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CP violation: D and B mesons

16.1 Introduction

In previous chapters we mentioned that the analysis of bound states with heavy
quarks varies from meson to meson. For heavy mesons the hadronic structure
becomes simpler and approaches the spectator model with corrections given by
HQET. Their weak properties, on the other hand, remain distinct because they
depend on the interplay between CKM couplings and the masses of the mesons.
For this reason we discuss the mixing and CP violation in D and B mesons in a
separate chapter.

The system D0–D̄0 is quite different because the decay width is much larger than
the mass and width differences, which makes the observation of mixing and of CP
asymmetries very difficult. In fact, they have not been observed yet. This motivated
several authors to suggest that the observation of these effects, at a higher level than
expected, will be an indication of contributions beyond the standard model.

The observation of these effects in the neutral B mesons was experimentally
promising because the decay of the b quark to its heavier partner, the top quark,
is not possible for kinematic reasons. The suppressed decay width is comparable
to the difference in mass of the Bd mesons. Consequently, the mixing over their
lifetimes is substantial and has been observed. In addition, the mixing of the states
provides another phase that interferes with phases of decay amplitudes and produces
oscillations observable in the experiments. These are some of the topics to be
covered in this chapter.

16.2 The D0–D̄0 transition amplitude

The calculation of the mass difference for KS and KL mesons in terms of the box
diagrams gave a sizable fraction (≥50%) of the observed value. This suggests that
similar calculations for heavier mesons may be more accurate. Indeed, estimates of
�M and �� for D0 mesons give small values relative to the decay width of these
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204 CP violation: D and B mesons

particles. For this reason, mixing of the neutral D states and CP asymmetries have
not yet been observed. Similar calculations for the B mesons give values consistent
with the data, because box diagrams are dominated by top quarks in the intermediate
states.

As mentioned in Section 14.7, mixing of states depends on the size of the decay
width relative to the value of the off-diagonal matrix elements of the effective
Hamiltonian. We can estimate both of these terms for D mesons. The decay width
in the spectator model is given approximately by

� = G2m5
c

192π3
|Vcs|2. (16.1)

This should be compared with the following matrix element of the effective
Hamiltonian:

〈D̄0|H12|D0〉 = − G2

16π2
M2

W

[
ξ 2

s E(xs) + 2ξsξb E(xs, xb) + ξ 2
b E(xb)

]
×〈D̄0|c̄γµ(1 − γ5)uc̄γ µ(1 − γ5)u|D0〉. (16.2)

The factors ξs = V ∗
usVcs and ξb = V ∗

ubVcb are given in terms of Kobayashi–Maskawa
matrix elements, which in the Wolfenstein parametrization are of order λ and λ5,
respectively. The E(xs) and E(xb) pertain to strange and bottom quarks and are
approximated for m2

i � M2
W by

E(xi ) ≈ −xi . (16.3)

The reduced matrix element

XD = 〈D̄|c̄αγµ(1 − γ5)uα c̄βγ µ(1 − γ5)uβ |D〉, (16.4)

withα andβ color indices, is similar to the matrix element encountered for K mesons
in Section 15.4. An order-of-magnitude estimate is given by the vacuum-insertion
approximation, which consists of introducing the vacuum state in all possible ways.
For the above case we obtain

XD = 〈D̄|c̄αγµ(1 − γ5)uα|0〉〈0|c̄βγµ(1 − γ5)uβ |D〉
+ 〈D̄|c̄αγµ(1 − γ5)uβ |0〉〈0|c̄βγµ(1 − γ5)uα|D〉

=
(

1 + 1

3

)
|〈D̄|c̄αγµ(1 − γ5)uα|0〉|2

= 8

3
F2

D MD. (16.5)

The second equation is obtained by Fierzing the second and the fourth spinors
and the factor of 1

3 by transforming the matrix elements to color singlets (use
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16.2 The D0–D̄0 transition amplitude 205

Eq. (15.88)). The decay coupling constant is defined as

〈0|c̄LγµuL|D〉 = i
FD pµ√

2MD
, (16.6)

with uL being a normalized left-handed spinor.
It is straightforward to estimate ratios of the mass and width differences to the

width. The b-quark exchange graphs are smaller than that for the strange-quark
exchange, because of the very small b coupling. Estimates of the strange-quark
graph give

x = �M

�
≈ O(10−4) and y = ��

2�
≈ O(10−4), (16.7)

with more precise estimates depending on values for the parameters. Alternatively,
one may use hadronic intermediate states, but very few amplitudes are known at
present and their phases are unknown. The above values of x and y give very small
mixing.

Since the lifetime of D mesons is very short, only time-integrated effects can be
observed. They are defined in terms of the transition probabilities |〈D̄0|D0(t)〉|2 and
|〈D0|D0(t)〉|2, whose functional forms in terms of widths and masses are similar
to those for the K mesons given at the end of Section 15.3:

r =
∫ ∞

0 |〈D̄0|D0(t)〉|2∫ ∞
0 |〈D0|D0(t)〉|2 =

∣∣∣∣q

p

∣∣∣∣
2 ∫ | f−(t)|2 dt∫ | f+(t)|2 dt

=
∣∣∣∣q

p

∣∣∣∣
2

�M2 + (��/2)2

2�2 + (�M)2 − (��/2)2 =
∣∣∣∣q

p

∣∣∣∣
2 x2 + y2

2 + x2 − y2
. (16.8)

These equations imply that the expected mixing for neutral D mesons for the values
in (16.7) will be of order 10−8 and any observable mixing must be attributed to
another mechanism beyond the standard model.

Even though the estimates for D0 are very approximate, the methods we described
in this section are general and can be taken over for other mesons. The vacuum-
insertion approximation of Eq. (16.5) has already been used for K mesons and
we will meet it again in the next section. Vacuum insertion is an approximation
that several authors tried to improve. It is hoped that lattice gauge theories will
eventually give precise values.

The second result of this section, Eq. (16.8), gives the mixing of short-lived states
integrated over long intervals of time. This is a general result that depends on the
quantum-mechanical development of a two-state system. In a tagged D0 beam, the
ratio r gives the number of wrong-sign leptons produced in the decays divided by
the number of right-sign leptons. The wrong-sign leptons are those which originate
from the oscillation of D0 to D̄0 mesons. We mentioned leptons as an example, but
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206 CP violation: D and B mesons

they can be substituted by decays into K mesons of specific strangeness. Such
a ratio was in fact used to determine B0–B̄0 mixing, which we shall explain in
Section 16.4.

16.3 Comparison of K0 and B0 mesons

It is instructive at the very beginning to compare several properties of the K0 and
B0 mesons, because these two mesons are quite different. For the K mesons there
are two physical states with very different lifetimes:

τ (KS) = 89.35 ps and τ (KL) = 51 700 ps. (16.9)

This big difference comes about because the mass and width differences of the K
mesons are comparable:

�MK = −1

2
��K = −1

2
�s. (16.10)

For the B mesons the situation is very different. The lifetime of the B mesons is
much smaller:

τ (B) = 1.55 ± 0.06 ps. (16.11)

In addition �12 � M12 for Bd mesons, which makes the lifetimes of the two physical
states almost identical. For this reason we characterize them by their masses, as
heavy and light, and denote them by BH and BL, respectively. From the mixing of
the two states we know the ratio

�M

�
= 0.73 ± 0.18. (16.12)

The mixing of the B states is described by box diagrams analogous to those in
Fig. 14.4, with the top quark dominating in the intermediate states. Computation
of the diagrams gives the mixing parameter, εB, as

q

p
= 1 − εB

1 + εB
≈ Vtd

V ∗
td

= e−2iβ, (16.13)

with β the phase of the V ∗
td matrix element; see Eq. (16.27). It follows from this

relation that εB is mostly imaginary with a small real part. Consequently, the leptonic
asymmetry that was useful in K decays is too small, so another method for observing
CP violation has had to be discovered.

Among the interesting phenomena are the mixing of Bd states and CP asym-
metries which have been observed in decays of these mesons. It is mathematically
easier to discuss the CP asymmetry because it deals with the time development
for single states |B0(t)〉 and |B̄0(t)〉. The mixing, on the other hand, observes the
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16.4 Mixing in the Bd system 207

correlated development of two states and its calculation is more complicated. His-
torically, mixing was observed first and the CP asymmetries were observed only
very recently. We shall follow the historical development and describe first the
mixing of B0

d and B̄0
d states. So far we have mentioned Bd states as typical mesons

because experimental results on their decays are available. There are also the Bs

mesons, which are very interesting because several of the parameters are different.
We postpone a comparison of Bs and Bd states until Section 16.6.

16.4 Mixing in the Bd system

The mixing between Bd and B̄d mesons was discovered in electron–positron col-
lisions in which a B0–B̄0 pair is produced. As the produced pair develops in time,
the particles oscillate. The time development of each state separately is given by
the following equations. A state that starts as |B0(t = 0)〉 develops according to

|B0(t)〉 = N

[
f+(t)|B0〉 + q

p
f−(t)|B̄0〉

]
. (16.14)

Similarly, a state that starts as |B̄0(t = 0)〉 develops as

|B̄0(t)〉 = N

[
p

q
f−(t)|B0〉 + f+(t)|B̄0〉

]
, (16.15)

with

f±(t) = e−i(MH−i�H/2) t ± e−i(ML−i�L/2)t . (16.16)

and N the normalization factor. To describe the oscillation data properly, we must
use quantum-mechanical wave functions for a B0–B̄0 pair. The pair of B mesons
created at the Y(4S) resonance is a state with odd charge conjugation with the two
mesons flying apart from each other with momenta 	k and −	k. The oscillations that
set in are highly correlated. The time evolution of the pair is now given by

|B0(t), 	k〉|B̄0(t ′), −	k〉 − |B̄0(t), 	k〉|B0(t ′), −	k〉. (16.17)

It is evident that the decays can take place at different times, with the production of
leptons through semileptonic decays. For example, we can consider events of the
type

e+e− −→ B0 + B̄0

| |−→ Y+�−ν̄ −→ X−�+ν

or X−�+ν or Y+�−ν̄. (16.18)

Consequently, events are produced in which the pairs of primary leptons emitted are
�+�+, �+�−, �−�+, and �−�−. We denote the corresponding rates by l++, l+−, l−+,
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and l−−, respectively. The observation of the parameter

R ≡ (l++ + l−−)/(l+− + l−+) (16.19)

characterizes particle–antiparticle mixing. We denote by A−− the amplitude that
one of the mesons with momentum −k decays at time t ′ into �− and the other meson
decays at time t also to �−. Using the time dependence of the |B0(t)〉 and |B̄0(t)〉
states given explicitly in Eqs. (16.14) and (16.15), we obtain for the amplitude A−−

A−−(t ′, t)=〈�−Y +|H |B0,−k〉〈�−Y +|H |B0,+k〉(p/q)[ f−(t ′) f+(t)− f+(t ′) f−(t)],
(16.20)

and, in the same notation,

A−+(t ′, t) = 〈�−Y +|H |B0, −k〉〈�+ X−|H |B̄0, +k〉[ f−(t ′) f−(t) − f+(t ′) f+(t)
]
.

(16.21)

There are two more equations defining the amplitudes A+−(t ′, t) and A++(t ′, t),
Paschos and Türke, 1989, p. 218).

For the matrix elements, we introduce the abbreviations

M = 〈�−Y +|H |B0, ±k〉, M̄ = 〈�+ X−|H |B̄0, ±k〉,
which, according to CPT symmetry, satisfy

|M| = |M̄| = M. (16.22)

It is easy to calculate the rates of decay to each pair of charges by squaring the
amplitudes and integrating over the times t and t ′, separately. After some algebra
and a few integrations, the final answer is

R = 1

2

(∣∣∣∣q

p

∣∣∣∣
2

+
∣∣∣∣ p

q

∣∣∣∣
2
)

x2 + y2

2 + x2 − y2
, (16.23)

with x and y defined for B mesons with �M = MH − ML and �� = �H − �L. It
is interesting to note that Eq. (16.23) is similar in many respects to Eq. (16.8).

Experiments measured the ratio in e−e+ collisions and found

R = 0.23 ± 0.09 ± 0.03. (16.24)

For |q/p| = 1 and y � 1, which will be shown later to be an excellent approxima-
tion,

�M

�
= 0.73 ± 0.18. (16.25)

It is now a theoretical problem to calculate �M and �� for the B system and
compare it with the above values.
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d̄

b d

b̄

(a)

b

u, c

d

d̄ b̄

(b)

Figure 16.1. Absorptive parts contributing to the B0–B̄0 width mixing.

The mass difference is given by the box diagrams. Estimates similar to those of
the previous sections indicate that the B0–B̄0 transition amplitude is dominated by
the exchange of two top quarks in the box diagram. This is indeed a short-distance
contribution. Formula (15.48) translates into

M12 = − G2

16π2
M2

W XBξ 2
t E(xt)η̃, (16.26)

with

ξt = VtbV ∗
td = Aλ3(1 − ρ − iη), (16.27)

XB = 〈B0| b̄γµ(1 − γ5)db̄γ µ(1 − γ5)d|B̄0〉, (16.28)

and η̃ ≈ 0.87 is a factor originating from QCD corrections. The reduced matrix
element is parametrized in terms of the vacuum-insertion term times a B factor,

XB = 8

3
|〈B0| b̄γµ(1 − γ5)d|0〉|2 Bb = 8

3
F2

B MB Bb. (16.29)

The factor 8
3 originates from the various terms in the product of the currents and

rearrangement of the color indices, as was explained in Section 16.2.
Before we consider the magnitude of the mass difference, it will be useful to

calculate the width difference computed as the absorptive part of the box diagrams.
For the calculation of the absorptive part we set the intermediate states on the

mass shell. This is equivalent to cutting the diagrams in the manner shown in
Fig. 16.1 and then integrating over the two-body phase space.

After completion of the integrations and substitution of the reduced matrix
element from Eq. (16.29), one obtains (Hagelin, 1981)

�12 
 −G2m2
b

8π
F2

B MBd B

[
(ξc + ξu)2 − 8

3

m2
c

m2
b

(
ξ 2

c + 2ξcξu
) + O

(
m4

c

m4
b

)]
.

(16.30)

This is a relatively simple formula, which can be compared with M12. Neglecting
terms of order (mc/mb)2, we observe that �12 has the same phase as M12. This is
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evident from the unitarity of the Kobayashi–Maskawa matrix, which gives

ξu + ξc = −ξt (16.31)

and consequently

�12 = −G2m2
b

8π
F2

Bd
MBd Bξ 2

t . (16.32)

Whenever M12 and �12 have the same phase,

q

p
=

(
M∗

12

M12

) 1
2

= Vtd

V ∗
td

= e−2iβ, (16.33)

as was already given in Eq. (16.13). This ratio will be important for the discussion
of CP violation.

A second consequence is the magnitude of �12 relative to M12:

�12

M12
≈ 6π

(
mb

m t

)2

≈ 10−2. (16.34)

Numerical estimation of the mass difference gives the value �M ≈ 0.73�, in agree-
ment with the mixing of the B0 and B̄0 states.

16.5 Decay rates and CP violation

B-meson decays are frequently described in terms of quark diagrams, which are
classified as tree, penguin, or other types of diagrams. The classification is very
useful since it specifies how the CP phases appear in amplitudes, that is as couplings
of the CKM-matrix elements. The detailed dynamics are not completely understood
and we presented several methods for analyzing them in Chapter 14.

In the spectator model, the simplest diagrams for the decay of a b̄ involve only
one intermediate W+ boson, as shown in Fig. 16.2.

We denote the decays of the W+ boson as ud̄ or cs̄ and we indicate in closed
ovals the final hadronic states. Thus the diagrams (a) denote the decays

Bd → D+
s D−

d or Bd → π+D−
d , (16.35)

with the couplings V ∗
cbVcs and V ∗

cbVud, respectively. Similarly, the decays in diagram
(b) are

Bd → J/ψ + Ks or Bd → D0
uπ

0, (16.36)

with the couplings V ∗
cbVcs and V ∗

cbVud, respectively.
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d d

b̄ c̄

W+
c

s̄

(a)

u
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s

d
c̄

D−
d D−

d

d d

b̄

s̄

W+
c
c̄

(b)

u
c̄

d
d̄

Figure 16.2. Tree-diagram decays of B0
d.

d d

b̄
W

s̄

g

c

c̄

u
d̄

d
ū

s
s̄

d
s̄

Figure 16.3. A gluonic penguin diagram.

In addition to the tree diagrams, there are penguin diagrams analogous to the
ones we discussed in the previous chapter. A typical diagram for gluonic decays is
shown in Fig. 16.3.

The final state is determined by the quark assignments. They can produce the
following states:

Bd → J/ψ + Ks, Bd → φKs, (16.37)

Bd → π+π−, π0π0. (16.38)

We see that the J/ψ + Ks decay can originate from tree and penguin diagrams
whose dynamics are very different. The dominant penguin diagrams are those with
charm and top quarks in the intermediate states (see Problem 4) whose couplings
are

V ∗
cbVcs = Aλ2 + O(λ4), (16.39)

and
V ∗

tbVts = −Aλ2, (16.40)

respectively. This CKM coupling can be extracted as a multiplicative factor. The
property is unique to this decay channel and makes the predictions very reliable.
For this reason the decay has been named the gold-plated decay channel. The mode
has several advantages.

(i) The prediction for the CP asymmetry is reliably expressed in terms of CKM parameters
and is large.
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212 CP violation: D and B mesons

(ii) It has a measurable branching ratio

Br(B → J/ψK0) = (8.7 ± 0.5) × 10−4, (16.41)

with the decays J/ψ → π+π− and K0 → π+π− producing hadrons, which are easily
detectable.

(iii) The final state J/ψ + Ks is a CP eigenstate.

For these reasons the decay of B0 mesons to J/ψ + Ks is an attractive mode and
we describe the decay amplitudes in Problem 4.

Fortunately there is also an experimental method for detecting CP-violating
effects (Carter and Sanda, 1981; Bigi and Sanda, 1981). A B0B̄0 pair is produced
in electron–positron colliders and proceeds to decay. We select a decay mode for
B0 and B̄0 to a common final state | f 〉, which is an eigenstate of CP. Let

Af = 〈 f |H |B0〉 and Āf = 〈 f |H |B̄0〉
be the decay amplitudes. Since the beams of particles created in the collider are a
mixture of B0 and B̄0 and since their lifetimes are almost identical, we cannot a
priori tell whether | f 〉 arose from the decay of B0 or B̄0. Thus we need independent
information on the flavor of the decaying neutral B0 meson. This can be achieved
by observing a semileptonic decay on one side and the decay to | f 〉 on the other
side. In this way we know whether the decay to | f 〉 originates from a B0 or B̄0. The
experimental groups measure these decays as a function of time. A small asymmetry
in the time evolution of the two decays is evidence for CP violation.

We describe the time evolution of particle and antiparticle decays in detail. The
decay amplitudes as a function of time are

〈 f |B0(t)〉 = 1

2

[
f+(t) Af + q

p
f−(t) Āf

]
, (16.42)

〈 f |B̄0(t)〉 = 1

2

[
f−(t) Af + q

p
f+(t) Āf

]
. (16.43)

The amplitude Af is the expectation value of the quark operators between |B〉 and
〈 f | states. It is computed with the help of quark diagrams described at the beginning
of this section. They have a weak phase coming from the CKM-matrix elements
and perhaps a phase of strong origin from final-state interactions. We shall denote
the ratio

ρ = Āf

Af
. (16.44)

In the case of the B0 mesons the factors f±(t) simplify, because

�H = �L = �
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and

f±(t) = e− 1
2 �t

(
e−iMHt ± e−iMLt

)
. (16.45)

The rate for detecting a decay to | f 〉 at a time t after the production of a B0 is
proportional to

�(t) ≈ 1

2
e−�t[1 − Sf sin(�m t) + Cf cos(�m t)] (16.46)

and, for the detection of a decay from an initial B̄0,

�̄(t) ≈ 1

2
e−�t[1 + Sf sin(�m t) − Cf cos(�m t)], (16.47)

with

Sf =
2 Im

(
q

p
ρ

)

1 +
∣∣∣∣q

p
ρ

∣∣∣∣
2 and Cf =

1 −
∣∣∣∣q

p
ρ

∣∣∣∣
2

1 +
∣∣∣∣q

p
ρ

∣∣∣∣
2. (16.48)

In both of these equations there is a time-oscillation superimposed on the expo-
nential decay. The formulas are very general and can be applied to several decays.
We consider some decays in detail.

(a) The gold-plated channel. For the decay B → J/ψ + Ks there are tree and penguin
diagrams. As we discussed in this section, all dominant diagrams have zero CKM phase
(see Eqs. (16.36) and (16.39)). In addition, q/p is given by Eq. (16.13) and we obtain

Sf = −sin(2β), Cf = 0

and

�(t) ≈ e−�t [1 + sin(2β)sin(�m t)]. (16.49)

Thus the time evolution of the B0
d state and its conjugate particle to a common final state

is an efficient method for identifying CP parameters. The asymmetry

α = �(t) − �̄(t)

�(t) + �̄(t)
= sin(2β)sin(�m t) (16.50)

has a sinusoidal dependence on time. This decay has been measured in the BaBar and
Belle experiments, giving the average value

sin(2β) = 0.73 ± 0.03. (16.51)

The angle β extracted from the asymmetry is one of the angles in the unitarity triangle.
It enters the calculation through the element Vtd given in Eq. (9.53).

The unitarity triangle is constrained by other measurements as well; to be precise,
by the magnitude of Vub, the parameter εk , and the mixing of Bd and B̄d states. Each
of these quantities determines a region and their intersection defines the apex of the
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triangle. This figure has become very popular and is featured in Fig. 9.2 and in many
articles (Branco et al., 1999; Kleinknecht, 2003; Brower and Faccini, 2003). The value
of β in Eq. (16.51) has several solutions and one of them coincides with a direction that
goes through the apex of the triangle. The significance of the sin(2β) measurement is
that for the first time a large CP asymmetry has been observed, proving that CP is not
an approximate symmetry of nature.

(b) Decays to π+π− and π0π0. The B → ππ decays can be analyzed in a similar manner to
the K → ππ decays. For the sake of brevity we shall use a similar notation; however, the
numerical values for the quantities (amplitudes, phases, etc.) in B decays are different.
The amplitude for B0 → π+π− is written as

Af(π
+π

−) =
√

2

3
|A0|ei(δ0−θ0) − 2√

3
|A2|ei(δ2−θ2) (16.52)

and

Ā f (π+π
−) =

√
2

3
|A0|ei(δ0+θ0) + 1√

3
|A2|ei(δ2+θ0). (16.53)

The phases δ0 and δ2 come from strong interactions of the final states, but at this high
energy they cannot be related to ππ phase shifts. The phases θ0 and θ2 come from
weak interactions, which originate from CKM couplings. The tree diagram contributes
to both the I = 0 and the I = 2 amplitude and the penguin diagram only to the I = 0
amplitude.

The attempt to determine the isospin amplitudes by comparing decays of charged
and neutral B mesons has met with limited success. This approach is analogous to that
for the K → ππ decays, in which, after the isospin analysis of the amplitudes, we had
to return to the effective QCD Hamiltonian.

There are also analyses in terms of Feynman diagrams. We have already noted that this
decay mode receives contributions from tree and penguin diagrams. In the Wolfenstein
parametrization all diagrams are of order λ3. The tree diagram has the phase e−iγ . The
penguin diagrams have intermediate states with up, charm, and top quarks, each with a
different phase. The relevant parameter for this decay has the general form

q

p

Af(π+π
−)

Āf(π+π−)
= e−2iβ e−iγ + heiθ

e+iγ + heiθ
, (16.54)

with h being the ratio of a term from the penguin diagram to the remaining contributions
and θ a phase of strong origin. The interference of mixing with the decay amplitude
gives

Sf(π
+π

−) �= 0 and Cf(π
+π

−) �= 0. (16.55)

Consequently, the presence of both cos(�m t) and sin(�m t) terms with coefficients
different from zero is an indication of CP violation in the B amplitudes. For very small
values of h, this mode fixes

Sf = sin(2β + 2γ ),
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which, through the triangle relation β + γ = π − α, can be replaced by α. Thus this
decay mode can determine β + γ and, indirectly, the angle α.

(c) Decays to other channels. In the previous discussion we demonstrated thatβ is accurately
determined and γ , or alternatively α, can be extracted from the B → ππ decay, provided
that the hadronic matrix elements are better understood. There are extensive efforts to
analyze and understand other decay modes. For instance (Fleischer, 2003),

B → φ + Ks

has only penguin contributions. An analysis similar to that of the J/ψKs mode reveals
many similarities. In the absence of new physics, the asymmetries for charmonium and
φ-meson decays should be equal.

This heralds a new era, in which the theory is expected to be scrutinized through a
variety of other Bd and Bs decay asymmetries. Impressive progress is being made in
the search for asymmetries in the aforementioned modes and in addition B0± → Kπ

and B± → DK±. Current measurements are approaching the stage of cross-checking
the theory or even discovering physical phenomena beyond the standard model.

16.6 Mass and lifetime differences for Bs mesons

The analysis of the previous sections can be extended in a straightforward way to
the Bs mesons, which present a very interesting mesonic system. Their masses and
lifetimes are very similar to those of the Bd mesons, but their weak interactions
are different because the CKM couplings are now much bigger. A consequence is
the larger mixing in these states and, it is hoped, a lifetime difference between two
physical particles that may be measurable. The reduced matrix element is given
now as

XBs = 8

3
|〈B0

s | b̄γµ(1 − γ5)s|0〉|2 Bs (16.56)

and is expected to have a numerical value close to XBd because the wave functions
and the general structure of the bound state are expected to be similar. The coupling
which appears in the box diagrams is

ξ ′
t = VtbV ∗

ts = −Aλ2, (16.57)

which is much larger than the coupling in Eq. (16.27). The mass difference is given
by a formula analogous to Eq. (16.26) and, on taking the ratio, one obtains

�Ms

�Md
= F2

s

F2
d

Ms

Md

∣∣∣∣ Vts

Vtd

∣∣∣∣
2

. (16.58)

The ratio of the hadronic matrix parameters is unity in the SU(3) limit or the heavy-
quark limit. A small deviation from unity may still show up, but this will be of order
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10%–20%. The large change comes from the couplings∣∣∣∣ Vts

Vtd

∣∣∣∣
2

= 1

λ2
[
(1 − ρ)2 + η2

] = 20–30. (16.59)

At present there is an experimental bound, �Ms/�Md > 21.2, coming from the
mixing of B0

s and B̄0
s -particles, which is close to 100%. Serious experimental efforts

are being devoted to searching for a precise value of the mixing, which will also
determine the ratio xs = �M/�. Since the mixing approaches 100%, a precise
measurement is required in order to extract a value for the mass difference (see
Eq. (16.23)).

The estimate which makes xs large also increases the width difference of the
two states. The two Bs states can mix to form two distinct eigenstates. To a first
approximation,

��s

�Ms
= 3

2
π

(
mb

m t

)2

≈ 3.7 × 10−3 (16.60)

has been calculated from equations analogous to Eqs. (16.26) and (16.32). The
width difference can be rescaled to give(

��

�

)
s

= 3

2
π

(
mb

m t

)2(
�Ms

�Md

)(
�Md

�

)
d

(
�d

�s

)
. (16.61)

The ratio of the mass difference was estimated in this section, and assuming �d ≈ �s

leads to a width difference that is experimentally interesting. Its value is in the range
7%–14%. Alternative estimates that saturate �12 with physical intermediate states
or form other ratios also give encouraging results. There is a good chance that the
lifetime difference τH − τL is 10% of the lifetime of Bd mesons. Such a large value
would be measurable in the decay

Bs → J/ψ + φ.

Problems for Chapter 16

1. Carry out the integrals
∫ ∞

0 | f±(t)|2 dt and show that the last term in Eq. (16.8) follows.
Hint: it is easier to integrate exponentials and then take real parts.

2. Write the matrix element for the mixing of the B0
d → B̄0

d system, especially the CKM
couplings of the box diagram with the top quark in the intermediate states. Then prove
the ratio

q

p
=

(
H21

H12

)1
2

≈ Vtd

V ∗
ts

.

3. Calculate the amplitude for the diagram in Fig. 16.1(a) with charm and up quarks in the
intermediate states. Then integrate over the two-body phase space to obtain some of the
terms in Eq. (16.30).
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4. The decay Bd → J/ψ + Ks has tree and penguin diagrams. We denote the tree diagram
by

T = V ∗
cbVcsg

and the penguin diagram by

P = V ∗
tbVts f (m t) + V ∗

cbVcs f (mc) + V ∗
ubVus f (mu),

where f (mq ) are functions from the calculation of the penguin diagram with mq the
mass of the q quark in the loop. A naive order-of-magnitude estimate of the tree and
loop diagrams gives (Gronau, 1992)

f (m t)

g
∼ αs(mb)

6π
ln

(
m t

mb

)
∼ 0.04.

Others obtained larger values by computing the penguins with the effective Hamiltonian
(Kramer and Palmer, 1995).

(i) Use the unitarity of the CKM matrix to eliminate V ∗
tbVts and rewrite P in terms of

the other two CKM factors.
(ii) Show that the ratio of the two CKM factors is∣∣∣∣ V ∗

ubVus

V ∗
cbVcs

∣∣∣∣ ∼ λ2 + O(λ4).

Prove that the total amplitude

〈J/ψ Ks|H |B〉 = V ∗
cbVcs[g + ( f (mc) − f (m t))],

which to order λ2 is real.
(iii) Use this form of the matrix element to calculate the asymmetry in Eq. (16.50).

5. Analyze the B → φ + Ks decay along the lines of Problem 4 and derive Eq. (16.54)
with an explicit expression for the function h.
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