SELF-ADJOINT SQUARE ROOTS OF POSITIVE
SELF-ADJOINT BOUNDED LINEAR OPERATORS
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A corollary of the main theorem presented in this note is a generalisation of
the well-known result that a self-adjoint square root of a positive self-adjoint
compact linear map in a Hilbert space is itself a compact linear map. The
method used here exploits the techniques developed recently in the study of
k-set contractions ((1), (2)).
Before stating our results, it is convenient to recall the relevant definitions.
In all that follows H will denote a Hilbert space.

Definition. The ball measure of non-compactness of a bounded set Qc H,
denoted by B(Q), is defined by
B(Q) = inf {5: Q can be covered by a finite number of balls in H with radius 5}.

Definition. A continuous map T: H— H is a k-ball contraction provided that
B(T(Q)) £ kB(Q) for all bounded sets Q< H.

Note that a bounded set Q< H is relatively compact if and only if 5(Q) = 0.
Hence a map T: H— H is completely continuous if and only if it is a 0-ball
contraction. Many results originally obtained for completely continuous maps
have now been extended to k-ball contractions, provided k< 1.

Turning now to linear maps, we see that, if 7: H— H is bounded and linear,
then T is a || T |-ball contraction. However, as is easily seen by considering
compact linear maps, || T || need not equal

y(T) = inf {k: T is a k-ball contraction}.

In fact, y(T) = 0if and only if T is compact. It is easily checked that y defines
a seminorm on the linear space of all bounded linear maps from H into itself.
Justas | TS| | T || S| for bounded linear maps on H, the above semi-
norm has the property that y(7S) £ y(T)y(S). Concerning the involution *,
denoting the adjoint, we recall that || T| = || 7*| = | T*T ||*. Our main
result shows that the seminorm y has a similar property.

Theorem. Let H be a Hilbert space and A: H— H a bounded linear map.
Then

7A) = (4% = {y(4* D)},
where A*: H— H denotes the adjoint of A.
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Proof. As is shown in (2), y(4) = y(4*). Furthermore, from what has been
said above,
P(4*4) £ W(A*)p(4) = {y( D}

Hence it is sufficient to prove that

{ra* A} z 1(4).
With this in mind, let y(4*4) = k. We shall now complete the proof by
showing that 4 is a k*-ball contraction.

We give the proof for a real Hilbert space; but, mutatis mutandis, it will
establish the result for complex Hilbert spaces.

It is enough to show that, if D = S(z, d) (the closed ball in H with centre z
and radius d), then given any ¢>0, A(D) can be covered by finitely many balls
of radius less than or equal to k*d+\/ﬂ

Now A*A4(S(0, 1)) can be covered by finitely many balls of radius k+¢/d.
Suppose that

N
A* 4SO, )= | S(x;, k-+é/d).
ji=1
Since D is bounded, {(x;, y): y € D} is a relatively compact subset of the real
line, for each je {1, ..., V}. Hence {(x;, ): y € D} can be covered by a finite
number, M; (say), of closed intervals S/ each of length less than or equal to &,
forie{l,..,M;}andje {1, ..., N}. Letp =(p,, ..., py) Wherep;e{l, ..., M;}
and set
E,={yeD:(x;, y)eS} foreachje{l, ..., N}}.

Clearly A(D) = UA(E,,). Since this is a finite union the proof will be complete
if we show that A(E,) is contained in a ball of radius k¥d+ \/Zé:_d

With this in mind, we note that each E, is closed and convex. Suppose
now that E, is non-empty. Then let z, denote the unique nearest point of
E, to z. It follows that

lz,—yl Sllz—yll £d forallyeE, 0))
We shall now show that A(E,)<=S(4z,, k*d+./2ed). Letye E,. Then
| Ay—Az, I} = (Ay~2z,), A—2,)
= (4*4(y—z,), y—2,)
S A* A=z )M ly—2z, |

S 4*4A(y—-z )l d by (1).
Now,
| A*A(y—z,)| = sup [(x, A¥A(y—z,)|
xe S(0,1)

= sup [(4*4x, y—z,).

xe S(0,1)
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But, for xe S(0, 1), there exists j € {1, ..., N} such that || A*Ax—x; || £ k+ ¢/d,
and so
[(A*Ax, y—z )| £ (A*Ax—x;, y—2z ) +](xj, y—2z,)|

< (k+efd)d+](x;, y—z,)I by (1)
< kd+e+e.

(Observe that, since y and z, € E,, we have (x;, y) and (x}, z,) both belong to
the interval S;; , Which has length less than or equal to £.)

Therefore || A*A(y—z,)|| £ kd+2¢, and so
| Ay—Az, || < (kd+2e)d = kd*+2ed

< (k¥d+J2ed).
Hence || Ay—Az, || < k*d+./2ed, and the proof is complete.

Corollary. Let H be a Hilbert space and A: H— H be a positive self-adjoint
bounded linear map. Then, for any self-adjoint square root, A*, of A, we have

(d?) = {y(A}*.

Remark. Clearly this corollary has the classical result for compact linear
maps as a special case.

Finally, I should like to thank the referee for some valuable comments,
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