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Abstract

In this manuscript, we address open questions raised by Dieker and Yakir (2014), who
proposed a novel method of estimating (discrete) Pickands constants Hδ

α using a family
of estimators ξδ

α(T), T > 0, where α ∈ (0, 2] is the Hurst parameter, and δ ≥ 0 is the step
size of the regular discretization grid. We derive an upper bound for the discretization
error H0

α −Hδ
α , whose rate of convergence agrees with Conjecture 1 of Dieker and Yakir

(2014) in the case α ∈ (0, 1] and agrees up to logarithmic terms for α ∈ (1, 2). Moreover,
we show that all moments of ξδ

α(T) are uniformly bounded and the bias of the estimator
decays no slower than exp{−CTα}, as T becomes large.
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1. Introduction

For any α ∈ (0, 2] let {Bα(t), t ∈R} be a fractional Brownian motion (fBm) with Hurst
parameter H = α/2; that is, Bα(t) is a centered Gaussian process with covariance function
given by

cov(Bα(t), Bα(s)) = |t|α + |s|α − |t − s|α
2

, t, s ∈R, α ∈ (0, 2].

In this manuscript we consider the classical Pickands constant defined by

Hα := lim
S→∞

1

S
E

{
supt∈[0,S]e

√
2Bα(t)−tα

}
∈ (0, ∞), α ∈ (0, 2]. (1)

The constant Hα was first defined by Pickands [31, 32] to describe the asymptotic behavior
of the maximum of stationary Gaussian processes. Since then, Pickands constants have played
an important role in the theory of Gaussian processes, appearing in various asymptotic results
related to the supremum; see the monographs [33, 34]. In [22], it was recognized that the
discrete Pickands constant can be interpreted as an extremal index of a Brown–Resnick process.
This new realization motivated the generalization of Pickands constants beyond the realm of
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2 K. BISEWSKI AND G. JASNOVIDOV

Gaussian processes. For further references the reader may consult [13, 14], which give an
excellent account of the history of Pickands constants, their connection to the theory of max-
stable processes, and the most recent advances in the theory.

Although it is omnipresent in the asymptotic theory of stochastic processes, to date, the
value of Hα is known only in two very special cases: α = 1 and α = 2. In these cases, the distri-
bution of the supremum of process Bα is well known: B1 is a standard Brownian motion, while
B2 is a straight line with random, normally distributed slope. When α �∈ {1, 2}, one may attempt
to estimate the numerical value of Hα from the definition (1) using Monte Carlo methods.
However, there are several problems associated with this approach:

(i) Firstly, the Pickands constant Hα in (1) is defined as a limit as S → ∞, so one must
approximate it by choosing some (large) S. This results in a bias in the estimation,
which we call the truncation error. The truncation error has been shown to decay faster
than S−p for any p < 1; see [12, Corollary 3.1].

(ii) Secondly, for every α ∈ (0, 2), the variance of the truncated estimator blows up as
S → ∞; that is,

lim
S→∞ var

{
1

S
supt∈[0,S] exp{√2Bα(t) − tα}

}
= ∞.

This can easily be seen by considering the second moment of 1
S exp{√2Bα(S) − Sα}.

This directly affects the sampling error (standard deviation) of the crude Monte Carlo
estimator. As S → ∞, one needs more and more samples to prevent its variance from
blowing up.

(iii) Finally, there are no methods available for the exact simulation of
supt∈[0,S] exp{√2Bα(t) − tα} for α �∈ {1, 2}. One must therefore resort to some
method of approximation. Typically, one would simulate fBm on a regular δ-grid, i.e.
on the set δZ for δ > 0; cf. Equation (2) below. This approximation leads to a bias,
which we call the discretization error.

In the following, for any fixed δ > 0 we define the discrete Pickands constant

Hδ
α := lim

S→∞
1

S
E

{
supt∈[0,S]δ e

√
2Bα(t)−tα

}
, α ∈ (0, 2], (2)

where, for a, b ∈R and δ > 0, [a, b]δ = [a, b] ∩ δZ. Additionally, we set 0Z=R, so that H0
α =

Hα . In light of the discussion in item (iii) above, the discretization error equals Hα −Hδ
α .

We should note that the quantity Hδ
α is well defined and Hδ

α ∈ (0, ∞) for δ ≥ 0. Moreover,
Hδ

α →Hα as δ → 0, which means that the discretization error diminishes as the size of the gap
of the grid goes to 0. We refer to [13] for the proofs of these properties.

In recent years, [23] proposed a new representation of Hδ
α , which does not involve the limit

operation. They show [23, Proposition 3] that for all δ ≥ 0 and α ∈ (0, 2],

Hδ
α =E

{
ξδ
α

}
, where ξδ

α := supt∈δZe
√

2Bα(t)−|t|α

δ
∑

t∈δZ e
√

2Bα(t)−|t|α . (3)

For δ = 0 the denominator in the fraction above is replaced by
∫
R

e
√

2Bα(t)−|t|α dt. In fact, the

denominator can be replaced by η
∑

t∈ηZ e
√

2Bα(t)−|t|α for any η, which is an integer multiple
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Speed of convergence of Pickands constants 3

of δ; see [13, Theorem 2]. While one would ideally estimate Hα using ξ0
α , this is unfortunately

infeasible since there are no exact simulation methods for ξδ
α (see also item (iii) above). For

that reason, the authors define the ‘truncated’ version of the random variable ξδ
α , namely

ξδ
α(T) := supt∈[−T,T]δ e

√
2Bα(t)−|t|α

δ
∑

t∈[−T,T]δ e
√

2Bα(t)−|t|α ,

where for δ = 0 the denominator of the fraction is replaced by
∫ T
−T e

√
2Bα(t)−|t|α dt. For any

δ, T ∈ (0, ∞), the estimator ξδ
α(T) is a functional of a fractional Brownian motion on a finite

grid, and as such it can be simulated exactly; see e.g. [24] for a survey of methods of simulation
of fBm. A side effect of this approach is that the new estimator induces both the truncation and
the discretization errors described in items (i) and (iii) above.

In this manuscript we rigorously show that the estimator ξδ
α(T) is well suited for simulation.

In Theorem 1, we address the conjecture stated by the inventors of the estimator ξδ
α about the

asymptotic behavior of the discretization error between the continuous and discrete Pickands
constant for a fixed α ∈ (0, 2]:

[23, Conjecture 1] For all α ∈ (0, 2] it holds that lim
δ→0

Hα −Hδ
α

δα/2
∈ (0, ∞).

We establish that the conjecture is true when α = 1 and is not true when α = 2; see
Corollary 1 below, where the exact asymptotics of the discretization error are derived in these
two special cases.

Furthermore, in Theorem 1(i) we show that

lim sup
δ→0

δ−α/2(Hα −Hδ
α) ∈

[
0,

Hα

√
π

(1 − 2−1−α/2)
√

4 − 2α

]
for α ∈ (0, 1), and in Theorem 1(ii) we show that Hα −Hδ

α is upper-bounded by δα/2 up to
logarithmic terms for α ∈ (1, 2) and all δ > 0 small enough. These results support the claim of
the conjecture for all α ∈ (0, 2).

Secondly, we consider the truncation and sampling errors induced by ξδ
α(T). In Theorem 2

we derive a uniform upper bound for the tail of the probability distribution of ξδ
α which implies

that all moments of ξδ
α exist and are uniformly bounded in δ ∈ [0, 1]. In Theorem 3 we estab-

lish that for any α ∈ (0, 2) and p ≥ 1, the difference |E(ξδ
α(T))p −E(ξδ

α)p| decays no slower
than exp{−CTα}, as T → ∞, uniformly for all δ ∈ [0, 1]. This implies that the truncation error
of the Dieker–Yakir estimator decays no slower than exp{−CTα}, and combining this with
Theorem 2, we have that ξδ

α(T) has a uniformly bounded sampling error, i.e.

sup(δ,T)∈[0,1]×[1,∞)var
{
ξδ
α(T)

}
< ∞. (4)

Although arguably the most celebrated, Pickands constants are not the only constants
appearing in the asymptotic theory of Gaussian processes and related fields. Depending on the
setting, other constants may appear, including Parisian Pickands constants [15, 16, 27], sojourn
Pickands constants [18, 20], Piterbarg-type constants [3, 28, 33, 34], and generalized Pickands
constants [11, 21]. As with the classical Pickands constants, the numerical values of these con-
stants are typically known only in the case α ∈ {1, 2}. To approximate them, one can try the
discretization approach. We believe that, using techniques from the proof of Theorem 1(ii),
one could derive upper bounds for the discretization error which are exact up to logarithmic
terms; see, e.g., [6].
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4 K. BISEWSKI AND G. JASNOVIDOV

The manuscript is organized as follows. In Section 2 we present our main results and dis-
cuss their extensions and relationship to other problems. The rigorous proofs are presented in
Section 3, while some technical calculations are given in the appendix.

2. Main results

In the following, we give an upper bound for Hα −Hδ
α for all α ∈ (0, 1) ∪ (1, 2) for small

δ > 0.

Theorem 1. The following hold:

(i) For any α ∈ (0, 1) and ε > 0, for all δ > 0 sufficiently small,

Hα −Hδ
α ≤ Hα

√
π (1 + ε)

(1 − 2−1−α/2)
√

4 − 2α
· δα/2.

(ii) For every α ∈ (1, 2) there exists C > 0 such that for all δ > 0 sufficiently small,

Hα −Hδ
α ≤ Cδα/2| log δ|1/2.

While for the proof of the case α ∈ (1, 2) we were able to use general results from the theory
of Gaussian processes, in the case α ∈ (0, 1) we needed to come up with more precise tools in
order to skip the | log δ|1/2 part in the upper bound. Therefore, the proofs in these two cases
are very different from each other. Unfortunately, the proof in case (i) cannot be extended to
case (ii) because of the switch from positive to negative correlations between the increments
of fBm; see also Remark 1.

In the following two results we establish an upper bound for the survival function of
ξδ
α and for the truncation error discussed in item (i) in Section 1. These two results com-

bined imply that the sampling error of ξδ
α(T) is uniformly bounded in (δ, T) ∈ [0, 1] × [1, ∞);

cf. Equation (4).

Theorem 2. For any α ∈ (0, 2), δ ∈ [0, 1], and ε > 0 for sufficiently large x, T,
we have

max
(
P
{
ξδ
α(T) > x

}
, P
{
ξδ
α > x

})≤ e− log2 x
4+ε .

Moreover, there exist positive constants C1, C2 such that for all x, T > 0 and δ ≥ 0,

max
(
P
{
ξδ
α(T) > x

}
, P
{
ξδ
α > x

})≤ C1e−C2 log2 x.

Evidently, Theorem 2 implies that all moments of ξδ
α are finite and uniformly bounded in

δ ∈ [0, 1] for any fixed α ∈ (0, 2).

Theorem 3. For any α ∈ (0, 2) and p > 0 there exist postive constants C1, C2 such that∣∣E {(ξδ
α(T))p}−E

{
(ξδ

α)p}∣∣≤ C1e−C2Tα

for all (δ, T) ∈ [0, 1] × [1, ∞).
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Speed of convergence of Pickands constants 5

2.1. Case α ∈ {1, 2}.
In this scenario, the explicit formulas for Hδ

1 (see, e.g., [19, 29]) and Hδ
2 (see, e.g., [14,

Equation (2.9)]) are known. They are summarized in the proposition below, with � being the
cumulative distribution function of a standard Gaussian random variable.

Proposition 1. It holds that

(i) H1 = 1 and Hδ
1 =

(
δ exp

{
2

∞∑
k=1

�(−√
δk/2)

k

})−1

for all δ > 0, and

(ii) H2 = 1√
π

, and Hδ
2 = 2

δ

(
�(δ/

√
2) − 1

2

)
for all δ > 0.

Relying on the above, we can provide the exact asymptotics of the discretization error, as
δ → 0. In the following, ζ denotes the Euler–Riemann zeta function.

Corollary 1. It holds that

(i) lim
δ→0

H1 −Hδ
1√

δ
= −ζ (1/2)√

π
, and

(ii) lim
δ→0

H2 −Hδ
2

δ2
= 1

12
√

π
.

2.2. Discussion

We believe that finding the exact asymptotics of the speed of the discretization error Hα −
Hδ

α is closely related to the behavior of fBm around the time of its supremum. We motivate
this by the following heuristic:

Hα −Hδ
α =E

{
supt∈Re

√
2Bα(t)−|t|α − supt∈δZe

√
2Bα(t)−|t|α

δ
∑

t∈δZ e
√

2Bα(t)−|t|α

}

≈E

{

(δ) · supt∈δZe

√
2Bα(t)−|t|α

δ
∑

t∈δZ e
√

2Bα(t)−|t|α

}
,

≈E {
(δ)} ·Hδ
α,

where 
(δ) is the difference between the suprema on the continuous and discrete grids, i.e.

(δ) := supt∈R{√2Bα(t) − |t|α} − supt∈δZ{√2Bα(t) − |t|α}. The first approximation above is
due to the mean value theorem, and the second approximation is based on the assumption that

(δ) and ξδ

α are asymptotically independent as δ → 0. We believe that 
(δ) ∼ Cδα/2 by self-
similarity, where C > 0 is some constant, which would imply that Hα −Hδ

α ∼ CHαδα/2. This
heuristic reasoning can be made rigorous in the case α = 1, when

√
2Bα(t) − |t|α is a Lévy

process (Brownian motion with drift). In this case, the asymptotic behavior of functionals such
as E {
(δ)}, as δ → 0, can be explained by the weak convergence of trajectories around the
time of supremum to the so-called Lévy process conditioned to be positive; see [26] for more
information on this topic. In fact, Corollary 1(i) can be proven using the tools developed in [5].
To the best of the authors’ knowledge, there are no such results available for a general fBm.
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6 K. BISEWSKI AND G. JASNOVIDOV

However, it is worth mentioning that recently [2] considered the related problem of penalizing
fractional Brownian motion for being negative.

A problem related to the asymptotic behavior of Hα −Hδ
α was considered in [7, 8], who

showed that Esupt∈[0,1]Bα(t) −Esupt∈[0,1]δ Bα(t) decays like δα/2 up to logarithmic terms. We
should emphasize that in Theorem 1, in the case α ∈ (0, 1), we were able to establish that the
upper bound for the discretization error decays exactly like δα/2. In light of the discussion
above, we believe that the result and the method of proof of Theorem 1(i) could be useful in
further research related to the discretization error for fBm.

Monotonicity of Pickands constants. Based on the definition (2), it is clear that for any
α ∈ (0, 2), the sequence {Hδ

α,H2δ
α ,H4δ

α , . . .} is decreasing for any fixed δ > 0. It is therefore
natural to speculate that δ �→Hδ

α is a decreasing function. The explicit formulas for Hδ
1 and

Hδ
2 given in Proposition 1 allow us to give a positive answer to this question in these cases.

Corollary 2. For all δ ≥ 0, Hδ
1 and Hδ

2 are strictly decreasing functions with respect to δ.

3. Proofs

For α ∈ (0, 2) define

Zα(t) = √
2Bα(t) − |t|α, t ∈R.

Assume that all of the random processes and variables we consider are defined on a complete
general probability space � equipped with a probability measure P. Let C, C1, C2, . . . be some
positive constants that may differ from line to line.

3.1. Proof of Theorem 1, case α ∈ (0, 1)

The proof of Theorem 1 in the case α ∈ (0, 1) is based on the following three results, whose
proofs are given later in this section. In what follows, η is independent of {Zα(t), t ∈R} and
follows a standard exponential distribution.

Lemma 1. For all α ∈ (0, 2),

Hδ/2
α −Hδ

α = δ−1
P
{
supt∈δZ\{0}Zα(t) < 0, supt∈δZ\{0}Zα

(
t − δ

2 · sgn(t)
)+ η < 0

}
.

As a side note, we remark that the representation in Lemma 1 yields a straightforward lower
bound

Hδ/2
α −Hδ

α ≥ δ−1
P
{
supt∈(δ/2)Z\{0}Zα(t) + η < 0

}
for all α ∈ (0, 2), δ > 0.

Lemma 2. For all α ∈ (0, 1) and δ > 0,

Hδ/2
α −Hδ

α ≤ δ−1
P
{
supt∈δZ\{0}Zα(t) + η < 0

}
.
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Proposition 2. For any α ∈ (0, 2) and ε > 0, it holds that

P
{
supt∈δZ\{0}Zα(t) + η < 0

}≤ Hα

√
π√

4 − 2α
(1 + ε) · δ1+α/2

for all δ > 0 small enough.

Proof of Theorem 1, α ∈ (0, 1). Using the fact that Hδ
α →Hα as δ ↓ 0, we may represent the

discretization error Hα −Hδ
α as a telescoping series; that is,

Hα −Hδ
α =

∞∑
k=0

H2−(k+1)δ
α −H2−kδ

α .

Combining Lemma 2 and Proposition 2, we find that, with C denoting the constant from
Proposition 2,

Hα −Hδ
α ≤ C

∞∑
k=0

2−k(1+α/2) · δα/2 = Hα

√
π (1 + ε)

(1 − 2−1−α/2)
√

4 − 2α
· δα/2

for all δ small enough. This completes the proof. �

Remark 1. If the upper bound in Lemma 2 holds also for α ∈ (1, 2), then the upper bound in
Theorem 1(i) holds for all α ∈ (0, 2).

The remainder of this section is devoted to proving Lemma 1, Lemma 2, and Proposition 2.
In what follows, for any α ∈ (0, 2), let {Xα(t), t ∈R} be a centered, stationary Gaussian

process with var{Xα(t)} = 1, whose covariance function satisfies

cov(Xα(t), Xα(0)) = 1 − |t|α + o(|t|α), t → 0. (5)

Before we give the proof of Lemma 1, we introduce the following result.

Lemma 3. The finite-dimensional distributions of {u(Xα(u−2/αt) − u) | Xα(0) > u, t ∈R} con-
verge weakly to the finite-dimensional distributions of {Zα(t) + η, t ∈R}, where η is a random
variable independent of {Zα(t), t ∈R} following a standard exponential distribution.

The result in Lemma 3 is well known; see, e.g., [1, Lemma 2], where the conver-
gence of finite-dimensional distributions is established on t ∈R+. The extension to t ∈R is
straightforward.

Proof of Lemma 1. The following proof is very similar in flavor to the proof of [4,
Lemma 3.1]. From [34, Lemma 9.2.2] and the classical definition of the Pickands constant
it follows that for any α ∈ (0, 2) and δ ≥ 0,

Hδ
α = lim

T→∞ lim
u→∞

P
{
supt∈[0,T]δ Xα(u−2/αt) > u

}
T�(u)

,

where �(u) is the complementary CDF (tail) of the standard normal distribution and
{Xα, t ∈R} is the process introduced above Equation (5). Therefore,

Hδ/2
α −Hδ

α = lim
T→∞ lim

u→∞
P
{
maxt∈[0,T]δ/2 Xα(u−2/αt) > u, maxt∈[0,T]δ Xα(u−2/αt) < u

}
T�(u)

.
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8 K. BISEWSKI AND G. JASNOVIDOV

Now, notice that we can decompose the event in the numerator above into a sum of disjoint
events:

1

�(u)
P

{
max

t∈[0,T]δ/2
Xα(u−2/αt) > u, max

t∈[0,T]δ
Xα(u−2/αt) < u

}

=
∑

τ∈[0,T]δ/2

P

{
max

t∈[0,T]δ/2
Xα(u−2/αt) ≤ Xα(u−2/ατ ), max

t∈[0,T]δ
Xα(u−2/αt) ≤ u | Xα(u−2/ατ ) > u

}
.

Using the stationarity of the process Xα , the above is equal to∑
τ∈[0,T]δ/2

P

{
max

t∈[0,T]δ/2
Xα(u−2/α(t − τ )) ≤ Xα(0), max

t∈[0,T]δ
Xα(u−2/α(t − τ )) ≤ u | Xα(0) > u

}
.

Applying Lemma 3 to each element of the sum above, we find that the sum converges to∑
τ∈[0,T]δ/2

U(τ, T) as u → ∞, where

U(τ, T) := P

{
max

t∈[0,T]δ/2
Zα(t − τ ) ≤ 0, max

t∈δZ∩[0,T]
Zα(t − τ ) + η ≤ 0

}
.

We have now established that Hδ/2
α −Hδ

α = limT→∞ 1
T

∑
τ∈[0,T]δ/2

U(τ, T). Clearly,

U(τ, ∞) = U(0, ∞) = P

{
max

t∈(δ/2)Z\{0}
Zα(t) < 0, max

t∈δZ\{0}
Zα

(
t − δ

2 · sgn(t)
)+ η < 0

}
.

We will now show that Hδ/2
α −Hδ

α is lower-bounded and upper-bounded by δ−1U(0, ∞),
which will complete the proof. For the lower bound note that

Hδ/2
α −Hδ

α ≥ lim
T→∞

1

T

∑
τ∈[0,T]δ/2

U(τ, ∞),

where the limit is equal to δ−1U(0, ∞), because the sum above has [T(δ/2)−1] elements, of
which half are equal to 0 and the other half are equal to U(0, ∞). In order to show the upper
bound, consider ε > 0. For any τ ∈ (εT, (1 − ε)T)δ/2 we have

U(τ, T) ≤ U(T, ε) := P

{
max

t∈(−εT,εT)δ/2
Zα(t) ≤ 0, max

t∈(−εT,εT)δ
Zα(t) + η ≤ 0

}
.

Furthermore, we have the following decomposition:

Hδ/2
α −Hδ

α = lim
T→∞

1

T

⎛⎝ ∑
τ∈(δ/2)Z∩I−

U(τ, T) +
∑

τ∈(δ/2)Z∩I0

U(τ, T) +
∑

τ∈(δ/2)Z∩I+
U(τ, T)

⎞⎠ ,

where I− := [0, εT], I0 := (εT, (1 − ε)T), I+ := [(1 − ε), T]. The first and last sums can be
bounded by their number of elements, [εT(δ/2)−1], because U(τ, T) ≤ 1. The middle sum can
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be bounded by 1
2 · [(1 − 2ε)T(δ/2)−1]U(T, ε), because half of its elements are equal to 0 and

the other half can be upper-bounded by U(T, ε). Letting T → ∞, we obtain

Hδ/2
α −Hδ

α ≤ 4εδ−1 + (1 − 2ε)δ−1U(0, ∞),

because U(T, ε) → U(0, ∞) as T → ∞. Finally, letting ε → 0 yields the desired result. �

Proof of Lemma 2. In light of Lemma 1, it suffices to show that

P
{
supt∈δZ\{0}Zα

(
t − δ

2 · sgn(t)
)+ η < 0

}≤ P
{
supt∈δZ\{0}Zα(t) + η < 0

}
.

The left-hand side of the above equals

P

{
supt∈δZ\{0}

√
2Bα

(
t − δ

2 · sgn(t)
)− |t − δ

2 · sgn(t)|α + η < 0
}

= P

{
supt∈δZ\{0}

√
2Bα

(
t − δ

2 · sgn(t)
)

|t − δ
2 · sgn(t)|α/2

− |t − δ
2 · sgn(t)|α/2 + η

|t − δ
2 · sgn(t)|α/2

< 0

}

≤ P

{
supt∈δZ\{0}

√
2Bα

(
t − δ

2 · sgn(t)
)

|t − δ
2 · sgn(t)|α/2

− |t|α/2 + η

|t|α/2
< 0

}
.

Observe that for all t, s ∈ δZ \ {0} it holds that

cov

(√
2Bα

(
t − δ

2 · sgn(t)
)

|t − δ
2 · sgn(t)|α/2

,

√
2Bα(s − δ

2 · sgn(s))

|s − δ
2 · sgn(s)|α/2

)
≤ cov

(√
2Bα(t)

|t|α/2
,

√
2Bα(s)

|s|α/2

)
; (6)

the proof of this technical inequality is given in the appendix. Since in the case t = s the covari-
ances in Equation (6) are equal, we may apply the Slepian lemma [34, Lemma 2.1.1] and
obtain

P

{
supt∈δZ\{0}

√
2Bα

(
t − δ

2 · sgn(t)
)

|t − δ
2 · sgn(t)|α/2

− |t|α/2 + η

|t|α/2
< 0

}

≤ P

{
supt∈δZ\{0}

√
2Bα(t)

|t|α/2
− |t|α/2 + η

|t|α/2
< 0

}
,

from which the claim follows. �

We will now lay out the preliminaries necessary to prove Proposition 2. First, let us intro-
duce some notation that will be used until the end of this section. For any δ > 0, λ > 0 let

p(δ) := P {A(δ)} , with A(δ) := {Zα(−δ) < 0, Zα(δ) < 0}, and

q(δ, λ) := P {A(δ, λ)} , with A(δ, λ) := {Zα(−δ) + λ−1η < 0, Zα(δ) + λ−1η < 0}.
(7)
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10 K. BISEWSKI AND G. JASNOVIDOV

For any δ > 0 and λ > 0 we define the densities of the two-dimensional vectors

(Zα(−δ), Zα(δ)) and (Zα(−δ) + λ−1η, Zα(δ) + λ−1η) respectively, with x :=
( x1

x2

)
∈R

2, as

follows:

f (x; δ) := P {Zα(−δ) ∈ dx1, Zα(δ) ∈ dx2}
dx1dx2

,

g(x; δ, λ) := P
{
Zα(−δ) + λ−1η ∈ dx1, Zα(δ) + λ−1η ∈ dx2

}
dx1dx2

.

(8)

We also define the densities of these random vectors conditioned to take negative values on
both coordinates:

f −(x; δ) := P {Zα(−δ) ∈ dx1, Zα(δ) ∈ dx2 | A(δ)}
dx1dx2

,

g−(x; δ, λ) := P
{
Zα(−δ) + λ−1η ∈ dx1, Zα(δ) + λ−1η ∈ dx2 | A(δ, λ)

}
dx1dx2

.

(9)

Notice that both f − and g− are nonzero in the same domain x ≤ 0. Now, let � be the covariance
matrix of (Zα(−1), Zα(1)), that is,

� :=
(

cov(Zα(−1), Zα(−1)) cov(Zα(−1), Zα(1))

cov(Zα(1), Zα(−1)) cov(Zα(1), Zα(1))

)
=
(

2 2 − 2α

2 − 2α 2

)
. (10)

By the self-similarity property of fBm, the covariance matrix �(δ) of (Zα(−δ), Zα(δ)) equals

�(δ) = δα�. With 12 =
(

1

1

)
we define

a(x) := x��−1x, b(x) := x��−112, c := 1�
2 �−112 = 2

4 − 2α
, (11)

so that, with |�| denoting the determinant of matrix �, we have

f (x; δ) = 1

2π |�|1/2δα
exp

{
− (x + 12δ

α)��(δ)−1(x + 12δ
α)

2δα

}

= 1

2π |�|1/2δα
exp

{
−a(x) + 2b(x)δα + cδ2α

2δα

}
.

The proofs of the following three lemmas are given in the appendix.
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Lemma 4. For any λ > 0 there exist C0, C1 > 0 such that

C0δ
α/2 ≤ q(δ, λ) ≤ C1δ

α/2

for all δ > 0 sufficiently small.

In the following lemma, we establish the formulas for f − and g− and show that g− is
upper-bounded by f − uniformly in δ, up to a positive constant.

Lemma 5. For any λ > 0,

(i) f −(x; δ) = p(δ)−1f (x; δ)1{x ≤ 0};

(ii) g−(x; δ, λ) = q(δ, λ)−1f (x; δ)
∫ ∞

0
λ exp

{
−cz2 + 2z((λ − c)δα − b(x))

2δα

}
dz · 1{x ≤ 0};

(iii) there exists C > 0, depending only on λ, such that for all δ small enough,
g−(x; δ, λ) ≤ Cf −(x; δ) for all x ≤ 0.

Recall the definition of � in Equation (10). In what follows, for k ∈Z we define(
c−(k)

c+(k)

)
:= �−1 ·

(
cov(Zα(k), Zα(−1))

cov(Zα(k), Zα(1))

)

= 1

2α(4 − 2α)
·
(

2 2α − 2

2α − 2 2

)
·
(

kα + 1 − (k + sgn(k))α

kα + 1 − (k − sgn(k))α

)
.

(12)

Lemma 6. For k ∈Z \ {0},

(i) (2 − 2α−1)−1 < c−(k) + c+(k) ≤ 1 when α ∈ (0, 1);

(ii) 1 ≤ c−(k) + c+(k) ≤ (2 − 2α−1)−1 when α ∈ (1, 2).

We are now ready to prove Proposition 2. In what follows, for any δ > 0 and t ∈R let

Yδ
α(t) := Zα(t) −E {Zα(t) | (Zα(−δ), Zα(δ))} (13)

= Zα(t) − (c−(k)Zα(−δ) + c+(k)Zα(δ)
)
.

It is a well-known fact that {Yδ
α(t), t ∈R} is independent of (Zα(−δ), Zα(δ)).

Proof of Proposition 2. Recall the definition of the events A(δ, λ) and A(δ) in (7).
We have

P
{
supt∈δZ\{0}Zα(t) + η ≤ 0

}
= P

{
supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)Zα(−δ) + c+(k)Zα(δ)
)

+ η < 0; A(δ, 1)
}

,

with Yα(t) as defined in (13). Let λ∗ := 1 when α ∈ (0, 1], and λ∗ := (2 − 2α−1)−1 when α ∈
[1, 2). By Lemma 6 we have λ∗ ≥ 1 and c−(k) + c+(k) ≤ λ∗; thus A(δ, 1) ⊆ A(δ, λ∗), and the
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12 K. BISEWSKI AND G. JASNOVIDOV

display above is upper-bounded by

P

{
supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)
(

Zα(−δ) + η
λ∗
)

+ c+(k)
(

Zα(δ) + η
λ∗
))

< 0; A(δ, λ∗)

}

= q(δ, λ∗) · P
{

supk∈Z\{−1,0,1}Yδ
α(δk) +

(
c−(k)

(
Zα(−δ) + η

λ∗
)

+ c+(k)
(

Zα(δ) + η
λ∗
))

< 0

∣∣∣∣ A(δ, λ∗)

}

= q(δ, λ∗) ·
∫

x≤0
P

{
supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)x1 + c+(k)x2

)
< 0

}
g−(x; δ, λ∗)dx,

where g− is as defined in (9). By using Lemma 5(iii), in particular Equation (25), we know
that for every ε > 0 and all δ > 0 small enough, with

C(δ, ε) := 1
2λ∗√π (4 − 2α)(1 + ε)δα/2q(δ, λ∗)−1p(δ),

the expression above is upper-bounded by

q(δ, λ∗) ·
∫

x≤0
P

{
supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)x1 + c+(k)x2

)
< 0

}
C(δ, ε)f −(x; δ)dx

= C(δ, ε)q(δ, λ∗)P

{
supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)Zα(−δ) + c+(k)Zα(δ)
)

< 0
∣∣∣ A(δ)

}

= C(δ, ε)q(δ, λ∗)p(δ)−1
P

{
A(δ), supk∈Z\{−1,0,1}Yδ

α(δk) +
(

c−(k)Zα(−δ) + c+(k)Zα(δ)
)

< 0

}

= C(δ, ε)q(δ, λ∗)p(δ)−1
P
{
supt∈δZ\{0}Zα(t) ≤ 0

}
= 1

2λ∗√π (4 − 2α)(1 + ε)δα/2
P
{
supt∈δZ\{0}Zα(t) ≤ 0

}
.

Finally, from [23, Proposition 4] we know that P
{
supt∈δZ\{0}Zα(t) ≤ 0

}∼ δHα; therefore, after
substituting for λ∗, we find that the above is upper-bounded by

Hα

√
π√

4 − 2α
(1 + ε) · δ1+α/2

for all δ > 0 sufficiently small. �

3.2. Proof of Theorem 1, case α ∈ (1, 2)

The following lemma provides a crucial bound for Hα −Hδ
α .

Lemma 7. For sufficiently small δ > 0 it holds that

Hα −Hδ
α ≤ 2E

{
supt∈[0,1]e

Zα(t) − supt∈[0,1]δ eZα(t)
}

.
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Proof of Lemma 7. As follows from the proof of [17, Theorem 1], in particular the first
equation on p. 12 with cδ := [1/δ]δ, where [·] is the integer part of a real number, it holds
that

Hα −Hδ
α ≤ c−1

δ E

{
supt∈[0,cδ]e

Zα(t) − supt∈[0,cδ]δ eZα(t)
}

≤ 2E
{

supt∈[0,cδ]e
Zα(t) − supt∈[0,cδ]δ eZα(t)

}
≤ 2E

{
supt∈[0,1]e

Zα(t) − supt∈[0,1]δ eZα(t)
}

.

This completes the proof. �

Now we are ready to prove Theorem 1(ii).

Proof of Theorem 1, α ∈ (1, 2). Note that for any y ≤ x it holds that ex − ey ≤ (x − y)ex.
Implementing this inequality, we find that for s, t ∈ [0, 1],∣∣∣eZα(t) − eZα(s)

∣∣∣≤ emax(Zα(t),Zα(s))|Zα(t) − Zα(s)|

≤ e

√
2 max

w∈[0,1]
Bα(w) ∣∣∣√2(Bα(t) − Bα(s)) − (tα − sα)

∣∣∣ .

Next, by Lemma 7 we have

Hα −Hδ
α ≤ 2E

{
sup

t,s∈[0,1],|t−s|≤δ

∣∣∣eZα(t) − eZα(s)
∣∣∣}

≤ 2
√

2E

{
e

√
2 max

w∈[0,1]
Bα(w)

supt,s∈[0,1],|t−s|≤δ|Bα(t) − Bα(s)|
}

+ 2E

{
e

√
2 max

w∈[0,1]
Bα(w)

sup
t,s∈[0,1],|t−s|≤δ

|tα − sα|
}

.

Clearly, the second term is upper-bounded by C1δ for all δ small enough. Using the Hölder
inequality, the first term can be bounded by

2
√

2E

{
e

2
√

2 max
w∈[0,1]

Bα(w)
}1/2

E

⎧⎨⎩
(

sup
t,s∈[0,1],|t−s|≤δ

(Bα(t) − Bα(s))

)2
⎫⎬⎭

1/2

.

The first expectation is finite. The random variable inside the second expectation is called the
uniform modulus of continuity. From [10, Theorem 4.2, p. 164] it follows that there exists
C > 0 such that
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14 K. BISEWSKI AND G. JASNOVIDOV

E

⎧⎨⎩
(

sup
t,s∈[0,1],|t−s|≤δ

(Bα(t) − Bα(s))

)2
⎫⎬⎭

1/2

≤ Cδα/2| log(δ)|1/2.

This concludes the proof. �

Remark 2. Note that the proofs of Lemma 7 and Theorem 1 also work in the case α ∈ (0, 1].

3.3. Proofs of Theorems 2 and 3

Let δ ≥ 0. Define a measure μδ such that for real numbers a ≤ b,

μδ([a, b]) =
⎧⎨⎩δ · #{[a, b]δ}, δ > 0,

b − a, δ = 0.

Proof of Theorem 2. For any T > 0, x ≥ 1, and δ ≥ 0, we have

P
{
ξδ
α > x

}≤ P

{
esupt∈RZα(t)∫
R

eZα(t)dμδ

> x

}

= P

{
esupt∈[−T,T]Zα(t)∫
R

eZα(t)dμδ

> x and Zα(t) achieves its maximum at t ∈ [−T, T]

}

+ P

{
esupt∈R\[−T,T]Zα(t)∫

R
eZα(t)dμδ

> x and Zα(t) achieves its maximum at t ∈R\[−T, T]

}

≤ P

{
esupt∈[−T,T]Zα(t)∫
R

eZα(t)dμδ

> x

}
+ P {∃t ∈R\[−T, T] : Zα(t) > 0}

≤ P

{
esupt∈[−T,T]Zα(t)∫
[−T,T) eZα(t)dμδ

> x

}
+ 2P {∃t ≥ T : Zα(t) > 0}

=: p1(T, x) + 2p2(T). (14)

Estimation of p2(T). By the self-similarity of fBm we have

p2(T) ≤
∞∑

k=1

P

{
∃t ∈ [kT, (k + 1)T] :

√
2Bα(t) − tα > 0

}

=
∞∑

k=1

P

{
∃t ∈ [1, 1 + 1

k
] :

√
2Bα(t)(kT)α/2 > (kT)αtα

}

≤
∞∑

k=1

P

{
∃t ∈ [1, 2] :

√
2Bα(t) > (kT)α/2

}
.

Thus, using the Borell–TIS inequality, we find that for all T ≥ 1,

p2(T) ≤
∞∑

k=1

Ce− (kT)α

10 ≤ Ce− Tα

10 . (15)
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Estimation of p1(T, x). Observe that for T, x ≥ 1 and δ ∈ [0, 1],

p1(T, x)≤P

{ ∑T−1
k=−T esupt∈[k,k+1]Zα(t)∑T−1

k=−T

∫
[k,k+1) eZα(t)dμδ

> x

}
=: P

{∑T−1
k=−T ak(ω)∑T−1
k=−T bk(ω)

> x

}
.

Since the event {∑T−1
k=−T ak(ω)/

∑T−1
k=−T bk(ω) > x} implies {ak(ω)/bk(ω) > x, for some k ∈

[−T, T − 1]1}, we have

P

{∑T−1
k=−T ak(ω)∑T−1
k=−T bk(ω)

> x

}
≤

T−1∑
k=−T

P

{
ak(ω)

bk(ω)
> x

}
≤ 2Tsupk∈[−T,T]P

{
supt∈[k,k+1]e

Zα(t)∫
[k,k+1) eZα(t)dμδ

> x

}
.

Therefore, we obtain that for x, T ≥ 1

p1(T, x) ≤ 2Tsupk∈[−T,T]P

{
supt∈[k,k+1]e

Zα(t)∫
[k,k+1) eZα(t)dμδ

> x

}
.

Next, by the stationarity of the increments of fBm, for x, T ≥ 1 we have

P

{
supt∈[k,k+1]e

Zα(t)∫
[k,k+1) eZα(t)dμδ

> x

}
≤ P

{
supt∈[k,k+1]e

Zα(t)

μδ[k, k + 1] inf[k,k+1] eZα(t)
> x

}

≤ P
{∃t, s ∈ [k, k + 1] : Zα(t) − Zα(s) > log( x

2 )
}

≤ P

{
∃t, s ∈ [k, k + 1] : Bα(t) − Bα(s) >

log( x
2 ) − supt,s∈[k,k+1](|t|α − |s|α)√

2

}

≤ P

{
∃t ∈ [0, 1] : Bα(t) >

log x − C max(1, Tα−1)√
2

}
,

where in the second line we used that μδ[k, k + 1] ≥ 1/2 for δ ∈ [0, 1]. Thus, for T, x ≥ 1,

p1(T, x) ≤ 2TP

{
∃t ∈ [0, 1] : Bα(t) >

log x − C max(1, Tα−1)√
2

}
. (16)

Combining the statement above with (14) and (15), for x, T ≥ 1 we have

P

{
supt∈ReZα(t)∫
R

eZα(t)dμδ

> x

}
≤ C̃e− Tα

10 + 2TP

{
∃t ∈ [0, 1] : Bα(t) >

log x − C max(1, Tα−1)√
2

}
. (17)

Assume that α ≤ 1. Then, choosing T = x in the line above, by the Borell–TIS inequality
we have for any fixed ε > 0 and sufficiently large x that

P

{
supt∈ReZα(t)∫
R

eZα(t)dμδ

> x

}
≤ e− log2x

4+ε .

Assume that α > 1. Taking T = C′( log x)
1

α−1 with sufficiently small C′ > 0, we obtain by the
Borell–TIS inequality that for any fixed ε > 0 and sufficiently large x,

P

{
supt∈ReZα(t)∫
R

eZα(t)dμδ

> x

}
≤ C̃e−C′′( log x)

α
α−1 + e− log2 x

4+ε .
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16 K. BISEWSKI AND G. JASNOVIDOV

The first claim now follows since P
{
ξδ
α(T) > x

}= p1(T, x) and α
α−1 > 2. The second claims

follows in the same way by (17). �

Proof of Theorem 3. Observe that |xp − yp| ≤ p|x − y|(xp−1 + yp−1) for all x, y ≥ 0 and
p ≥ 1; this can be shown straightforwardly by differentiation. Hence we have

∣∣E {(ξδ
α(T))p}−E

{
(ξδ

α)p}∣∣≤E
{∣∣(ξδ

α(T))p − (ξδ
α)p
∣∣}

≤ pE
{∣∣ξδ

α(T) − ξδ
α

∣∣ · ((ξδ
α(T))p−1 + (ξδ

α)p−1
)}

≤ p
(
E

{(
ξδ
α(T) − ξδ

α

)2})1/2 ·
(
E

{(
(ξδ

α(T))p−1 + (ξδ
α)p−1

)2
})1/2

≤ √
2p
(
E

{(
ξδ
α(T) − ξδ

α

)2})1/2 ·
(
E

{
(ξδ

α(T))2p−2 + (ξδ
α)2p−2

})1/2

=:
√

2p
(
E

{
β2
})1/2 · (E {κp

})1/2 .

We have

β := supt∈δZeZα(t)∫
R

eZα(t)dμδ

− supt∈[−T,T]δ eZα(t)∫
[−T,T] eZα(t)dμδ

= β1 − β2β3,

where

β1 =
sup
t∈δZ

eZα(t) − sup
t∈[−T,T]δ

eZα(t)∫
R

eZα(t)dμδ

≥ 0,

β2 =
∫
R\[−T,T] eZα(t)dμδ∫

R
eZα(t)dμδ

> 0,

β3 =
sup

t∈[−T,T]δ
eZα(t)∫

[−T,T] eZα(t)dμδ

> 0.

Applying the Hölder inequality, we obtain

E

{
β2
}

≤ 2E
{
β2

1

}
+ 2
√
E
{
β4

2

}
E
{
β4

3

}
. (18)

We have by (16) that for x, T ≥ 1,

P {β3 > x} ≤ 2TP

{
∃t ∈ [0, 1] : Bα(t) >

log x − C max(1, Tα−1)√
2

}
,

https://doi.org/10.1017/jpr.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.37


Speed of convergence of Pickands constants 17

which implies that for T ≥ 1,

E

{
β4

3

}
=
∫ ∞

0
P

{
β2 > x1/4

}
dx

≤ 2T
∫ ∞

0
P

{
∃t ∈ [0, 1] : Bα(t) >

1
4 log x − C max(1, Tα−1)√

2

}
dx (19)

≤ 2T

(∫ exp (5C max(1,Tα−1))

0
1dx +

∫ ∞

exp (5C max(1,Tα−1))
P {∃t ∈ [0, 1] : Bα(t) > C3 log x} dx

)

≤ C1eC max(1,Tα−1).

Finally for α ∈ (0, 2) and T ≥ 1 we have

E

{
β4

3

}
≤ C1eC max(1,Tα−1). (20)

Next, we focus on the properties of β2. For k > 0 and sufficiently large T we have

P

{∫
[kT,(k+1)T)

eZα(t)dμδ > e− 1
2 Tαkα

}
≤ P

{
(T + 1)supt∈[kT,(k+1)T]e

Zα(t) > e− 1
2 Tαkα

}
= P

{
log(T + 1) + supt∈[kT,(k+1)T]Zα(t) > −1

2
Tαkα

}

= P

{
∃t ∈ [kT, (k + 1)T] :

Bα(t)

tα/2
>

tα − 1
2 Tαkα − log(T + 1)√

2tα/2

}

≤ P

{
∃t ∈ [kT, (k + 1)T] :

Bα(t)

tα/2
> (Tk)α/2/3

}
,

which, by the Borell–TIS inequality, is upper-bounded by e−kαTα/19. By the lines above we
obtain that with probability at least 1 −∑k∈Z\{0} e−|k|αTα/19 ≥ 1 − e−Tα/20, for large T ,∫

R\[−T,T]
eZα(t)dμδ ≤

∑
k∈Z\{0}

e− 1
2 Tα |k|α ≤ e−Tα/3.

Putting everything together, we find that for sufficiently large T ,

P

{∫
R\[−T,T]

eZα(t)dμδ > e−Tα/3
}

≤ e−Tα/20. (21)

Next we notice that for T ≥ 1,

P

{∫
[−T,T]

eZα(t)dμδ < e− Tα

4

}
≤ P

{∫
[0,1]

eZα(t)dtμδ < e− Tα

4

}
≤ P

{
supt∈[0,1]Zα(t) < −Tα

4

}
,
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so, by the Borell–TIS inequality, the above is bounded by e− T2α

65 for all sufficiently large T .
This result in combination with (21) gives us P

{
β2 > e−Tα/12

}≤ e−Tα/21 for all sufficiently
large T . Thus, since β2 ∈ [0, 1], from the line above we immediately obtain that

E

{
β4

2

}
≤ C1e−CTα

(22)

for T ≥ 1. By (15) we observe that

P {β1 > 0} ≤ P {∃t /∈ [−T, T] : Zα(t) > 0} ≤ 2p2(T) ≤ e−CTα

.

Next, by Theorem 2, for x ≥ 1 we have

P {β1 > x} ≤ P

{
supt∈δZeZα(t)∫
R

eZα(t)dμδ

> x

}
≤ C1e−C2 log2 x,

and thus E
{
β4

1

}
< C for a positive constant C that does not depend on T . With

AT := {β1(ω) > 0}, by the Hölder inequality, for large T we have

E

{
β2

1

}
=E

{
β2

1 · 1(�T )
}

≤
√
E
{
β4

1

}√
E {1(�T )} ≤ C1e−C2Tα

.

By the line above and (20), (22), and (18), for T ≥ 1 we obtain

E

{
β2
}

≤ C2e−C1Tα

. (23)

Our next aim is to estimate E
{
κp
}
. We have for T ≥ 1 that

E

{
(ξδ

α(T))2p−2
}
=
∫ ∞

0
P

{
ξδ
α(T) > x

1
2p−2

}
dx =

∫ ∞

0
P

{
p1(T, x

1
2p−2 )

}
dx

≤
∫ ∞

0
P

⎧⎨⎩∃t ∈ [0, 1] : Bα(t) >
log x

1
2p−2 − C max(1, Tα−1)√

2

⎫⎬⎭ dx.

By the same arguments as in Equation (19), the last integral above does not exceed
C1emax C2(Tα−1,1), and since Theorem 2 implies that ξδ

α has all finite moments uniformly
bounded for all δ ≥ 0, we obtain for T ≥ 1 that

κp ≤ C1emax C2(Tα−1,1).

Combining the bound above with (23), we have
√

2pE
{
β2
}
E
{
κp
}≤ e−CpTα

for sufficiently
large T , and the claim follows. �

3.4. Proofs of Corollaries 1 and 2

In the following, φ stands for the probability density function of a standard Gaussian random
variable and

v(η) := η exp

(
2

∞∑
k=1

�(
√

ηk/2)

k

)
, η > 0,
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with (recall) � the survival function of a standard Gaussian random variable. Before giving
the proofs we introduce the following auxiliary lemma, whose proof is given in the appendix.

Lemma 8. It holds that for any η > 0,

v′(η) = exp

⎛⎜⎜⎝2
∞∑

k=1

�

(√
ηk
2

)
k

⎞⎟⎟⎠
(

1 −
√

η

2
√

π

∞∑
k=1

e− ηk
4√
k

)
.

Proof of Corollary 1, α = 1. By Proposition 1(i), we find that

A := lim
η→0

H0 −Hη√
η

= lim
η→0

1 − 1/v(η)√
η

.

Since Hη = v(η)−1 → 1 as η → 0 (see, e.g., [23]), we conclude that limη→0 v(η) = 1 and hence
A= limη→0

v(η)−1√
η

. Implementing L’Hôpital’s rule, we obtain by Lemma 8 that

A= lim
η→0

v′(η)

1/(2
√

η)
= 2 lim

η→0

√
η exp

⎛⎜⎜⎝2
∞∑

k=1

�

(√
ηk
2

)
k

⎞⎟⎟⎠
(

1 −
√

η

2
√

π

∞∑
k=1

e− ηk
4√
k

)
.

Note that by the definition of v(η), the observation that limη→0 v(η) = 1 implies

√
η exp

(
2

∞∑
k=1

�

(√
ηk
2

)
k

)
∼ 1√

η
, η → 0,

and hence, with x := √
η/2,

A= lim
x→0

1

x

(
1 − x√

π

∞∑
k=1

e−x2k

√
k

))
= lim

x→0

1

x

(
1 − x√

π
Li 1

2
(e−x2

)
)
,

where Li 1
2

is the polylogarithm function; see, e.g., [9]. As follows from [35, Equation (9.3)],

lim
x→0

1

x

(
1 − x√

π
Li 1

2
(e−x2

)
)

= lim
x→0

1

x

(
1 − x√

π

(
�(1/2)(x2)−1/2 + ζ (1/2) +

∞∑
k=1

ζ (1/2 − k)
(−x2)k

k!
))

= ζ (1/2)√
π

− 1√
π

lim
x→0

( ∞∑
k=1

ζ (1/2 − k)
x2k(−1)k

k!
)

.

Thus, to prove the claim it is enough to show that

lim
x→0

∞∑
k=1

ζ (1/2 − k)
x2k(−1)k

k! = 0. (24)
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By the Riemann functional equation (see [25, Equation (2.3)]) and the observation that ζ (s)
is strictly decreasing for real s > 1, we have for any natural number k that

|ζ (1/2 − k)| ≤ 21/2−kπ−1/2−k�(1/2 + k)ζ (1/2 + k) ≤ 2−k�(k + 1)ζ (3/2) = ζ (3/2)k!
2k

.

Thus, for |x| < 1 we have∣∣∣ ∞∑
k=1

ζ (1/2 − k)
x2k(−1)k

k!
∣∣∣≤ x2

∞∑
k=1

|ζ (1/2 − k)|
k! ≤ x2ζ (3/2)

∞∑
k=1

2−k = ζ (3/2)x2,

and (24) follows, which completes the proof of the first statement.
For the statement (ii), by Proposition 1(ii) we have, as δ → 0,

H2 −Hδ
2 = 1√

π
− 2

δ

(
�(

δ√
2

) − 1

2

)
= 1√

π

(
1 −

√
2

δ

∫ δ/
√

2

0
e−x2/2dx

)

= 1√
π

(
1 −

√
2

δ

∫ δ/
√

2

0

(
1 − x2

2

)
dx + O(δ4)

)
= 1

12
√

π
,

and the claim follows. �

Proof of Corollary 2. Case α = 1. First we show that v(η) is an increasing function for η > 0,
which is equivalent to the fact that v′(η) > 0 for η > 0. In light of Lemma 8 it is sufficient to
show that

√
η

2
√

π

∞∑
k=1

e− ηk
4√
k

< 1, η > 0.

We have

√
η

2
√

π

∞∑
k=1

e− ηk
4√
k

<
1√
π

√
η

4

∫ ∞

0
e− ηz

4 z−1/2dz = 1√
π

∫ ∞

0
e− ηz

4 (
ηz

4
)−1/2d(

ηz

4
)

= 1√
π

�(1/2) = 1,

and hence Hη
1 = 1/v(η) is decreasing for η > 0. Since, by the classical definition, H0

1 >Hη
1 for

any η > 0, we obtain the claim.
Case α = 2. By Proposition 1(ii) we have

Hδ
2 = 2

δ

(
�(δ/

√
2) − 1

2

)
= 2

δ
√

2π

∫ δ/
√

2

0
e−x2/2dx = 1

η
√

π

∫ η

0
e−x2/2dx,

where η = δ/
√

2. The derivative of the last integral above with respect to η equals

1√
π

(
− 1

η2

∫ η

0
e−x2/2dx + 1

η
e−η2/2

)
= 1√

πη2

(∫ η

0
(e−η2/2 − e−x2/2)dx

)
< 0,

and the claim follows. �
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Appendix

Proof of Equation (6). Let t, s ∈R be fixed, and let

c(δ; t, s) := cov

(
Bα(t + δ · sgn(t))

|t + δ · sgn(t)|α/2
,

Bα(s + δ · sgn(s))

|s + δ · sgn(s)|α/2

)
.

We will show that δ �→ c(δ; t, s) is a nondecreasing function, which will conclude the proof.
We have

c(δ; t, s) = |t + δ · sgn(t)|α + |s + δ · sgn(s)|α − |t − s + δ · (sgn(t) − sgn(s))|α
2|s + δ · sgn(s)|α/2 · |t + δ · sgn(t)|α/2

.

We consider two cases: (i) t, s > 0, and (ii) s < 0 < t. Consider case (i) first. Without loss of
generality we assume that t ≥ s; then

c(δ; t, s) = (t + δ)α + (s + δ)α − (t − s)α

2((s + δ)(t + δ))α/2
.

It suffices to show that the first derivative of δ �→ c(δ; t, s) is nonnegative. We have

∂

∂δ
c(δ, t, s) = α(1 − x)(t + δ)α/2/4

(s + δ)1+α/2
·
(

(1 − x)α−1(1 + x) − xα − 1)

)
,

where x := s+δ
t+δ

∈ (0, 1]. The derivative above is nonnegative if and only if G1(x, α) :=
(1 − x)α−1(1 + x) + xα − 1 ≥ 0 for all x ∈ (0, 1]. It is easy to see that, for any fixed x ∈ (0, 1],
α �→ G1(x, α) is a nondecreasing function; this observation combined with the fact that
G(x, 2) = 0 completes the proof of case (i). In case (ii) we need to show that

c(δ; t, −s) = (t + δ)α + (s + δ)α − (t + s + 2δ)α

2((s + δ)(t + δ))α/2

is a nondecreasing function of x for any s, t > 0. Without loss of generality let 0 < s ≤ t. Again,
we take the first derivative of the above and see that

∂

∂δ
c(δ, t, s) = α(1 − x)(t + δ)α/2/4

(s + δ)1+α/2
·
(

(1 − x)(1 + x)α−1 + xα − 1)

)
,

where x := s+δ
t+δ

∈ (0, 1]. The derivative above is nonnegative if and only if G2(x, α) :=
(1 − x)(1 + x)α−1 + xα − 1 ≥ 0. Notice that G2(x, 1) = 0. We will now show that ∂

∂α
G2(x, α) ≤

0 for all α ∈ [0, 1] and x ∈ (0, 1], which will conclude the proof. We have

∂

∂α
G2(x, α) = (1 − x)(1 + x)α−1 log(x + 1) + xα log x

≤ (1 − x)xα−1 log(x + 1) + xα log x

= xα−1((1 − x) log(x + 1) + x log x)

≤ xα−1((1 − x)x + x(x − 1)) = 0,

where in the last line we used the fact that log(1 + x) ≤ x for all x > −1. �
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Proof of Lemma 4. For the lower bound, observe that

q(δ, λ) = P

{√
2Bα(−δ) − δα + λ−1η < 0,

√
2Bα(δ) − δα + λ−1η < 0)

}
≥ P

{√
2Bα(−δ) + λ−1η < 0,

√
2Bα(δ) + λ−1η < 0, λ−1η < δα/2

}
≥ P

{√
2Bα(−δ) < −δα/2,

√
2Bα(δ) < −δα/2, λ−1η < δα/2

}
= P

{√
2Bα(−1) > 1,

√
2Bα(1) > 1

}
P

{
λ−1η < δα/2

}
= P

{√
2Bα(−1) > 1,

√
2Bα(1) > 1

}
·
(

1 − exp
{
−λδα/2

})
,

which behaves like λδα/2
P

{√
2Bα(−1) > 1,

√
2Bα(1) > 1

}
as δ ↓ 0. For the upper bound,

observe that

q(δ, λ) ≤ P

{
Zα(δ) + λ−1η < 0

}
= P

{
δα/2

√
2Bα(1) − δα + λ−1η < 0

}
=
∫ ∞

0
�
(

δα−z√
2δα/2

)
λe−λzdz ≤ √

2δα/2λ

∫ ∞

0
�
(

δα/2√
2

− z
)

dz

≤ √
2δα/2λ

(
δα/2√

2
+
∫ ∞

0
�(z)dz

)
= δα/2λ

(
δα/2 + E|N (0, 1)|√

2

)
,

where (recall) �(·), �(·) are the CDF and complementary CDF, respectively, of the standard
normal distribution. This concludes the proof. �

Proof of Lemma 5. Part (i) follows directly from the definition. For part (ii),
for x ≤ 0 we have

g−(x; δ, λ) = q(δ, λ)−1
∫ ∞

0
f (x − 12z; δ) · λe−λzdz

=
∫ ∞

0

q(δ, λ)−1

2π |�|δα
exp

{
− (x + 12(δα − z))��−1(x + 12(δα − z))

2δα

}
· λe−λzdz

=
∫ ∞

0

λq(δ, λ)−1

2π |�|δα
exp

{
−a(x) + 2b(x)(δα − z) + c(δ2α − 2δαz + z2) + 2λδαz

2δα

}
dz

= q(δ, λ)−1f (x; δ)
∫ ∞

0
λ exp

{
−cz2 + 2z((λ − c)δα − b(x))

2δα

}
dz.

For part (iii), we have �−1 = (2α(4 − 2α)
)−1 ·

(
2 2α−2

2α−2 2

)
; thus �−112 ≥ 0 element-wise.

It then follows that b(x) ≤ 0 for all x ≤ 0. Since g− is nonzero only on x ≤ 0, this yields the
following upper bound:

g−(x; δ, λ) ≤ q(δ, λ)−1f (x; δ)
∫ ∞

0
λ exp

{
−cz2 + 2z(λ − c)δα

2δα

}
dz.
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Now, after applying the substitution z := δα/2z, we find that for any ε > 0 and all δ small
enough,∫ ∞

0
λ exp

{
−cz2 + 2z(λ − c)δα

2δα

}
dz =

∫ ∞

0
λδα/2 exp

{
−cz2 + 2δα/2z(λ − c)

2

}
dz

<
λ
√

π√
2c

((1 + ε) · δα/2.

Hence, using part (i) and substituting c = 2/(4 − 2α) as in Equation (11), we obtain

g−(x; δ, λ) ≤ 1
2λ
√

π (4 − 2α)(1 + ε) · δα/2q(δ, λ)−1p(δ)f −(x; δ) (25)

for all δ > 0 sufficiently small. The proof is concluded by noting that p(δ) →
P {Bα(−1) < 0, Bα(1) < 0} > 0 and δα/2q(δ, λ)−1 = O(1), by Lemma 4. �

Proof of Lemma 6. After some algebraic transformations, from (12) we find that

c−(k) + c+(k) = 2 + 2|k|α − (|k| − 1)α − (|k| + 1)α

4 − 2α
, k ∈Z \ {0}.

Let f (x) = 2xα − (x − 1)α − (x + 1)α . For x > 1 we have

f ′(x) = αxα−1
(

2 − (1 − 1/x)α−1 − (1 + 1/x)α−1
)

= αxα−1

[
2 −

∞∑
n=0

(−1)n (α − 1) · · · (α − n)

n! x−n −
∞∑

n=0

(α − 1) · · · (α − n)

n! x−n

]

= αxα−3(α − 1)(2 − α)

[
1

2! +
∞∑

n=1

(α − 3) · · · (α − 2(n + 1))

(2(n + 1))! x−2n

]
.

We see that each of the terms in the sum above is positive, so sgn(f ′(x)) = sgn(α − 1). Thus,
f ’(x) is negative for α ∈ (0, 1) and positive for α ∈ (1, 2). Finally, since

lim
x→∞

2 + 2xα − (x − 1)α − (x + 1)α

4 − 2α
= 2

4 − 2α
= (2 − 2α−1)−1

and c−(1) + c+(1) = 1, the claim follows. �

Proof of Lemma 8. It is sufficient to show that for any η > 0,

∂

∂η

⎛⎜⎜⎝ ∞∑
k=1

�

(√
ηk
2

)
k

⎞⎟⎟⎠=
∞∑

k=1

∂

∂η

⎛⎜⎜⎝�

(√
ηk
2

)
k

⎞⎟⎟⎠ .

Take a, b > 0 such that η ∈ [a, b], f (η) =∑∞
k=1 (�(

√
ηk/2)/k) and fn(η) =∑n

k=1 (�(
√

ηk/2)/k), n ∈N. According to [30, paragraph 3.1, p. 385], to claim the line
above it is enough to show that (1) there exists η0 ∈ [a, b] such that the sequence {fn(η0)}n∈N
converges to a finite limit, and (2) f ′

n(η), η ∈ [a, b], converge uniformly to some function.
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The first condition holds since �(x) < e−x2/2 for x > 0. For the second condition we need
to prove that, uniformly for all η ∈ [a, b], it holds that

∑∞
k=n+1 f ′

k(η) → 0 as n → ∞. We have

∞∑
k=n+1

f ′
k(η) =

∞∑
k=n+1

φ(
√

ηk/2)

2
√

2kη
=

∞∑
k=n+1

e−ηk/4

4
√

πkη
≤ Ce−C1n → 0, n → ∞,

so the claim holds. �
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