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A SIMPLE PROOF OF AN EXPANSION OF AN
ETA-QUOTIENT AS A LAMBERT SERIES

SHAUN COOPER

We give a simple proof of the identity
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The proof uses only a few well-known properties of the cubic theta functions a(g),
b(q) and c(q). We show this identity implies the interesting definite integral

‘/e_z"/3 el (1_q3n)10d _ 1
0 (1-g")% 7 33

n=1

1. INTRODUCTION

The purpose of this article is to give a direct proof of the following identity.
THEOREM 1.1. Letq be a complex number satisfying |q| < 1. Then

The summation is over all positive integers n excluding multiples of 9.

This result was discovered using symbolic computation by Borwein and Garvan [4],
and it was used to produce a ninth order iteration that converges to 1/x. The proof of
Theorem 1.1 in [4] appeals to two entries in Ramanujan’s Notebook [16, Chapter 20 Entry
1(iv) and Chapter 21 Entry 7(i)]. The proofs of these entries in Berndt'’s excellent book
(1] take several pages, and appeal to several earlier results in Ramanujan’s Notebook.

Two proofs of Theorem 1.1 were given by Berndt, Chan, Liu and Yesilyurt [3].
The first is essentially the same as the one in [4]. The second proof in [3] uses less
sophisticated machinery, but is more than three pages long, and depends on another
entry in Ramanujan’s Notebook [16, Chapter 20 Entry 1(v)}.
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Another proof of Theorem 1.1 of a completely different nature was obtained by
Farkas and Kra [9, p. 307]. Their proof uses meromorphic functions defined on Riemann
surfaces.

In view of the importance of Theorem 1.1, it is desirable to have as direct a proof as
possible. We give such a proof, which depends only on the well-known properties satisfied
by the cubic theta functions a(q), b(g) and c¢(g) given in Lemma 2.1 below.

We conclude by showing that Theorem 1.1 leads to an evaluation of a definite inte-
gral. Three similar integrals were given by Fine [10, pp. 86-91].

2. PROOF

The three cubic theta functions are defined by
2 2
a(q) — qum +mn+n ,
m n
ba) = 303 g
m n

2 n 2
c(q) - Z Zq(m+l/3) +(m+1/3)(n+1/3)+(n+1/3) ,

m n

where w = exp(27i/3) and q = e~?",Re(t) > 0. The summation indices m and n range
over all integer values. The following are some well known properties of the cubic theta
functions.

LEMMa 2.1.

(2.2) a(q)® = b(q ) ( )

(2.3) = H )

2.4) 3¢ H a-c

(2.5) a(q) = a(g®) +2C( ),

(2.6) b(g) = a( 3)—0(93)

(2.7) a(q) —1'*'62( o2 lzqsn—l)’
(2.8) a(g)® =

3

Equation (2.2) was discovered and proved by Borwein and Borwein [5]. Additional
proofs have since been given by Borwein, Borwein and Garvan [6], Chapman [7], Garvan
[11], Hirschhorn, Garvan and Borwein [12], Liu [14] and Solé [18]. Proofs of (2.3)-(2.6)
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can be found in [6, 11, 12]. Equation (2.7) was known to Lorenz and Ramanujan; see
[13]. A beautiful and elementary proof of (2.8) using (2.7) was given by Ramanujan [15,
equation 19).

LEMMA 2.9. Letz =c(g)*/a(q)?, z = alq), X = c(¢®)*/a(¢®)?, Z = a(q®). Then

==~ ({Taxm)

z=Z(1+2XY3),

(g
= (Trai—aym)

Z= §(1 +2(1 — 2)'3).
PRrROOF: From Lemma 2.1 we have

o2

b(g)®

o)
( a(q®) — c(¢%) )
=(

a(g3) + 2¢(g
1-X!'/3
1+ 2X1/3)

This proves the first part. Similarly,

a(q)

a(g®) + 2¢(¢%)

_ c(q’)
= a(¢")(1 + 2a(q3))
= Z(1+2XY3).

This proves the second part. The third and fourth parts are obtained by rearranging the
first two parts and solving for X and Z. . 0

REMARK 2.10. The first two formulas in Lemma 2.9 are called the trimidiation formu-
las, and the last two are called the triplication formulas. See {2, pp. 101-102] for another
proof and further explanation.
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PRroOOF oF THEOREM 1.1: Using Lemmas 2.1 and 2.9, we have

1+ 32 nq = i(a(q)2 + 3a(¢®)?)

n—l

= i(zﬁ’ + ?(1 +2(1— z)1/3)2)

= %(1 +(1—2)"8 + (1 - z)2)
_ 22z
T31-(Q1-2)B)
c(g)®

3a(q)(1 — b(q)/a(q))
___ cg?

3(a(g) — b(g))
_ o9

96(43)

_ (1 — q3n 10
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3. A DEFINITE INTEGRAL

In this section we state and prove the value of an interesting definite integral. We
use the same method of proof as Fine (10, pp. 86-91], who gave three similar integrals.

THEOREM 3.1.

/6—2"/3 o<} (1 _ q3n)10d 3 1
0 (1-g)° q—3\/§.

ProoOF: From Theorem 1.1 we have

n=1

0 (1_q3n)10
=143
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If we multiply by H '(_q—n))a" we get
=1
(=) _ l-q"")3
.I:Il 1—4")6 _,,_ [ferad { +le—q}
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or equivalently

q (1 — giny10 (1 _ q9n)3
3.2 / d =gq
( ) 0 E (1 n)G H n)3

Recall the modular transformation for the Dedekind eta function, for example, see |8,
Theorem 4.11], which may be written in the form

o0 1 [s ]
¢ JJa-q" = 717‘/2“ [Ja-»Y
n=1 t n=1

where ¢ = e2", p = e~ 2"/t Re(t) > 0. If we take t = 1/3, then p = ¢°, and so in this
case the modular transformation implies

qq g H——Ei:q :
=4(3)" A

4
— 32
_ 1
3v3
Using this in (3.2) we complete the proof. g
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