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Boundary Behavior of Solutions
of the Helmholtz Equation

Kentaro Hirata

Abstract. This paper is concerned with the boundary behavior of solutions of the Helmholtz equation
in R". In particular, we give a Littlewood-type theorem to show that the approach region introduced
by Koranyi and Taylor (1983) is best possible.

1 Introduction

Let n > 2 and let us denote a typical point in R” by x = (xi,...,x,). The usual
inner product and norm are written respectively as (x, y) = x;y1 + -+ + x,¥, and
|x| = 1/ (x,x). The symbol O(n) stands for the set of all orthogonal transformations
on R". Let A > 0. We consider the Helmholtz equation

(1.1) Au=Xu inR"

where A = §?/9x} + - -+ + 9*/9x2. It is known that the Martin boundary for pos-
itive solutions of (1.1) can be identified with the unit sphere S of R”, and that every
positive solution u of (1.1) can be represented as u = K for some Radon measure p
on S, where

Ku(x) = /e’\<x’y>du(y) for x € R".
S

See [4, Corollary to Theorem 4] and [9]. Let o denote the surface measure on S. Since
Ko(x) — 400 asx — oo (cf. Lemma 2.1), we investigate the behavior at infinity of
the normalization Ku/Ko. Lete = (1,0, ...,0) and let 2 be an unbounded subset
of R" converging to e at co in the sense that |x/|x| — ¢] — 0 as x — oo within Q.
We write 2(y) for the image of €2 under an element of O(n) mapping e to y. Then
{Q(y) : y € S} makes a collection of approach regions. By the notation Q(y) >
x — 00, we mean that x — oo within €2(y). Kordnyi and Taylor [9] considered the
following approach region. For o > 0 and y € §, define

Aaly) = {xe R": |x — |x]y| <« |x|}

Theorem A Let o > 0 and let i be a Radon measure on S. Then

lim @ (x) =

dp
do -a.e. y € S.
Aa(y)2x—00 Ko do ()/) fOT o-a.e. y
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This result corresponds to Fatou’s theorem [5] for the boundary behavior of har-
monic functions in the unit ball or the upper half space of R", (see also [8, 12]
for invariant harmonic functions in the unit ball of C"). The result correspond-
ing to Nagel-Stein’s theorem [11] was established by Berman and Singman [3] and
Gowrisankaran and Singman [6]. These results show that there exists an unbounded
subset 2 of R" converging to e at 0o such that

lim sup M = +00

REVERNSAEY

K
lim  —Hx) =
Qy)a3x—o0 Ko

and that p
—’u(y) foro-a.e. y €S,
do

whenever 1 is a Radon measure on S. Berman and Singman also showed its converse
(see [3, Theorem B and Remark 1. 13(a)]).

Theorem B  Let §2 be an unbounded subset of R" converging to e at oo and satisfying

(12) 1i [x = Ixle] _
. im sup = +00.

Qox—00 \/ |X|
Suppose in addition that ) is invariant under all elements of O(n) that preserve the
point e. Then there exists a Radon measure i on S such that

lim sup @(x) =400 foreveryy € S.
Q(y)dx—00 g
Note that the second assumption on {2 cannot be omitted from their construction
even if “limsup” in (1.2) is replaced by “lim”.
The purpose of this paper is to show the following Littlewood-type theorem. See
[1,2,7,10] for harmonic or invariant harmonic functions.

Theorem 1.1 Lety be a curve in R" converging to e at oo and satisfying
(1.3) lim M —
) YIx—00 /|x|

Then there exists a solution u of (1.1) such that u/Ko is bounded in R" and that u/Ko
admits no limits as x — oo along T+ for every T € O(n).

+00.

Remark 1.2. We indeed construct u satisfying —1 < /Ko < 1 and

lim inf L(x) =—1 and limsup i(x) =1
Tyax—oo0 Ko Ty3x—o0 8T

for every T € O(n). Note that “lim” in (1.3) cannot be replaced by “limsup” as

mentioned above (cf. [3,6]).

The proof of Theorem 1.1 is based on our previous work [7] for invariant har-
monic functions in the unit ball of C", which was a refinement of Aikawa’s method
[1,2] for harmonic functions in the unit disc or the upper half space of R”. In Sec-
tion 4, we remark that our construction and estimates are applicable to show the
analogue of Theorem B.
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2 Lemmas

The symbol A denotes an absolute positive constant depending only on A and the
dimension n, and may change from line to line. The following estimate is found in
[3, Lemma 4.1].

Lemma 2.1 There exists a constant A > 1 such that
1
Xe/\|x||x|(1—n)/2 < Ko(x) < Ae)\\x\|x|(l—n)/2

whenever |x| > 1.

The surface ball of center y € S and radius r > 0 is denoted by
Q,r)={xeS:|x—y| <r}.
Then we observe that

o) o 0(QUET)

n—1,
r—0

rnfl

where v, is the volume of the unit ball of R"~!. Moreover, there exists a constant
A > 1 such that

1
(2.2) /—{r"*1 <a(Qy,1) <A for0<r<2.

Let 7 be the radial projection onto S, i.e., 7(x) = x/|x| for x € R”\ {0}. For a Radon
measure f on S, we define the maximal function M. with parameter ¢ > 1 by

r>
x|

uQUr(), 1)) >;}'

Myp(x) = sup{ s

Lemma 2.2 Letc > 1 and let u be a Radon measure on S. Then

K 1
@) < A(Ix] "V 2u( Q) ¢/ VD) + - Miou()

whenever |x| > 1.
Proof Let |x| > 1. Since |x| — (x,y) = |x||7(x) — y|*/2 for y € S, it follows from
Lemma 2.1 that

K — — X||m(x)— 2
(2.3) K_“(x) < Alx|™ 1)/2/e /2l 7=y 13
g S

Let Qi = Q(m(x),¢/v/|x]) and Q; = Q((x), je/+/Ix[) \ Q(m(x), (j — De/+/|x])
for j = 2,...,N, where N is the smallest integer such that N¢/+/|x| > 2. Then for
i=1,...,N,

/ e WARIT D=7 g,y < e_(m)((j_l)c)zu(Q(W(x),jc/\/|x|)).
Q

j
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Therefore the right-hand side of (2.3) is bounded by

A( |x|(n*1)/2M(Q(7T(X), C/\/M)) + Z e*()\/Z)((jfl)c)Z(].C)nflM(C)M(x)) '

j>2

Since 3- -, e~ W2(G=D9(jeyr=1 < A /e, we obtain the required estimate. [

For an integrable function f on S, we write Kf = K(fdo) and M f =
Moy (|fldo).

Lemma 2.3 The following statements hold.

(i) Let u be a Radon measure on S. Then % (x) < AM)p(x) whenever |x| > 1.
(ii) Lety € S,0 <r < landc > 1. Suppose that f is a Borel measurable function on
Ssuchthat f = 10nQ(y,cr) and |f| < 1onS. Then %(ty) >1-— é whenever

V> 1/r.
Proof Lemma 2.2 with ¢ = 1 gives (i). To show (ii), let g = (1 — f)/2. Theng = 0

on Q(y,cr) and |g| < 1 on S. Observe from Lemma 2.2 and (2.2) that if /£ > 1/r,
then
p>— < —.

p = N

Since K f = Ko — 2Kg, we obtain (ii) ]

K A A 7 s
K_i(l‘)’) < ?M(c)g(t}’) < z sup{ M c }

pn—l

For a set E, let diam E = sup{|x — y| : x, y € E}.

Lemma 2.4 Let y be a curve in R" converging to e at oo and satisfying (1.3). Then
there exist sequences of numbers {a;} >, {bj};>1 and subarcs {y;}j>1 of v with the
following properties:
(i) 1<a<b <--<aj<bj<ajg <bj <-— +o0,
(i) a; <+/|x| < b forx €7,
(iii) bj_ydiamm(y;) < 1ifj > 2,
(iv) lim a;diamm(vy;) = +oo.
j—+o0

Proof Let {«;} be a sequence such that o; — +00 as j — +00, and let us choose
{a;j}, {b;}, and {v;} inductively. By (1.3), we find a; > max{1, infe, \/|x|} with

Vixl|t(x) —el > oy forx e yN{/|x| > a1}.

Let ' be the connected component of v N {+/|x| > a;} that converges to 0o, and let
x1 € 7' N{/|x| = a1}. Then diam7(y’) > |7 (x;) — | > 2_11 Let 7'/ be a subarc of
~/ starting from x; toward oo such that

1
sup \/|x| < +oc and diamm7(y") > 3 diam 7 (y").
xE'!

We take by > sup,. . \/|x|. Let 71 be the connected component of v N {a; <
v/|x| < by} containing v'’. Then diam 7(~;) > 2”7‘1 We next choose a,, b, and 7, as
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follows. By (1.3) and the fact that |m(x) — ¢] — 0 as x — oo along vy, we find a, > b;
such that

> |m(x) —e| > 2 forxe vy {V/|x] > ax}.

Vi

Repeat the above process to get by > a, and 7, such thata, < +/|x| < b, forx € 7,
and diam 7(7,) > «,/2a,. Then (2.4) also yields that

1
(2.4) 0,

1
diam 7(y,) < 2 sup |m(x) —e] < —.
XEY2 bl

Continue this process to obtain the required sequences. ]

3 Construction

Throughout this section, we suppose that {a;};>1, {bj};>1, and {7} > are as in
Lemma 2.4. Let

di . )
(3.1) L= w, cj =4/ajdiamm(y;), and p;= ;—].
j

Then, by Lemma 2.4,

(3.2) lim ¢; =0, lim Pi_ 0, and lim ¢; = +oo.
j—+oo j—+o0o j j—+o0

Therefore, in the construction below we may assume that p; < ¢; for every j € N.
For each j € N, we choose finitely many points {y’}, in S such that

@ S=U, Q0 L),
For example, a maximal family of pairwise disjoint surface balls {Q(y%, ¢;/2)}, sat-
isfies (i) and (ii). We define

(3.3) Mj=U{yeS:ly—yil=1¢},
(3.4) Gi={xeR":a; < +/|x| <bjand 7(x) € M;}.
Then we have the following.

Lemma 3.1 Tv;NG;# D foranyT € O(n) and j € N.

Proof By (i), we find v with #(Tv;) N Q(yj’f,ﬁj) # @. Since diam7(Tv;)
diam 7w(v;) = 3/}, we see that 7(T;) N M; # @. Therefore it follows from Tv;
{aj < /|x| < bj} that Ty; NG # @.

m N
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LetRY ={y € S:{j — p; < |y — y%| < {j +p;} and define
(3.5) B =URy.

Note that Q(y, pj) C E; if y € M;. By X we denote the characteristic function of E.

Lemma 3.2 The following properties for the above {E;} > hold.

0 i ({0 <0 }) <o

(i) lim o(E;) =0.
J—+0o0

Proof Since the value O'(RIJ/» ) is independent of v, we write o; = J(R’Jf). For a mo-
ment, we fix j and let \/|x| < b;_;. By Lemma 2.3(i)

KX, (x) < AM1) X, (%) SASuP{Z a(RY N Q(m(x),1)) .

1 }
—1
Ko ~ r V

O'j .
< Asup —1N].1’>
-

1
‘M}’

where N; is the number of v such that R’Jf NQ(r(x),r) # @. Ifr > l/m, then
r > 1/bj_; > diamm(vy;) = 3/; by Lemma 2.4. Therefore R’]f N Q(r(x),r) # @
implies Q(y]V, ¢;/2) C Q(m(x), 2r). It follows from (ii) that N; < A(r/éj)”_l. Hence
we obtain

KX oj
(3.6) sup{ K;J (x) s/ |x[ < bj—l} < Agn—Jl'
j

Observe from (2.1) and (3.2) that

o _ (fj +Pj) n=1o(Qy, ¢j + pj))
o ¢ i+ pj)—!

0 asj— +oo.

- (ﬁf 1) 1oQU i — i)
‘; (€ —pj)!

This together with (3.6) concludes (i).
Taking x = 0 in (i), we obtain

KX, )
o(Ej) = 0(8)——=(0) = 0 asj— +oo.
Ko

Thus (ii) follows. n
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Proof of Theorem 1.1 In view of Lemma 3.2, taking a subsequence of j if necessary,
we may assume that

KX, .
(3.7) Sx) <277 for/]x] < by,
Ko
and o(E;) < 271, Then o(M UizkEi) =0.ForjeN,let

(—DEY) ify e Ui<i<; Eis

fily) = '
ify ¢ Ulgigj E;,

where Ij(y) = max{i : y € E;,1 < i < j}. Then we see that f; converges o-a.e. on
Sto

(=D ify € Uin B\ N Uisk Ei
ify ¢Us Eiory e ﬂkUiZkEi’

where I(y) = max{i : y € Eij} fory € U~ E \ (U, Ei.- Also, we have the
following: - -

fly) =

Ifil <1, [fin— fil <2Xg,, onS  fj=(—1)onE; Kf;—KfonR".

Let T € O(n). By Lemma 3.1, we find x; € Ty N G; for each j € N. Then
aj < \/|xj| < bjand Q(n(x)),cj/a;) C Ej. If j is even, then Lemma 2.3(ii) and
(3.7) give

L )~ Sy 3 K=,

> Ko
KX A
fj( D=2d ) 21— =2
k>j €j

Similarly, if j is odd, then

K A
—f(x1)<—1+ +2!7,
Ko ¢j

Hence we conclude from (3.2) that

lim inf f(x) —1 < 1= limsup
Ty2Sx—00 Ko Ty3x—00

K—f(x).
o

Obviously, u = K f is a solution of (1.1) such that —1 < /Ko < 1 on R™. Thus the
proof of Theorem 1.1 is complete. ]
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4 Remark

Our construction and estimates in Sections 2 and 3 are applicable to show the ana-
logue of Theorem B.

Theorem 4.1 Let ) be an unbounded subset of R" converging to e at 0o and satisfying
(1.2). Suppose in addition that ) is invariant under all elements of O(n) that preserve
the point e. Then there exists a solution u of (1.1) such that u/Ko is bounded in R" and
that u/Ko admits no limits as x — oo along Q)(y) for every y € S.

Proof We give a sketch of the proof, and its detail is left to the reader. By the as-
sumption on €, we find a sequence {x;} in {2 converging to e at co such that

Taking a subsequence of j if necessary, we may assume that /|x;j_||7(xj) —e] < 1.
Letw;j = {Te(xj) : Te € O(n) preserves e} and letw = |J; wj. Note that w is a subset

of Q) converging to eat co. Let a; = b; = \/|x;| and define

|7(x;) — €] cj
&-27]3 . ¢j=/aj|m(xj) —¢|, and pj:j,

J

in place of (3.1). Then these satisfy (3.2) and 3/; < 1/b;_;. Let M}, G}, and E; be
asin (3.3), (3.4), and (3.5) respectively. Then the conclusions in Lemma 3.2 hold in
this setting as well. Note that w; and G; lie on the sphere of center at the origin and
radius |x;|. Let T € O(n). Since {y € S : |y — Te| = 3{;} C w(Tw;), we see that
m(Tw;) N M; # &, and so Tw; N G; # &. Hence we observe the existence of f such

that
K K
ng}cglgo K—(];(x) #+ Tlirgxs_l)lopo —(];(x) for every T € O(n).
Thus K f /Ko admits no limits as x — oo along Q(y) for every y € S. ]
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