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INTEGRAL COMPARISON THEOREMS FOR SCALAR 
RICCATI EQUATIONS AND APPLICATIONS 

BY 

LYNN ERBE* 

ABSTRACT. Comparison theorems are developed for the pair of 
first order Riccati equations (1) r' + p~1r2 + q = 0 and (2) 
z' + pï1z2 + ql = 0. The comparisons are of an integral type and 
involve an auxiliary function JUL. Applications are given to disconjug-
acy theory for self-adjoint equations of the second and fourth order. 

1. Introduction. Consider the pair of second order equations 

( l . i ) (py')' + qy = o 
and 

(1.2) (Piy')+<hy = o 

where p, q, pl9 qx are continuous on an interval I of the real line with p, Pi > 0 
on I. The Riccati equations corresponding to (1.1) and (1.2) are 

(1.3) r' + p~1r2 + q = 0, r = ^ 

and 

(1.4) z' + p r V + q ^ O , z = ^ . 

We shall be interested in comparison theorems of integral type-results which 
will guarantee the existence of a continuous solution of (1.4) on I when it is 
known that (1.3) has a continuous solution on I. The existence of a solution of 
(1.3) on I is, of course, equivalent to the disconjugacy of (1.1) on I ([4]); (that 
is, no solution of (1.1) has more than one zero on I). Many criteria have been 
developed relating the oscillation and disconjugacy of (1.1) and (1.2)—we refer 
to [4], [9], [11], [14] and the references therein—and often the methods 
involve use of (1.3) and (1.4). A very well-known criterion—aside from the 
Sturm comparison theorem—is the Hille-Wintner comparison Theorem ([5], 
[13]). We refer to [1] for a recent extension of the Hille-Wintner theorem. 
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Additional criteria of integral type may also be found in [7], [10] and [12], and 
it is this latter type which will be of primary interest here. In addition to the 
fact that the results obtained below are new except for certain special cases, 
another motivation for the criteria which we develop is that they afford a 
connection to the comparison theory for the fourth order self-adjoint equations 

(1.5) (pv")"-<D>=0 

and 

(1.6) (P iVT-q iy = 0. 

In Section 2 we state the results for both the finite and infinite interval case and 
compare with some known results. Examples are also given illustrating the 
applicability of the results obtained. Section 3 is devoted to the fourth order 
case. The proofs of the results of Section 2 are given in Section 4. 

2. In the first two theorems we assume that I = [a, b] or [a, b) with a < b < +o° 
and that there exists ^eC\I), JLL>0 on I, such that piieC1^) and the 
following condition holds: 

(Hi) /uL2qx d r< I n2qdt a<t<b 

THEOREM 2.1. Assume condition (Hx) holds, where JUL, PJU/G C 1 ^) , JUL > 0 , and 
I = [a, b), a < b ^ + o o ? let 0 < p < p x on I and assume there exists a solution r of 
(1.3) on I such that 

(2.1) jx(t)r(f)^p(0fi/(0, t > a , 

and 

(2.2) ix(a)bjL'(a)p(a)-iJL(a)r(a))+\ ii^'p)'dt+\ n,2q1dt>0, t>a. 
•%* •'a 

Then (1.4) has a solution z on I. 

The next theorem replaces the integral condition (2.2) by a pointwise 
condition. If p = px^l, it reduces to a result of [10]. 

THEOREM 2.2. Let I be as in Theorem 2.1, assume condition (Hx) holds where 
jut > 0 , fi G C 1 ^) , let 0 < p <Pi on I and assume there exists a solution r of (1.3) 
on I such that (2.1) holds and 

(2.3) 2Mt)(f*'(t)p(t))' + 2p-\t)[n'(t)p(t) - yi(t)r(t)T + f*2(f)(<h(t) + q(t)) > 0, 

tel 

Then (1.4) has a solution z on I. 

In Theorems 2.1 and 2.2 we assume that I = [a, b] or [a, b) where a < b < 
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+00. In the next two results, we assume that I = (a, b] or [a, b] where - o o < a < 
b<+oo? and we suppose that JLL e C1^), JLL > 0 such that the following condition 
holds: 

(H2) /Lx2q1 d t < I ii2qdt, a<t<b 

THEOREM 2.3. Assume condition (H2) holds, let fi, pix'eC1^), JLI>0 where 
I = (a, b] or [a, b], —oo < a < b < +oo let 0 < p < px on I, and assume there exists a 
solution r of (1.3) on I such that 

(2.4) fi (t)r(t) > p(f V ( 0 , a < f < b 

and 

(2.5) JUL(6)(JLL(6)K6) - jx'(b)p(fc)) + J M V P ) ' dt + J |Li2<h dt > 0, a > t < b. 

Then (1.4) has a solution on I. 

Analogous to Theorem 2.2 we have 

THEOREM 2.4. Let I be as in Theorem 2.3, assume condition (H2) holds, 
where /LL > 0 , JJL, pyu' e C 1 ^) , let 0 < p < p x on I and assume there exists a solution 
r of (1.3) on I such that (2.4) and (2.3) ho/d. Then (1.4) has a solution on I. 

The next result is the analogue of Theorem 2.3 for the case I = (a, +oo) or 
[a,+oo)? -oo<a<+oo. if {1 = 1, q, <h^0 , it reduces to the Hille-Wintner 
Theorem (cf. [5], [13]) 

THEOREM 2.5. Let JLA, p/u/eC^CD, f i > 0 , where I=(a, +<»), or [a, +oo), -oo< 
a < +oo? fer 0 < p < p x on I and assume there exists a solution r of (1.3) on I such 
that 

(2.6) ii(t)r(t)>p(t)ix'(t), tel 

and 

(2.7) L + I JX(JUL'P)'df+ ( jLt2q!>0, tel, 

where it is assumed that the integrals in (2.7) converge and L ^ l i m ^ ^ jx(f)x 
(jUL(f)r(t) - JX'(OP(0) is assumed to exist. Finally, let the following condition hold: 

J 'oo f oo 

li2qxdt< [Sqdt, tel. 
t ^t 

Then (1.4) has a solution on I. 

Recall that the Euler equation 

(2.9) (f°y) + /3fa-2y = 0, 0 < a < t < + o o 
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is disconjugate in [a,+00) if and only if ( l - a ) 2 < 4 | 3 . In the critical case 
40 = ( 1 - a ) 2 , the solutions of (2.9) are y ^C^ + C?? ln|f|, where A = 
(1 —a)/2. In this case, with r = py'ly = ta~1 and with the choice ii(t) = ty, 
condition (2.1) (jtir<p/u/) holds provided y> A, and condition (2.2) becomes, 
after some simplification, 

(2.10) ^ + 7 ( T ? " 7 ) ( r - a T 1 ) + [s^q^ds^O, t>a 

where TJ = 2y + a - l > 0 . If y = ( l - a ) / 2 , then (2.2) becomes 

(2.10)' f s 2 r <h(s)ds>Y 2 ln 1-1, r > a . 
Ja la I 

On the other hand, condition (2.3) is equivalent to 

(2.11) T ? 2 + t 2 - « < ï i ( 0 a . ( l z « ) ! > ( > a 

where Tj=2Y + a - l > 0 . In view of the above, we may state the following 
Corollary of Theorem 2.1 and 2.2. 

COROLLARY 2.6. Equation (1.2) is disconjugate on [a,+00), a > 0 , provided 
p^O^f", t>a and there exists y>(l~a)/2 such that either (2.10) or (2.11) 
holds and such that 

(2.12) f ' s2y
qi(s) ds < ( \ a ) V - a11), t > a, 

\2 

4TJ 

where Tj=2Y + a - l > 0 . 

For various choices of a, 7 it is not difficult to see that (2.2) and (2.3) are 
indeed independent. For example, if 0 < | ( l - a ) < ' Y < l - a < 2 ' r i , then (2.11) 
becomes 

(2.13) ( ^ ( ^ - ( T ) 2 - ^ ^ ) , t>a 

which implies 

(2.14) J ' s2-qi(s) ds^-f^ -i±^)(tr] - a"), t > a 

so that the integral on the left side of (2.14) can assume arbitrarily large 
negative values. However, since r\ — y = y-fra — K O , condition (2.10) would 
require $l

a s
2yqx(s) ds > kf* for all large t and some fc>0. Nevertheless, it is 

also clear that one can have lim^œ inf i1~OLq1{t) = -<x> and still satisfy the 
integral condition (2.10). 
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Similarly, from Theorem 2.5 one obtains 

COROLLARY 2.7. Equation (1.2) is disconjugate on [a, +o°), a > 0 , provided 
p1(r)>t a , t>a and there exists y<(l-a)/2 such that 

(2.15) y(y+ 8)<8t8[ s2y
qi(s)ds< X~f) , t ^ a 

where 6 = 1 — a— 2 y > 0 . 

EXAMPLE 2.8. We illustrate here a further class of equations whose disconju­
gate behavior may be inferred from Corollary 2.6. Let p(t) = Pi(t) = ta, (\(t) = 
( ( l - a ) 2 / 4 ) r ~ 2 and q1(t) = q( f ) ( l - s in( f -a ) ) , t > a > 0 . Here, if a < 0 , then 
with the choice 7 = 1 — a/2, we have 

( l - « ) 2 , . , ,. ^ , ^ ( l - « ) 2 

(2.16) s2yq1(s)ds =—-—(r-a + c o s ( f - a ) - l ) < — - — ( t - a ) , f > a 

so that (2.12) holds (T] = 1). Furthermore, (2.11) holds if 4 > ( l - a ) 2 , i.e. 
a > — 1 . Therefore, Corollary 2.6 implies that (1.2) is disconjugate on [a, +°°)? 

a > 0 , for — l < a < 0 , Pi(t), qx(t) as above. This may be extended to all a > 0 
(on perhaps a smaller subinterval [a^^), ar>a) if one notices that (2.10) is 
equivalent (again with rj = 1, y = 1 - a / 2 ) 

^ 1 / ^ 9w x ( 1 _ a ) 2 

- + K 2 a - a 2 ) ( r - a ) + ^ - ; (2.17) - + K 2 a - a 2 ) ( f - a ) + V , ; ( ( t - a ) + c o s ( f - a ) - l ) ^ 0 , t > a 

which, in turn is equivalent to 

(2.18) 2a + ( f - a ) + ( l - a ) 2 ( c o s ( f - a ) - l ) > 0 , t>a. 

Therefore, given any a > 0 , (2.21) holds for large enough a > 0 so that 
Corollary 2.6 again implies that (1.2) is disconjugate on [a, +<»). 

EXAMPLE 2.9. To illustrate Corollary 2.7 for a specific class, let p(f) = ta, 
q(t) = ( ( l - a ) 2 / 4 ) r ~ 2 and let q1(r) = fc1r~

2 + fe2t
3sin t, t>a>0. In this case, 

with 8 = l — a — 2 y > 0 , and with |3 < a - 1 we have 

8f\ s2y
qi (s) ds = ki + M^os r)r2Y+p+ô+0(t2^+p+8-1), *-><». 

Therefore, if 0 < a - l , then 2y + |3 + ô = j3 + l - a < 0 and so (2.15) holds 
(eventually) for arbitrary k2 and any kx with 7(7 + £ ) < k 1 < ( l - a ) 2 / 4 . If 
|3 = a - l , then (2.15) holds eventually in case 7(7 + Ô ) < k 1 ± f c 2 Ô < ( l - a ) 2 / 4 . 
Thus, to summarize, with px(t) > fa and qx(t) = k1t

<x~2 + k2t
(i sin t, equation (1.2) 
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is eventually disconjugate in case: 
(i) 7 < ( l - a ) / 2 , / 3 < a - l , - [ 7 2 + 7 ( a - l ) ] < f c 1 < ( l - a ) 2 / 4 and k2 arbit­

rary; or in case: 
(ii) 7 < ( l - a ) / 2 , (3 = a-l, and ku k2 satisfy 

- [ 7 2 + 7 ( a - l ) ] < f c i ± f c 2 ( l - « - 2 7 ) < ^ ^ . 

3. In this section we wish to apply the previous results to the fourth order 
equations 

(1.5) (py")"-qy=0 

and 

(1.6) (P!y")"-qiy = o 

where p, q, p l5 qx e C[a, °°). Furthermore, we shall assume throughout that 

(3.1) 0 < p ( ( ) s p 1 ( 0 , q(t)>0, <h(f)>0, fe[a,+oo), 

and 

(3.2) f00pr1(s)ds = -H». 

It is known (cf. [8]) that (1.5) is disconjugate on an interval I (i.e. no nontrivial 
solution of (1.5) has more than three zeros on I) iff (1.5) is (2, 2) disconjugate 
on I (i.e. no nontrivial solution of (1.5) has a pair of consecutive double zeros). 
This is, of course, a consequence of the positivity assumptions on the coeffi­
cients. Moreover, Elias [2, Lemmas 3 and 6] has shown that if J0Op_1(s) ds = 
+oo5 p ( t )>0 , q(t)>0, then (1.5) is (2, 2) disconjugate on [a, +°°) iff there exists 
a solution y such that 

(3.3) y > 0 , y ' X ) , y">0, (py")'<0, (py")">0, t>a. 

It is this characterization of disconjugacy along with the following Lemma 
which we shall need to establish our comparison results for (1.5) and (1.6). For 
completeness, we include the proof. (See also [3]). 

LEMMA 3.1. Assume p(t)>0, q(t)>0 and J°°p_1(s) ds = +oo. Then equation 
(1.5) is disconjugate on [a, +o°) iff there exists a positive function aeC^a, +o°) 
such that both of the equations 

,<,*) f(pu')' + orM = 0 
V ' J \(ov')' + qv = 0 

are disconjugate on [a, +<»). 

Proof. Theorem 6.3 of [8] is the sufficiency part. That is, if there exists 
aeC\a, +<»), <r>0 such that (3.4) is disconjugate, then (1.5) is disconjugate. 
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On the other hand, if (1.5) is disconjugate, then there exists a solution y 
satisfying (3.3) so that letting 

(3.5) o - - ^ > 0 , t^a 
y 

we see that u = y' and v = y are positive solutions of (3.4) and hence both 
equations are disconjugate on [a, +o°). 

We may now prove the following comparison theorems for (1.5) and (1.6) 

THEOREM 3.2. Let (3.1), (3.2) hold, assume equation (1.5) is disconjugate on 
[a, +o°) with y a solution of (1.5) satisfying (3.3) and let a be defined by (3.5). 
Assume further that there exists i± e C\a, +oo) such that fi>0, JU/<T e C\a, +<*>) 
and 

(3.6) f x y ' ^ ' y , t7>a 

and 

(3.7) ^ ( ^ ° " ( f l ) (n'(a)y(a) - ^(a)y'(a)) + f ' n(/*'a) ' ds + f ' ^ ds > 0, 

t>a. 

Finally, assume 

(3.8) jLL2q!ds< ii2qds, t>a. 

Then equation (1.6) is disconjugate on [a, +0°). 

Proof. The proof follows immediately from Theorem 2.1, the previous 
Lemma, and the Sturm comparison Theorem. That is, since px > p > 0 and with 
or given by (3.5), it follows from the Sturm comparison theorem [11] that 

(3.9) (p! 1*')' +cm = 0 

is also disconjugate on [a, +00). We now apply Theorem 2.1 to the pair of 
equations 

(3.10) (av')' + qv = 0 

and 

(3.11) (ov')' + <ïii> = 0. 

With r = ov'/v = cry'/y, which is a solution of the Riccati equation correspond­
ing to (3.10), it follows that condition (2.1) (with p = cr) is equivalent to 
condition (3.6). Similarly, condition (2.2) is equivalent to (3.7) and condition 
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(Hi) is (3.8). Therefore, equation (3.11) is disconjugate on [a, +°°) so that by 
Lemma 3.1, it follows that equation (1.6) is disconjugate on [a, +°°). 

THEOREM 3.3. Let all hypotheses of the previous theorem hold with condition 
(3.7) replaced by 

(3.12) 2/Lt(jLt,o-y+2cr~1(|x,o--jutr)2 + (q1 + q)|Lt2>0, f>a . 

Then equation (1.6) is disconjugate on [a, +oo). 

Proof. We use Theorem 2.2 instead of 2.1, noting that condition (2.3) is 
equivalent to (3.12). The proof is the same as Theorem 3.2. 

Similarly, applying Theorem 2.5 we obtain 

THEOREM 3.4. Let (3.1), (3.2) hold, assume equation (1.5) is disconjugate on 
[a, +oo) with y a solution of (1.5) satisfying (3.3), and let a be defined by (3.5). 
Assume further that fx, ju/cr e C\a, +o°), jut > 0 such that 

(3.13) i^y '^ 'y , t>a 

and 
/•oo Poo 

(3.14) L + ti(n'o-)' ds+\ ^2q1ds>Q, f > a 

where 

L - W ^ % ( 0 y ' ( 0 - n'(t)y (0) ̂  0 
t->°° y w 

is assumed to exist, along with the integrals appearing in (3.14). Finally, assume 

P oo Too 

(3.15) I jUL^ds^J y^qds. 

Then equation (1.6) is disconjugate on [a, +a>). 

Proof. The proof proceeds as in Theorem 3.2. One need only verify that 
with r = ory'/y, conditions (2.6) and (2.7) are equivalent to (3.13) and (3.14), 
respectively, and (2.8) is (3.15). 

In the same manner as in Section 2, one can illustrate the theorems of this 
section by choosing the critical case of the fourth order Euler equation 

(3.16) ( ^ y T - ^ r ^ O , t > a > 0 . 
16 

The solution y(t) = ta~<x)n satisfies condition (3.3) since ^r™'2 dt = +™ re­
quires a < - 1 (i.e., condition (3.2)). A calculation yields 

q + <*)\a cry' ( l - ^ X l + a ) ^ 
or = 1 , r = = r 1 . 
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We may now state the following Corollaries. The proofs follow directly from 
Theorems 3.2, 3.3, 3.4, respectively, with ii(t) = ty in each case. 

COROLLARY 3.5. If p 1(r)>r a + 2 , q1(t)>0, t > a > 0 , and there exists y> 
(1 —a)/2 such that 

(3.17) ^ a n 7 ( 1 + f ( r Y ) ( P - a ^ [ > * « & * ( > , t * a 
8 4T) Ja 

and 

(3.18) f' s2-qi(s) ds < ( 1 " ^ 2 ) V - a^), t s* a, 
Ja 16 

where r)=2y + a —1>0 and a < —1, then equation (1.6) is disconjugate on 
[a, +oo). 

Replacing the integral condition (3.17) by the pointwise condition (3.12) of 
Theorem 3.3 one obtains 

COROLLARY 3.6. Let all hypotheses of Corollary 3.5 hold with (3.17) replaced 
by 

/ o , m 7(1 + «)2/ N Î ] 2 ( 1 + « ) 2 ( l-<*2)2 , , , „ 
(3.19) 2 ( T ] - 7 ) + g +V ^ +r2- t tq1(t)>0> t>a. 

Then equation (1.6) is disconjugate on [a, +°°). 

Finally, we state the following Corollary which follows from Theorem 3.4. 

COROLLARY 3.7. If Pi(t)^fa + 2 , q1(t)>0, t>a>0 and there exists y< 
(1 —a)/2 such that 

2 foo n 2\2 

(3.20) ( 1 ^ a ) % ( 7 + 8) < Sts ( V ^ s ) ds < 
16 ' 

where 8 = 1 — a — 2 y > 0 , then equation (1.6) is disconjugate on [a, +oo). (Here 
one need on/y note that L = 0 in (3.14) since 7 > ( 1 —a)/2 and that (3.14), 
(3.15) are equivalent to (3.20)). 

REMARK 3.10. It is well known (cf. [8]) that if 0 < p < p 1 ? 0<q1^q, t>a, 
then disconjugacy of (1.5) implies disconjugacy of (1.6). Other pointwise 
comparison results have been given in [6] and [8] and the reader may find a 
discussion of these in [11]. Hille-Wintner type comparison theorems for (1.5) 
and (1.6) were also obtained by the author in [3]. 

4. The proofs of the results of section 2 will now be given. 

Proof of Theorem 2.1. In the Riccati equation (1.3) make the change of 
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variables W = i± 'p-ixr so that 

jLi W = jx(|Lt'py - jLL(|ULry = jUl(jx'p)' ~ JUL V - jLLjUL V 

= jLL(/x'py-|Xfjt'r + |ui2(q + p-1r2) 

= ^( f t 'p) ' + / x 2 q + p - 1 W 2 - ^ W , 

after some simplification. Therefore, integrating by parts and rearranging we 
obtain 

(4.1) n(t)W(kt) = n(a)W(a)+ f ' f i (»t 'p) '*+ f ' p ' 1 W 2 d ( + [ V q d t 
•'a •'a •'a 

Now define the sequence of successive approximations {Vn}^=0 by 

V>(t)V0(t) = ii(a)W(a)+\ |UL(jUL'pydf+ ii^dt, t>a 

( 4 ' 2 ) n(r)VB+1(r) = pi(a)W(a)+ [ W p ) ' * + f 'p~1V^dt+ \\2
qidt, 

'a •'a •'a 

n = 0 ,1 ,2 , . . . , f > a . 

Condition (2.2) implies that V o ( 0 ^ 0 , t>a and since fi(f)(Vn+2(f)-Vn+1(f)) = 
JLP_ 1(V^+ 1- Vl)dt>0 we see by induction that Vn+2(f)> Vn+1(f)>0 for all 
rc>0. Furthermore, by induction we can also show that Vn(f)<W(f) for all 
n > 0 and t => a. Thus, ju,(f)( W(t) - V0(f)) = £ p _ 1 W2 df + £ (q - q^2 dt>0 and 
the assumption that W(f)>Vn(f) implies that fi(t)(W(f)-Vn+1(t)) = 
^ p " 1 ( W 2 - V ^ ) d t + J U q - q i ) M ' 2 ^ ^ 0 . Therefore by the Monotone con­
vergence theorem and Dini's theorem, {Vn}n=o converges, uniformly on com­
pact subintervals, to a solution V = V(t) of the equation 

(4.3) jx(t)V(t) = jx(a)W(a)+ f jx(|x'p)' dt + f p~1V2dt+ f JUL2^ dt, t > a . 
•'a •'a •'a 

Defining z(t) = (yifp- V)/JLL, £>a, it follows that z is a solution of z' + p~1z2 + 
qt = 0 on I. But since p ! > p > 0 , it follows (by the Sturm comparison theorem) 
that (1.4) also has a solution on I. 

Proof of Theorem 2.2. Let the hypotheses of Theorem 2.2 hold with, 
however, the additional assumption that the inequality in (2.3) is strict and that 

(4.4) |x(a)r(a)<p(a)|x'(a). 

We assume also that px = p since the result for p x ^ p follows by the Sturm 
theorem. An approximation and convergence argument will give Theorem 2.2 
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in its full generality. In (1.3) and (1.4) make the change of variables U(t) = 
fx(t)r(t) and V(f) = fx(f)z(f), respectively, to get 

(4.5) jLil/' = j L i ' ( 7 - p - 1 t / 2 - q | u i 2 

and 

(4.6) f x V ' ^ ' V - p ^ V 2 - ^ 2 . 

Let U(a)<V(a)<yi'(a)p(a) and let V solve (4.6) on a maximal right interval 
of existence [a, f0). We claim that t0 = b and that on [a, b) we have 

(4.7) [7(f) < V(r) < 2fi'(f)p(f) - U(t). 

Suppose first that V(f)>2|u/(f)p(f)- [7(f) for some f G [a, f0). Then there exists 
tx>a such that Vfo) = 2jx'(ti)p(ti)- [7(fx) and Vfo)^2(f i /p) ' ( t x ) - IP(ti). Also 
from equation (4.6) we have 

(n(t1)V(t1) = lL'(t1)V(t1)-p-\t1)VKt1)-q1(t1W(t1) 

(4.8) J ^ p - ^ ^ v c ^ - P i ^ ^ E M ^ ^ ^ ^ ^ ^ 

= -p-HOd^'COpCf i) - u(h))
2+p(tl)(^'(fl))2 - q i ( t l V

2(tl) 

Therefore, from equation (4.5) and (4.8) we get 

lji(h)(v'(tl) + u'(h)) = -p-'ihMn'ihMh)- t / (f1))2+(i/(f1)-^ '( t1)p((1))2] 

, P(t1)(fi,'(tl))2
 2 , w , . , . y. 

+ 2 ^ (f i ) (qi( t i )+q(t i ) ) 

= -p-1(t1)[2LT2((1)-4,Li'((i)p((1)U(t1)+§(l^'((1)p(ti))2] 

, P(t1)( )x'(t1)2 2, , w , , X, - ^ 
+ r v Ci)(qiUi)+q(ti)) 

= -p-1(t1)[2I^(t1)-4^'(f1)p((1)[/(t1)] 

- 2(nt'(t1))
2p(t1) - ft2(t1)(q1(r1) + q( ( l)). 

From (2.3) (with the strict inequality) we have 

2M,(r1)( tt'p)'((1)>-^2(f1)(q1(t1) + q(f1))-2p-1(t1)[t/(t1)-/x'(t1)p(f1)32 

(4.10) = -^2((1)(q1(r1) + q(t1))-2p-1(t1) 

x [U*( t l) - 2|*'(*i)p(fi) U(f i)] - 2(M,'(fi))2p(f i). 

Therefore, from (4.9) and (4.10) we conclude that 

(4.11) V'((1)+l/'(t1)<2(/x'p)'(f1), 

which is contradictory to our assumption that V'(fi)^2(|u/p)'(fi)-[7'(fx). It 
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follows that V(t)<2/i/(f)p(f)- [7(0 on [a, t0). We show next that V{t)> [7(0 
on [a, t0). Now on [a, f0)> an integration of (4.5), (4.6) gives 

(4.12) n(t)(V(t)- I7(t)) = **(a)( V ( a ) - 17(a)) + f ' ^{q -<h) dt 

+ f'p-1[(2V/x'p-V2)-(2C//x'p-C72)]d(. 

If there exists f2e(a, t0) such that L/(t2)=V(t2) and U(t)<V(t)< 
2n'(t)p(t)-U{t) on [a, t2), then 

r 0 < (V(t) - U(t))[2^'(t)p(t) - (1/(0 + V(0)] 

(4.13) < =2v'(t)p(t)(V(t)-U(t))+U2(t)-V*(t) 

I = (2n'(0p(0 V(t) - V2^)) - (2^'(0p(01/(0 - t^(0). 

Hence, in (4.12) with t = t2, the left side is zero and from condition (Hx) and 
(4.13) the right side is positive. This condition shows that V(0 — U(t) on [a, f0)-
Therefore, since (4.7) holds on [a, t0), it follows that t0 = b (since the only way 
that a solution of (4.6) can fail to be continuable is if limt^to \V(t)\ = +<*>). This 
proves the theorem with the added assumption (4.4) and with strict inequality 
in condition 2.3. 

Next we suppose that (2.1), (2.3) hold as given. Let V(t) be a solution of 
(4.6) on a right maximal interval of existence [a, t0) with 

(4.14) [7(a) = jx(a)r(a) < V(a) < n'{a)p(a). 

We claim that V(t) satisfies 

(4.15) [7(0 < V(t) < 2fi'(t)p(t) - [7(t) 

on [a, b). If not, let ce[a, b) such that (4.15) holds on [a, c) and let c be the 
largest such number. For each n = 1 ,2 , . . . let Un(t) be the solution of (4.5) 
satisfying Un(a)= U(a)-l/n and let Vn(0 be the solution of (4.6) satisfying 
Vn(a)= [7 (a ) - l /2n . If 8>0 is such that c + ô<f0, then we may choose a 
subsequence of {[/n}, {Vn}, which we again relabel {[/„}, {Vn}, such that l i m ^ ^ 
[7n(0 = U(f) and lim»..^ Vn(0 = V(t), uniformly on [a, c + 8]. Now since rn(t) = 
Un(t)lii(t) is a solution of (1.3) and since 

, , Un(a)U(a) 
rn(a) = —-—<-——=r (a), 

n(a) ii(t) 

it follows that the difference a(t) = r(t)-rn(t) satisfies o-' + p~1(r + rn)(T = 0 and 
hence a(t) = cr(a)exp(Ja p~x(r + rn) dt) > 0 on [a,c + 8], Thus, since 0 < 
jx ' (0p(0- [ 7 ( 0 < V ( 0 p ( 0 ~ I7n(t) on [a,c + 8], it follows using (2.3) that 

0 < ,i2(0(<h(0 + q(t)) + 2|i(0(fi'(Op(O)' + 2p-1(0[^'(0p(0 ~ U(t)f 

< V2(t)(qi(t) + q(t)) + 2ft(0(|i'(0p(0)' + 2p"1(0[^Wp(0" Un(t)f. 
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Therefore, by the first part of the Theorem it follows that for each n > l w e 
have Un(t)<Vn(t)<2n'(t)p(t)-Un(t) on [a,c + 8l so that [7(f) < 
V(t)2fi'(t)p(t)=U(t) on [a,c + 8], contradicting the choice of c. Therefore, 
U(t)< V(f)<2ju/(t)p(f)-[7(0 on [a, t0) and we must have t0 = b. This com­
pletes the proof of Theorem 2.2. 

Proof of Theorem 2.3. Let W(t) = ti(t)r(t)- ti'(t)p(t) so that from the Ric-
cati equation (1.3) we obtain for a < t < b , (after an integration by parts, as in 
the proof of Theorem 2.3) 

(4.16) iL(t)Mt) = #JL(I>)W(b) + PW'p ) ' dt+ f V 1 W2 dt+ fV2q A. 

In much the same manner as in Theorem 2.1, we define the sequence of 
successive approximations {Vn}n=o by 

(4.17) < 
lL(t)V0(t) = iL(b)W(b)+[ jut(^ 'p) 'dt+f fi2qidf, a < t < b 

[ ^(0V„+ iW = f i ( t ) V o ( 0 + | p - 1 \ ^ d f , a < t < b , n = 0 , l , 2 , . . . 

Condition (2.5) implies that Vo(f)>0 on (a, 5] and an induction argument 
shows that 

0 < V n ( 0 ^ V n + 1 ( 0 < W ( t ) , a < t < b , 

for all n > l . Therefore, the sequence {Vn} converges monotonically and 
uniformly (on compacta) to a solution V(t) of 

(4.18) |^t)V(f) = i ^ b ) W ( b H ^ 

so that z(t) = [V(0 + ^'(t)p(t)]/jUL(0 is a solution of (1.4) on (a, b]. 

Proof of Theorem 2.4. As in the proof of Theorem 2.2, we assume the 
hypotheses of Theorem 2.4 hold with, however, the additional assumption that 
strict inequality holds in (2.4) at t = b and throughout I in (2.3). Thus, 

(4.19) n(b)r(b)>p(b)n'(b) 

and 

(4.20) 2fi(0(*i'(f)p(0)' + 2p-\t)[n'(t)p(t) - n(t)r(t)Y + fi2(0(<h(0 + q (0) > 0 

are assumed to hold. We also assume p = Pi, the more general result p^p1 

follows as in Theorem 2.2. With the same change of variables as in Theorem 
2.2, 17(f) = fi(f)r(f), V(t) = |UL(r)z(r), we obtain equations (4.5) and (4.6) for 
U(t) and V(0, respectively. Let 17(b) > V(b)>^'(b)p(b) and let V solve (4.6) 
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on a left maximal interval of existence (t0, b]. We claim that t0 = a and that 

(4.21) [7(0 > V(t) > 2/x'(f )p(0 - 17(f) on (a, 6]. 

If not, suppose there exists fe(f0, b] with V(t)<2ii'(t)p(t)—U(t) and choose 
t!6(r0 ,6) such that V(t1) = 2^(t1)p(t1)-U(t1) and VXti)^2( |u 'p)U)-[ / ' ( fO. 
From (4.6) we get as in Theorem 2.2 

(4.22) )x(t1)V'(t1)=-p-1(f1)(l |x'(t1)p(t1)-I/(t1))2 + P ( t l ) ( ^ ( f l ) ) 2 -q 1 ( f i ) ^ 2 ( t 1 ) 

so from equation (4.5) and (4.22) we get 

(4.23) 

^(h)(v\t1)+u\t1)) = -p-\tM^tMti)-u(t1^ 

. P ( * l ) ( ^ W 2 / , V / , / , X , / , / , t t 
+ r fx (fi)(qi(t1) + q(t1)) 

= -p-1(t1)(2 iPih) - V ( * i)p(*i) U(tt)) - 2Gi'(*i))2p(*i) 

-*A2(ti)(<h(fi) + q(fi)). 

From (4.20) and (4.23) we now conclude that 

(4.24) (V(t1)+t/ '(t1))<2(fi 'py(t1), 

which is a contradiction. Hence, V(t)>2ii'(t)p(t)-U(t) on (f0, b\ Next we 
claim that V(f)< (7(0 on (f0, &]. Now on (f0, 6], an integration of (4.5), (4.6) 
gives 

(4.25) p.(&)( V(b) - [/(ft)) = iLt(0(V(0 - (7(0) + 1 V ( q '<h) A 

+ f p-1[(2V/x ,p-V2)-(2(7iLt ,p-(72)]^. 

If there exists t0<t2<b such that V(f2)= U(t2) and 2ju/(0p(0~ f/(f)< V ( 0 < 
(7(0 on (t0, b], then on (t0, b] 

0 < ( V ( t ) - U(t))[2n'(t)p(t)-((7(t) + V(t))] 

= ( 2 ^ ( 0 P ( 0 v(t) - v^t)) - (2/X'(0P(0 c/(r) - (72(t)) 

so that in (4.25) with t = t2 the left side is negative and the right side is positive. 
This contradiction shows that V(t)<l7(t) on (t0, b] and it follows that t0 = a. 
Now a convergence and approximation argument analogous to that in the latter 
portion of the proof of Theorem 2.2 shows that the Theorem holds without the 
additional assumptions (4.19) and (4.20). This completes the proof of Theorem 
2.4. 
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Proof of Theorem 2.5. The proof is essentially the same as the proof of 
Theorem 2.3. With W(t) = iL(t)r(t)~ ii'(t)p(t) we see that W(t) satisfies the 
equation 

f oo f oo f oo 

(4.26) jui(t)W(t) = L + J fjL(juL'p)'dt + J p - ^ d t + l ^qdt, a < f < o o 

Therefore, as in the proof of Theorem 2.3, we define the sequence of 
successive approximations {Vn}Z=o by 

(4.27) 
li(t)V0(t) = L+\ /ut(fjL'p)' d t+ I i*2qdt, a < t < o o 

^(0V n + 1 (0 = fx(0VoW + | p-'Vldt, n = 0 , l , 2 . . . , a < t < o o . 

Condition (2.7) implies that Vo(f)>0 on (a, oo) and by induction one shows that 
0 < Vn(f)< V n + 1 ( r )^ W(t) in (a, œ) so that {Vn} converges monotonically and 
uniformly on compact subintervals to a solution V(t) by 

(4.28) fi(t)V(t) = L + f |x(|x'p)'dt+ f p " 1 V 2 d t + J jx2<h * , a < t < œ 

so that z(t) = (V(0 + M/(0p(0)/M<(0 is a solution of (1.4) on (a, oo). This com­
pletes the proof of Theorem 2.5. 

The proofs of Corollaries 2.6 and 2.7 have essentially been given already in 
the comments preceding them. 
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