣ(x), dΣ(z)} � 2max{|x− z|, dΣ(x)}.

If |x− z| � dΣ(x) then |x− z| � d∂Ω(x) which implies that |x− z| � d∂Ω(x)+|x−y|
4 .

Now,

|x− z|N−2 max{|x− z|, d∂Ω(x), d∂Ω(z)}2

max{|x− z|, dΣ(x), dΣ(z)}α
� 2−α|x− z|N−α � 2−2N+α(|x− y| + d∂Ω(x))N−α

= 2−2N+α (|x− y| + d∂Ω(x))N

(|x− y| + d∂Ω(x))α
� |x− y|N−2 max{|x− y|, d∂Ω(x), d∂Ω(y)}2

max{|x− y|, dΣ(x), dΣ(y)}α ,

(6.11)

since d∂Ω(x) � dΣ(x).
If |x− z| � dΣ(x) then

|x− z|N−2 max{|x− z|, d∂Ω(x), d∂Ω(z)}2

max{|x− z|, dΣ(x), dΣ(z)}α
� 2−α−2 dΣ(x)−α|x− z|N−2 max{|x− y|, d∂Ω(x)}2

� |x− y|N−2 max{|x− y|, d∂Ω(x), d∂Ω(y)}2

max{|x− y|, dΣ(x), dΣ(y)}α , (6.12)

since d∂Ω(y) � |x− y| + d∂Ω(x) � 2max{|x− y|, dΣ(x)}. Combining (6.11)–(6.12),
we obtain (6.10).

Next we consider the case 2|x− z| � |x− y|. Then 1
2 |x− y| � |y − z|, thus by

symmetry we obtain (6.10).

Case 2: α � 0. Let b ∈ [0, 2], since dΣ(x) � |x− y| + dΣ(y), it follows that

max{|x− y|, dΣ(x), dΣ(y)} � |x− y| + min{dΣ(x), dΣ(y)}.

Using the above estimate, we obtain

|x− y|N−b max{|x− y|, dΣ(x), dΣ(y)}−α

� |x− y|N−b−α + min{dΣ(x), dΣ(y)}−α|x− y|N−b

� |x− z|N−b−α + |y − z|N−b−α + min{dΣ(x), dΣ(y)}−α(|x− z|N−b + |y − z|N−b)

� |x− z|N−b

max{|x− z|, dΣ(x), dΣ(z)}α +
|z − y|N−b

max{|z − y|, dΣ(z), dΣ(y)}α . (6.13)
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Since d∂Ω(x) � |x− y| + d∂Ω(y), we can easily show that max{|x− y|, d∂Ω(x),
d∂Ω(y)} � |x− y| + min{d∂Ω(x), d∂Ω(y)}. Hence,

1
Nα(x, y)

=
max{|x− y|, d∂Ω(x), d∂Ω(y)}2|x− y|N−2

max{|x− y|, dΣ(x), dΣ(y)}α

� 2|x− y|N
max{|x− y|, dΣ(x), dΣ(y)}α +

2min{d∂Ω(x), d∂Ω(y)}2|x− y|N−2

max{|x− y|, dΣ(x), dΣ(y)}α .

The desired result follows by the above inequality and (6.13). �

Next we give sufficient conditions for (6.8) and (6.9) to hold.

Lemma 6.4. Let b > 0, θ + b > k −N and dω = d∂Ω(x)b dΣ(x)θ1Ω(x) dx. Then

ω(B(x, s)) ≈ max{d∂Ω(x), s}b max{dΣ(x), s}θsN ,
for all x ∈ Ω and 0 < s � 4diam(Ω). (6.14)

Proof. Let β0, β1, β2 be as in § A.1 and s < β2
32 . We first assume that x ∈ Σ β2

4
.

Case 1: d∂Ω(x) � 2s. Let Γ = ∂Ω or Σ. Then 1
2dΓ(x) � dΓ(y) � 3

2dΓ(x) for any
y ∈ B(x, s), therefore (6.14) follows easily in this case.

Case 2: d∂Ω(x) � 2s and dΣ(x) � 2s. By estimate (2.9) in [5, Lemma 2.3], we have
that ∫

B(x,s)∩Ω

d∂Ω(y)b dy ≈ max{d∂Ω(x), s}bsN . (6.15)

Therefore,

∫
B(x,s)∩Ω

d∂Ω(y)b dΣ(y)θ dy ≈ dΣ(x)θ

∫
B(x,s)∩Ω

d∂Ω(y)bdy ≈ max{d∂Ω(x), s}b max{dΣ(x), s}θsN .

Case 3: d∂Ω(x) � 2s and dΣ(x) � 2s. By (A.2), there exists ξ ∈ Σ such that
B(x, s) ∩ Ω ⊂ VΣ(ξ, β0). If y ∈ B(x, s), then |y′ − x′| < s and dΣ(y) � dΣ(x) + |x−
y| � 3s. Thus, by (A.3), δξΣ(y) � C1s for any y ∈ B(x, s) ∩ Ω, where C1 depends on
‖Σ‖C2 , N and k. Therefore,

∫
B(x,s)∩Ω

d∂Ω(y)b dΣ(y)θdy �
∫
{|x′−y′|<s}

∫
{δξ

Σ(y)�C1s}
(δξΣ(y))θ+b dy′′dy′ ≈ sN+θ+b

≈ max{d∂Ω(x), s}b max{dΣ(x), s}θsN .

Here the similar constants depend on N, k, ‖Σ‖C2 and β0.
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Case 4: d∂Ω(x) � 2s and dΣ(x) � 2s and θ < 0. We have that dΣ(y)θ � 3θsθ for
any y ∈ B(x, s). Hence,∫

B(x,s)∩Ω

d∂Ω(y)b dΣ(y)θ dy � sθ
∫
B(x,s)∩Ω

d∂Ω(y)b dy

≈ max{d∂Ω(x), s}b max{dΣ(x), s}θsN .

Case 5: d∂Ω(x) � 2s and dΣ(x) � 2s and θ � 0. By (A.7), there exists ξ ∈ Σ such
that B(x, s) ∩ Ω ⊂ VΣ(ξ, β0). Let CΣ, C∂Ω be as in (A.3), A be as in (A.5) and
C2 = max{CΣ‖Σ‖C2 , C∂Ω‖∂Ω‖C2}(A+ 1).

We first assume that d∂Ω(x) � s
12NC2

dΣ(x) � s
12NC2

. Set

A := {ψ = (ψ′, ψ′′) ∈ Ω : |x′ − ψ′| < r0, |δ(ψ)| < r0, |δ2,Σ(ψ)| < r0} ,

where r0 = s
12N(A+1) . By (A.3), we have δξΣ(x) � s

12N(A+1) and δξ∂Ω(x) � s
12N(A+1) .

In addition for any y ∈ A, we have

|x′′ − y′′| � δξΣ(x) + δξΣ(y) +

(
N∑

i=k+1

|Γξi,Σ(x′) − Γξi,Σ(y′)|2
) 1

2

� s

3
+ (N − k)‖Σ‖C2 |x′ − y′| +A(δξ2,Σ(y) + δξ(y)) < s,

where in the last inequality we used (A.5). This implies that A ⊂ B(x, s).
Consequently,∫

B(x,s)∩Ω

d∂Ω(y)b dΣ(y)θdy

≈
∫
B(x,s)∩Ω

δξ(y)b(δξΣ(y))θ dy �
∫
A
δξ(y)b(δξ(y) + δξ2,Σ(y))θ dy

≈ sN+θ+b ≈ C ≈ max{d∂Ω(x), s}b max{dΣ(x), s}θsN . (6.16)

If d∂Ω(x) � s
12NC2

and dΣ(x) � s
12NC2

then

∫
B(x,s)

d∂Ω(y)b dΣ(y)θ dy �
∫
B(x, s

24NC2
)

d∂Ω(y)b dΣ(y)θ dy

and hence (6.16) follows by case 2.
If d∂Ω(x) � s

12NC2
then

∫
B(x,s)

d∂Ω(y)b dΣ(y)θ dy �
∫
B
(
x, s

24NC2

) d∂Ω(y)b dΣ(y)θ dy

and hence (6.16) follows by case 1.
Next we consider x ∈ Ω \ Σ β2

4
and s < β2

32 . Then dΣ(y) ≈ 1 for any y ∈ Ω ∩
B(x, s). This, together with (6.15), implies the desired result.
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If β2
16 � s � 4diam(Ω) then ω(B(x, s)) ≈ 1, hence estimate (6.14) follows straight-

forward. The proof is complete. �

Lemma 6.5. Let α < N , b > 0, θ > max{k −N − b,−b− α} and dω = d∂Ω(x)b

dΣ(x)θ 1Ω(x) dx. Then (6.8) holds.

Proof. We note that if s � (4diam (Ω))N−α then ω(B(x, s)) = ω(Ω) <∞, where
B(x, s) is defined after (6.7), namely B(x, s) = {y ∈ Ω \ Σ : d(x, y) < s} and
d(x, y) = 1

Nα(x,y) . Let M = (4diam Ω)N−α. We first note that it is enough to show
that

ω (B(x, t)) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∂Ω(x)
b−

2N
N − 2 dΣ(x)

θ+
αN

N − 2 s

N

N − 2 if s � d∂Ω(x)N dΣ(x)−α,

s

b+N

N dΣ(x)
θ+α

b+N

N if d∂Ω(x)N dΣ(x)−α

< s � dΣ(x)N−α,

s

b+ θ +N

N − α if dΣ(x)N−α � s � M,

M

b+ θ +N

N − α if M � s.
(6.17)

Indeed, by the above display, we can easily deduce that∫ s

0

ω (B(x, t))
t2

dt

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∂Ω(x)
b−

2N
N − 2 dΣ(x)

θ+
αN

N − 2 s

2
N − 2 if s � d∂Ω(x)N dΣ(x)−α,

s

b

N dΣ(x)
θ+α

b+N

N if d∂Ω(x)N dΣ(x)−α

< s � dΣ(x)N−α,

s

b+ θ + α

N − α if dΣ(x)N−α � s � M,

M

b+ θ + α

N − α if M � s,

(6.18)

since b > 0 and b+ θ + α > 0. This in turn implies (6.8).
In order to show (6.17), we will consider three cases.

Case 1: s � d∂Ω(x)N dΣ(x)−α.

(a) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) � |x− y|. Then

1
Nα(x, y)

≈ |x− y|N−α,
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thus if |x− y|N−α � s � d∂Ω(x)N dΣ(x)−α � d∂Ω(x)N−α then d∂Ω(x) ≈ dΣ(x) ≈
|x− y|. Hence, there exist constants C1, C2 depending only on α,N such that{
y ∈ Ω : |x− y| � C1(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x) � |x− y|, dΣ(x) � |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) � |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x)

� |x− y|, dΣ(x) � |x− y|} . (6.19)

(b) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) > |x− y|. Then

1
Nα(x, y)

≈ |x− y|N dΣ(x)−α,

thus if |x− y|NdΣ(x)−α � s, then |x− y|N � sdΣ(x)α � d∂Ω(x)N . Thus, d∂Ω(x) ≈
|x− y|. Hence, there exist constants C1, C2 depending only on α,N such that{
y ∈ Ω : |x− y| � C1(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x) � |x− y|, dΣ(x) > |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x)

� |x− y|, dΣ(x) > |x− y|
}
.

(c) Let y ∈ B(x, s) be such that d∂Ω(x) > |x− y|. Then, dΣ(x) � d∂Ω(x) > |x− y|
and

1
Nα(x, y)

≈ |x− y|N−2d∂Ω(x)2dΣ(x)−α.

Hence, there exist constants C1, C2 depending only on α,N such that{
x ∈ Ω : |x− y| � C1(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x) > |x− y|

}

⊂
{
x ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) > |x− y|
}

⊂
{
x ∈ Ω : |x− y| � C2(dΣ(x)αd∂Ω(x)−2s)

1
N−2 , d∂Ω(x) > |x− y|

}
. (6.20)

Combining (6.19)–(6.20) and lemma 6.4, we deduce

ω(B(x, s)) ≈ ω(B(x, s1)) ≈ d∂Ω(x)b−
2N

N−2 dΣ(x)θ+
αN

N−2 s
N

N−2 ,

where s1 = (dΣ(x)αd∂Ω(x)−2s)
1

N−2 .

Case 2: d∂Ω(x)N dΣ(x)−α < s � dΣ(x)N−α.
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(a) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) � |x− y|. Then

1
Nα(x, y)

≈ |x− y|N−α.

Thus, if |x− y|N−α � s � dΣ(x)N−α then dΣ(x) ≈ |x− y|. Hence, there exist
constants C1, C2 which depending only on α,N such that{

y ∈ Ω : |x− y| � C1(dΣ(x)αs)
1
N , d∂Ω(x) � |x− y|, dΣ(x) � |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) � |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αs)

1
N , d∂Ω(x) � |x− y|, dΣ(x) � |x− y|

}
.

(6.21)
(b) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) > |x− y|. Then

1
Nα(x, y)

≈ |x− y|N dΣ(x)−α.

Hence, there exist constants C1, C2 depending only on α,N such that{
y ∈ Ω : |x− y| � C1(dΣ(x)αs)

1
N , d∂Ω(x) � |x− y|, dΣ(x) > |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αs)

1
N , d∂Ω(x) � |x− y|, dΣ(x) > |x− y|

}
.

(c) Let y ∈ B(x, s) be such that d∂Ω(x) > |x− y|. Then dΣ(x) > |x− y|. In
addition,

1
Nα(x, y)

≈ |x− y|N−2d∂Ω(x)2 dΣ(x)−α,

|x− y|N−2d∂Ω(x)2 dΣ(x)−α � |x− y|N dΣ(x)−α,

and

|x−y| � (dΣ(x)αs)
1
N =(dΣ(x)αs)

1
N−2 (dΣ(x)αs)−

2
N(N−2) �

(
dΣ(x)αd∂Ω(x)−2s

) 1
N−2 ,

since d∂Ω(x)N dΣ(x)−α < s. Hence, there exist constants C1, C2 depending only on
α,N such that{

y ∈ Ω : |x− y| � C1(dΣ(x)αs)
1
N , d∂Ω(x) > |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αs)

1
N , d∂Ω(x) > |x− y|

}
.

(6.22)
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Combining (6.21)–(6.22) and lemma 6.4, we derive

ω(B(x, s)) ≈ ω(B(x, s2)) ≈ s
b+N

N dΣ(x)θ+α
b+N

N ,

where s2 = (dΣ(x)αs)
1
N .

Case 3: dΣ(x)N−α < s � (4diam (Ω))N−α.

(a) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) � |x− y|. Then

1
Nα(x, y)

≈ |x− y|N−α.

Hence, there exist constants C1, C2 which depend only on α,N such that{
y ∈ Ω : |x− y| � C1s

1
N−α , d∂Ω(x) � |x− y|, dΣ(x) � |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) � |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2s

1
N−α , d∂Ω(x) � |x− y|, dΣ(x) � |x− y|

}
.

(6.23)

(b) Let y ∈ B(x, s) be such that d∂Ω(x) � |x− y| and dΣ(x) > |x− y|. Then

1
Nα(x, y)

≈ |x− y|N dΣ(x)−α.

On one hand, if α > 0, we have

|x− y|N dΣ(x)−α � |x− y|N−α

and since dΣ(x)N−α < s, we have

|x− y| � (dΣ(x)αs)
1
N = s

1
N−α s−

α
N(N−α) dΣ(x)

α
N � s

1
N−α .

On the other hand, if α � 0 then

|x− y|N dΣ(x)−α � |x− y|N−α

and since dΣ(x)N−α < s, we obtain

|x− y| � s
1

N−α = s
1
N s

α
N(N−α) � (dΣ(x)αs)

1
N .

Hence, there exist constants C1, C2 which depend only on α,N such that{
y ∈ Ω : |x− y| � C1s

1
N−α , d∂Ω(x) � |x− y|, dΣ(x) > |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) � |x− y|, dΣ(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2s

1
N−α , d∂Ω(x) � |x− y|, dΣ(x) > |x− y|

}
.

(6.24)
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(c) Let y ∈ B(x, s) be such that d∂Ω(x) > |x− y|. Then dΣ(x) > |x− y| and

1
Nα(x, y)

≈ |x− y|N−2d∂Ω(x)2dΣ(x)−α.

In view of the proof of (6.22), we may deduce the existence of positive constants
C1, C2 depending only on α,N such that{

y ∈ Ω : |x− y| � C1(dΣ(x)αs)
1
N , d∂Ω(x) > |x− y|

}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C2(dΣ(x)αs)

1
N , d∂Ω(x) > |x− y|

}
.

This and (6.24) imply the existence of two positive constants C̃1, C̃2 depending
only on α,N such that{

y ∈ Ω : |x− y| � C̃1s
1

N−α , d∂Ω(x) > |x− y|
}

⊂
{
y ∈ Ω :

1
Nα(x, y)

� s, d∂Ω(x) > |x− y|
}

⊂
{
y ∈ Ω : |x− y| � C̃2s

1
N−α , d∂Ω(x) > |x− y|

}
.

(6.25)

Combining (6.23)–(6.25) and lemma 6.4, we obtain

ω(B(x, s)) ≈ ω(B(x, s3)) ≈ s
b+θ+N

N−α ,

where s3 = s
1

N−α .
The proof is complete. �

Lemma 6.6. Let α < N , b > 0, θ > max{k −N − b,−b− α} and dω = d∂Ω(x)b

dΣ(x)θ 1Ω(x) dx. Then (6.9) holds.

Proof. Let y ∈ B(x, s). We will consider three cases.

Case 1: d∂Ω(x) � 2|x− y| and dΣ(x) � 2|x− y|. We can easily show that d∂Ω(y) �
3|x− y|, dΣ(y) � 3|x− y| and

1
Nα(x, y)

≈ |x− y|N−α.

Therefore, |x− y| � s
1

N−α , which implies that dΣ(x) + dΣ(y) � s
1

N−α . By (6.18),
we can easily show that∫ s

0

ω (B(x, t))
t2

dt ≈
∫ s

0

ω (B(y, t))
t2

dt ≈ s
b+θ+α
N−α .
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Case 2: d∂Ω(x) � 2|x− y| and dΣ(x) � 2|x− y|. In this case, we have that
d∂Ω(y) � 3|x− y|, 1

2 dΣ(x) � dΣ(y) � 3
2 dΣ(x) and

1
Nα(x, y)

≈ |x− y|N d−αΣ (x) ≈ |x− y|N dΣ(y)−α.

This implies

d∂Ω(x)N dΣ(x)−α � s and d∂Ω(y)N dΣ(y)−α � s.

By (6.18), we obtain

∫ s

0

ω (B(x, t))
t2

dt ≈
∫ s

0

ω (B(y, t))
t2

dt ≈

⎧⎪⎪⎨
⎪⎪⎩
s

b+ θ + α

N − α if dΣ(x)N−α � s,

s

b

N dΣ(x)
θ+α

b+N

N if s � dΣ(x)N−α.

Case 3: d∂Ω(x) � 2|x− y|. We first note that dΣ(x) � 2|x− y|,
1
2
d∂Ω(x) � d∂Ω(y) � 3

2
d∂Ω(x) and

1
2
dΣ(x) � dΣ(y) � 3

2
dΣ(x).

From (6.18), we infer that∫ s

0

ω (B(x, t))
t2

dt ≈
∫ s

0

ω (B(y, t))
t2

dt.

Combining cases 1–3, we derive (6.9). �

By applying proposition 6.2 with J(x, y) = N2α−(x, y), dω = (d∂Ω(x) dΣ

(x)−α−)p+1dx and dλ = dν, we obtain the following result for any ν ∈ M+(∂Ω).

Theorem 6.7. Let p satisfy (2.11). Then the following statements are equivalent.

1. The equation

v = N2α− [|v|p
(
d∂Ωd

−α−
Σ

)p+1

] + �N2α− [ν]

has a positive solution for � > 0 small.

2. For any Borel set E ⊂ Ω, there holds∫
E

N2α− [1Eν]p
(
d∂Ω(x) dΣ(x)−α−

)p+1 dx � C ν(E).

3. The following inequality holds

N2α− [N2α− [ν]p
(
d∂Ωd

−α−
Σ

)p+1

] � CN2α− [ν] <∞ a.e.

4. For any Borel set E ⊂ Ω there holds

ν(E) � C Capp+1,−α−(p+1)
N2α− ,p

′ (E).

Here we implicitly extend ν to whole Ω by setting ν(Ω) = 0.
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6.2. Existence and nonexistence results in the case μ < N2

4

We first show that theorem 2.7 is a direct consequence of theorem 6.7.

Proof of theorem 2.7. We will use theorem 6.7 and show that statements 1–4 of the
present theorem are equivalent to statements 1–4 of theorem 6.7 respectively. By
(6.3)–(6.6) and [5, proposition 2.7], we can easily show that equation (6.5) has a
solution v for some � > 0 if and only if equation

u = Gμ[up] + σKμ[ν] (6.26)

has a positive solution u for some σ > 0. This and the fact that u is a weak solution
of (Pσ– ) if and only if u is represented by (6.26) imply that statement 1 of theorem
6.7 is equivalent to statement 1 of the present theorem. In addition, in light of
(6.3) and (6.4), we can deduce that statements 2–3 of theorem 6.7 are equivalent
to statements 2–3 of the present theorem respectively.

Therefore, it remains to prove that, under condition (2.14), statement 4 of this
theorem is equivalent to statement 4 of theorem 6.7. It is enough to show that for
any compact subset E ⊂ Σ, there holds

CapΣ
ϑ,p′(E) ≈ Capp+1,−α−(p+1)

N2α− ,p
′ (E),

where ϑ is defined in (2.15). Under condition (2.14), in view of (5.26)–(5.27), we
may employ a similar argument as in the proof of [20, Estimate (6.36)] to reach
the desired result. �

Remark 6.8. By [3, theorems B.1 and B.2], the following statements are valid.

(i) If 1 < p < min{N+1
N−1 ,

N−α−+1
N−α−−1} then

∫
Ω

Kμ[|ν|]pφμ,Σ dx � C(Ω,Σ, μ, p) |ν|(Ω)p, ∀ν ∈ M(∂Ω). (6.27)

(ii) If 1 < p < N+1
N−1 and ν ∈ M(∂Ω) has compact support in ∂Ω \ Σ then (6.27)

holds true.

(iii) If 1 < p < N−α−+1
N−α−−1 and ν ∈ M(∂Ω) has compact support in Σ then (6.27)

holds true.

Hence, if one of the above cases occurs, we see that statement 2 of theorem 6.7
holds true, which implies the existence of solution of (BVPσ– ) for some σ > 0.

Remark 6.9. Assume μ < N2

4 and p � N−α−+1
N−α−−1 . Then for any z ∈ Σ and any σ > 0,

problem (6.26) with ν = δz does not admit any positive weak solution. Indeed, sup-
pose by contradiction that for some z ∈ Σ and σ > 0, there exists a positive solution
u ∈ Lp(Ω;φμ,Σ) of equation (6.26). Without loss of generality, we can assume that
z = 0 ∈ Σ and σ = 1. From (6.26), u(x) � Kμ[δ0](x) = Kμ(x, 0) for a.e. x ∈ Ω. Let
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C be a cone of vertex 0 such that C ⊂ Ω and there exist r > 0, 0 < � < 1 satisfying
for any x ∈ C, |x| < r and dΣ(x) � d∂Ω(x) > �|x|. Then, by (3.3) and (1.4),∫

Ω

u(x)pφμ,Σ(x) dx �
∫
C
Kμ(x, 0)pφμ,Σ(x) dx �

∫
C
|x|1−α−−(N−α−−1)p dx

≈
∫ r

0

tN−α−−(N−α−−1)p dt.

Since p � N−α−+1
N−α−−1 , the last integral is divergent, hence u �∈ Lp(Ω;φμ,Σ), which leads

to a contradiction.

Remark 6.10. Assume μ < N2

4 and p � N+1
N−1 . Proceeding as in remark 6.10, we

may show that any z ∈ ∂Ω \ Σ and any σ > 0, problem (6.26) with ν = δz does not
admit any positive weak solution.

By using the above capacities and theorem 6.7, we are able to prove theorem 2.8.

Proof of theorem 2.8 when μ < N2

4
. The fact that statements 1–3 are equivalent

follows by using a similar argument as in the proof of theorem 2.7. Hence, it remains
to show that statement 4 is equivalent to statements 1–3. Since

Kμ(x, z) ≈ C dist (z,Σ) d∂Ω(x) dΣ(x)−α− |x− z|−N , ∀x ∈ Ω, z ∈ ∂Ω \ Σ,

we may proceed as in the proof of [20, estimate (6.40)] to obtain the desired result.
�

When p � α++1
α+−1 , the nonexistence occurs, as shown in the following remark.

Remark 6.11. We additionally assume that Ω is C3. If p � α++1
α+−1 then, for any

measure ν ∈ M+(∂Ω) with compact support in Σ and any σ > 0, there is no solution
of problem (6.26). Indeed, it can be proved by contradiction. Suppose that we can
find σ > 0 and a measure ν ∈ M+(∂Ω) with compact support in Σ such that there
exists a solution 0 � u ∈ Lp(Ω;φμ,Σ) of (6.26). It follows that Kμ[ν] ∈ Lp(Ω;φμ,Σ).
Therefore, by proposition 3.5, there is a unique nontrivial nonnegative solution v
of { −Lμv + |v|p−1v = 0 in Ω,

trμ,Σ(v) = ν.

Moreover, v � Kμ[ν] in Ω. This, together with proposition 3.2 and the fact that ν
has compact support in Σ, implies v(x) � Kμ[ν](x) � d∂Ω(x)ν(Σ) for x near ∂Ω \ Σ.
Therefore, by theorem 2.1, we have that v ≡ 0, which leads to a contradiction.

Remark 6.12. If α− > 1 and p � α−+1
α−−1 then for any measure ν ∈ M+(∂Ω) with

compact support in ∂Ω and any σ > 0, there is no solution of (6.26). Indeed, it
can be proved by contradiction. Suppose that we can find a measure ν ∈ M+(∂Ω)
with compact support in ∂Ω \ Σ and σ > 0 such that there exists a solution 0 � u ∈
Lp(Ω;φμ,Σ) of (6.26). Then by theorem 2.8, estimate (2.13) holds for some constant
C > 0.
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For simplicity, we assume that 0 ∈ Σ. Let {xn} ⊂ Ω be such that
dist (xn, supp ν) > ε > 0 for any n ∈ N and xn → 0 as n→ ∞. Then there exists a
positive constant C1 = C1(ε,Ω,Σ, μ) such that

C �
∫
Ω
Gμ(xn, y)Kμ[ν](y)pdy

Kμ[ν](xn)

� C1d∂Ω(xn)−1 dΣ(xn)α−ν(∂Ω)p−1

∫
Ω

(d∂Ω(y) dΣ(y)−α−)pGμ(xn, y) dy.

Set

F (xn, y) := d∂Ω(xn)−1 dΣ(xn)α−(d∂Ω(y) dΣ(y)−α−)pGμ(xn, y).

Then

lim inf
n→∞ F (xn, y) � d∂Ω(y)p+1|y|2α−−N−α−(p+1).

Let C be a cone of vertex 0 such that C ⊂ Ω and there exist r > 0, 0 < � < 1 sat-
isfying for any x ∈ C, |x| < r and dΣ(x) � d∂Ω(x) > �|x|. Combining all above we
have that

C �
∫
C
d∂Ω(y)p+1|y|2α−−N−α−(p+1)dy �

∫
C
|y|p+1+2α−−N−α−(p+1) dy

≈
∫ r

0

sp(1−α−)+α− ds = +∞,

since p � α−+1
α−−1 . This is clearly a contradiction.

6.3. Existence results in the case Σ = {0} and μ = N2

4

Let 0 < ε < N . For any (x, y) ∈ Ω × Ω such that x �= y, we set

N1,ε(x, y) :=
max{|x− y|, |x|, |y|}N

|x− y|N−2 max{|x− y|, d∂Ω(x), d∂Ω(y)}2

+ max{|x− y|, d∂Ω(x), d∂Ω(y)}−ε

and

NN−ε(x, y) :=
max{|x− y|, |x|, |y|}N−ε

|x− y|N−2 max{|x− y|, d∂Ω(x), d∂Ω(y)}2
.

Put

GH2,ε(x, y) := |x− y|2−N
(

1 ∧ d∂Ω(x) d∂Ω(y)
|x− y|2

)(
1 ∧ |x||y|

|x− y|2
)−N

2

+
d∂Ω(x) d∂Ω(y)

(|x||y|)N
2

max{|x− y|, d∂Ω(x), d∂Ω(y)}−ε,

x, y ∈ Ω \ {0}, x �= y
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and

G̃H2,ε(x, y) := d∂Ω(x) d∂Ω(y)(|x||y|)−N
2 NN−ε(x, y), ∀x, y ∈ Ω \ {0}, x �= y.

(6.28)
Note that∣∣ln (min

{|x− y|−2, (d∂Ω(x) d∂Ω(y))−1
})∣∣�C(Ω, ε)max{|x−y|, d∂Ω(x), d∂Ω(y)}−ε,

which, together with (3.2), implies

GH2(x, y) � GH2,ε(x, y), ∀x, y ∈ Ω, x �= y. (6.29)

Next, from the estimates

GH2,ε(x, y) ≈ d∂Ω(x) d∂Ω(y)(|x||y|)−N
2 N1,ε(x, y), x, y ∈ Ω, x �= y,

N1,ε(x, y) � C(ε,Ω)NN−ε(x, y), x, y ∈ Ω, x �= y,

we obtain

GH2,ε(x, y) � G̃H2,ε(x, y), ∀x, y ∈ Ω, x �= y. (6.30)

Set

G̃H2,ε[|u|p](x) :=
∫

Ω

G̃H2,ε(x, y)|u|p dy,

NN−ε[τ ](x) :=
∫

Ω

NN−ε(x, y) dτ(y).

Proceeding as in the proof of theorem 6.7, we obtain the following result

Theorem 6.13. Let 0 < ε < 2, 1 < p < N+2−2ε
N−2 and ν ∈ M+(∂Ω). Then the fol-

lowing statements are equivalent.

1. The equation

u = G̃H2,ε[up] + σd∂Ω| · |−N
2 NN−ε[ν] (6.31)

has a positive solution for σ > 0 small.

2. For any Borel set E ⊂ Ω, there holds∫
E

NN−ε[1Eν]p(x)φH2,Σ(x)p+1 dx � Cν(E).

3. The following inequality holds

NN−ε[NN−ε[ν]p
(
d∂Ωd

−N
2

Σ

)p+1

] � C NN−ε[ν] <∞ a.e.

4. For any Borel set E ⊂ Ω there holds

ν(E) � C Capp+1,−N
2 (p+1)

NN−ε,p′ (E).
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Theorem 6.14. We assume that at least one of the statements 1–4 of theorem 6.13
is valid. Then problem (Pσ– ) with μ = H2 admits a positive weak solution for σ > 0
small.

Proof. By theorem 6.13, there exists a solution u to equation (6.31) for σ > 0 small.
By (6.29) and (6.30), we have u � GH2 [up] + σKH2 [ν]. By [5, proposition 2.7], we
deduce that equation

u = GH2 [up] + σKH2 [ν] (6.32)

has a solution for σ > 0 small. This means that it admits a positive weak solution
for σ > 0. �

Remark 6.15. Let Σ = {0} ⊂ ∂Ω, μ = N2

4 , ν = δ0 and 1 < p < N+2
N−2 . Then there

exists ε > 0 small enough such that 1 < p < N+2
N−2+2ε � N+2−2ε

N−2 . In addition, we
have ∫

Ω

NN−ε[δ0]p(x)φH2,Σ(x)p+1 dx �
∫

Ω

|x|(p+1)(1−N
2 )−pε dx <∞.

Hence, statement 2 of theorem 6.13 is satisfied. This and theorem 6.14 imply that
equation (6.32) has a solution for σ > 0 small.

Proof of theorem 2.8 when Σ = {0} and μ = N2

4
. Let ε > 0 be small enough such

that 1 < p < N+2−2ε
N−2 . Let K = supp (ν) � ∂Ω \ {0} and β̃ = 1

2dist (K, {0}) > 0. By
(3.4), we can easily show that

KH2,ε[ν] := d∂Ωd
−N

2
Σ NN−ε[ν] ≈ K N2

4
[ν]. (6.33)

Hence, by proposition 6.1, (6.33), theorems 6.13 and 6.14, it is enough to show that

G̃H2,ε[KH2,ε[ν]p] ≈ GH2 [KH2 [ν]p] in Ω.

By (6.29) and (6.30), it is sufficient to show that

G̃H2,ε[KH2 [ν]p] � GH2 [KH2 [ν]p] in Ω. (6.34)

Indeed, on one hand, since 1 < p < N+2−2ε
N−2 , for any x ∈ Ω there holds∫

B(0, β̃
4 )∩Ω

G̃H2,ε(x, y)KH2 [ν](y)p dy ≈ ν(K)p

∫
B
(
0, β̃

4

)
∩Ω

G̃H2,ε(x, y) d∂Ω(y)p|y|− pN
2 dy

� ν(K)pd∂Ω(x)|x|−N
2

∫
B
(
0, β̃

4

)
∩Ω

|x− y|−ε
(
d∂Ω(y)|y|−N

2

)p+1

dy

+ ν(K)pd∂Ω(x)|x|−N
2

∫
B
(
0, β̃

4

)
∩Ω

|x− y|−N+1d∂Ω(y)p|y|N−ε− (p+1)N
2 dy

� ν(K)pd∂Ω(x)|x|−N
2 . (6.35)

The implicit constants in the above inequalities depend only on Ω,K, β̃, p, ε.
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On the other hand, we have∫
B
(
0, β̃

4

)
∩Ω

GH2(x, y)KH2 [ν](y)p dy � ν(K)pd∂Ω(x)|x|−N
2

∫
B(0, β̃

4 )∩Ω

d∂Ω(y)p+1 dy

� ν(K)pd∂Ω(x)|x|−N
2 , (6.36)

where the implicit constants in the above inequalities depend only on Ω,K, β̃, p.
Hence, by (6.35) and (6.36), we have that∫
B(0, β̃

4 )∩Ω

G̃H2,ε(x, y)KH2 [ν](y)p dy �
∫
B(0, β̃

4 )∩Ω

GH2(x, y)KH2 [ν](y)pdy ∀x ∈ Ω.

(6.37)
Next, by (3.2) and (6.28), for any x ∈ Ω and y ∈ Ω \B(0, β̃4 ), we have

G̃H2,ε(x, y) ≈ d∂Ω(x) d∂Ω(y)(|x||y|)−N−2
2 NN (x, y) � GH2(x, y).

This and (6.33) yield∫
Ω\B(0, β̃

4 )

G̃H2,ε(x, y)KH2 [ν](y)p dy �
∫

Ω\B(0, β̃
4 )

GH2(x, y)KH2 [ν](y)p dy ∀x ∈ Ω.

(6.38)
Combining (6.37) and (6.38), we deduce (6.34). The proof is complete. �

Remark 6.16. If p < N+1
N−1 , by using a similar argument to the one in remark 6.15,

we obtain that statement 2 of theorem 6.13 holds true. Consequently, under the
assumptions of theorem 2.8, equation (6.26) has a positive solution for σ > 0 small.
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Appendix A. Barriers

Appendix A.1. Local representation of Σ and ∂Ω

In this subsection, we present the local representation of Σ and ∂Ω.
If k = 0 we always assume that Σ = {0}. If k ∈ N such that 1 � k � N − 1, we

set x = (x1, . . . , xk, xk+1, . . . , xN ) ∈ RN and x = (x′, x′′) where x′ = (x1, .., xk) ∈
Rk and x′′ = (xk+1, . . . , xN ) ∈ RN−k. For β > 0, we denote by B(x, β) the ball in
RN with centre x ∈ RN and radius β, and by Bk(x′, β) the ball in Rk with centre
at x′ ∈ Rk and radius β. For any ξ ∈ Σ, we set

VΣ(ξ, β) := {x = (x′, x′′) : |x′ − ξ′| < β, |xi − Γξi (x
′)| < β, ∀i = k + 1, . . . , N},

for some functions Γξi : Rk → R, i = k + 1, . . . , N .
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Since Σ is a C2 compact submanifold in RN without boundary, there exists β0 > 0
such that the followings hold.

(i) For any x ∈ Σ6β0 , there is a unique ξ ∈ Σ satisfying |x− ξ| = dΣ(x).

(ii) dΣ ∈ C2(Σ4β0), |∇dΣ| = 1 in Σ4β0 and there exists η ∈ L∞(Σ4β0) such that

ΔdΣ(x) =
N − k − 1
dΣ(x)

+ η(x) in Σ4β0 .

(See [34, lemma 2.2] and [13, lemma 6.2].)

(iii) For any ξ ∈ Σ, there exist C2 functions Γξi,Σ ∈ C2(Rk; R), i = k + 1, . . . , N ,
such that for any β ∈ (0, 6β0) and VΣ(ξ, β) ⊂ Ω (upon relabelling and
reorienting the coordinate axes if necessary), there holds

VΣ(ξ, β) ∩ Σ={x = (x′, x′′) : |x′ − ξ′| < β, xi=Γξi,Σ(x′), ∀i = k + 1, . . . , N}.
(A.1)

(iv) There exist m1 ∈ N and points ξj ∈ Σ, j = 1, . . . ,m1, and β1 ∈ (0, β0) such
that

Σ2β1 ⊂ ∪m1
j=1VΣ(ξj , β0). (A.2)

Now for ξ ∈ Σ, set

δξΣ(x) :=

(
N∑

i=k+1

|xi − Γξi,Σ(x′)|2
) 1

2

, x = (x′, x′′) ∈ VΣ(ξ, 4β0).

Then we see that there exists a constant CΣ depending only on N,Σ such that

dΣ(x) � δξΣ(x) � CΣ‖Σ‖C2dΣ(x), ∀x ∈ VΣ(ξ, 2β0), (A.3)

where

‖Σ‖C2 := sup{||Γξj

i,Σ||C2(Bk
5β0

((ξj)′)) : i = k + 1, . . . , N, j = 1, . . . ,m1} <∞,

with ξj = ((ξj)′, (ξj)′′) ∈ Σ, j = 1, . . . ,m1, being the points in (A.2).
Moreover, β1 can be chosen small enough such that for any x ∈ Σβ1 ,

B(x, β1) ⊂ VΣ(ξ, β0),

where ξ ∈ Σ satisfies |x− ξ| = dΣ(x).
In the following, when Σ = ∂Ω or Σ ⊂ ∂Ω is a C2 submanifold, we will keep the

same notations β0 and β1 for which (i)–(iv) hold.
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When Σ = ∂Ω, we assume that

V∂Ω(ξ, β) ∩ Ω =

{
x = (x1, . . . , xN ) :

N−1∑
i=1

|xi − ξi|2 < β2, 0

< xN − ΓξN,∂Ω(x1, . . . , xN−1) < β

}
.

We also find that (A.1) with Σ = ∂Ω becomes

V∂Ω(ξ, β) ∩ ∂Ω

=

{
x = (x1, . . . , xN ) :

N−1∑
i=1

|xi − ξi|2 < β2, xN = ΓξN,∂Ω(x1, . . . , xN−1)

}
.

Thus, when Σ ⊂ ∂Ω is a C2 compact submanifold in RN without boundary, of
dimension 0 � k � N − 1, for any x ∈ Σ, we have that

ΓξN,Σ(x′) = ΓξN,∂Ω(x′,Γξk+1,Σ(x′), . . . ,ΓξN−1,Σ(x′)). (A.4)

Let ξ ∈ Σ. For any x ∈ VΣ(ξ, β0) ∩ Ω, we define

δξ(x) := xN − ΓξN,∂Ω(x1, . . . , xN−1),

and

δξ2,Σ(x) :=

(
N−1∑
i=k+1

|xi − Γξi,Σ(x′)|2
) 1

2

.

Then by (A.4), there exists a constant A > 1 which depends only on N , k, ‖Σ‖C2 ,
‖∂Ω‖C2 and β0 such that

A−1(δξ2,Σ(x) + δξ(x)) � δξΣ(x) � A(δξ2,Σ(x) + δξ(x)), ∀x ∈ VΣ(ξ, β0) ∩ Ω. (A.5)

Thus, by (A.3) and (A.5), for any γ ∈ R, we can show that there exists a constant
C > 1 which depends on N, k, ‖Σ‖C2 , ‖∂Ω‖C2 , β0, γ such that

C−1δ(x)2(δ2,Σ(x) + δ(x))γ � d∂Ω(x)2 dΣ(x)γ � Cδ(x)2(δ2,Σ(x) + δ(x))γ . (A.6)

We set

VΣ(ξ, β0) := {(x′, x′′) : |x′ − ξ′| < β0, |δ(x)| < β0, |δ2,Σ| < β0} .
We may assume that

VΣ(ξ, β0) ∩ Ω = {(x′, x′′) : |x′ − ξ′| < β0, 0 < δ(x) < β0, |δ2,Σ| < β0} ,
VΣ(ξ, β0) ∩ ∂Ω = {(x′, x′′) : |x′ − ξ′| < β0, δ(x) = 0, |δ2,Σ| < β0} ,
VΣ(ξ, β0) ∩ Σ = {(x′, x′′) : |x′ − ξ′| < β0, δ(x) = 0, |δ2,Σ| = 0} .

https://doi.org/10.1017/prm.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.122


52 K. T. Gkikas and P.T. Nguyen

We also assume that there exist m2 ∈ N and points ξj ∈ Σ, j = 1, . . . ,m2, and
β2 ∈ (0, β1) such that

Σ2β2 ∩ Ω ⊂ ∪m2
j=1VΣ(ξj , β0) ∩ Ω. (A.7)

We recall that the distance d̃Σ is defined in (2.3) as

d̃Σ(x) =
√

|dist∂Ω(ξx,Σ)|2 + |x− ξx|2,

where dist ∂Ω denotes the geodesic distance on ∂Ω.

Proposition A.1 [14, lemma 2.1]. There exists β3 = β3(Σ,Ω) small enough such
that, for any x ∈ Ω ∩ Σβ3 the following expansions hold

d̃2
Σ(x) = d2

Σ(x)(1 + f1(x)),

∇d∂Ω(x) · ∇d̃Σ(x) =
d∂Ω(x)
d̃Σ(x)

,

|∇d̃Σ(x)|2 = 1 + f2(x),

d̃Σ(x)Δd̃Σ(x) = N − k − 1 + f3(x),

where fi, i = 1, 2, 3, satisfy

3∑
i=1

|fi(x)| � C1(β3, N)d̃Σ(x), ∀x ∈ Ω ∩ Σβ3 . (A.8)

We may choose β3 small enough such that

1
2
dΣ(x) � d̃Σ(x) � 2dΣ(x) in Ω ∩ Σβ3 . (A.9)

Appendix A.2. Barriers

In this subsection, we assume that Ω is a C3 open bounded domain. Then there
exists β4 > 0 depending on C3 characteristic of Ω such that for any x ∈ Ωβ4 the
followings hold.

(i) There exists a unique σ(x) ∈ ∂Ω such that

d∂Ω(x) = |x− σ(x)|, σ(x) = x− d∂Ω(x)∇d∂Ω(x)

and ∇d∂Ω(x) =
x− σ(x)
|x− σ(x)| .

(ii) σ(x) ∈ C2(Ωβ4) and d∂Ω ∈ C3(Ωβ4).

(iii) For any i = 1, . . . , N there holds
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|∇σi(x) · ∇d∂Ω(x)| �
∥∥D2d∂Ω

∥∥
L∞(Ωβ4 )

d∂Ω(x).

For any (x, z) ∈ Ωβ4 × ∂Ω, set

dz(x) :=
√
d2
∂Ω(x) + |σ(x) − z|2.

Then
1
2
|x− z| � dz(x) �

√
5|x− z|.

Finally, for any 0 < R � β4, we set

B(z,R) := {x ∈ Ωβ4 : dz(x) < R}
Proposition A.2. Let β5 = 1

16 min{β3, β4}, R0 ∈ (0, β5] and 0 < R � R0. For any
z ∈ ΣR0 ∩ ∂Ω, there is a supersolution w := wR,z of (E+) in B(z,R) such that

w ∈ C(Ω ∩B(z,R)), lim
x∈Ω∩B(z,R), x→ξ

w(x)
W̃ (x)

= 0 for any ξ ∈ ∂Ω ∩ B(z,R),

w(x) → ∞ as dist (x, F ) → 0, for any compact subset F ⊂ Ω ∩ ∂B(z,R).

More precisely, for γ ∈ (α−, α+), w can be constructed as

w(x) =

⎧⎪⎨
⎪⎩

Λ(R2 − dz(x)2)−b eMd∂Ω(x)d∂Ω(x)d̃Σ(x)−γ if μ < H2,

Λ(R2 − dz(x)2)−b eMd∂Ω(x)d∂Ω(x)d̃Σ(x)−H

√
| ln d̃Σ(x)

16R0
| if μ = H2,

with M < 0 depending only on the C2 characteristic of ∂Ω, b > 2(p+1)−2(p−1) min{γ,0}
p−1

and Λ > 0 large enough depending only on γ,N, b, p,M,R0, the C2 characteristic
of Σ and the C3 characteristic of ∂Ω.

Proof. Without loss of generality, we assume z = 0 ∈ ΣR0 ∩ ∂Ω.

Case 1: μ < H2. Set

w(x) := Λ(R2 − d2
0(x))

−bd∂Ω(x) eMd∂Ω(x)d̃Σ(x)−γ for x ∈ Ω ∩ B(0, R),

where γ > 0, b and Λ > 0 will be determined later on.
Then, by straightforward computation and using proposition A.1, we obtain

−Lμw + wp = Λ(R2 − d0(x)2)−b−2d∂Ω(x) eMd∂Ω(x)d̃−γ−2
Σ (x)(I1 + I2 + I3 + I4),

where

I1 := −d̃2
Σ

(
4b(b+ 1)|∇d0|2d2

0 + 2b(R2 − d2
0)(|∇d0|2 + d0Δd0)

)
,

I2 := −(R2 − d2
0)

2
(
γ2 − γ(N − k) + μ+ γ(γ + 1)f2 − γf3 + μf1 − 2γMd∂Ω

)
,

I3 := −(R2 − d2
0)

2d̃2
Σd

−1
∂Ω

(
Δd∂Ω(1 +Md∂Ω) + 2M +M2d∂Ω

)
,

I4 := −4b(R2 − d2
0)
d0

d∂Ω
(d̃2

Σ∇d0∇d∂Ω(1 +Md∂Ω) − γd̃Σd∂Ω∇d0 · ∇d̃Σ),

I5 := Λp−1(R2 − d2
0)

−(p−1)b+2 eM(p−1) d∂Ωdp−1
∂Ω d̃

−(p−1)γ+2
Σ .
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By (i)–(iii), we have

|I1| � C1(R0, b,Ω, N)d̃2
Σ. (A.10)

Also,

|I4| � C2(R0,Ω, N,M, γ, b)(R2 − d2
0)d̃Σ. (A.11)

Next we choose γ ∈ (α−, α+), then γ2 − γ(N − k) + μ < 0. In addition, there exist
0 <�0< 1, δ0 > 0 and M < 0 such that if d̃Σ � δ0 then

Δd∂Ω(1 +Md∂Ω) + 2M +M2d∂Ω < − �0

and by (A.8),

γ2 − γ(N − k) + μ+ γ(γ + 1)f2 − γf3 + μf1 − 2γMd∂Ω < −ε0.
It follows that if d̃Σ � δ0 then

I2 � ε0(R2 − d2
0)

2. (A.12)

We set

A1 :=
{
x∈Ω ∩ B(0, R) : d̃Σ(x)�c1(R2 − d0(x)2)

}
where c1 =

ε0

4max{√C1, C2}
,

A2 :=
{
x ∈ Ω ∩ B(0, R) : dΣ(x) � δ0

}
, A3 := {x ∈ Ω ∩ B(0, R) : d̃Σ(x) � δ0}.

In A1 ∩ A2, by (A.10), (A.11) and (A.12), we have

I1 + I2 + I3 + I4 � ε0(R2 − d2
0)

2

2
. (A.13)

In Ac
1 ∩ A2, we have d̃Σ � c1(R2 − d2

0). If d∂Ω(x) � c2(R2 − d0(x)2)2, where

c2 = min
{
ε0

3C1
,
ε20c

2
1

9C2
2

}
,

then we can show that

I3 � c−1
2

ε0
2
d̃2
Σ + c

− 1
2

2 c1
ε0
2
d̃Σ(R2 − d2

0),

This, together with (A.10) and (A.11), implies (A.13). If d∂Ω(x) � c2(R2 − d0(x)2)2,
then by proposition A.1, d̃Σ(x) � c2c3(β3,Σ)(R2 − d0(x)2)2. Therefore,

I5 � c4(R0,M, p, γ, c1, c2, c3)Λp−1(R2 − d2
0)

−(p−1)b+2+2(p−1)−2(p−1) min{γ,0}+2 dΣ.

If we choose b > 2(p+1)−2(p−1) min{γ,0}
p−1 =: b0, then there exists Λ large enough

depending on c4, R0, b, p, γ such that

I5 � I1 + I4. (A.14)

This and (A.14) yield

I1 + I2 + I3 + I4 + I5 � 0. (A.15)

Similarly we may show that (A.15) is valid in A3 for some positive constant Λ
depending on M,R0, b, p, γ,Ω,Σ.
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Combining the above estimates, we deduce that for γ ∈ (α−, α+), b > b0 and
Λ > 0 large enough, there holds

−Lμw + wp � 0 in Ω ∩ B(0, R).

Case 2: μ = H2. First we note that d̃Σ
16R0

� 1
2 in Ω ∩ B(0, R). Set

w(x) := Λ(R2 − d0(x)2)−bd∂Ω(x) eMd∂Ω(x)d̃Σ(x)−H
(
− ln

d̃Σ(x)
16R0

) 1
2

for x ∈ Ω ∩ B(0, R),

where γ > 0, b and Λ > 0 will be determined later on. Then, by straightforward
calculations we have

−Lμw + wp = Λ(R2 − d2
0)

−b−2d̃−H−2
Σ

(
− ln

d̃Σ

16R0

)− 3
2

(Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4),

where

Ĩ1 := −d̃2
Σ

(
ln

d̃Σ

16R0

)2 (
4b(b+ 1)|∇d0|2d2

0 + 2b(R2 − d2
0)(|∇d0|2 + d0Δd0)

)
,

Ĩ2 := −(R2 − d2
0)

2

(
1
2

(
− ln

d̃Σ

16R0

)
(f3 − (N − k − 1)f2) − 1

4

+

(
ln

d̃Σ

16R0

)2 (
H(H + 1)f2 −Hf3 +H2f1 − 2HMd∂Ω

)

+M(−d∂Ω ln
d̃Σ

16R0
)

)
,

Ĩ3 := −(R2 − d2
0)

2

(
ln

d̃Σ

16R0

)2

d̃2
Σd

−1
∂Ω

(
Δd∂Ω(1 +Md∂Ω) + 2M +M2d∂Ω

)
,

Ĩ4 := −4b(R2 − d2
0)
d0

d∂Ω

(
− ln

d̃Σ

16R0

)((
− ln

d̃Σ

16R0

)
d̃2
Σ∇d0∇d∂Ω(1 +Md∂Ω)

−H

(
− ln

d̃Σ

16R0

)
d̃Σd∂Ω∇d0 · ∇d̃Σ − 1

2
d̃Σ∇d0 · ∇d̃Σ

)
,

Ĩ5 := Λp−1(R2 − d2
0)

−(p−1)b+2

(
ln

d̃Σ

16R0

) p−1
2 +2

eM(p−1) d∂Ωdp−1
∂Ω d̃

−(p−1)H+2
Σ .

By (i)–(iii) and the fact that − ln d̃Σ
16R0

� ln 2, we have

|Ĩ1| � C̃1(R0, b,Ω, N)d̃2
Σ

(
ln

d̃Σ

16R0

)2

. (A.16)
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Also,

|Ĩ4| � C̃2(R0,Ω, N,M, k, b)(R2 − d2
0)d̃Σ

∣∣∣∣∣ln d̃Σ

16R0

∣∣∣∣∣ . (A.17)

Next we choose δ0 > 0 and M < 0 such that if d̃Σ � δ0 then

Ĩ3 > ε0(R2 − d2
0)

2

(
ln

d̃Σ

16R0

)2

d̃2
Σd

−1
∂Ω

and

Ĩ2 > ε0(R2 − d2
0)

2. (A.18)

We set

Ã1 :=

⎧⎨
⎩x ∈ Ω ∩ B(0, R) : dΣ(x) � c̃1

(R2 − d0(x)2)

| ln d̃Σ(x)
16R0

|

⎫⎬
⎭

where c̃1 =
ε0

4max{
√
C̃2, C̃3}

,

Ã2 :=
{
x ∈ Ω ∩ B(0, R) : dΣ(x) � δ0

}
, Ã3 := {x ∈ Ω ∩ B(0, R) : dΣ(x) � δ0}.

In Ã1 ∩ Ã2, by (A.16), (A.17) and (A.18), we have

Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 � ε0(R2 − d2
0)

2

2
. (A.19)

In Ãc
1 ∩ Ã2, we have d̃Σ � c̃1

(R2−d20)
| ln d̃Σ

16R0
|
. If d∂Ω(x) � c̃2(R2 − d0(x)2)2, where

c̃2 = min
{
ε0

3C̃1

,
ε20c̃

2
1

9C̃2
2

}
.

Then, we can easily show that (A.19) is valid. The rest of the proof is the same as
in case 1 with obvious modifications so we omit it. The proof is complete. �
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