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Hydrodynamic coupling of a cilia–mucus system
in Herschel–Bulkley flows
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The yield stress and shear thinning properties of mucus are identified as critical for ciliary
coordination and mucus transport in human airways. We use here numerical simulations to
explore the hydrodynamic coupling of cilia and mucus with these two properties using the
Herschel–Bulkley model, in a lattice Boltzmann solver for the fluid flow. Three mucus flow
regimes, i.e. a poorly organized regime, a swirly regime, and a fully unidirectional regime,
are observed and analysed by parametric studies. We systematically investigate the effects
of ciliary density, interaction length, Bingham number and flow index on the mucus flow
regime formation. The underlying mechanism of the regime formation is analysed in detail
by examining the variation of two physical quantities (polarization and integral length) and
the evolution of the flow velocity, viscosity and shear-rate fields. Mucus viscosity is found
to be the dominant parameter influencing the regime formation when enhancing the yield
stress and shear thinning properties. The present model is able to reproduce the solid body
rotation observed in experiments (Loiseau et al., Nat. Phys., vol. 16, 2020, pp. 1158–1164).
A more precise prediction can be achieved by incorporating non-Newtonian properties into
the modelling of mucus as proposed by Gsell et al. (Sci. Rep., vol. 10, 2020, 8405).

Key words: pulmonary fluid mechanics

1. Introduction

Mucociliary clearance driven by ciliary beating in the human airways has received much
attention due to its critical role in the capture and clearance of foreign pollutants and
pathogens (Wanner, Salathé & O’Riordan 1996; Grotberg 2021; Sedaghat, Behnia &
Abouali 2023). Human airways are protected by two fluid layers, a periciliary layer
(PCL) covering the epithelial surface and a mucus layer on top of the PCL (Chilvers &
O’Callaghan 2000; Knowles & Boucher 2002; Choudhury et al. 2023). The mucus is often
described as a yield stress and shear thinning fluid (Banerjee, Bellare & Puniyani 2001;
Nordgard & Draget 2011; Chatelin et al. 2017). Cilia are almost immersed in the PCL,
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and interact with the mucus through their tips. The force generated by the cilia propels the
mucus flow, and the mucus in turn affects the orientation of the ciliary beating (Gsell et al.
2020; Loiseau et al. 2020; Pellicciotta et al. 2020). This hydrodynamic coupling between
mucus and millions of microscopic cilia has a major impact on ciliary coordination
(self-organization) and mucus transport. Understanding the hydrodynamic mechanism of
cilia–mucus interaction is desirable for the study of various respiratory diseases caused by
the impairment of mucus transport.

Considerable research effort has been devoted to the ciliary coordination and
cilia-induced flow. For the former, the proposal of a cilia model can be traced back
to an analytical study by Barton & Raynor (1967), where the cilium was simplified as
an oscillating cylinder mounted on a plate. The relationship between the flow rate and
the geometric parameters of the cilium was determined. Since then, many other studies
involving modelling flexible cilia have been reported. Two asymmetric beating phases of
a cilium were identified, i.e. an effective stroke characterized by almost straight cilium to
better drive the mucus, and a recovery stroke characterized by large deformed cilium to
reduce the retarding effect on the mucus (Blake 1972; Xu & Jiang 2019). Cilia in an array
can coordinate with each other to generate metachronal waves instead of repeating two
beating phases synchronously (Hussong, Breugem & Westerweel 2011; Elgeti & Gompper
2013; Meng et al. 2021; Mesdjian et al. 2022; Wang, Tang & Zhang 2022). This usually
depends on the phase difference between adjacent cilia (Chateau et al. 2017; Hall & Clarke
2020), and is related to ciliary flexibility (Kim & Netz 2006) and ciliary density (Chateau
et al. 2018). Various metachronal waves have been observed, such as the antiplectic and
symplectic waves. These two waves move in the opposite and same directions as the
flow, respectively. Cilia beating with an antiplectic wave were found to be more efficient
in transporting and mixing fluid than cilia beating synchronously or with a symplectic
wave. On the other hand, various experimental and numerical studies have investigated the
cilia-induced flow, usually focusing on local flow characteristics and flow rate (Brumley
et al. 2014; Wei et al. 2019, 2021; Boselli et al. 2021; Hu & Meng 2023). Among them,
Brumley et al. (2014) measured the flow around a single cilium and a pair of cilia, and
calculated the instantaneous forces generated by the cilia using a Stokeslet model. They
highlighted the importance of hydrodynamic coupling; a synchronized beating of two cilia
can be realized even when only hydrodynamic interactions exist. Furthermore, Ding et al.
(2014) observed a transport region and a mixing (shear) region above and below the ciliary
tips, respectively. The asymmetric stroke of the cilia and the no-slip epithelial surface
resulted in a shear-like flow field. The enhancement of fluid transport and mixing was
mainly attributed to the increase in the shear rate. Fluid transport was also found to be
continuous even though the epithelial surface was not completely covered by the cilia
(Juan et al. 2020).

A long-range ciliary coordination distinct from metachronal waves has been discovered
(Matsui et al. 1998; Tarran et al. 2005; Shapiro et al. 2014; Khelloufi et al. 2018),
characterized by large-scale mucus swirls accompanied by cilia beating in a circular
pattern. Several experimental studies have shown the existence of hydrodynamic coupling
between the ciliary coordination and the circular mucus flow (Mitchell et al. 2007; Guirao
et al. 2010; Faubel et al. 2016). Recently, Loiseau et al. (2020) and Gsell et al. (2020)
experimentally investigated the hydrodynamic coupling of the cilia–mucus system in
detail, and proposed a two-dimensional model to predict the ciliary coordination and
the Newtonian mucus flow. They demonstrated that the hydrodynamic coupling of cilia
and mucus dominates the long-range coordination. The formation of mucus swirls was
closely related to the density and the interaction length of the cilia. As mentioned above,
mucus is a non-Newtonian fluid with yield stress and shear thinning properties. Some
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researchers have investigated the effect of non-Newtonian properties on mucus transport
(Chatelin & Poncet 2016; Sedaghat, George & Abouali 2021; Sedaghat et al. 2022;
Modaresi 2023; Wang et al. 2023). The present study aims to focus first on the yield
stress and shear thinning properties, although the mucus rheology also exhibits other
properties, e.g. viscoelasticity (Vasquez et al. 2016; Guo & Kanso 2017; Choudhury et al.
2023). Most of the studies employed numerical methods because the non-Newtonian
properties can be well controlled. However, few studies have been reported on the effect
of non-Newtonian properties on long-range ciliary coordination, which warrants a more
detailed investigation.

The objective of the present study is to explore numerically the hydrodynamic coupling
of cilia and mucus with yield stress and shear thinning properties. The mucus flow is
solved by the lattice Boltzmann method. The cilia–mucus interaction is handled by an
alignment rule, and the non-Newtonian fluid is modelled by the Herschel–Bulkley model.
The effects of ciliary density (φ), interaction length (λ), Bingham number (Bn, quantifying
yield stress effect) and flow index (n, quantifying shear thinning effect) on the formation
of the mucus flow (or ciliary beating orientation) regime are examined. Three different
mucus flow regimes are observed: a poorly organized (PO) regime, a swirly (S) regime,
and a fully unidirectional (FU) regime (corresponding to the poorly aligned, swirly and
fully aligned regimes in Gsell et al. 2020). Two physical parameters, i.e. polarization (P)
and integral length (Λ), are used to identify the three regimes. The mechanism of regime
formation caused by the yield stress and shear thinning effects is characterized by the
evolution of the flow velocity, viscosity and shear-rate fields. In addition, a rescaling of λ
is proposed for different Bn and n.

2. Computational model

Mucus flow is almost parallel to the epithelium and uniform along the direction
perpendicular to the epithelium (Gsell et al. 2020). In addition, we concentrate on
long-range fluid flow parallel to the epithelium, whose length scale is much larger
than the typical fluid layer thickness. Therefore, the mucus flow is considered to be
two-dimensional, and a two-dimensional hydrodynamic model is sufficient to describe
the mucus motion. The flow is predicted based on a lattice Boltzmann solver, and the
interaction between the ciliary beating and the mucus motion is handled by an alignment
rule. A visualization of the computational domain for φ = 0.3 is shown in figure 1(a). The
square domain is approximately 160D in both length and height. The cells are discretized
using hexagonal elements, where the ciliated elements (black) are randomly placed during
initialization. A hexagonal element represents a patch containing several ciliated cells with
a common direction of ciliary beating. Approximately 104 elements are contained in the
domain. Here, D represents the side length of the hexagonal elements, and φ = Ac/A
represents the ciliary density, where Ac is the ciliated area, and A is the total area. A closer
visualization of the hexagonal elements and the underlying lattice nodes is shown in
figure 1(b). The computational domain is discretized on a uniform Cartesian grid. The
black and grey dots represent ciliated and non-ciliated nodes, respectively. Note that cilia
are simplified as ciliated nodes. Ciliary beating is modelled by a force that is constant
in magnitude, whose orientation can change over time (Gsell et al. 2020). The initial
condition is u = 0, with random orientation of ciliary forces and random placement of
ciliated elements. Periodic boundary conditions are specified at the domain boundaries.

In the lattice Boltzmann method (Krúger et al. 2017; Ma et al. 2020; Lu et al. 2022), the
particle distribution function f (x, ξ , t) is used to describe the mucus motion, representing
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Figure 1. (a) Visualization of the computational domain (ciliary density φ = 0.3). Cells are discretized
using hexagonal elements, with ciliated elements (black) randomly placed during initialization. (b) Closer
visualization of the hexagonal elements and the underlying lattice nodes. The black and grey dots represent
ciliated and non-ciliated nodes, respectively.

the density of fluid particles moving with velocity ξ at location x and time t. The dynamics
of f (x, ξ , t) is governed by the Boltzmann equation:

∂f
∂t

+ ξ · ∇f = Γ ( f ), (2.1)

where Γ is the collision operator. Equation (2.1) is equivalent to the Navier–Stokes
equations at the macroscopic level (Krúger et al. 2017). The lattice Boltzmann equation
is obtained by discretizing (2.1) in velocity space, physical space and time. A set of
velocity vectors {el, l = 0, . . . , Q − 1} is used to discretize the velocity space, where Q
is the number of discrete velocities. The D2Q9 scheme is employed as the discretization
model to discretize the velocity space by nine velocities:

el =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0), l = 0,

c
(

cos
(

π(l − 1)

2

)
, sin

(
π(l − 1)

2

))
, l ∈ [1, 4],

√
2c
(

cos
(

π(2l − 9)

4

)
, sin

(
π(2l − 9)

4

))
, l ∈ [5, 8],

(2.2)

where c = �x/�t = �y/�t is the lattice velocity. As mentioned before, the
computational domain is discretized on a uniform Cartesian grid, i.e. �h = �x = �y and
�h = �t = D/5 = 1. The lattice Boltzmann equation is written as follows, normalizing
all the quantities by c and �t, and introducing an external body force:

fl(x + el, t + 1) − fl(x, t) = Γl(x, t) + S∗
l (x, t), (2.3)

where S∗
l (x, t) is the external body force term. The left- and right-hand sides of (2.3) are

the streaming and collision steps, respectively. These two steps can be treated separately
due to the explicit (2.3). A two-relaxation-time collision operator is used in the present
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study:

Γl = − 1
τ+ ( f +

l −f eq+
l ) − 1

τ− ( f −
l −f eq−

l ), (2.4)

where τ+ and τ− are the symmetric and antisymmetric relaxation times, and f +
l and f −

l are
the symmetric and antisymmetric parts of fl. The kinematic fluid viscosity ν = c2

s (τ
+ − 1

2 )

is determined by τ+, where cs = 1/
√

3 is the lattice sound speed, and τ− is determined
by the parameter Λτ = (τ+ − 0.5)(τ− − 0.5), where Λτ is kept constant to ensure the
viscosity independence (Gsell, D’Ortona & Favier 2021), set to 1/4 according to the
previous study (Ginzburg, d’Humières & Kuzmin 2010). Also, f eq

l is the equilibrium
particle distribution function, expressed as

f eq
l (x, t) = wlρ

[
1 + el · u

c2
s

+ (el · u)2

2c4
s

− u2

2c2
s

]
, (2.5)

where wl are the lattice weights, and ρ is the fluid density. In the present D2Q9 scheme,
w0 = 4/9, wl = 1/9 for l = 1, . . . , 4, and wl = 1/36 for l = 5, . . . , 8 (Qian, d’Humières
& Lallemand 1992). The symmetric and antisymmetric parts of fl and f eq

l are expressed as

⎧⎪⎪⎨
⎪⎪⎩

f +
l = fl + fl̄

2
, f −

l = fl − fl̄
2

,

f eq+
l =

f eq
l + f eq

l̄
2

, f eq−
l =

f eq
l − f eq

l̄
2

,

(2.6)

where the index l̄ is defined such that cl̄ = −cl . The external body force term S∗
l is

expressed as

S∗
l =

(
1 − 1

2τ+

)
S+

l +
(

1 − 1
2τ−

)
S−

l , (2.7)

where S+
l = (Sl + Sl̄)/2 and S−

l = (Sl − Sl̄)/2 are the symmetric and antisymmetric parts
of Sl, which is given as

Sl = wl

[
el − u

c2
s

+ (el · u)el

c4
s

]
F . (2.8)

The macroscopic quantities ρ and u are moments of the particle functions in the velocity
space (Krúger et al. 2017), where ρ is expressed as

ρ =
8∑

l=0

fl. (2.9)

The flow momentum corrected by the external forcing is

ρu =
8∑

l=0

flel + 1
2

F , (2.10)

where the forcing F is the sum of the force F c exerted by the cilia and the frictional force
F ν generated by the PCL. We impose F c on the ciliated nodes only. In the present study,
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we are interested in the long-term dynamics of the flow, i.e. in time scales that are much
larger than the ciliary beating period. Therefore, time-dependent beating is simplified to
a point force. Its magnitude is the same for all ciliated nodes and is constant over time,
while its orientation is determined by the alignment rule during the simulation. In addition,
F c is assumed to be independent of mucus properties, e.g. viscosity of the mucus. The
orientation of F c is the same for the ciliated nodes in the same hexagonal element. In
the present study, the magnitude of F c is set to be the same as that of F ν during the
initialization. The frictional force is proportional to the fluid velocity (F ν = −κu), and
the PCL is assumed to be a Newtonian fluid, where κ is the PCL friction coefficient. The
frictional force is treated implicitly, and (2.10) becomes (Gsell et al. 2020)

ρu =

8∑
l=0

flel + 1
2

F c

1 + κ/2ρ
. (2.11)

Recall that the orientation θ
j

c of F c on the jth ciliated cell is determined by the alignment
rule, which was inspired by certain experimental observations. The daily variations of the
flow pattern of cilia-driven cerebrospinal fluid have been observed in in vivo mouse brain
ventricles (Faubel et al. 2016). In addition, Guirao et al. (2010) showed that ciliary-beat
orientations on cell cultures issued from the subventrical zone of newborn mice could
be changed drastically by applying an external flow. The directional collective order of
ciliary beats on the multiciliated skin cells of the Xenopus embryo could also be refined
by applying an external flow to skin explants (Mitchell et al. 2007). Recently, it has been
found that the directions of ciliary beating in human airways tend to align progressively
along mucus streamlines (Gsell et al. 2020; Loiseau et al. 2020). A maximum angle
reorientation of 35◦–40◦ was shown. The direction of ciliary beating is stable over time and
does not show reorientation when mucus was washed out. The reorientation of the cilia
is not related to the motility of the cells because the tissue is jammed and the turnover
of epithelial cells is very slow. These phenomena strongly suggest the existence of a
coupling between hydrodynamics and long-range ciliary-beat orientation, inspiring the
present alignment rule. Here, �θ = θ

j
f − θ

j
c represents the angle difference between the

local flow (θ j
f ) and the ciliary beating (θ j

c ). The flow velocity is averaged over the jth
ciliated cell. The alignment rule is expressed as

θ j
c (t + �t) =

⎧⎪⎨
⎪⎩

θ
j

c (t) + Ω
�θ j(t)
|�θ j(t)| �t, �θ j(t) > θ0,

θ
j

c (t), �θ j(t) ≤ θ0,

(2.12)

where Ω is a fixed angular velocity used to drive the reorientation of the ciliary beating,
which does not affect the final steady solution (Gsell et al. 2020). Its value is Ω = U0/D,
where U0 = 0.01 is the reference velocity (in lattice units). Here, θ0 is the angle threshold
set to allow the steady solutions, i.e. θ j

c (t + �t) = θ
j

c (t) when �θ j(t) ≤ θ0. The value of θ0
is very small (θ0 = 2Ω �t = 0.004) to ensure a negligible influence on the final solutions.
In summary, a two-way hydrodynamic coupling between the ciliary-beat orientation and
the mucus motion is realized by the external forcing scheme and the alignment rule.
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The Herschel–Bulkley model is employed to simulate non-Newtonian flows. The
dynamic fluid viscosity μ is shear-dependent and is expressed as

μ = σ0

γ̇
+ Kγ̇ n−1, (2.13)

where σ0 is the yield stress, K is the flow consistency, and n is the flow index. When
n < 1, the viscosity decreases with increasing shear rate (shear thinning behaviour). When
n > 1, the viscosity increases with increasing shear rate (shear thickening behaviour). In
the present study, only the shear thinning behaviour is investigated. Here, γ̇ is the local
shear-rate magnitude, which is expressed as

γ̇ =
√

2(S2
11 + 2S2

12 + S2
22), (2.14)

where Sαβ is the local shear-rate tensor, expressed as

Sαβ = − 1
2ρc2

s τ
+

( 8∑
l=0

( fl − f eq
l )elαelβ + 1

2
(uαFβ + uβFα)

)
, (2.15)

where τ+ is time-dependent in non-Newtonian simulations. According to
ν = c2

s (τ
+ − 1/2) and (2.13), τ+ is updated by

τ+=σ0γ̇
−1 + Kγ̇ n−1

ρc2
s

+ 1
2
. (2.16)

To avoid excessive viscosities during simulations, and to improve the numerical stability,
the Herschel–Bulkley law is truncated. The maximum value of relaxation time τ+

max is 50,
and the viscosity ratio μmax/μmin is 1000. A minimum γ̇ is set as 10−14 to avoid zero γ̇ in
the simulation. As this threshold may seem arbitrary, a larger threshold (10−5) was tested.
The contours of viscosity and shear rate are very similar to those when the threshold is
10−14, and the conclusions are unchanged. The viscosity will diverge as the shear rate
approaches zero. However, this is reasonable since the mucus is a yield stress fluid. The
reader is referred to Gsell et al. (2021) and Galko et al. (2022) for more details on the
Herschel–Bulkley model.

The present model relies on five non-dimensional physical parameters, i.e. the ciliary
density φ, the interaction length λ, the Reynolds number Re = ρU0D/μ0 (where μ0 is the
reference viscosity), the Bingham number Bn, and the flow index n. Here, λ is defined as

λ =
√

μ0/κ

D
. (2.17)

A high mucus viscosity favours the diffusion of momentum caused by the ciliary beating
while a high PCL friction coefficient κ prevents it. Thus λ represents the typical range of
influence of the ciliated cells (Gsell et al. 2020). The flow of mucus is caused by the
momentum transferred from the tip of the cilia. The momentum diffuses over a larger
fluid region when λ is high. As mentioned previously, mucus flow is almost uniform and
parallel to the epithelium. It can be assumed reasonably that no shear exists in the vertical
direction for the present model. A reference shear rate can be defined as γ̇0 = U0/D. The
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Ciliary density (φ) 0.7–0.8 (Staudt et al. 2014)
Dynamic viscosity of the PCL (μp) Pa s 10−3 (Button et al. 2012)
Thickness of the PCL (δp) m 10−5 (Button et al. 2012)
Side length of a ciliated element (D) m 2 × 10−5 (Loiseau et al. 2020)
Viscosity of the healthy mucus (μ) Pa s 5 × 10−3–5 × 10−2 (Loiseau et al. 2020)
Yield stress of the mucus (σ0) Pa 0.05 (Jory et al. 2022)
Flow index of the mucus (n) 0.15 (Jory et al. 2022)
Flow consistency of the mucus (K) 0.28 (Jory et al. 2022)
Normal velocity of the mucus (U0) m s−1 1.783 × 10−4 (Morgan et al. 2004)

Table 1. Experimental measurements of physical properties.

reference viscosity is μ0 = Kγ̇ n−1
0 . The general definition of Re becomes (Gsell et al.

2021)

Re = ρU2−n
0 Dn

K
, (2.18)

where Re = 0.1 is fixed to prevent inertial effects. Here, K can be obtained from (2.18),
and Bn is defined as

Bn = σ0

K

(
D
U0

)n

, (2.19)

where the value of σ0 is determined by Bn and can be obtained from (2.19).
The ranges of φ, λ, Bn and n are physiological and inspired by experimental

measurements. Table 1 shows the experimental measurements of physical properties
of the mucus. During the ciliogenesis in experiments (Loiseau et al. 2020), ciliary
density increases from 0 to a value approximately 0.7–0.8 (normal ciliary density
in the airway (Staudt et al. 2014)). In the present study, φ varies in the range
0.1 ≤ φ ≤ 0.7. From dimensional analysis, the PCL friction coefficient is κ ≈ μp/δ

2
p ,

where μp and δp are the dynamic viscosity and thickness of the PCL; μp ≈ 10−3 Pa s
and δp ≈ 10−5 m are obtained from Button et al. (2012). Also, D ≈ 2 × 10−5 m and
μ ≈ 5 × 10−3–5 × 10−2 Pa s (the viscosity of the healthy mucus) are obtained from
Loiseau et al. (2020). Therefore, λ varies approximately in the range 1 ≤ λ ≤ 4. Yield
stress σ0 ≈ 0.05 Pa, averaged flow index n ≈ 0.15 and flow consistency K ≈ 0.28 are
obtained and derived from Jory et al. (2022). The normal mucus velocity U0 is
approximately 1.783 × 10−4 m s−1 (Morgan et al. 2004). Therefore, Bn is approximately
0.128, which is very close to the critical Bn (0.15) in the present study for the transition to
the FU regime when φ = 0.7. In the present study, Bn varies in the range 0 ≤ Bn ≤ 0.3,
enabling the observation of the transition to the FU regime for a very low ciliary density
(φ = 0.1). In the present study, n varies in the range 0.3 ≤ n ≤ 1, which is sufficient to
observe the transition to the FU regime for a very low ciliary density. Details of the regime
transition will be discussed latter. Values Bn = 0 and n = 1 represent a Newtonian case.

Approximately 4500 simulations were performed to produce the results. The general
procedure of the present numerical algorithm for the simulation of a coupled cilia–mucus
system in Herschel–Bulkley flows can be summarized as follows (where the time march
loop is performed until the steady solution is obtained). (i) At the nth time step, calculate
the angular difference �θ j and update the orientation θ

j
c of F c by (2.12). (ii) Perform the
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collision step on the right-hand side of (2.3). Update the value of the relaxation time τ+
by (2.16). (iii) Perform the streaming step on the left- side of (2.3) to obtain the new fl. (iv)
Calculate the new mucus density ρ and mucus velocity u by (2.9) and (2.11). Update the
value of the frictional force F ν .

3. Results and discussion

3.1. Mucus flow regimes of the cilia–mucus system
In the present study, three distinct mucus flow regimes are observed: a PO regime, an S
regime and an FU regime. Figure 2(a) shows the contours of non-dimensional vorticity
(ωz = (D/U0) |∇ × u|) of the three regimes for different λ and φ for a Newtonian fluid
(Bn = 0, n = 1), where vectors indicate the direction of ciliary beating (local flow).
The results in figures 2(a) and 4 obtained by the present model are almost the same as
those obtained by Gsell et al. (2020). The PO regime is characterized by short-range
coordination between adjacent cilia without the appearance of large-scale flow structures.
The S regime is characterized by long-range coordination of cilia with the formation
of obvious mucus swirls. In addition, the FU regime is characterized by long-range
coordination of cilia with almost unidirectional flows. These three regimes have been
observed in experiments of Loiseau et al. (2020). The PO regime corresponds to the
pattern in their figures 1(c–e). The S regime corresponds to the pattern characterized by a
small swirl (their figures 1f –h). The FU regime corresponds to the pattern characterized
by a large swirl that occupies the entire culture chamber (their figure 1i), which is caused
by the closed culture chamber. The appearance of the unidirectional flow in the present
FU regime is attributed mainly to the periodic boundary condition.

To examine the formation of the three regimes for different λ and φ (Bn = 0, n = 1), the
sequential processes of regime evolution from the initial state to the final steady state are
plotted in figure 3. The contours are coloured by the non-dimensional flow velocity U/U0.
Figure 3(a) shows the formation of the PO regime when λ and φ are very small (λ = 1
and φ = 0.1). At instant a1, the domain is initialized with zero flow velocity, random
ciliary-beat orientation and random cilia distribution. Mucus flow around the cilia is driven
by the ciliary beating, visible at instant a2. The momentum caused by a ciliated element
decays rapidly in space due to the small λ. The ciliated elements are scattered with large
distances due to the small φ. Accordingly, the mucus flow caused by different cilia can
interact with each other only if they are adjacent, resulting in several local flows without a
typical flow structure at instant a3. The flow velocity in the PO regime is very low.

The S regime is formed when φ is large, as shown in figure 3(b). Mucus flows induced
by ciliated elements have the same extension (λ = 1). However, as the ciliary density is
higher, the coordination with neighbouring ciliated elements is improved, and the flow is
organized over a greater distance. Several high-velocity regions are observed at instant b2
due to the constructive interaction between the adjacent mucus flows. A uniform flow is not
formed due to the low λ. At instant b3, swirls appear after a longer period of coordination
than the local flows in the PO regime.

The FU regime is obtained when λ is increased, as shown in figure 3(c). The momentum
generated by a ciliated element can propagate over a much greater distance. First, at
instant c2, swirls are formed quickly due to the rapidly diffused mucus flows. Beyond
c2, the further diffused mucus flows influence the ciliary beating over a larger area. After
a long period of coordination, the cilia are almost aligned in the same direction, inducing
a unidirectional and uniform flow at instant c3.
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λ = 1.5, φ = 0.2

λ = 1.5, φ = 0.2

λ = 2, φ = 0.5

λ = 2, φ = 0.5

λ = 4, φ = 0.5

λ = 4, φ = 0.5

PO S FU

FUFUS

0.3

ωz

0

–0.3

(b)

(a)

Figure 2. Final steady contours of non-dimensional vorticity ωz (vectors indicate ciliary beating direction,
and the colour bar indicates the magnitude of the vorticity) for (a) Newtonian fluid (Bingham number Bn = 0,
flow index n = 1), and (b) non-Newtonian fluid (Bn = 0.05, n = 0.9). Three different mucus flow regimes are
shown: PO regime, S regime and FU regime. Part of the computational domain is shown, and the scale bars
correspond to 10D.

3.2. Effects of ciliary density and interaction length
To quantitatively identify the PO, S and FU regimes in a wide range of parameters, two
physical quantities are employed according to the characteristics of the three regimes. The
first quantity is the polarization P used to identify the FU regimes, which is the spatial
averaging of the unitary velocity vectors, expressed as

P =
∣∣∣∣∣
(

u
|u|
)∣∣∣∣∣ , (3.1)

where P ≈ 1 represents a unidirectional flow. In the present study, P ≥ 0.9 indicates the
FU regime. This critical value is selected based on the observation that P increases sharply
from a value below 0.6 to a value above 0.9 when the FU regime appears. This will be
discussed in more detail later. The second quantity is the non-dimensional integral length
Λ normalized by the dimensional interaction length

√
μ/κ:

Λ =
√

κ

μ

∫ L/2

0

Rx(τ ) + Ry(τ )

2
dτ, (3.2)
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a1: t = 0

a2: t = 2T b2: t = 6T c2: t = 8T

c3: t = 400T

U/U0

b3: t = 70Ta3: t = 40T

b1: t = 0 c1: t = 0

0.8

0

(b)(a) (c)

Figure 3. The sequential processes of evolution of the different mucus flow regimes (Bn = 0, n = 1, T =
250 �t): (a) PO regime for λ = 1 (interaction length) and φ = 0.1; (b) S regime for λ = 1 and φ = 0.5; and (c)
FU regime for λ = 4 and φ = 0.5. Instantaneous contours of the non-dimensional velocity U/U0 are shown.
Part of the computational domain is shown, and the scale bars correspond to 10D.

where L is the length of the computational domain, and Rx(τ ) and Ry(τ ) are the x and y
components of the autocorrelation functions of the vorticity, respectively:

Rx(τ ) = ωz(x, y) ωz(x + τ, y)

ω2
z

, (3.3)

Ry(τ ) = ωz(x, y) ωz(x, y + τ)

ω2
z

. (3.4)

For τ > L/2, the values of Rx(τ ) and Ry(τ ) are very small, except when τ approaches
L because of the periodic boundary condition. Therefore, the domain of integration is
τ ∈ [0, L/2] in (3.2). Here, Λ represents the length scale of flow structures. In particular,
the length scale of flow structures is equivalent to the range of influence of the ciliated
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4

0 1 1 2 11/3
f

φφ φ

P̄ Λ̄

3

2

1

4

3

2

1

4

3

2

1

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1

PO S

FU

0.3 0.5 0.7

λ

(b)(a) (c)

Figure 4. Mucus flow regime diagram depending on λ and φ for Bn = 0 and n = 1. Symbols are coloured
using the values of (a) averaged polarization P̄, (b) averaged integral length Λ̄, and (c) occurrence frequency
f of the mucus flow regime. The triangle, circle and square symbols correspond to PO, S and FU regimes,
respectively.

cells when Λ = 1. Small and large Λ indicate the PO and S regimes, respectively. The
increase in Λ is relatively smooth as the PO regime transitions to the S regime. The critical
value Λ = 1.5 is selected based on the observation of the flow regime from numerous
simulations. In summary, P < 0.9 and Λ < 1.5 indicate the PO regime, P < 0.9 and
Λ ≥ 1.5 indicate the S regime, and P ≥ 0.9 indicates the FU regime.

For comparison, we first examine the effects of λ and φ on the formation of the
mucus flow regime in the Newtonian case (Bn = 0, n = 1). Figure 4 shows a phase
diagram in the ranges 1 ≤ λ ≤ 4 and 0.1 ≤ φ ≤ 0.7. Random initialization can result in
different flow regimes under certain conditions. Therefore, for each case in the diagram,
20 randomly initialized simulations were performed. Here, f is the occurrence frequency
of the most frequent flow regime over a set of 20 simulations, and P̄ and Λ̄ are the
averaged polarization and integral length calculated by the simulations converged to the
most frequent flow regime. In figure 4(a), symbols are coloured by the value of P̄, which
increases with increasing λ and φ. In figure 4(b), symbols are coloured by the value of Λ̄.
For P̄ ≥ 0.9 (FU regime), Λ̄ is set to be 1 and has no physical meaning. We do not discuss
the length scale of the flow structures for the FU regime because it is theoretically infinite;
Λ̄ increases with φ. The effect of λ is less clear, but a small tendency of increasing Λ̄

with decreasing λ may be observed. In figure 4(c), symbols are coloured by the value of f .
The diagram is divided into three regions by dashed lines according to the maps of P̄ and
Λ̄. The PO regime appears in the region with low λ and φ. The S regime appears in the
region with low λ and high φ. The FU regime appears in the region with high λ and high
φ. As mentioned for figure 3, these are determined mainly by the range of influence of the
ciliated cells and the interaction of the mucus flows caused by adjacent cilia; f is relatively
small for the points near the regime boundary.

3.3. Effects of yield stress and shear thinning properties
For studying the effects of non-Newtonian properties on the flow regime formation, a
phase diagram in the ranges 1 ≤ λ ≤ 4 and 0.1 ≤ φ ≤ 0.7 is shown in figure 5. The
simulated mucus is shear thinning, n = 0.9, and has a yield stress Bn = 0.05. The regions
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4

3

2

1

4

3

2

1

4

3

2

1

λ

φφ φ
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5

FU

PO S

0.7

0 1 1 2 11/3
fP̄ Λ̄

(b)(a) (c)

Figure 5. Mucus flow regime diagram depending on λ and φ for Bn = 0.05 and n = 0.9. Symbols are coloured
using the values of (a) P̄, (b) Λ̄, and (c) f . The red and black dashed lines represent the boundaries of the
non-Newtonian cases (Bn = 0.05, n = 0.9) and the Newtonian cases (Bn = 0, n = 1), respectively.

with high P̄ and low Λ̄ are significantly enlarged compared to those for Bn = 0 and
n = 1, as shown in figures 5(a,b). Figure 5(c) clearly shows the displacement of the
regime boundary, where the red and black dashed lines represent the boundaries of the
non-Newtonian cases (Bn = 0.05, n = 0.9) and the Newtonian cases (Bn = 0, n = 1),
respectively. In general, the regions of the PO and S regimes are reduced, and the region
of the FU regime is increased. The PO regime appears only when λ and φ are very low.
The S regime is obtained at lower λ, while it appears in a wider range of φ. A lower λ
allows the activation of the FU regime. The boundary between the PO and FU regimes is
significantly changed. These indicate that the flow regimes of all cases can be converted
to the FU regime by varying Bn and n. The point with φ = 0.1 and λ = 1 would be the
last case to complete this conversion. The flow regime of three non-Newtonian cases is
shown in figure 2(b), which shows a significant regime transition when compared with the
Newtonian cases in figure 2(a).

Here, we further examine the effects of Bn and n on the flow regime formation in detail.
First, n = 1 is fixed to explore the effect of Bn independently, i.e. a Herschel–Bulkley
fluid reduces to a Bingham fluid. In figure 6(a), the value of P̄ is presented with respect
to the Bingham number Bn. Recall that to obtain the value of P̄, only the simulations in
the most frequent regime have been used. Thus each curve represents two sets of data
that can be considered independently, and the sharp transition indicates the critical value
of Bn that induces a transition to the FU regime. In the PO & S regime, P̄ increases
monotonously with Bn, except for the case φ = 0.7, where the variation is less clear. After
the transition to the FU regime, P̄ remains almost constant. In general, a larger φ leads to a
larger P̄, confirming the results in figures 4(a) and 5(a). The critical Bn increases and then
decreases with increasing φ, resulting in a maximum critical Bn at φ = 0.3. In figure 6(b),
the variation of Λ̄ as a function of Bn is shown. The FU regime is not included due to its
theoretically infinite length scale of the flow structures. Λ̄ increases with increasing Bn for
different φ. A larger φ leads to a larger Λ̄, confirming the results in figures 4(b) and 5(b).
For φ = 0.1, a transition from the PO regime to the S regime is observed by increasing
Bn. For φ > 0.1, only the S regime is obtained. The above results suggest that the range
of influence of the ciliated cells is increased by increasing Bn.

Figure 7 shows the variations of P̄ and Λ̄ as functions of n for different φ, with λ = 1
and Bn = 0 fixed. The sharp increase of P̄ in figure 7(a) indicates the critical value of n
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Figure 6. Values of (a) P̄ and (b) Λ̄ as functions of Bn, for different φ (λ = 1, n = 1).

0.9
4
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2

1
PO

PO & S

FU

S

0.6
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0

(a) (b)
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n
0.4 0.6 0.8 1.0

n

φ = 0.1
φ = 0.5

φ = 0.3
φ = 0.7

P̄ Λ̄

Figure 7. Values of (a) P̄ and (b) Λ̄ as functions of n, for different φ (λ = 1, Bn = 0).

that leads to a transition to the FU regime. The critical n increases with increasing φ. In
contrast to the effect of Bn, P̄ increases monotonously with decreasing n in the PO & S
regime. After the transition to the FU regime, P̄ remains almost constant. In figure 7(b),
the decrease of n can also lead to a transition from the PO regime to the S regime when
the ciliary density is low (φ = 0.1). The above results suggest that the range of influence
of the ciliated cells is increased by decreasing n.

To visualize the transition from the PO regime to the S regime by increasing Bn, we
further examine the instantaneous contours of the flow velocity U/U0, the dynamic fluid
viscosity μ, and the local shear-rate magnitude γ̇ , by increasing Bn from 0 to 0.15 in
figure 8 (λ = 1, φ = 0.1, n = 1). Note that the steady solution for Bn = 0 (instant a1)
is used as the initial condition for the simulation with Bn = 0.15. A steady solution for
Bn = 0.15 is obtained at instant a2. In figure 8(a), swirls are more pronounced at instant
a2, corresponding to the increase in Λ from 6.36 to 10.99. This is caused mainly by
the evolution of the μ and γ̇ distributions in figures 8(b,c). At instant a1, μ is close to
its reference value, and γ̇ caused by the ciliary beating is high. At instant a2, μ in the
region with low shear rate significantly increases with increasing Bn (yield stress). This
can be verified by checking (2.13). The momentum diffuses farther when the viscosity
is high. Accordingly, the mucus flow caused by a ciliated element affects the ciliary-beat
orientation further away, which favours the coordination of the cilia, thereby resulting
in a transition from the PO regime to the S regime. A reorientation of the cilia can be
observed clearly in figure 8(a). However, the high viscosity makes the mucus difficult to
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a1: t = 0

a2: t = 20T

U/U0

0.8

0

16.5

0 0

2 × 10–4

(b)(a) (c)

μ γ
.

Figure 8. The sequential process of a transition from the PO regime (instant a1, Bn = 0) to the S regime
(instant a2, Bn = 0.15) by increasing Bn. The steady solution for Bn = 0 (instant a1) is used as the initial
condition for the simulation with Bn = 0.15. A steady solution for Bn = 0.15 is obtained at instant a2.
Instantaneous contours are coloured by (a) U/U0, (b) dynamic fluid viscosity μ (whose value at instant a1
corresponds to a Newtonian fluid), and (c) local shear-rate magnitude γ̇ (λ = 1, φ = 0.1, n = 1). Part of the
computational domain is shown, and the scale bars correspond to 10D.

shear, resulting in a decrease in γ̇ in figure 8(c). At instant a2, the low γ̇ region (blue)
corresponding to the high μ region and the non-ciliated region are in solid body rotation
or in solid body motion. This solid body rotation has been observed experimentally in
the core of swirl by Loiseau et al. (2020), visualized in their figures 1(h,i) and their
supplementary movies 5 and 6 (available at https://www.biorxiv.org/content/10.1101/2019.
12.16.878108v1.supplementary-material). The role of the yield stress in generating solid
body rotation is that the effective viscosity diverges as the shear rate approaches zero.
Here, we examine the distribution of longitudinal velocity uy in the core of swirls marked
in figure 8(a) for Bn = 0 and 0.15; uy is extracted along the red line as schematized in
figure 9(a). The distributions of uy are shown in figures 9(b,c). Here, uy varies linearly
in the radial direction when Bn = 0.15, indicating a solid body rotation. This was not
reproduced in the previous study (Gsell et al. 2020) since a Newtonian fluid was modelled.
The addition of the yield stress property to the mucus allows a more accurate modelling
of the experiments.

The instantaneous contours of U/U0, μ and γ̇ by increasing Bn from 0.15 to 0.3 are
shown in figure 10 (λ = 1, φ = 0.1, n = 1). The steady solution for Bn = 0.15 (instant a2
in figure 8 or instant a1 in figure 10) is used as the initial condition for the simulation with
Bn = 0.3. A steady solution for Bn = 0.3 is obtained at instant a3. The further increase in
Bn substantially increases μ at instant a2 irrespective of the high γ̇ region at instant a1.
This further enhances the diffusion of momentum and the coordination of different cilia,
resulting in a larger swirl in figure 10(a) (instant a2). The increase in μ decreases γ̇ , which
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Figure 9. (a) Schematic of velocity extraction in the core of a swirl. Distributions of the longitudinal velocity
uy along the radial direction in the core of swirls marked in figure 8(a), for (b) Bn = 0, and (c) Bn = 0.15.

in turn increases μ at instant a3. Thus there is a positive feedback between the increased
μ and the decreased γ̇ for the flow with yield stress. The S regime gradually converts to
the FU regime due to the further diffusion of momentum.

For the regime transition induced by varying n, the instantaneous contours of U/U0,
μ and γ̇ by decreasing n from 1 to 0.6 are shown in figure 11 (λ = 1, φ = 0.1, Bn = 0).
According to (2.13) and (2.18), the viscosity is μ = (ρU2

0 γ̇ −1 Re−1)(Dγ̇ /U0)
n. Here, μ

is increased when n decreases from 1 to 0.6 (Dγ̇ /U0 < 1), enhancing the diffusion of
momentum and reducing γ̇ . The decrease in γ̇ in turn leads to an increase in μ due to the
shear thinning behaviour. There is also a positive feedback between the increased μ and the
decreased γ̇ for the shear thinning flow. A transition from the PO regime to the S regime is
observed at instant a2 due to the enhanced diffusion of momentum, corresponding to the
increase in Λ from 6.36 to 10.15. The effect of shear thinning (n = 0.6 and Bn = 0) on μ

is weak compared to the effect of yield stress (n = 1 and Bn = 0.15).
Figure 12 shows the instantaneous contours of U/U0, μ and γ̇ by further decreasing n

from 0.6 to 0.3 (λ = 1, φ = 0.1, Bn = 0). As mentioned above, the decrease of n leads to
the increase of μ. The substantial enhancement of the shear thinning effect significantly
enhances the positive feedback between the increased μ and the decreased γ̇ . At instant a2,
the increase of μ results in the formation of large-scale swirls. At instant a3, the further
increase of μ and the full coordination of cilia and mucus induce a transition from the
S regime to the FU regime. In summary, both the increase of Bn and the decrease of n
lead to the successive appearance of PO, S and FU regimes. This is closely related to the
increase of μ and the diffusion of momentum. Note that the flow velocities in the ciliated
region are lower for the FU regime than for the PO (or S) regime. In the FU regime, the
momentum diffuses into the non-ciliated region, and the flow velocity is averaged over
ciliated nodes with beating force, and non-ciliated nodes with only friction. In the PO
regime, the velocity remains localized above the ciliated region, which is ineffective for
the mucus transport.

The variation of γ̇ directly influences μ under the yield stress and shear thinning effects.
Here, we calculate the spatially averaged shear-rate magnitude ¯̇γ for different cases. The
variation of ¯̇γ as a function of Bn (λ = 1, n = 1) and n (λ = 1, Bn = 0) for different φ is
shown in figure 13, where ¯̇γ decreases with increasing Bn and decreasing n, indicating the
increase in mucus viscosity. In addition, ¯̇γ increases with increasing φ until φ = 0.5 due
to the increase in the number of cilia. The further increase in φ significantly enhances the
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a1: t = 0

a2: t = 12T

a3: t = 30T
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Figure 10. The sequential process of a transition from the S regime (instant a1, Bn = 0.15) to the FU regime
(instant a3, Bn = 0.3) by increasing Bn: instantaneous contours of (a) U/U0, (b) μ, and (c) γ̇ (λ = 1, φ = 0.1,
n = 1). Part of the computational domain is shown, and the scale bars correspond to 10D.

coordination between different cilia, which tend to beat in the same direction and result in
a lower shear. Beyond φ = 0.3, ¯̇γ is relatively insensitive to the increase in φ.

3.4. Effective interaction length
The mucus viscosity μ is the dominant parameter that affects the regime formation when
varying Bn and n according to the above discussions. In the present study, the viscosity
effect is included in λ, which is defined based on the reference mucus viscosity. To
consider the variation of μ, a spatially averaged viscosity μ̄ is calculated for the cases
with different Bn and n. The lattice nodes with maximum relaxation time are excluded due
to the truncated Herschel–Bulkley law used in the present study. In fact, their viscosity
should be considered almost infinite. An effective interaction length λ∗ is defined based
on μ̄ instead of μ, and λ∗ is found to be more suitable to represent the range of influence of
the ciliated cells. Figure 14 shows the variation of λ∗ as a function of Bn (λ = 1, n = 1) and
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Figure 11. The sequential process of a transition from the PO regime (instant a1, n = 1) to the S regime
(instant a2, n = 0.6) by decreasing n: instantaneous contours of (a) U/U0, (b) μ (whose value at instant a1
corresponds to a Newtonian fluid), and (c) γ̇ (λ = 1, φ = 0.1, Bn = 0). Part of the computational domain is
shown, and the scale bars correspond to 10D.

n (λ = 1, Bn = 0) for different φ. Here, λ∗ increases with increasing Bn and decreasing n,
which favours the diffusion of momentum and the coordination between cilia and mucus,
thereby resulting in the regime transition. This confirms the results shown in figures 8 and
10–12. For φ ≥ 0.3, λ∗ is smaller than for φ = 0.1, and the curves of λ∗ almost collapse
onto a single curve. This corresponds to the variation of ¯̇γ in figure 13. Furthermore, the
variation of λ∗ is opposite to the variation of ¯̇γ due to the yield stress and shear thinning
effects.

To examine the dependence of the regime formation on λ∗, we compare the variation of
P̄ as a function of λ and λ∗ for different Bn (φ = 0.1, n = 1) in figure 15. Recall that to
obtain the value of P̄, only the simulations in the most frequent regime have been used.
Here, P̄ increases with increasing λ, and a rapid increase of P̄ can be observed at the critical
points for the appearance of the FU regime. The FU regime appears at a smaller λ as Bn is
increased. Here, we consider only the critical condition of FU regime formation because
the FU regime is the most efficient for mucus transport. The curves of P̄ are scattered for
different Bn in figure 15(a). In figure 15(b), the curves collapse onto a single curve as a
whole for Bn > 0. Here, Bn = 0 deviates significantly from the collapsed curve; λ∗ is not
enough to predict the critical condition for different Bn. This may be related to the fact that
the increase in Bn leads to a sharp increase in μ, which is truncated when the maximum
value is reached.

Figure 16 shows the variation of P̄ as a function of λ and λ∗ for different n (φ = 0.1,
Bn = 0). In figure 16(a), the curves of P̄ are also scattered, and the critical λ decreases with
decreasing n. After the rescaling is performed, the curves collapse onto a single curve as
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Figure 12. The sequential process of a transition from the S regime (instant a1, n = 0.6) to the FU regime
by decreasing n (instant a3, n = 0.3): instantaneous contours of (a) U/U0, (b) μ, and (c) γ̇ (λ = 1, φ = 0.1,
Bn = 0). Part of the computational domain is shown, and the scale bars correspond to 10D.
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Figure 13. Averaged shear-rate magnitude ¯̇γ as a function of (a) Bn (λ = 1, n = 1) and (b) n (λ = 1,
Bn = 0), for different φ.
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Figure 14. Effective interaction length λ∗ as a function of (a) Bn (λ = 1, n = 1) and (b) n (λ = 1, Bn = 0),
for different φ.
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Figure 15. The value of P̄ as a function of (a) λ and (b) λ∗, for different Bn (φ = 0.1, n = 1).
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Figure 16. The value of P̄ as a function of (a) λ and (b) λ∗, for different n (φ = 0.1, Bn = 0).

a whole. The critical λ∗ is distributed in a narrow range λ∗ ≈ 3.8–5.1. Here, λ∗ is more
suitable for predicting the critical condition of the FU regime formation for different n
than that for different Bn.
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4. Conclusions

In this work, the hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley
flows was investigated numerically using a two-dimensional hydrodynamic model. The
mucus flow was predicted based on the lattice Boltzmann method, and the interaction
between the cilia and the mucus was handled by an alignment rule. Numerical simulations
were performed in wide ranges of ciliary density (φ), interaction length (λ), Bingham
number (Bn) and flow index (n) to highlight the effects of yield stress and shear thinning
properties on the mucus flow regime. For the effects of φ and λ, a poorly organized (PO)
regime, a swirly (S) regime and a fully unidirectional (FU) regime were identified. The
PO regime appears with low λ and φ. The S regime appears with low λ and high φ. The
FU regime appears with high λ and high φ. These are determined by the range of influence
of the ciliated cells (range of momentum diffusion) and the coordination between different
cilia. For the effects of Bn and n, the range of influence of the ciliated cells is increased
by increasing Bn and decreasing n, resulting in the activation of the S and FU regimes
at lower φ and λ. Mucus viscosity is found to be the dominant parameter affecting the
regime formation when varying Bn and n. We define an effective interaction length λ∗
based on the spatially averaged viscosity obtained from the final steady solution instead of
the reference viscosity, which is more appropriate than λ to represent the range of influence
of the ciliated cells. This λ∗ increases with increasing Bn and decreasing n, explaining
the regime formation upon introduction of Herschel–Bulkley flows. After rescaling, the
critical λ∗ values for the appearance of the FU regime are still scattered for different Bn,
while the critical λ∗ values are distributed in a narrow range for different n. So λ∗ is
more suitable to predict the critical condition of FU regime formation for different n than
that for different Bn. Furthermore, the present model is capable of reproducing the solid
body rotation observed in experiments, showing a more precise prediction than that of a
Newtonian model for the mucus.
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