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JÉRÉMY MARTIN1 AND KAREL PRAVDA-STAROV 2

1Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

(jeremy.martin@ens-rennes.fr)
2Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

(karel.pravda-starov@univ-rennes1.fr)

(Received 24 September 2020; revised 12 November 2021; accepted 17 February 2022;

first published online 21 March 2022)

Abstract This work is devoted to the study of uncertainty principles for finite combinations of Hermite
functions. We establish some spectral inequalities for control subsets that are thick with respect to
some unbounded densities growing almost linearly at infinity, and provide quantitative estimates, with
respect to the energy level of the Hermite functions seen as eigenfunctions of the harmonic oscillator,
for the constants appearing in these spectral estimates. These spectral inequalities allow us to derive
the null-controllability in any positive time for evolution equations enjoying specific regularizing effects.
More precisely, for a given index 1

2
≤ μ < 1, we deduce sufficient geometric conditions on control subsets

to ensure the null-controllability of evolution equations enjoying regularizing effects in the symmetric
Gelfand–Shilov space Sμ

μ(Rn). These results apply in particular to derive the null-controllability in any
positive time for evolution equations associated to certain classes of hypoelliptic non-self-adjoint quadratic
operators, or to fractional harmonic oscillators.
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1. Introduction

The classical uncertainty principle was established by Heisenberg and is linked to

the impossibility of precisely determining the position and the momentum of quantum
particles. Uncertainty principles are mathematical results that give limitations on the

simultaneous concentration of a function and its Fourier transform. There are various

uncertainty principles with formulations of different natures; for instance, a nonzero
function and its Fourier transform cannot both have small supports. In particular, a

nonzero L2(R)-function whose Fourier transform is compactly supported extends as a

nonzero entire function with full support thanks to the isolated-zeros theorem. Another
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formulation of uncertainty principles can be illustrated by the following notions of weak
and strong annihilating pairs:

Definition 1.1 (annihilating pairs). Let S,Σ be two measurable subsets of Rn.

- The pair (S,Σ) is said to be a weak annihilating pair if the only function f ∈ L2(Rn)

with suppf ⊂ S and supp f̂ ⊂ Σ is zero.

- The pair (S,Σ) is said to be a strong annihilating pair if there exists a positive constant
C = C(S,Σ)> 0 such that for all f ∈ L2(Rn),∫

Rn

|f(x)|2dx≤ C

(∫
Rn\S

|f(x)|2dx+
∫
Rn\Σ

∣∣∣f̂(ξ)∣∣∣2 dξ) . (1.1)

It can be readily checked that a pair (S,Σ) is a strong annihilating one if and only

if there exists a positive constant D = D(S,Σ) > 0 such that for all f ∈ L2(Rn) with
supp f̂ ⊂ Σ,

‖f‖L2(Rn) ≤D‖f‖L2(Rn\S). (1.2)

As already mentioned, the pair (S,Σ) is a weak annihilating one if S and Σ are compact
sets. More generally, Benedicks has shown in [9] that (S,Σ) is a weak annihilating pair if S

and Σ are sets of finite Lebesgue measure |S|,|Σ|<+∞. Under this assumption, the result

of Amrein and Berthier [4] actually shows that the pair (S,Σ) is a strong annihilating

one. The estimate C(S,Σ)≤ κeκ|S||Σ| (which is sharp up to the numerical constant κ> 0)
has been established by Nazarov [32] in dimension n= 1. This result was extended in the

multidimensional case by Jaming [25], with the quantitative estimate

C(S,Σ)≤ κeκ(|S||Σ|)1/n

holding if, in addition, one of the two subsets of finite Lebesgue measure S or Σ is convex.

An exhaustive description of all strong annihilating pairs seems for now totally out of

reach. We refer the reader for instance to works [3, 10, 11, 13, 14, 38] for a large variety of
results and techniques available, as well as for examples of weak annihilating pairs that

are not strong annihilating ones. On the other hand, there is an exhaustive description of

all the support sets S forming a strong annihilating pair with any bounded spectral set

Σ. This description is given by the Logvinenko-Sereda theorem [29]:

Theorem 1.2 (Logvinenko–Sereda). Let S,Σ⊂Rn be measurable subsets with Σ bounded.
The following assertions are equivalent:

- The pair (S,Σ) is a strong annihilating pair.

- The subset Rn \S is thick – that is, there exist a nonempty cube K ⊂ Rn with sides
parallel to coordinate axes and a positive constant 0< γ ≤ 1 such that

∀x ∈ Rn, |(K+x)∩ (Rn \S)| ≥ γ|K|> 0,

where |A| denotes the Lebesgue measure of the measurable set A.
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Notice that if (S,Σ) is a strong annihilating pair for some bounded subset Σ, then S

makes up a strong annihilating pair with every bounded subset Σ, but the constants

C(S,Σ)> 0 and D(S,Σ)> 0 do depend on Σ. In order to be able to use this result in the
control theory of partial differential equations, it is then essential to understand how the

positive constant D(S,Σ)> 0 depends on the bounded set Σ. This question was addressed

by Kovrijkine [26, Theorem 3], who established the following quantitative estimates:

Theorem 1.3 (Kovrijkine). There exists a universal positive constant Cn > 0 depending

only on the dimension n≥ 1 such that if ω is a γ-thick set at scale L > 0 – that is,

∀x ∈ Rn, |ω∩ (x+[0,L]n)| ≥ γLn, (1.3)

with 0< γ ≤ 1 – then, for all R> 0 and f ∈ L2(Rn) with supp f̂ ⊂ [−R,R]n, the following
estimate holds:

‖f‖L2(Rn) ≤
(
Cn

γ

)Cn(1+LR)

‖f‖L2(ω). (1.4)

In all this work, the Fourier transform is used with the following normalization:

f̂(ξ) =

∫
Rn

f(x)e−ix·ξdξ, ξ ∈ Rn.

Given a measurable subset, notice that it is thick in Rn if and only if it is γ-thick at scale

L for some positive constants 0 < γ ≤ 1 and L > 0. Thus, the notion of γ-thickness at a

positive scale allows quantification of the general thickness property.
Thanks to this explicit dependence of the constant with respect to the parameter R> 0

in estimate (1.4), Egidi and Veselić [15] and Wang, Wang, Zhang, and Zhang [45] have

independently established that the heat equation{
(∂t−Δx)f(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),
(1.5)

is null-controllable in any positive time T > 0 from a measurable control subset ω ⊂
Rn if and only if this subset ω is thick in Rn. Recent work by Beauchard, Egidi, and

the second author [6] has shown that this geometric necessary and sufficient condition

on control subsets to ensure null-controllability extends more generally for hypoelliptic
nonautonomous Ornstein–Uhlenbeck equations when the moving control subsets comply

with the flow associated to the transport part of the Ornstein–Uhlenbeck operators.

The notion of null-controllability is defined as follows:

Definition 1.4 (null-controllability). Let P be a closed operator on L2(Rn) which is the

infinitesimal generator of a strongly continuous semigroup
(
e−tP

)
t≥0

on L2(Rn), T > 0,

and let ω be a measurable subset of Rn. The evolution equation{
(∂t+P )f(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),
(1.6)

https://doi.org/10.1017/S1474748022000135 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000135


2536 J. Martin and K. Pravda-Starov

is said to be null-controllable from the set ω in time T > 0 if, for any initial datum
f0 ∈ L2(Rn), there exists a control function u ∈ L2((0,T )×Rn) supported in (0,T )×ω,

such that the mild (or semigroup) solution of equation (1.6) satisfies f(T,·) = 0.

By the Hilbert uniqueness method (see [12, Theorem 2.44] or [28]), the null-
controllability of the evolution equation (1.6) is equivalent to the observability of the

adjoint system {
(∂t+P ∗)g(t,x) = 0, x ∈ Rn,t > 0,

g|t=0 = g0 ∈ L2(Rn),
(1.7)

where P ∗ denotes the L2(Rn)-adjoint of P. The notion of observability is defined as

follows:

Definition 1.5 (observability). Set T > 0 and let ω be a measurable subset of Rn. The

evolution equation (1.7) is said to be observable from the set ωin time T > 0 if there

exists a positive constant CT > 0 such that, for any initial datum g0 ∈ L2(Rn), the mild

(or semigroup) solution of equation (1.7) satisfies

∫
Rn

|g(T,x)|2dx≤ CT

T∫
0

⎛⎝∫
ω

|g(t,x)|2dx

⎞⎠dt. (1.8)

Following [15], the necessity of the thickness condition for control subsets to ensure the
null-controllability of the heat equation is a consequence of a quasimode construction;

whereas the sufficiency is derived from an abstract observability result based on an

adapted Lebeau–Robbiano method established by Beauchard and the second author with
some contributions of Miller in [8, Theorem 2.1]. This abstract observability result, whose

proof is inspired by [30, 31], was extended in [6, Theorem 3.2] to the nonautonomous case

with moving control supports and under weaker dissipation estimates allowing controlled

blowup for small times in the dissipation estimates. The following statement is a simplified
formulation of [6, Theorem 3.2] limited to the semigroup case with fixed control supports

and weaker dissipation estimates than in [8, Theorem 2.1]:

Theorem 1.6 (Beauchard, Egidi, and Pravda-Starov). Let Ω be an open subset of

Rn; ω be a measurable subset of Ω; (πk)k≥1 be a family of orthogonal projections

on L2(Ω);
(
e−tA

)
t≥0

be a strongly continuous contraction semigroup on L2(Ω); and

c1,c2,c
′
1,c

′
2,a,b,t0,m1 > 0 be positive constants with a < b; and set m2 ≥ 0. If the spectral

inequality

∀g ∈ L2(Ω),∀k ≥ 1, ‖πkg‖L2(Ω) ≤ c′1e
c1k

a‖πkg‖L2(ω) (1.9)

and the dissipation estimate with controlled blowup

∀g ∈ L2(Ω),∀k ≥ 1,∀0< t < t0,
∥∥(1−πk)

(
e−tAg

)∥∥
L2(Ω)

≤ e−c2t
m1kb

c′2t
m2

‖g‖L2(Ω) (1.10)
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hold, then there exists a positive constant C > 1 such that the following observability
estimate holds:

∀T > 0,∀g ∈ L2(Ω),
∥∥e−TAg

∥∥2
L2(Ω)

≤ C exp

(
C

T
am1
b−a

)∫ T

0

∥∥e−tAg
∥∥2
L2(ω)

dt. (1.11)

Notice that the assumptions in this statement do not require that the orthogonal

projections (πk)k≥1 be in any manner related to the spectral projections onto the

eigenspaces of the infinitesimal generator A, which is allowed to be non-self-adjoint.
According to the foregoing statement, there are two key ingredients to derive a result

of observability, or equivalently a result of null-controllability for the adjoint system,

using Theorem 1.6 – namely, a spectral inequality (1.9) and a dissipation estimate (1.10).
For the heat equation, the orthogonal projections used are the frequency cutoff operators

given by the orthogonal projections onto the closed vector subspaces

Ek =
{
f ∈ L2(Rn) : supp f̂ ⊂ [−k,k]n

}
, k ≥ 1. (1.12)

With this choice, the dissipation estimate readily follows from the explicit formula

̂(etΔxg)(t,ξ) = ĝ(ξ)e−t|ξ|2, t≥ 0,ξ ∈ Rn, (1.13)

whereas the spectral inequality is given by the sharpened formulation of the Logvinenko–

Sereda theorem established by Kovrijkine (Theorem 1.3). Notice that the power 1 for
the parameter R in estimate (1.4) and the power 2 for the term |ξ| in formula (1.13)

account for the fact that Theorem 1.6 can be applied with the parameters a = 1,b = 2

that satisfy the required condition 0< a< b. It is therefore essential that the power of the

parameter R in the exponent of estimate (1.4) be strictly less than 2. Let us underline
that Theorem 1.6 does not apply only with the use of frequency cutoff projections and a

dissipation estimate induced by some Gevrey-type regularizing effects. Other regularities

than the Gevrey one can be taken into account. In this work, we are interested in obtaining
results of null-controllability for evolution equations enjoying some regularizing effects in

Gelfand–Shilov spaces. More specifically, given an abstract evolution equation enjoying

some Gelfand–Shilov regularizing effects, we aim to find sufficient geometric conditions
on control subsets to ensure null-controllability in any positive time.

The definition and basic properties related to Gelfand–Shilov regularity are recalled

in §A.3. Gelfand–Shilov regularity is characterized by specific exponential decays of

both the functions and their Fourier transforms. In the symmetric case, Gelfand–
Shilov regularity can be read on the exponential decay of the Hermite coefficients when

expanding the functions in the L2(Rn)-Hermite basis (Φα)α∈Nn . We refer the reader to

§A.2 for the definition and some notations related to Hermite functions. Thanks to this
second characterization of Gelfand–Shilov regularity, a natural choice for the orthogonal

projections (πk)k≥1 in order to apply Theorem 1.6 to prove the null-controllability of

evolution equations enjoying some symmetric Gelfand-Shilov regularizing effects is given
by the Hermite orthogonal projections onto the closed vector subspaces in L2(Rn),

Ek = SpanC{Φα}α∈Nn,|α|≤k, k ∈ N, (1.14)
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where N denotes the set of nonnegative integers and |α| = α1 + · · ·+ αn when α =

(α1, . . . ,αn) ∈ Nn – that is, the orthogonal projections

πk =

k∑
j=0

Pj, Pkg =
∑

α∈N
n,

|α|=k

〈g,Φα〉L2(Rn)Φα, k ≥ 0, (1.15)

where Pk denotes the orthogonal projection onto the kth energy level associated with the
harmonic oscillator

H=−Δx+‖x‖2 =
+∞∑
k=0

(2k+n)Pk. (1.16)

Given an abstract evolution equation enjoying some symmetric Gelfand–Shilov regular-

izing effects, the dissipation estimate (1.10) is then expected to hold for the Hermite

orthogonal projections (πk)k≥1 with some specific positive parameter b > 0 related to the
index of Gelfand–Shilov regularity. Let us notice that this dissipation estimate does not

depend on the geometry of the control subset and that this geometry only plays a (key)

role in the spectral inequality (1.9). Addressing the problem of finding sufficient geometric
conditions on control subsets to derive an observability result for this abstract evolution

equation is therefore reduced to obtaining quantitative spectral estimates of the type

∀k ≥ 1,∃Ck(ω)> 0,∀f ∈ L2(Rn), ‖πkf‖L2(Rn) ≤ Ck(ω)‖πkf‖L2(ω) (1.17)

and figuring out the largest class of control subsets for which the spectral inequality

(1.9) holds with some positive parameter 0 < a < b. This problem of the conditions on
the control subset ω ⊂ Rn under which the spectral inequality (1.17) holds and how

the geometric properties of the control subset ω relate to the possible growth of the

positive constant Ck(ω)> 0 with respect to the energy level when k →+∞ was studied
by Beauchard, Jaming and the second author in [7]. By a simple argument of equivalence

of norms in finite dimension, the first result in [7] shows that for any measurable subset

ω ⊂ Rn of positive Lebesgue measure |ω| > 0 and all N ∈ N, there does exist a positive

constant CN (ω) > 0 depending on ω and N such that the following spectral inequality
holds:

∀f ∈ EN, ‖f‖L2(Rn) ≤ CN (ω)‖f‖L2(ω). (1.18)

The main result in [7, Theorem 2.1] then provides the following quantitative upper bounds

on the positive constant CN (ω)> 0 for the following three different geometries:

(i) If ω is a nonempty open subset of Rn, then there exists a positive constant C =

C(ω)> 1 such that

∀N ∈ N,∀f ∈ EN, ‖f‖L2(Rn) ≤ Ce
1
2N ln(N+1)+CN‖f‖L2(ω). (1.19)

(ii) If the measurable subset ω ⊂ Rn satisfies the condition

liminf
R→+∞

|ω∩B(0,R)|
|B(0,R)| = lim

R→+∞

(
inf
r≥R

|ω∩B(0,r)|
|B(0,r)|

)
> 0, (1.20)
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where B(0,R) denotes the open Euclidean ball in Rn centered in 0 with radius

R> 0, then there exists a positive constant C = C(ω)> 1 such that

∀N ∈ N,∀f ∈ EN, ‖f‖L2(Rn) ≤ CeCN‖f‖L2(ω). (1.21)

(iii) If the measurable subset ω ⊂ Rn is γ-thick at scale L > 0 – that is, if formula

(1.3) holds – then there exist a positive constant C = C(L,γ,n)> 0 depending on
the dimension n≥ 1 and the parameters 0< γ ≤ 1, L > 0 and a universal positive

constant κ= κ(n)> 0 depending only on the dimension, such that

∀N ∈ N,∀f ∈ EN, ‖f‖L2(Rn) ≤ C

(
κ

γ

)κL
√
N

‖f‖L2(ω). (1.22)

These results show that the spectral inequality (1.9) is satisfied with parameter a= 1
2

when the control subset ω⊂Rn is γ-thick at scale L> 0; whereas it holds with parameter

a= 1 when the geometric condition (1.20) holds.
The main result in the present work (Theorem 2.1) bridges the gap between the two

spectral estimates (1.21) and (1.22) by figuring out sharp geometric conditions on the

control subsets ensuring that the spectral inequality (1.9) holds for any given parameter
1
2 ≤ a < 1. Given an abstract evolution equation enjoying some regularizing effects in
the symmetric Gelfand–Shilov space Sμ

μ(R
n), with 1

2 ≤ μ < 1, some sharp sufficient

geometric conditions on control subsets to ensure null-controllability are then deduced

in Theorem 2.5, and some applications to derive the null-controllability of evolution
equations associated to certain classes of hypoelliptic non-self-adjoint quadratic operators,

or to fractional harmonic oscillators, are given in Corollaries 2.4 and 2.6.

2. Statements of the main results

2.1. Uncertainty principles for finite combinations of Hermite functions.

The main result in this work is the following uncertainty principles for finite combinations

of Hermite functions:

Theorem 2.1. Let ρ : Rn −→ (0,+∞) be a 1
2 -Lipschitz positive function with Rn being

equipped with the Euclidean norm, such that there exist some positive constants 0 < ε ≤
1,m > 0,R≥m such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R〈x〉1−ε
,

with 〈x〉=
(
1+‖x‖2

) 1
2 and ‖·‖ the Euclidean norm on Rn. Let ω be a measurable subset

of Rn which is γ-thick with respect to the density ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|, (2.1)

where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with radius r > 0, and |·|
denotes the Lebesgue measure. Then there exist some positive constants κn(m,R,γ,ε) >

0,C̃n(ε,R)> 0 and a positive universal constant κ̃n > 0 depending only on the dimension
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such that

∀N ≥ 1,∀f ∈ EN, ‖f‖L2(Rn) ≤ κn(m,R,γ,ε)

(
κ̃n

γ

)C̃n(ε,R)N1− ε
2

‖f‖L2(ω),

with EN being the finite-dimensional vector space spanned by the Hermite functions

(Φα)|α|≤N .

Taking the parameter ε= 1, Theorem 2.1 allows us to recover the quantitative spectral
estimate of Logvinenko–Sereda type (1.22), established in [7, Theorem 2.1], as condition

(2.1) is then equivalent to the thickness property (1.3). Contrary to the thick case

(ε = 1), notice that when 0 < ε < 1, condition (2.1) allows control subsets to have holes
with diameters tending to infinity. Theorem 2.1 applies, for instance, with the family of

unbounded densities

ρε(x) =Rε 〈x〉1−ε
, x ∈ Rn,

when 0 < ε < 1 and 0 < Rε ≤ 1
2(1−ε) , as ρε is then a 1

2 -Lipschitz positive function (see

Section A.4). However, the case ε = 0, corresponding to a possible linear dependence of

the radius, is not covered by Theorem 2.1.

The following result shows that the regularity assumptions on the density ρ can be

slightly weakened by allowing it to fail to be a Lipschitz function, while strengthening on
the γ-thickness condition with respect to ρ by imposing some constraints on the lower

bound for the parameter 0< γ ≤ 1:

Corollary 2.2. Let ρ : Rn −→ (0,+∞) be a continuous positive function verifying

∃0< ε≤ 1,∃0<Rε ≤
1

2(1− ε)
,∀x ∈ Rn, 0< ρ(x)≤Rε〈x〉1−ε

, (2.2)

with (by convention) no upper-bound condition on Rε > 0 in the case when ε= 1. If ω is

a measurable subset of Rn that is γ-thick with respect to the density ρ – that is,

∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|, (2.3)

with 1− 1
6n < γ ≤ 1, where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with

radius r > 0 – then there exist some positive constants κn(Rε,γ,ε)> 0,C̃n(ε,Rε)> 0 and

a positive universal constant κ̃n > 0 depending only on the dimension such that

∀N ≥ 1,∀f ∈ EN, ‖f‖L2(Rn) ≤ κn(Rε,γ,ε)

(
κ̃n

γ

)C̃n(ε,Rε)N
1− ε

2

‖f‖L2(ω).

The lower-bound condition 1− 1
6n < γ ≤ 1 can be unexpected. We actually do not know

if this assumption is really relevant, or if Corollary 2.2 holds true as well without this

technical condition. Let us only mention that this lower-bound condition is somehow
related to the smallness condition on the positive parameter 0< ε≤ ε0, with 0< ε0 � 1

sufficiently small, in the result of Kovrijkine [27, Theorem 1.1], where it is established

that a pair (S,Σ) is a strong annihilating one when S and Σ are measurable subsets
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satisfying the following ε-thinness condition:

∀x ∈ Rn, |S∩B(x,ρ1(‖x‖))| ≤ ε|B(x,ρ1(‖x‖))|, (2.4)

∀x ∈ Rn, |Σ∩B(x,ρ2(‖x‖))| ≤ ε|B(x,ρ2(‖x‖))|, (2.5)

when ρ1,ρ2 : R+ −→ (0,+∞) are continous nonincreasing functions satisfying

∃C1,C2 > 0,∀t ∈ R+,
C2

ρ2

(
C1

ρ1(t)

) ≥ t,

with 0 < ε ≤ ε0. Corollary 2.2 is a direct consequence of Theorem 2.1 using the density

ρε(x) =Rε〈x〉1−ε
, with x ∈ Rn and 0<Rε ≤ 1

2(1−ε) , together with Lemma A.6.

2.2. Null-controllability of hypoelliptic non-self-adjoint quadratic equations

This section is devoted to the study of null-controllability for evolution equations

associated to certain classes of non-self-adjoint quadratic operators enjoying some global

subelliptic properties. The main result in this section is Corollary 2.4. This result is a
consequence of the new uncertainty principles established in Theorem 2.1 and the abstract

observability result given by Theorem 1.6. It extends to any control subset that is thick

with respect to an unbounded Lipschitzian density with almost-linear growth at infinity,
the result of null-controllability proved by Beauchard, Jaming and the second author in

[7, Theorem 2.2].

2.2.1. Miscellaneous facts about quadratic differential operators. Quadratic
operators are pseudodifferential operators defined in the Weyl quantization

qw(x,Dx)f(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξq

(
x+y

2
,ξ

)
f(y)dydξ (2.6)

by symbols q(x,ξ), with (x,ξ)∈Rn×Rn,n≥ 1, which are complex-valued quadratic forms

q : Rn
x ×Rn

ξ → C

(x,ξ) �→ q(x,ξ).

These operators are actually differential operators with simple and fully explicit

expression, since the Weyl quantization of the quadratic symbol xαξβ , with (α,β) ∈
N2n,|α+β|= 2, is given by the differential operator

xαDβ
x +Dβ

xx
α

2
, Dx = i−1∂x.

Notice that these operators are non-self-adjoint as soon as their Weyl symbols have
a nonzero imaginary part. The maximal closed realization of the quadratic operator

qw(x,Dx) on L2(Rn) – that is, the operator equipped with the domain

D(qw) =
{
f ∈ L2(Rn) : qw(x,Dx)f ∈ L2(Rn)

}
, (2.7)
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where qw(x,Dx)f is defined in the distribution sense – is known to coincide with the

graph closure of its restriction to the Schwartz space [24, pp. 425–426],

qw(x,Dx) : S (Rn)→ S (Rn).

Classically, to any quadratic form q :Rn
x×Rn

ξ →C defined on the phase space is associated

a matrix F ∈M2n(C) called its Hamilton map, or its fundamental matrix, which is the
unique matrix satisfying the identity

∀(x,ξ) ∈ R2n,∀(y,η) ∈ R2n, q((x,ξ),(y,η)) = σ((x,ξ),F (y,η)), (2.8)

where q(·,·) is the polarized form associated with the quadratic form q and where σ stands
for the standard symplectic form

σ((x,ξ),(y,η)) = 〈ξ,y〉−〈x,η〉=
n∑

j=1

(ξjyj −xjηj), (2.9)

with x= (x1, . . . ,xn),y = (y1, . . . ,yn),ξ = (ξ1, . . . ,ξn),η = (η1, . . . ,ηn) ∈Cn. We observe from

the definition that

F =
1

2

(
∇ξ∇xq ∇2

ξq

−∇2
xq −∇x∇ξq

)
,

where the matrices ∇2
xq = (ai,j)1≤i,j≤n ,∇2

ξq = (bi,j)1≤i,j≤n ,∇ξ∇xq = (ci,j)1≤i,j≤n ,

∇x∇ξq = (di,j)1≤i,j≤n are defined by the entries

ai,j = ∂2
xi,xj

q, bi,j = ∂2
ξi,ξjq, ci,j = ∂2

ξi,xj
q, di,j = ∂2

xi,ξjq.

The notion of singular space was introduced in [18] by Hitrik and the second author by

pointing out the existence of a particular vector subspace in the phase space S ⊂ R2n,
which is intrinsically associated with a given quadratic symbol q. This vector subspace is

defined as the following finite intersection of kernels:

S =

⎛⎝2n−1⋂
j=0

Ker
[
ReF (ImF )j

]⎞⎠∩R2n, (2.10)

where ReF and ImF stand respectively for the real and imaginary parts of the Hamilton

map F associated with the quadratic symbol q :

ReF =
1

2

(
F +F

)
, ImF =

1

2i

(
F −F

)
.

As pointed out in [18, 21, 22, 34, 35, 36, 44], the notion of singular space plays a basic

role in the understanding of the spectral and hypoelliptic properties of the (possibly)

nonelliptic quadratic operator qw(x,Dx), as well as the spectral and pseudospectral prop-
erties of certain classes of degenerate doubly characteristic pseudodifferential operators

[19, 20, 42, 43]. In particular, [18, Theorem 1.2.2] provides a complete description for

the spectrum of any nonelliptic quadratic operator qw(x,Dx) whose Weyl symbol q has
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a nonnegative real part Req ≥ 0 and satisfies a condition of partial ellipticity along its
singular space S,

(x,ξ) ∈ S, q(x,ξ) = 0⇒ (x,ξ) = 0. (2.11)

Under these assumptions, the spectrum of the quadratic operator qw(x,Dx) is shown to be
composed of a countable number of eigenvalues with finite algebraic multiplicities, and the

structure of this spectrum is similar to the one known for elliptic quadratic operators [39].

This condition of partial ellipticity is generally weaker than the condition of ellipticity,
S � R2n, and allows one to deal with more degenerate situations. An important class

of quadratic operators satisfying condition (2.11) are those with zero singular spaces

S = {0}. In this case, the condition of partial ellipticity trivially holds. More specifically,
these quadratic operators have been shown in [35, Theorem 1.2.1] to be hypoelliptic and

to enjoy global subelliptic estimates of the type

∃C > 0,∀f ∈ S (Rn), (2.12)∥∥∥〈(x,Dx)〉2(1−δ)f
∥∥∥
L2(Rn)

≤ C
(
‖qw(x,Dx)f‖L2(Rn)+‖f‖L2(Rn)

)
,

where 〈(x,Dx)〉2 =1+‖x‖2+‖Dx‖2, with a sharp loss of derivatives 0≤ δ < 1 with respect

to the elliptic case (case δ = 0), which can be explicitly derived from the structure of the
singular space.

In this work, we study the class of quadratic operators whose Weyl symbols have

nonnegative real parts Req ≥ 0, and zero singular spaces S = {0}. These quadratic
operators are also known [18, Theorem 1.2.1] to generate strongly continuous contraction

semigroups
(
e−tqw

)
t≥0

on L2(Rn), which are smoothing in the Schwartz space for any

positive time:

∀t > 0,∀f ∈ L2(Rn), e−tqwf ∈ S (Rn).

In [22, Theorem 1.2], these regularizing properties were sharpened and these contraction

semigroups were shown to be actually smoothing for any positive time in the Gelfand–
Shilov space S

1/2
1/2(R

n): ∃C > 0,∃t0 > 0,∀f ∈ L2(Rn),∀α,β ∈ Nn,∀0< t≤ t0,

∥∥∥xα∂β
x

(
e−tqwf

)∥∥∥
L∞(Rn)

≤ C1+|α|+|β|

t
2k0+1

2 (|α|+|β|+2n+s)
(α!)1/2(β!)1/2‖f‖L2(Rn), (2.13)

where s is a fixed integer verifying s > n/2 and where 0 ≤ k0 ≤ 2n− 1 is the smallest
integer satisfying ⎛⎝ k0⋂

j=0

Ker
[
ReF (ImF )j

]⎞⎠∩R2n = {0}. (2.14)

Thanks to this Gelfand–Shilov smoothing effect (2.13), Beauchard and the second author

established in [8, Proposition 4.1] that for any quadratic form q : R2n
x,ξ → C with a
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nonnegative real part Req≥ 0 and a zero singular space S = {0}, the following dissipation

estimate holds:

∃C0 > 1,∃t0 > 0,∀t≥ 0,∀k ≥ 0,∀f ∈ L2(Rn), (2.15)∥∥∥(1−πk)
(
e−tqwf

)∥∥∥
L2(Rn)

≤ C0e
−δ(t)k‖f‖L2(Rn),

with

δ(t) =
inf(t,t0)

2k0+1

C0
≥ 0, t≥ 0, (2.16)

where 0 ≤ k0 ≤ 2n− 1 is the smallest integer satisfying equation (2.14) and where

(πk)k≥0 are the Hermite orthogonal projections defined in equation (1.15). Combining

these dissipation estimates with the quantitative spectral estimate of Logvinenko–Sereda
type (1.22) established in [7, Theorem 2.1], Beauchard, Jaming and the second author

derived from the abstract observability result [8, Theorem 2.1] the following result of

null-controllability [7, Theorem 2.2]:

Theorem 2.3 (Beauchard, Jaming, and Pravda-Starov). Let q : Rn
x ×Rn

ξ → C be a

complex-valued quadratic form with a nonnegative real part Req ≥ 0 and a zero singular
space S = {0}. If ω is a measurable thick subset of Rn – that is, if condition (1.3) holds

for some L > 0 and 0< γ ≤ 1 – then the evolution equation{
∂tf(t,x)+ qw(x,Dx)f(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),

with qw(x,Dx) being the quadratic differential operator defined by the Weyl quantization
of the symbol q, is null-controllable from the set ω in any positive time T > 0.

Thanks to the new uncertainty principles established in Theorem 2.1 and the abstract
observability result given by Theorem 1.6, Theorem 2.3 can be generalized to any control

subset that is thick with respect to an unbounded Lipschitzian density with almost-linear

growth at infinity.
If ρ : Rn −→ (0,+∞) is a 1

2 -Lipschitz positive function with Rn being equipped with

the Euclidean norm such that there exist some positive constants 0< ε≤ 1,m > 0,R≥m

such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R 〈x〉1−ε
,

and if ω ⊂ Rn is a measurable subset that is γ-thick with respect to the density ρ for
some 0 < γ ≤ 1 – that is, if condition (2.1) holds – we can apply Theorem 1.6 together

with Theorem 2.1 for the following choices of parameters: Ω =Rn; A= qw(x,Dx); 0< a=

1− ε
2 < b = 1; t0 > 0 as in formula (2.15); m1 = 2k0+1, where k0 is defined in equation

(2.14); m2 = 0; any constant c1 > 0 satisfying

∀k ≥ 1, κn(m,R,γ,ε)

(
κ̃n

γ

)C̃n(ε,R)k1− ε
2

≤ ec1k
1− ε

2 ,
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where the positive constants κn(m,R,γ,ε)> 0,C̃n(ε,R), κ̃n > 0 are given by Theorem 2.1;

c′1 = c′2 = 1; and c2 = 1
C0

> 0, where C0 > 1 is defined in formula (2.15). We therefore
obtain the following observability estimate in any positive time:

∃C > 1,∀T > 0,∀g ∈ L2(Rn),∥∥∥e−Tqwg
∥∥∥2
L2(Rn)

≤ C exp

(
C

T (
2
ε−1)(2k0+1)

)∫ T

0

∥∥∥e−tqwg
∥∥∥2
L2(ω)

dt.

After we note on one hand that the L2(Rn)-adjoint of the quadratic operator (qw,D(qw))

is the quadratic operator (qw,D (qw)), whose Weyl symbol is the complex conjugate of q,
and that on the other hand the symbol q is also a complex-valued quadratic form with

a nonnegative real part and a zero singular space, the Hilbert uniqueness method allows

us to obtain the following result of null-controllability:

Corollary 2.4. Let q : Rn
x × Rn

ξ → C be a complex-valued quadratic form with a

nonnegative real part Req ≥ 0 and a zero singular space S = {0}. Let ρ : Rn −→ (0,+∞)

be a 1
2 -Lipschitz positive function, with Rn being equipped with the Euclidean norm, such

that there exist some positive constants 0< ε≤ 1,m > 0,R≥m such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R 〈x〉1−ε

and ω is a measurable subset of Rn. If ω is γ-thick with respect to the density ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|,

where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with radius r > 0 – then the
evolution equation{

∂tf(t,x)+ qw(x,Dx)f(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),

with qw(x,Dx) being the quadratic differential operator defined by the Weyl quantization

of the symbol q – is null-controllable from the control subset ω in any positive time T > 0.

2.3. Null-controllability of evolution equations enjoying Gelfand–Shilov

smoothing effects

Given an abstract evolution equation enjoying some Gelfand–Shilov regularizing effects,

we aim now to figure out sufficient geometric conditions on control subsets to ensure
null-controllability in any positive time.

Let us consider the evolution equation{
∂tf(t,x)+Af(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn)
(2.17)
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associated to A a closed operator on L2(Rn) that is the infinitesimal generator of a

strongly continuous contraction semigroup
(
e−tA

)
t≥0

on L2(Rn) enjoying some Gelfand–
Shilov smoothing effects for any positive time – that is, verifying

∀t > 0,∀u ∈ L2(Rn), e−tAu ∈ S
1/(2s)
1/(2s)(R

n), (2.18)

with 1
2 < s ≤ 1. We assume more specifically that the contraction semigroup

(
e−tA

)
t≥0

enjoys the following quantitative regularizing estimates: There exist some constants 1
2 <

s≤ 1,Cs > 1,0< t0 ≤ 1,m1,m2 ∈ R with m1 > 0,m2 ≥ 0 such that

∀0< t≤ t0,∀α,β ∈ Nn,∀g ∈ L2(Rn), (2.19)∥∥xα∂β
x

(
e−tAg

)∥∥≤ C
1+|α|+|β|
s

tm1(|α|+|β|)+m2
(α!)

1
2s (β!)

1
2s ‖g‖L2(Rn),

where here (and only here) the norm ‖·‖ denotes either the L∞(Rn)-norm or the L2(Rn)-

norm. Lemma A.8 shows that if the estimates (2.19) hold with the L∞(Rn)-norm, then
they also hold with the L2(Rn)-norm with the same constants 1

2 < s ≤ 1,0 < t0 ≤ 1, but

with different values for the constants Cs > 1,m1 > 0,m2 ≥ 0. The following result provides

sufficient geometric conditions on control subsets related to the index of symmetric
Gelfand–Shilov regularity 1

2s to ensure the null-controllability of the adjoint system:

Theorem 2.5. Let A be a closed operator on L2(Rn) which is the infinitesimal generator

of a strongly continuous contraction semigroup
(
e−tA

)
t≥0

on L2(Rn) that satisfies the

quantitative smoothing estimates (2.19) for some 1
2 < s≤ 1. Let ρ : Rn −→ (0,+∞) be a

1
2 -Lipschitz positive function with Rn being equipped with the Euclidean norm, such that
there exist some constants 0≤ δ < 2s−1,m > 0,R≥m such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R〈x〉δ.

If ω is a measurable subset of Rn which is γ-thick with respect to the density ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|,

where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with radius r > 0 – then the

evolution equation associated to the L2(Rn)-adjoint operator A∗,{
∂tf(t,x)+A∗f(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),
(2.20)

is null-controllable from the control subset ω in any positive time T > 0.

As recalled in the previous section, strongly continuous contraction semigroups

generated by accretive non-self-adjoint quadratic operators with zero singular spaces
enjoy smoothing effects in the Gelfand–Shilov space S

1/2
1/2(R

n). More specifically, Alphonse

and Bernier established in [2, Theorem 1.6] that such contraction semigroups
(
e−tqw

)
t≥0
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on L2(Rn) satisfy the following quantitative regularizing estimates: There exist some

constants C > 1,0< t0 ≤ 1 such that

∀0< t≤ t0,∀k ≥ 1,∀X1, . . . ,Xk ∈ R2n,∀g ∈ L2(Rn), (2.21)∥∥∥LX1
· · ·LXk

(
e−tqwg

)∥∥∥
L2(Rn)

≤ C1+k

t
2k0+1

2 k

⎛⎝ k∏
j=1

‖Xj‖

⎞⎠(k!)
1
2 ‖g‖L2(Rn),

with 0 ≤ k0 ≤ 2n− 1 the smallest integer satisfying equation (2.14), where ‖X0‖ is the

Euclidean norm of X0 ∈ R2n and where LXj
is the first-order differential operator

LXj
= 〈xj,x〉+ 〈ξj,∂x〉, Xj = (xj,ξj) ∈ R2n,

with 〈·,·〉 the Euclidean dot product. The estimates (2.21) imply in particular that for all
0< t≤ t0,α,β ∈ Nn,g ∈ L2(Rn),

∥∥∥xα∂β
x

(
e−tqwg

)∥∥∥
L2(Rn)

≤
C
(
(2n)

1
2C
)|α|+|β|

t
2k0+1

2 (|α|+|β|)
(α!)

1
2 (β!)

1
2 ‖g‖L2(Rn). (2.22)

Indeed, we observe that

xα∂β
x =

⎛⎝ n∏
j=1

Lαj
ej

⎞⎠( n∏
k=1

Lβk
εk

)
, α= (α1, . . . ,αn),β = (β1, . . . ,βn) ∈ Nn,

where (e1, . . . ,en,ε1, . . . ,εn) denotes the canonical basis of Rn
x ×Rn

ξ , and that the basic

estimate (3.44) implies that

∀α,β ∈ Nn, (|α|+ |β|)!≤ 2|α|+|β|(|α|)!(|β|)!≤ (2n)|α|+|β|α!β!,

since

(|α|+ |β|)!
(|α|)!(|β|)! =

(
|α|+ |β|

|α|

)
≤

|α|+|β|∑
k=0

(
|α|+ |β|

k

)
= 2|α|+|β|. (2.23)

The strongly continuous contraction semigroup generated by the L2(Rn)-adjoint operator
(qw)∗ = (q)

w
satisfies the very same quantitative regularizing estimates (2.21), since the

quadratic symbol q also has a nonnegative real part with a zero singular space. Thanks

to these smoothing estimates, the result of Corollary 2.4 can therefore be recovered in
applying Theorem 2.5.

As noted at the end of the proof of Theorem 2.5 (§4), the conclusions of Theorem 2.5

hold true as well when the quantitative regularizing estimates (2.19) holding for some
1
2 < s≤ 1 are replaced by the following assumption:

∃m1,m2 > 0,∃C1,C2 > 0,∃0< t0 ≤ 1,∀0< t≤ t0,∀g ∈ L2(Rn), (2.24)∑
α∈Nn

e
2tm1
C1

(2|α|+n)s
∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2 ≤ C2
2

t2m2
‖g‖2L2(Rn),
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with (Φα)α∈Nn the L2(Rn)-Hermite basis. As an application of this remark, we consider

the fractional harmonic operator

∀u ∈D(Hs), Hsu=
(
−Δx+‖x‖2

)s
u=

∑
α∈Nn

(2|α|+n)s〈u,Φα〉L2(Rn)Φα, (2.25)

with 1
2 < s≤ 1, equipped with the domain

D(Hs) =

{
u ∈ L2(Rn) :

∑
α∈Nn

(2|α|+n)2s
∣∣〈u,Φα〉L2(Rn)

∣∣2 <+∞
}
. (2.26)

The fractional harmonic oscillator Hs is a self-adjoint operator generating a strongly

continuous contraction semigroup
(
e−tHs)

t≥0
on L2(Rn) explicitly given by

∀t≥ 0,∀u ∈ L2(Rn), e−tHs

u=
∑
α∈Nn

e−t(2|α|+n)s〈u,Φα〉L2(Rn)Φα (2.27)

(see, e.g. [41, Propositions 2.6.2 and 2.6.5]). As assumption (2.24) trivially holds for the

fractional harmonic oscillator, Theorem 2.5 allows us to derive the following result of
null-controllability:

Corollary 2.6. Set 1
2 <s≤ 1 and let ρ :Rn −→ (0,+∞) be a 1

2 -Lipschitz positive function

with Rn being equipped with the Euclidean norm, such that there exist some constants

0≤ δ < 2s−1,m > 0,R≥m such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R〈x〉δ.

If ω is a measurable subset of Rn which is γ-thick with respect to the density ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|,

where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with radius r > 0 – then the

evolution equation associated to the fractional harmonic oscillator Hs =
(
−Δx+‖x‖2

)s
,{

∂tf(t,x)+Hsf(t,x) = 1ω(x)u(t,x), x ∈ Rn,t > 0,

f |t=0 = f0 ∈ L2(Rn),

is null-controllable from the control subset ω in any positive time T > 0.

2.4. Outline of the work

Section 3 is devoted to the proof of Theorem 2.1. It is the core of the present work.
Theorem 2.5 is then proved in §4, and Appendix A gathers miscellaneous facts about

the gamma function, Hermite functions, slowly varying metrics, and Gelfand–Shilov

regularity. Some proofs of technical results as Bernstein-type estimates are also given
in the appendix.

3. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. Let ρ : Rn −→ (0, +∞) be a
1
2 -Lipschitz positive function with Rn equipped with the Euclidean norm, such that there
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exist some positive constants 0< ε≤ 1,m > 0,R≥m satisfying

∀x ∈ Rn, 0<m≤ ρ(x)≤R〈x〉1−ε
. (3.1)

Let ω be a measurable subset of Rn which is γ-thick with respect to the density

ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|= γρ(x)n|B(0,1)|, (3.2)

where B(x,r) denotes the Euclidean ball centered at x ∈Rn with radius r > 0 and where

|A| denotes the Lebesgue measure of A. Since ρ is a 1
2 -Lipschitz positive function, Lemma

A.4 shows that the family of norms (‖·‖x)x∈Rn given by

∀x ∈ Rn,∀y ∈ Rn, ‖y‖x =
‖y‖
ρ(x)

, (3.3)

where ‖·‖ denotes the Euclidean norm in Rn, defines a slowly varying metric on Rn.

3.1. Step 1: Bad and good balls

Using Theorem A.5, we can find a sequence (xk)k≥0 in Rn such that

∃N0 ∈ N,∀(i1, . . . ,iN0+1) ∈ NN0+1 with ik �= il if 1≤ k �= l ≤N0+1,

N0+1⋂
k=1

Bik = ∅

(3.4)

and

Rn =

+∞⋃
k=0

Bk, (3.5)

where

Bk = {y ∈ Rn : ‖y−xk‖xk
< 1}= {y ∈ Rn : ‖y−xk‖< ρ(xk)}=B(xk,ρ(xk)). (3.6)

Let us notice from Theorem A.5 that the nonnegative integer N0 depends only on the

dimension n and the constant C ≥ 1 appearing in the slowness condition (A.36), which
can be taken equal to C = 2 here, as ρ is a 1

2 -Lipschitz function. The integer N0 =N0(n)

is therefore independent on the function ρ and depends only on the dimension n≥ 1. It

follows from equations (3.4) and (3.5) that

∀x ∈ Rn, 1≤
+∞∑
k=0

1Bk
(x)≤N0, (3.7)

where 1Bk
denotes the characteristic function of Bk. We deduce from formula (3.7) that

for all g ∈ L2(Rn),

‖g‖2L2(Rn) =

∫
Rn

|g(x)|2dx≤
+∞∑
k=0

∫
Bk

|g(x)|2dx≤N0‖g‖2L2(Rn). (3.8)
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Let N ∈ N be a nonnegative integer and set f ∈ EN \ {0}, with EN being the finite-

dimensional vector space spanned by the Hermite functions (Φα)|α|≤N defined in equation

(1.14). Let 0 < δ ≤ 1 be a positive constant to be chosen later. We divide the family of
balls (Bk)k≥0 into families of good and bad balls. A ball Bk, with k ∈ N, is said to be

good if it satisfies

∀
(
β,β̃
)
∈ Nn×Nn,

∣∣∣β̃∣∣∣≤ n,∫
Bk

∣∣∣〈x〉(1−ε)(|β|+n)
∂β+β̃
x f(x)

∣∣∣2 dx≤ 4n(2(2nN0+1))|β|+1Mβ,β̃,N (δ)2
∫
Bk

|f(x)|2dx,

(3.9)

where the positive constants Mβ,β̃,N (δ)> 0 also depend on the fixed positive parameter
0< ε≤ 1 and the dimension n≥ 1, and are defined by

Mβ,β̃,N (δ)

= K̃ε,δK
(2−ε)|β|+(1−ε)n+|β̃|
ε δ|β|+|β̃|(n+1)

(1−ε)(n+|β|)
2 Γ

⎛⎝|β|+
(1− ε)n+

∣∣∣β̃∣∣∣
2− ε

+3

⎞⎠e
N

1− ε
2

δ2−ε ,

(3.10)

with the constants K̃ε,δ > 1 and Kε > 1 defined in Proposition A.3. On the other hand,

a ball Bk, with k ∈ N, which is not good is said to be bad – that is, when

∃
(
β,β̃
)
∈ Nn×Nn,

∣∣∣β̃∣∣∣≤ n,∫
Bk

∣∣∣〈x〉(1−ε)(|β|+n)
∂β+β̃
x f(x)

∣∣∣2 dx > 4n(2(2nN0+1))|β|+1Mβ,β̃,N (δ)2
∫
Bk

|f(x)|2dx.

(3.11)

If Bk is a bad ball, it follows from formula (3.11) that there exists
(
β0,β̃0

)
∈ Nn ×

Nn,
∣∣∣β̃0

∣∣∣≤ n such that∫
Bk

|f(x)|2dx≤ 1

4n(2(2nN0+1))|β0|+1Mβ0,β̃0,N
(δ)2

∫
Bk

∣∣∣〈x〉(1−ε)(|β0|+n)
∂β0+β̃0
x f(x)

∣∣∣2 dx
≤

∑
β∈N

n,

β̃∈N
n,|β̃|≤n

1

4n(2(2nN0+1))|β|+1Mβ,β̃,N (δ)2

∫
Bk

∣∣∣〈x〉(1−ε)(|β|+n)
∂β+β̃
x f(x)

∣∣∣2 dx.
(3.12)

By summing over all the bad balls and using from equation (3.4) that

∀x ∈ Rn, 1⋃
bad ballsBk

≤
∑

bad balls

1Bk
≤N01⋃

bad ballsBk
, (3.13)
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we deduce from formula (3.12) and the Fubini–Tonelli theorem that∫
⋃

bad ballsBk

|f(x)|2dx≤
∑

bad balls

∫
Bk

|f(x)|2dx

≤
∑
β∈N

n

β̃∈N
n,|β̃|≤n

N0

4n(2(2nN0+1))|β|+1Mβ,β̃,N (δ)2

∫
⋃

bad ballsBk

∣∣∣〈x〉(1−ε)(|β|+n)
∂β+β̃
x f(x)

∣∣∣2 dx
≤

∑
β∈N

n

β̃∈N
n,|β̃|≤n

N0

4n(2(2nN0+1))|β|+1Mβ,β̃,N (δ)2

∫
Rn

∣∣∣〈x〉(1−ε)(|β|+n)
∂β+β̃
x f(x)

∣∣∣2 dx.
(3.14)

Using the fact that the number of solutions to the equation β1 + · · ·+ βn = k, with
k ≥ 0, n ≥ 1, and unknown β = (β1, . . . ,βn) ∈ Nn, is given by

(
k+n−1

k

)
, we obtain from

the Bernstein-type estimates in Proposition A.3 and formulas (3.10) and (3.14) that

∫
⋃

bad ballsBk

|f(x)|2dx≤

⎛⎜⎜⎜⎝ ∑
β∈N

n,

β̃∈N
n,|β̃|≤n

N0

4n(2(2nN0+1))|β|+1

⎞⎟⎟⎟⎠‖f‖2L2(Rn)

=

⎛⎝∑
β∈Nn

N0

(2(2nN0+1))|β|+1

⎞⎠
⎛⎜⎝ ∑

β̃∈Nn,|β̃|≤n

1

4n

⎞⎟⎠‖f‖2L2(Rn)

=

(
+∞∑
k=0

(
k+n−1

k

)
N0

2k+1(2nN0+1)k+1

)⎛⎝ n∑
j=0

1

4n

(
j+n−1

j

)⎞⎠‖f‖2L2(Rn)

≤ 2n−2

(
+∞∑
k=1

N0

(2nN0+1)k

)⎛⎝ n∑
j=0

2j+n−1

4n

⎞⎠‖f‖2L2(Rn) ≤
1

4
‖f‖2L2(Rn), (3.15)

since (
k+n−1

k

)
≤

k+n−1∑
j=0

(
k+n−1

j

)
= 2k+n−1. (3.16)

Recalling from equation (3.5) that

1≤ 1⋃
bad ballsBk

+1⋃
good ballsBk

,

we notice that

‖f‖2L2(Rn) ≤
∫
⋃

good ballsBk

|f(x)|2dx+
∫
⋃

bad ballsBk

|f(x)|2dx. (3.17)
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It follows from formulas (3.15) and (3.17) that

‖f‖2L2(Rn) ≤
4

3

∫
⋃

good ballsBk

|f(x)|2dx. (3.18)

3.2. Step 2: Properties on good balls

As the ball B(0,1) is an Euclidean ball, the Sobolev embedding

Wn,2(B(0,1)) ↪−→ L∞(B(0,1))

(see, e.g., [1, Theorem 4.12]) implies that there exists a positive constant Cn > 0 depending
only on the dimension n≥ 1 such that

∀u ∈Wn,2(B(0,1)), ‖u‖L∞(B(0,1)) ≤ Cn‖u‖Wn,2(B(0,1)). (3.19)

By translation invariance and the homogeneity of the Lebesgue measure, it follows from

formulas (3.1), (3.6), and (3.19) that for all u ∈Wn,2(Bk),

‖u‖2L∞(Bk)
= ‖x �→ u(xk+xρ(xk))‖2L∞(B(0,1)) ≤ C2

n‖x �→ u(xk+xρ(xk))‖2Wn,2(B(0,1))

= C2
n

∑
α∈N

n,
|α|≤n

∫
Bk

ρ(xk)
2|α|−n |∂α

x u(x)|
2
dx

= C2
n

∑
α∈N

n,
|α|≤n

∫
Bk

m2|α|−n

(
ρ(xk)

m

)2|α|−n

|∂α
x u(x)|

2
dx

and

‖u‖2L∞(Bk)
≤ C2

nmax
(
m,m−1

)n ∑
α∈N

n,
|α|≤n

∫
Bk

(
ρ(xk)

m

)n

|∂α
x u(x)|

2
dx

= C2
nmax

(
1,m−1

)2n
ρ(xk)

n
∑

α∈N
n,

|α|≤n

∫
Bk

|∂α
x u(x)|

2
dx. (3.20)

We deduce from formula (3.20) that for all u ∈Wn,2(Bk),

‖u‖L∞(Bk) ≤ Cnmax
(
1,m−1

)n
ρ(xk)

n
2 ‖u‖Wn,2(Bk). (3.21)

Let Bk be a good ball. Using the fact that the mapping ρ is a 1
2 -Lipschitz positive function,

we notice that

∀x ∈Bk =B(xk,ρ(xk)), 0< ρ(xk)≤ 2ρ(x). (3.22)
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We deduce from formulas (3.21) and (3.22) that for all β ∈Nn and k ∈N such that Bk is

a good ball,

ρ(xk)
|β|+n

2

∥∥∂β
xf
∥∥
L∞(Bk)

≤ Cnmax
(
1,m−1

)n
ρ(xk)

|β|+n

⎛⎜⎝ ∑
β̃∈N

n,|β̃|≤n

∥∥∥∂β+β̃
x f

∥∥∥2
L2(Bk)

⎞⎟⎠
1
2

= Cnmax
(
1,m−1

)n⎛⎜⎝ ∑
β̃∈N

n,|β̃|≤n

∥∥∥ρ(xk)
|β|+n∂β+β̃

x f
∥∥∥2
L2(Bk)

⎞⎟⎠
1
2

≤ Cnmax
(
1,m−1

)n
2|β|+n

⎛⎜⎝ ∑
β̃∈N

n,|β̃|≤n

∥∥∥ρ(x)|β|+n∂β+β̃
x f

∥∥∥2
L2(Bk)

⎞⎟⎠
1
2

. (3.23)

Using formula (3.1) and the definition of good balls (3.9), it follows from formula (3.23)
that for all β ∈ Nn and k ∈ N such that Bk is a good ball,

ρ(xk)
|β|+n

2

∥∥∂β
xf
∥∥
L∞(Bk)

≤ Cnmax
(
1,m−1

)n
(2R)|β|+n

⎛⎜⎜⎜⎜⎝
∑

β̃∈N
n,

|β̃|≤n

∥∥∥〈x〉(1−ε)(|β|+n)
∂β+β̃
x f

∥∥∥2
L2(Bk)

⎞⎟⎟⎟⎟⎠
1
2

≤ Cnmax
(
1,m−1

)n
(2R)|β|+n2n

√
2(2nN0+1)

|β|+1

⎛⎜⎜⎜⎜⎝
∑

β̃∈N
n,

|β̃|≤n

Mβ,β̃,N (δ)2

⎞⎟⎟⎟⎟⎠
1
2

‖f‖L2(Bk).

(3.24)

Using the fact that the gamma function is increasing on [2,+∞) (see Section A.1), we

obtain from equation (3.10) that for all β ∈ Nn,β̃ ∈ Nn,
∣∣∣β̃∣∣∣≤ n,0< δ ≤ 1,

Mβ,β̃,N (δ)≤ K̃ε,δK
(2−ε)|β|+n(1−ε)+|β̃|
ε δ|β|+|β̃|(n+1)

(1−ε)(|β|+n)
2 Γ(|β|+n+3)e

N
1− ε

2

δ2−ε .

(3.25)

Recalling that Kε > 1 and 0 < δ ≤ 1, it follows from formulas (3.24) and (3.25) that for

all β ∈ Nn and k ∈ N such that Bk is a good ball,

ρ(xk)
|β|+n

2

∥∥∂β
xf
∥∥
L∞(Bk)

≤ Cn(δ,ε,m,R)
(
δC̃n(ε,R)

)|β|
Γ(|β|+n+3)e

N
1− ε

2

δ2−ε ‖f‖L2(Bk), (3.26)
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with

Cn(δ,ε,m,R) = K̃ε,δCnmax
(
1,m−1

)n
(4R)nK(2−ε)n

ε (n+1)(1−ε)n
2

√
2(2nN0+1)> 0

(3.27)

and

C̃n(ε,R) = 2R
√

2(2nN0+1)K2−ε
ε (n+1)

1−ε
2 > 0. (3.28)

Let Bk be a good ball. Recalling that f is a finite combination of Hermite functions, we

deduce from the continuity of the function f and the compactness of Bk that there exists
yk ∈Bk such that

‖f‖L∞(Bk) = |f(yk)|. (3.29)

Using spherical coordinates centered at yk ∈Bk and the fact that the Euclidean diameter

of the ball Bk =B(xk,ρ(xk)) is 2ρ(xk), we observe that

|ω∩Bk|=
∫ +∞

0

(∫
Sn−1

1ω∩Bk
(yk+ rσ)dσ

)
rn−1dr

=

∫ 2ρ(xk)

0

(∫
Sn−1

1ω∩Bk
(yk+ rσ)dσ

)
rn−1dr

= (2ρ(xk))
n

∫ 1

0

(∫
Sn−1

1ω∩Bk
(yk+2ρ(xk)rσ)dσ

)
rn−1dr, (3.30)

where 1ω∩Bk
denotes the characteristic function of the measurable set ω∩Bk. Using the

Fubini–Tonelli theorem, we deduce from equation (3.30) that

|ω∩Bk| ≤ (2ρ(xk))
n

∫ 1

0

(∫
Sn−1

1ω∩Bk
(yk+2ρ(xk)rσ)dσ

)
dr

= (2ρ(xk))
n

∫
Sn−1

(∫ 1

0

1ω∩Bk
(yk+2ρ(xk)rσ)dr

)
dσ

= (2ρ(xk))
n

∫
Sn−1

(∫ 1

0

1Iσ (r)dr

)
dσ = (2ρ(xk))

n

∫
Sn−1

|Iσ|dσ, (3.31)

where

Iσ = {r ∈ [0,1] : yk+2ρ(xk)rσ ∈ ω∩Bk}. (3.32)

The estimate (3.31) implies that there exists σ0(k) ∈ Sn−1 such that

|ω∩Bk| ≤ (2ρ(xk))
n
∣∣Sn−1

∣∣ ∣∣Iσ0(k)

∣∣ . (3.33)

Recalling that Bk = B(xk,ρ(xk)) and using the property (3.2), it follows from formula

(3.33) that

0<
γ|B(0,1)|
2n |Sn−1| ≤

|ω∩B(xk,ρ(xk))|
(2ρ(xk))n |Sn−1| ≤

∣∣Iσ0(k)

∣∣≤ 1. (3.34)
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3.3. Step 3: Recovery of the L2(Rn)-norm

Let Bk be a good ball. We first notice that ‖f‖L2(Bk) �= 0, since f is a nonzero entire
function. We consider the entire function

∀z ∈ C, φ(z) = |Bk|
1
2
f(yk+2ρ(xk)zσ0(k))

‖f‖L2(Bk)
, (3.35)

where yk and σ0(k) are defined in formulas (3.29) and (3.33). We observe from equation

(3.29) that

|φ(0)|= |Bk|
1
2

|f(yk)|
‖f‖L2(Bk)

= |Bk|
1
2
‖f‖L∞(Bk)

‖f‖L2(Bk)
≥ 1.

Instrumental in the proof of Theorem 2.1 is the following lemma, proved by Kovrijkine
[26, Lemma 1]:

Lemma 3.1. Let I ⊂ R be an interval of length 1 such that 0 ∈ I, and let E ⊂ I be a

subset of positive measure |E| > 0. There exists a positive constant C > 1 such that for
all analytic functions Φ on the open ball BC(0,5) centered in zero with radius 5 such that

|Φ(0)| ≥ 1,

sup
x∈I

|Φ(x)| ≤
(

C

|E|

) lnM
ln2

sup
x∈E

|Φ(x)|,

with M = sup|z|≤4|Φ(z)| ≥ 1.

Applying Lemma 3.1 with I = [0,1], E = Iσ0(k) ⊂ [0,1] verifying |E| =
∣∣Iσ0(k)

∣∣ > 0

according to formula (3.34), and the analytic function Φ = φ defined in equation (3.35)

satisfying |φ(0)| ≥ 1, we obtain

|Bk|
1
2

supx∈[0,1]|f(yk+2ρ(xk)xσ0(k))|
‖f‖L2(Bk)

≤
(

C∣∣Iσ0(k)

∣∣
) lnM

ln2

|Bk|
1
2

supx∈Iσ0(k)
|f(yk+2ρ(xk)xσ0(k))|
‖f‖L2(Bk)

, (3.36)

with

1≤M = |Bk|
1
2

sup|z|≤4|f(yk+2ρ(xk)zσ0(k))|
‖f‖L2(Bk)

. (3.37)

It follows from formulas (3.34) and (3.36) that

sup
x∈[0,1]

|f(yk+2ρ(xk)xσ0(k))| ≤
(
2nC

∣∣Sn−1
∣∣

γ|B(0,1)|

) lnM
ln2

sup
x∈Iσ0(k)

|f(yk+2ρ(xk)xσ0(k))|

≤M

1
ln2 ln

(
2nC|Sn−1|
γ|B(0,1)|

)
sup

x∈Iσ0(k)

|f(yk+2ρ(xk)xσ0(k))|. (3.38)
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According to equation (3.32), we notice that

sup
x∈Iσ0(k)

|f(yk+2ρ(xk)xσ0(k))| ≤ ‖f‖L∞(ω∩Bk). (3.39)

On the other hand, we deduce from equation (3.29) that

‖f‖L∞(Bk) = |f(yk)| ≤ sup
x∈[0,1]

|f(yk+2ρ(xk)xσ0(k))|. (3.40)

It follows from formulas (3.38), (3.39), and (3.40) that

‖f‖L∞(Bk) ≤M

1
ln2 ln

(
2nC|Sn−1|
γ|B(0,1)|

)
‖f‖L∞(ω∩Bk). (3.41)

Using the analyticity of the entire function f, we observe that

∀z ∈ C, f(yk+2ρ(xk)zσ0(k)) =
∑
β∈Nn

(
∂β
xf
)
(yk)

β!
σ0(k)

β(2ρ(xk))
|β|z|β|. (3.42)

Using the facts that Bk =B(xk,ρ(xk)) is a good ball and yk ∈Bk, and the continuity of

the functions ∂β
xf , we deduce from formulas (3.26) and (3.42) that for all |z| ≤ 4,

|Bk|
1
2 |f(yk+2ρ(xk)zσ0(k))|

= ρ(xk)
n
2 |B(0,1)| 12 |f(yk+2ρ(xk)zσ0(k))|

≤ |B(0,1)| 12
∑
β∈Nn

ρ(xk)
|β|+n

2

∣∣(∂β
xf
)
(yk)

∣∣
β!

8|β|

≤ |B(0,1)| 12
∑
β∈Nn

ρ(xk)
|β|+n

2

∥∥∂β
xf
∥∥
L∞(Bk)

β!
8|β|

≤ |B(0,1)| 12Cn(δ,ε,m,R)e
N

1− ε
2

δ2−ε

⎛⎝∑
β∈Nn

Γ(|β|+n+3)

β!

(
8δC̃n(ε,R)

)|β|⎞⎠‖f‖L2(Bk).

(3.43)

We recall the estimate

∀β ∈ Nn, |β|!≤ n|β|β!, (3.44)

which is obtained using the Newton formula [33, formula (0.3.3)]. Using anew the facts

that the number of solutions to the equation β1 + · · ·+βn = k, with k ≥ 0, n ≥ 1, and

unknown β = (β1, . . . ,βn) ∈ Nn, is given by
(
k+n−1

k

)
, and that

Γ(|β|+n+3) = (|β|+n+2)!, (|β|+n+2)n+2 ≤ (n+2)!e|β|+n+2
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according to formulas (A.3) and (A.21), we notice from formula (3.16) that

∑
β∈Nn

Γ(|β|+n+3)

β!

(
8δC̃n(ε,R)

)|β|
=
∑
β∈Nn

(|β|+n+2)!

β!

(
8δC̃n(ε,R)

)|β|
≤
∑
β∈Nn

(|β|+n+2)n+2 |β|!
β!

(
8δC̃n(ε,R)

)|β|
≤ en+2(n+2)!

∑
β∈Nn

(
8δneC̃n(ε,R)

)|β|
= en+2(n+2)!

+∞∑
k=0

(
k+n−1

k

)(
8δneC̃n(ε,R)

)k
≤ en+2(n+2)!2n−1

+∞∑
k=0

(
16δneC̃n(ε,R)

)k
. (3.45)

We can now make a choice for the positive parameter 0< δ ≤ 1, which is fixed from now

on and taken to be equal to

0< δ = δn,ε,R =min

(
1,

1

32neC̃n(ε,R)

)
≤ 1. (3.46)

Setting Dn(ε,m,R) =Cn (δn,ε,R,ε,m,R)> 0, it follows from formulas (3.37), (3.43), (3.45),
and (3.46) that

1≤M ≤ |B(0,1)| 12 (n+2)!Dn(ε,m,R)en+22neδ
ε−2
n,ε,RN1− ε

2
. (3.47)

We notice from formula (3.34) that

2nC
∣∣Sn−1

∣∣
γ|B(0,1)| > 1, (3.48)

since the positive constant given by Lemma 3.1 satisfies C > 1. With this choice, we

deduce from formulas (3.41) and (3.47) that

‖f‖L∞(Bk) ≤
(
2nC

∣∣Sn−1
∣∣

γ|B(0,1)|

) ln

(
Dn(ε,m,R)en+22n|B(0,1)|

1
2 (n+2)!

)

ln2 +
δ
ε−2
n,ε,R
ln2 N1− ε

2

‖f‖L∞(ω∩Bk).

(3.49)
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Recalling from the property (3.2) that

|ω∩Bk| ≥ γ|Bk|> 0 (3.50)

as Bk =B(xk,ρ(xk)), and setting

ω̃k =

{
x ∈ ω∩Bk : |f(x)| ≤ 2

|ω∩Bk|

∫
ω∩Bk

|f(y)|dy
}
, (3.51)

we observe that∫
ω∩Bk

|f(x)|dx≥
∫
(ω∩Bk)\ω̃k

|f(x)|dx≥ 2 |(ω∩Bk)\ ω̃k|
|ω∩Bk|

∫
ω∩Bk

|f(x)|dx. (3.52)

Using the fact that the integral ∫
ω∩Bk

|f(x)|dx > 0

is positive,1 since f is a nonzero entire function and |ω∩Bk|> 0, we obtain

|(ω∩Bk)\ ω̃k| ≤
1

2
|ω∩Bk|,

which implies that

|ω̃k|= |ω∩Bk|− |(ω∩Bk)\ ω̃k| ≥
1

2
|ω∩Bk| ≥

1

2
γ|Bk|=

1

2
γρ(xk)

n|B(0,1)|> 0, (3.53)

thanks to formula (3.50). Using again spherical coordinates as in formulas (3.30) and

(3.31), we observe that

|ω̃k|= |ω̃k ∩Bk|= (2ρ(xk))
n

∫ 1

0

(∫
Sn−1

1ω̃k∩Bk
(yk+2ρ(xk)rσ)dσ

)
rn−1dr (3.54)

≤ (2ρ(xk))
n

∫
Sn−1

∣∣∣Ĩσ∣∣∣dσ,
where

Ĩσ = {r ∈ [0,1] : yk+2ρ(xk)rσ ∈ ω̃k ∩Bk} . (3.55)

As in formula (3.33), the estimate (3.54) implies that there exists σ̃0(k) ∈ Sn−1 such

that

|ω̃k| ≤ (2ρ(xk))
n
∣∣Sn−1

∣∣ ∣∣∣Ĩσ̃0(k)

∣∣∣ . (3.56)

We deduce from formulas (3.53) and (3.56) that

1≥
∣∣∣Ĩσ̃0(k)

∣∣∣≥ γ|B(0,1)|
2n+1 |Sn−1| > 0. (3.57)

Applying anew Lemma 3.1 with I = [0,1], E = Ĩσ̃0(k) ⊂ [0,1] verifying |E| =
∣∣∣Ĩσ̃0(k)

∣∣∣ > 0,

and the analytic function Φ = φ defined in equation (3.35) with σ0(k) replaced by σ̃0(k)

1This property can also be seen as a consequence of the Remez inequality (see, e.g., [7, §4.4]).
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satisfying |φ(0)| ≥ 1, we obtain

|Bk|
1
2

supx∈[0,1] |f(yk+2ρ(xk)xσ̃0(k))|
‖f‖L2(Bk)

≤

⎛⎝ C∣∣∣Ĩσ̃0(k)

∣∣∣
⎞⎠ lnM

ln2

|Bk|
1
2

supx∈Ĩσ̃0(k)
|f(yk+2ρ(xk)xσ̃0(k))|
‖f‖L2(Bk)

, (3.58)

where M ≥ 1 denotes the constant defined in formula (3.37). It follows from formulas

(3.57) and (3.58) that

sup
x∈[0,1]

|f(yk+2ρ(xk)xσ̃0(k))| ≤
(
2n+1C

∣∣Sn−1
∣∣

γ|B(0,1)|

) lnM
ln2

sup
x∈Ĩσ̃0(k)

|f(yk+2ρ(xk)xσ̃0(k))|

≤M

1
ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)
sup

x∈Ĩσ̃0(k)

|f(yk+2ρ(xk)xσ̃0(k))| .

(3.59)

According to equation (3.55), we notice that

sup
x∈Ĩσ̃0(k)

|f(yk+2ρ(xk)xσ̃0(k))| ≤ ‖f‖L∞(ω̃k∩Bk). (3.60)

It follows from formulas (3.29), (3.59), and (3.60) that

‖f‖L∞(Bk) = |f(yk)| ≤ sup
x∈[0,1]

|f(yk+2ρ(xk)xσ̃0(k))|

≤M

1
ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)
‖f‖L∞(ω̃k∩Bk). (3.61)

On the other hand, it follows from equation (3.51) that

‖f‖L∞(ω̃k∩Bk) ≤
2

|ω∩Bk|

∫
ω∩Bk

|f(x)|dx. (3.62)

We deduce from formulas (3.61) and (3.62) and the Cauchy–Schwarz inequality that

‖f‖L2(Bk) ≤ |Bk|
1
2 ‖f‖L∞(Bk)

≤ 2|Bk|
1
2

|ω∩Bk|
M

1
ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)∫
ω∩Bk

|f(x)|dx

≤ 2|Bk|
1
2

|ω∩Bk|
1
2

M

1
ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)
‖f‖L2(ω∩Bk). (3.63)
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By the property (3.50), it follows from formulas (3.47), (3.48), and (3.63) that

‖f‖2L2(Bk)
≤ 4

γ
M

2
ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)
‖f‖2L2(ω∩Bk)

≤ 4

γ

(
|B(0,1)|

1
2 (n+2)!Dn(ε,m,R)en+22neδ

ε−2
n,ε,RN1− ε

2
) 2

ln2 ln

(
2n+1C|Sn−1|

γ|B(0,1)|

)
‖f‖2L2(ω∩Bk)

.

(3.64)

Setting

κn(m,R,γ,ε) =
4√
3γ

1
2

(
2n+1C

∣∣Sn−1
∣∣

γ|B(0,1)|

) ln

(
|B(0,1)|

1
2 (n+2)!Dn(ε,m,R)en+22n

)

ln2

> 0, (3.65)

we deduce from formula (3.64) that there exists a positive universal constant κ̃n > 1 such

that for any good ball Bk,

‖f‖2L2(Bk)
≤ 3

4
κn(m,R,γ,ε)2

(
κ̃n

γ

) 2
ln2 δ

ε−2
n,ε,RN1− ε

2

‖f‖2L2(ω∩Bk)
. (3.66)

Using anew from equation (3.4) that

1⋃
good ballsBk

≤
∑

good balls

1Bk
≤N01⋃

good ballsBk
, (3.67)

it follows from formulas (3.18) and (3.66) that

‖f‖2L2(Rn) ≤
4

3

∫
⋃

good ballsBk

|f(x)|2dx≤ 4

3

∑
good balls

‖f‖2L2(Bk)

≤ κn(m,R,γ,ε)2
(
κ̃n

γ

) 2
ln2 δ

ε−2
n,ε,RN1− ε

2 ∑
good balls

‖f‖2L2(ω∩Bk)

≤N0κn(m,R,γ,ε)2
(
κ̃n

γ

) 2
ln2 δ

ε−2
n,ε,RN1− ε

2 ∫
ω∩(

⋃
good ballsBk)

|f(x)|2dx

≤N0κn(m,R,γ,ε)2
(
κ̃n

γ

) 2
ln2 δ

ε−2
n,ε,RN1− ε

2

‖f‖2L2(ω). (3.68)

This ends the proof of Theorem 2.1.

4. Proof of Theorem 2.5

This section is devoted to the proof of Theorem 2.5. Let A be a closed operator on

L2(Rn) which is the infinitesimal generator of a strongly continuous contraction semigroup(
e−tA

)
t≥0

on L2(Rn) satisfying the assumptions of Theorem 2.5. According to Lemma

A.8, we can assume that there exist some constants 1
2 <s≤ 1,Cs > 1,0< t0 ≤ 1,m1,m2 ∈R
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with m1 > 0, m2 ≥ 0 such that

∀0< t≤ t0,∀α,β ∈ Nn,∀g ∈ L2(Rn),∥∥xα∂β
x

(
e−tAg

)∥∥
L2(Rn)

≤ C
1+|α|+|β|
s

tm1(|α|+|β|)+m2
(α!)

1
2s (β!)

1
2s ‖g‖L2(Rn). (4.1)

Let ρ : Rn −→ (0,+∞) be a 1
2 -Lipschitz positive function with Rn being equipped with

the Euclidean norm, such that there exist some constants 0 ≤ δ < 2s− 1,m > 0,R ≥ m
such that

∀x ∈ Rn, 0<m≤ ρ(x)≤R〈x〉δ.

Let ω be a measurable subset of Rn which is γ-thick with respect to the density

ρ – that is,

∃0< γ ≤ 1,∀x ∈ Rn, |ω∩B(x,ρ(x))| ≥ γ|B(x,ρ(x))|. (4.2)

Thanks to the Hilbert uniqueness method, the null-controllability of the system (2.20) is

equivalent to the observability of the adjoint system{
(∂t+A)g(t,x) = 0, x ∈ Rn,t > 0,

g|t=0 = g0 ∈ L2(Rn)

from the control subset ω in any positive time T > 0. We shall prove that Theorem 2.5
can be deduced from the abstract observability result given by Theorem 1.6. In order to

apply Theorem 1.6, it is therefore sufficient to check that the spectral inequality (1.9)

and the dissipation estimate (1.10) hold when using the Hermite orthogonal projections
(πk)k≥0 defined in formula (1.15). It follows from Theorem 2.1 that there exist some

positive constant κn(m,R,γ,1−δ)> 0, C̃n(1−δ,R)> 0, and a positive universal constant

κ̃n > 0 such that for all k ≥ 1,f ∈ L2(Rn),

‖πkf‖L2(Rn) ≤ κn(m,R,γ,1− δ)

(
κ̃n

γ

)C̃n(1−δ,R)k
1+δ
2

‖πkf‖L2(ω). (4.3)

This establishes the spectral inequality (1.9) with the parameter 0 < a = 1+δ
2 < s. Let

us now prove that the dissipation estimate (1.10) holds true as well. To that end, we

begin by establishing that there exists a positive constant C̃s(n) > 1 such that for all

k ∈ N,g ∈ L2(Rn),0< t≤ t0,∥∥(H+n)k
(
e−tAg

)∥∥
L2(Rn)

≤ C̃s(n)
1+k

t2m1k+m2
(k!)

1
s ‖g‖L2(Rn), (4.4)

where H=
∑n

j=1Hj denotes the harmonic oscillator with

Hj +1 =−∂2
xj

+x2
j +1 =

(
∂xj

+xj

)(
−∂xj

+xj

)
, 1≤ j ≤ n. (4.5)

Set k ∈ N∗. We deduce from equation (4.5) and Lemma A.9 that there exists a finite

family of real numbers
(
C2k−1

l1,l2

)
l1,l2∈N,

0≤l1+l2≤2k

independent on the parameter 1 ≤ j ≤ n such
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that

(Hj +1)
k
=

∑
l1,l2∈N,

0≤l1+l2≤2k,

C2k−1
l1,l2

xl1
j ∂

l2
xj

(4.6)

and

∀l1,l2 ∈ N,0≤ l1+ l2 ≤ 2k,
∣∣∣C2k−1

l1,l2

∣∣∣≤ 32k−1(2k)
2k−l1−l2

2 . (4.7)

Using the fact that [Hj +1,Hk+1]= 0 for all 0≤ j,k≤ n, we deduce from the multinomial

formula that

(H+n)k

=
∑

γ=(γ1,...,γn)∈N
n,

|γ|=k

k!

γ!

n∏
j=1

(Hj +1)
γj =

∑
γ=(γ1,...,γn)∈N

n,
|γ|=k

k!

γ!

n∏
j=1

∑
lj,l̃j∈N,

0≤lj+l̃j≤2γj

C
2γj−1

lj,l̃j
x
lj
j ∂

l̃j
xj

=
∑

γ∈N
n,

|γ|=k

k!

γ!

∑
α,β∈N

n,
α+β≤2γ

⎛⎝ n∏
j=1

C
2γj−1
αj,βj

⎞⎠xα∂β
x =

∑
α,β∈N

n,
|α+β|≤2k

∑
γ∈N

n,|γ|=k,
α+β≤2γ

k!

γ!

⎛⎝ n∏
j=1

C
2γj−1
αj,βj

⎞⎠xα∂β
x .

(4.8)

It follows from equation (4.8) that

(H+n)k =
∑

α,β∈N
n,

|α+β|≤2k

ckα,βx
α∂β

x , (4.9)

with

ckα,β =
∑

γ∈N
n,|γ|=k,

α+β≤2γ

k!

γ!

⎛⎝ n∏
j=1

C
2γj−1
αj,βj

⎞⎠ . (4.10)

It follows from formulas (4.7) and (4.10) that for all α,β ∈ Nn with |α+β| ≤ 2k,

∣∣ckα,β∣∣≤ ∑
γ∈N

n,|γ|=k,
α+β≤2γ

k!

γ!

⎛⎝ n∏
j=1

32γj−1 (2γj)
2γj−αj−βj

2

⎞⎠

≤
∑

γ∈N
n,

|γ|=k

k!

γ!
32|γ|−n(2k)

2k−|α+β|
2 = 32k−nnk(2k)

2k−|α+β|
2 . (4.11)
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We deduce from formulas (4.1), (4.9), and (4.11) that for all k ≥ 1,g ∈ L2(Rn),0< t≤ t0,∥∥(H+n)k
(
e−tAg

)∥∥
L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

∣∣ckα,β∣∣∥∥xα∂β
x

(
e−tAg

)∥∥
L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnk(2k)
2k−|α|−|β|

2
C

1+|α|+|β|
s

tm1(|α|+|β|)+m2
(α!)

1
2s (β!)

1
2s ‖g‖L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnk(2k)s
2k−|α|−|β|

2s
C

1+|α|+|β|
s

tm1(|α|+|β|)+m2
(|α|)

|α|
2s (|β|)

|β|
2s ‖g‖L2(Rn), (4.12)

using the convention 00 = 1. With this convention, we directly notice from Lemma A.2

that

∀x,y ≥ 0, xy ≤ exΓ(y+1), and ∀x,y ≥ 1, Γ(x)Γ(y)≤ B(1,1)

2
Γ(x+y+1).

Using 1
2 < s ≤ 1 and the foregoing estimates, it follows from formula (4.12) that for all

k ≥ 1,g ∈ L2(Rn),0< t≤ t0,∥∥(H+n)k
(
e−tAg

)∥∥
L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnke(2k)
s

Γ

(
2k−|α|− |β|

2s
+1

)

× C
1+|α|+|β|
s e|α+β|

tm1(|α|+|β|)+m2
Γ

(
|α|
2s

+1

)
Γ

(
|β|
2s

+1

)
‖g‖L2

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnke4kΓ

(
2k−|α|− |β|

2s
+1

)

× C
1+|α|+|β|
s

tm1(|α|+|β|)+m2
Γ

(
|α|
2s

+1

)
Γ

(
|β|
2s

+1

)
‖g‖L2

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnke4k
B(1,1)2

4
Γ

(
k

s
+5

)
C

1+|α|+|β|
s

tm1(|α|+|β|)+m2
‖g‖L2 .

(4.13)

Thanks to the Stirling formula (A.7), we can find a positive constant C ′
s > 1 such that

for all k ≥ 1,

Γ

(
k

s

)
≤ C ′

s

√
2πs

k
s−

k
s e−

k
s k

k
s ≤ C ′

s

√
2πs

k
s−

k
s (k!)

1
s , (4.14)
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since

∀k ≥ 1,
kk

k!
≤

+∞∑
j=0

kj

j!
= ek.

Using from equation (A.2) that

Γ

(
k

s
+5

)
=

(
k

s
+4

)(
k

s
+3

)(
k

s
+2

)(
k

s
+1

)
k

s
Γ

(
k

s

)
,

it follows from formulas (4.13) and (4.14) that for all k ≥ 1,g ∈ L2(Rn),0< t≤ t0,∥∥(H+n)k
(
e−tAg

)∥∥
L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnke4k
B(1,1)2

4
Γ

(
k

s
+5

)
C

1+|α|+|β|
s

tm1(|α|+|β|)+m2
‖g‖L2(Rn)

≤
∑

α,β∈N
n,

|α+β|≤2k

32k−nnke4k
B(1,1)2

4

(
k

s
+4

)5

C ′
s

√
2πs

k
s−

k
s

C
1+|α|+|β|
s

tm1(|α|+|β|)+m2
(k!)

1
s ‖g‖L2(Rn)

≤ (2k+1)2n32k−nnke4k
B(1,1)2

4

(
k

s
+4

)5

C ′
s

√
2πs

k
s−

k
s

C1+2k
s

t2m1k+m2
(k!)

1
s ‖g‖L2(Rn).

(4.15)

The estimate (4.4) follows from formula (4.15) in the case when k≥ 1. It holds as well when
k = 0, since

(
e−tA

)
t≥0

is a contraction semigroup on L2(Rn), C̃s(n)> 1, and 0< t0 ≤ 1.

This ends the proof of the estimate (4.4).

With (Φα)α∈Nn the L2(Rn)-Hermite basis, we next notice that for all g ∈ L2(Rn),
t≥ 0,

∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2 (4.16)

=
∑
α∈Nn

+∞∑
k=0

2ktk(2m1s+1)(2|α|+n)sk

k!

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2
≤
∑
α∈Nn

+∞∑
k=0

2ktk(2m1s+1)

k!

∣∣∣∣〈e−tAg,(2|α|+2n)� ks
2 �+1Φα

〉
L2(Rn)

∣∣∣∣2 ,
where �·� denotes the floor function. Using the self-adjointness property of the harmonic

oscillator H=−Δx+‖x‖2, we deduce from formulas (4.4), (4.16), and (A.15) that for all

g ∈ L2(Rn),t≥ 0,
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∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2
≤
∑
α∈Nn

+∞∑
k=0

2ktk(2m1s+1)

k!

∣∣∣∣〈e−tAg,(H+n)� ks
2 �+1Φα

〉
L2(Rn)

∣∣∣∣2

=

+∞∑
k=0

2ktk(2m1s+1)

k!

∑
α∈Nn

∣∣∣∣〈(H+n)� ks
2 �+1

(
e−tAg

)
,Φα

〉
L2(Rn)

∣∣∣∣2

=

+∞∑
k=0

2ktk(2m1s+1)

k!

∥∥∥(H+n)� ks
2 �+1

(
e−tAg

)∥∥∥2
L2(Rn)

. (4.17)

It follows from formulas (4.4) and (4.17) that for all g ∈ L2(Rn),0< t≤ t0,

∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2
≤

+∞∑
k=0

2ktk(2m1s+1)

k!

C̃s(n)
2� ks

2 �+4

t4m1(� ks
2 �+1)+2m2

((⌊
ks

2

⌋
+1

)
!

) 2
s

‖g‖2L2(Rn).

(4.18)

Using the facts that
⌊
ks
2

⌋
≤ ks

2 and that the gamma function is increasing on [2,+∞)

(see §A.1), we deduce from formulas (4.18) and (A.3) that for all g ∈ L2(Rn),0< t≤ t0,

∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2
≤

+∞∑
k=0

2ktk(2m1s+1)

k!

C̃s(n)
4+ks

t2m1ks+4m1+2m2

((⌊
ks

2

⌋
+1

)
!

) 2
s

‖g‖2L2(Rn)

≤
+∞∑
k=0

2ktk

k!

C̃s(n)
4+ks

t4m1+2m2
Γ

(⌊
ks

2

⌋
+2

) 2
s

‖g‖2L2(Rn)

≤
+∞∑
k=0

2ktk

k!

C̃s(n)
4+ks

t4m1+2m2
Γ

(
ks

2
+2

) 2
s

‖g‖2L2(Rn). (4.19)

Using Lemma A.2(iii) and 2
s ≥ 1, since 1

2 < s≤ 1, we can find a positive constant C ′′
s > 1

such that

∀x≥ 1, Γ(x)
2
s ≤ C ′′

s Γ

(
2x

s

)
. (4.20)
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With the notation C̃s = C̃s(n), we deduce from formulas (4.19), (4.20), and (A.3) that

for all g ∈ L2(Rn),0< t≤ t0,∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣〈e−tAg,Φα

〉
L2

∣∣2
≤ C ′′

s

+∞∑
k=0

2ktk

k!

C̃4+ks
s

t4m1+2m2
Γ

(
k+

4

s

)
‖g‖2L2

≤ C ′′
s

+∞∑
k=0

2ktk

k!

C̃4+ks
s

t4m1+2m2
Γ(k+8)‖g‖2L2 ≤ C ′′

s

+∞∑
k=0

2ktk

k!

C̃4+ks
s

t4m1+2m2
(k+7)!‖g‖2L2

≤ C ′′
s

+∞∑
k=0

2ktk
C̃4+ks

s

t4m1+2m2
(k+7)7‖g‖2L2 ≤ C ′′

s

(
+∞∑
k=0

(
2C̃s

set
)k) C̃4

s

t4m1+2m2
7!e7‖g‖2L2,

(4.21)

since 1
2 < s≤ 1 and

(k+7)7

7!
≤

+∞∑
j=0

(k+7)j

j!
≤ ek+7.

It follows from formula (4.21) that for all g ∈ L2(Rn),0< t≤ t1,∑
α∈Nn

e2t
2m1s+1(2|α|+n)s

∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2 ≤ 2C ′′
s C̃

4
s

t4m1+2m2
7!e7‖g‖2L2(Rn), (4.22)

with

0< t1 =min

(
t0,
(
4C̃s

se
)−1
)
≤ 1.

For any 0< t≤ t1 and g ∈ L2(Rn), the series

f =
∑
α∈Nn

et
2m1s+1(2|α|+n)s

〈
e−tAg,Φα

〉
L2(Rn)

Φα

is therefore convergent in L2(Rn) and defines an L2(Rn)-function satisfying

‖f‖L2(Rn) ≤
√
2C ′′

s 7!C̃
2
s e

7
2

t2m1+m2
‖g‖L2(Rn), e−t2m1s+1Hs

f = e−tAg, (4.23)

according to equation (2.27). It follows from formula (4.23) that for all 0 < t ≤ t1,g ∈
L2(Rn),k ≥ 1,∥∥(1−πk)

(
e−tAg

)∥∥
L2 =

∥∥∥(1−πk)
(
e−t2m1s+1Hs

f
)∥∥∥

L2
=
∥∥∥e−t2m1s+1Hs

(1−πk)f
∥∥∥
L2

≤ e−t2m1s+1(2k+n)s‖(1−πk)f‖L2 ≤ e−t2m1s+1ks‖f‖L2 . (4.24)
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We deduce from formulas (4.23) and (4.24) the following dissipation estimate:

∀0< t≤ t1,∀g ∈ L2(Rn),∀k ≥ 1,∥∥(1−πk)
(
e−tAg

)∥∥
L2(Rn)

≤
√
2C ′′

s 7!C̃
2
s e

7
2

t2m1+m2
e−t2m1s+1ks‖g‖L2(Rn). (4.25)

It establishes the dissipation estimate (1.10) with the parameter 0< a= 1+δ
2 < b= s. We

can therefore deduce from Theorem 1.6 that the following observability estimate holds in

any positive time:

∃C > 1,∀T > 0,∀g ∈ L2(Rn),∥∥e−TAg
∥∥2
L2(Rn)

≤ C exp

(
C

T
(1+δ)(2m1s+1)

2s−1−δ

)∫ T

0

∥∥e−tAg
∥∥2
L2(ω)

dt.

This ends the proof of Theorem 2.5.

We close this section by noting that the conclusions of Theorem 2.5 hold true as well
when the quantitative regularizing estimates (2.19) holding for some 1

2 <s≤ 1 are replaced

by the following assumption:

∃1
2
< s≤ 1,∃m1,m2 > 0,∃C1,C2 > 0,∃0< t0 ≤ 1,∀0< t≤ t0,∀g ∈ L2(Rn),∑

α∈Nn

e
2tm1
C1

(2|α|+n)s
∣∣∣〈e−tAg,Φα

〉
L2(Rn)

∣∣∣2 ≤ C2
2

t2m2
‖g‖2L2(Rn). (4.26)

By resuming the foregoing proof from formula (4.22), we indeed notice that for any

0< t≤ t0 and g ∈ L2(Rn), the series

f =
∑
α∈Nn

e
tm1
C1

(2|α|+n)s 〈e−tAg,Φα

〉
L2(Rn)

Φα

is convergent in L2(Rn) and defines an L2(Rn)-function satisfying

‖f‖L2(Rn) ≤
C2

tm2
‖g‖L2(Rn), e−

tm1
C1

Hs

f = e−tAg, (4.27)

according to equation (2.27). It follows from formula (4.27) that for all 0 < t ≤ t0,g ∈
L2(Rn),k ≥ 1,∥∥(1−πk)

(
e−tAg

)∥∥
L2(Rn)

=
∥∥∥(1−πk)

(
e−

tm1
C1

Hs

f
)∥∥∥

L2(Rn)

=
∥∥∥e− tm1

C1
Hs

(1−πk)f
∥∥∥
L2(Rn)

≤ e−
tm1
C1

(2k+n)s‖(1−πk)f‖L2(Rn) ≤ e−
tm1
C1

ks

‖f‖L2(Rn). (4.28)

We deduce from formulas (4.27) and (4.28) the following dissipation estimate:

∀0< t≤ t0,∀g ∈ L2(Rn),∀k ≥ 1,
∥∥(1−πk)

(
e−tAg

)∥∥
L2 ≤

C2

tm2
e−

tm1
C1

ks

‖g‖L2 . (4.29)
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It establishes the dissipation estimate (1.10) with the parameter 0< a= 1+δ
2 < b= s. We

can therefore deduce from Theorem 1.6 that the following observability estimate holds in
any positive time:

∃C > 1,∀T > 0,∀g ∈ L2(Rn),
∥∥e−TAg

∥∥2
L2(Rn)

≤ C exp

(
C

T
(1+δ)m1
2s−1−δ

)∫ T

0

∥∥e−tAg
∥∥2
L2(ω)

dt.

Appendix A. Miscellaneous facts and instrumental lemmas

A.1. Miscellaneous facts about the gamma function

Let N be the set of nonnegative integers and Z− be the set of nonpositive integers. The

gamma function defined as

∀x > 0, Γ(x) =

∫ +∞

0

tx−1e−tdt > 0 (A.1)

admits a unique analytic extension on C\Z− satisfying the functional identity

∀z ∈ C\Z−, Γ(z+1) = zΓ(z) (A.2)

and interpolating the factorial function

∀n ∈ N, Γ(n+1) = n!. (A.3)

It also satisfies the Legendre duplication formula

∀p ∈ N\{0},∀z ∈ C\{−N},
p−1∏
j=0

Γ

(
z+ j

p

)
= (2π)

p−1
2 p

1
2−zΓ(z)

(see, e.g., [5, Chapter 3]). The gamma function is strictly convex on (0, +∞), since
differentiating under the integral sign provides that

∀x > 0, Γ′′(x) =

∫ +∞

0

(ln t)2tx−1e−tdt > 0. (A.4)

On the other hand, as Γ(1) = Γ(2) = 1 thanks to equation (A.3), Rolle’s theorem implies

that there exists x0 in ]1,2[ such that Γ′(x0) = 0. Since Γ′ is an increasing function on

(0,+∞), the gamma function is therefore increasing on [2,+∞). Related to the gamma
function is the beta function

∀x,y > 0, B(x,y) =

∫ 1

0

tx−1(1− t)y−1dt, (A.5)

satisfying the identity

∀x,y > 0, B(x,y) =
Γ(x)Γ(y)

Γ(x+y)
. (A.6)

Instrumental in the core of this work are the following two lemmas:
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Lemma A.1. The gamma function satisfies the following estimates:

∀p ∈ N\{0},∃Cp > 0,∀x≥ 1, Γ(x)
1
p ≤ Cp

(
p

1
p e

1
p

)x
Γ

(
x

p

)
.

Proof. Using the Legendre duplication formula, equation (A.2), and the fact that the
gamma function is increasing on [2,+∞), we deduce that for all p ∈ N\{0},x≥ 2p,

Γ(x) = (2π)
1−p
2 px−

1
2

p−1∏
j=0

Γ

(
x+ j

p

)
≤ (2π)

1−p
2 px−

1
2

(
Γ

(
x

p
+1

))p

= (2π)
1−p
2 px−

1
2

(
x

p

)p(
Γ

(
x

p

))p

≤ (2π)
1−p
2 p!p−

1
2−p(pe)x

(
Γ

(
x

p

))p

,

since xp ≤ exp!. It proves the estimate when x≥ 2p. We conclude by using the continuity

of the function x �−→ Γ(x)
1
p(

p
1
p e

1
p

)x

Γ( x
p )

on [1,+∞).

Lemma A.2. The gamma function and the beta function satisfy the following estimates:

(i) ∀x > 0,∀y > 0, xy ≤ Γ(y+1)ex.

(ii) ∀r > 0,∀x,y ≥ r, Γ(x)Γ(y)≤ 1
2rB(r,r)Γ(x+y+1).

(iii) ∀r ≥ 1,∃Cr > 0,∀x≥ 1, Γ(x)r ≤ CrΓ(rx).

Proof. It follows from equation (A.1) that for all x,y > 0,

Γ(y) =

∫ +∞

0

ty−1e−tdt≥
∫ x

0

ty−1e−tdt= xy

∫ 1

0

ty−1e−txdt≥ xy

∫ 1

0

ty−1e−xdt=
xye−x

y
.

Assertion (i) directly follows from the previous estimate, together with the functional
identity (A.2). On the other hand, since the beta function is separately nonincreasing with

respect to the two variables, it follows from the functional identity (A.2) and equation

(A.6) that for all r > 0,x,y ≥ r,

Γ(x)Γ(y) =B(x,y)Γ(x+y)≤B(r,y)Γ(x+y)≤B(r,r)Γ(x+y)

=
B(r,r)

x+y
(x+y)Γ(x+y)≤ B(r,r)

2r
Γ(x+y+1).

It proves that estimate (ii) holds. Using the Stirling formula

Γ(x)∼x→+∞

√
2π

x

(x
e

)x
(A.7)

(see, e.g., [5]), it follows that for all r ≥ 1,

Γ(x)r

Γ(rx)
∼x→+∞

(
2π

x

) r−1
2

r
1
2−rx =Or(1) when x→+∞. (A.8)

Since the function x �−→ Γ(x)r

Γ(rx) is continuous on [1,+∞), there exists a positive constant

Cr > 0 such that estimate (iii) holds.
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A.2. Hermite functions and Bernstein-type estimates

The standard Hermite functions (φk)k≥0 are defined for x ∈ R:

φk(x) =
(−1)k√
2kk!

√
π
e

x2

2
dk

dxk

(
e−x2

)
=

1√
2kk!

√
π

(
x− d

dx

)k(
e−

x2

2

)
=

ak+φ0√
k!

, (A.9)

where a+ is the creation operator

a+ =
1√
2

(
x− d

dx

)
.

The Hermite functions satisfy the identity

∀ξ ∈ R,∀k ≥ 0, φ̂k(ξ) = (−i)k
√
2πφk(ξ). (A.10)

The L2-adjoint of the creation operator is the annihilation operator

a− = a∗+ =
1√
2

(
x+

d

dx

)
.

The following identities hold:

[a−,a+] = a−a+−a+a− = Id, − d2

dx2
+x2 = 2a+a−+1, (A.11)

∀k ∈ N, a+φk =
√
k+1φk+1, ∀k ∈ N, a−φk =

√
kφk−1 (= 0 if k = 0), (A.12)

∀k ∈ N,

(
− d2

dx2
+x2

)
φk = (2k+1)φk. (A.13)

The family (φk)k∈N is an orthonormal basis of L2(R). We set for α = (αj)1≤j≤n ∈ Nn,

x= (xj)1≤j≤n ∈ Rn,

Φα(x) =

n∏
j=1

φαj
(xj) . (A.14)

The family (Φα)α∈Nn is an orthonormal basis of L2(Rn) composed of the eigenfunctions

of the n-dimensional harmonic oscillator

H=−Δx+‖x‖2 =
∑
k≥0

(2k+n)Pk, Id =
∑
k≥0

Pk, (A.15)

where Pk is the orthogonal projection onto SpanC{Φα}α∈Nn,|α|=k, with |α|=α1+ · · ·+αn.

Instrumental in the proof of Theorem 2.1 are the following Bernstein-type estimates:

Proposition A.3. With EN = SpanC{Φα}α∈Nn,|α|≤N , finite combinations of Hermite

functions satisfy the following estimates:

∀0< ε≤ 1,∃Kε > 1,∀0< δ ≤ 1,∃K̃ε,δ > 1,∀r > 0,∀α,β ∈ Nn,∀N ∈ N,∀f ∈ EN,∥∥xα∂β
xf
∥∥
L2(Rn)

≤ K̃ε,δ(δKε)
|α|+|β|Γ

(
|α|+ |β|
2− ε

+2

)
e

N
1− ε

2

δ2−ε ‖f‖L2(Rn)
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and ∥∥〈x〉r∂β
xf
∥∥
L2(Rn)

≤ K̃ε,δK
|β|+r
ε δ|β|(n+1)

r
2Γ

(
r+ |β|
2− ε

+3

)
e

N
1− ε

2

δ2−ε ‖f‖L2(Rn).

Proof. We notice that

xj =
1√
2
(aj,++aj,−), ∂xj

=
1√
2
(aj,−−aj,+), (A.16)

with

aj,+ =
1√
2

(
xj −∂xj

)
, aj,− =

1√
2

(
xj +∂xj

)
. (A.17)

By denoting (ej)1≤j≤n the canonical basis of Rn, we obtain from formulas (A.12) and
(A.16) that for all N ∈ N and f ∈ EN ,

‖aj,+f‖2L2(Rn) =

∥∥∥∥∥∥aj,+
⎛⎝ ∑

|α|≤N

〈f,Φα〉L2Φα

⎞⎠∥∥∥∥∥∥
2

L2(Rn)

=

∥∥∥∥∥∥
∑

|α|≤N

√
αj +1〈f,Φα〉L2Φα+ej

∥∥∥∥∥∥
2

L2(Rn)

=
∑

|α|≤N

(αj +1) |〈f,Φα〉L2 |2

≤ (N +1)
∑

|α|≤N

|〈f,Φα〉L2 |2 = (N +1)‖f‖2L2(Rn)

and

‖aj,−f‖2L2(Rn) =

∥∥∥∥∥∥aj,−
⎛⎝ ∑

|α|≤N

〈f,Φα〉L2Φα

⎞⎠∥∥∥∥∥∥
2

L2(Rn)

=

∥∥∥∥∥∥
∑

|α|≤N

√
αj〈f,Φα〉L2Φα−ej

∥∥∥∥∥∥
2

L2(Rn)

=
∑

|α|≤N

αj |〈f,Φα〉L2 |2

≤N
∑

|α|≤N

|〈f,Φα〉L2 |2 =N‖f‖2L2(Rn).

It follows that for all N ∈ N and f ∈ EN ,

‖xjf‖L2(Rn) ≤
1√
2

(
‖aj,+f‖L2(Rn)+‖aj,−f‖L2(Rn)

)
≤
√
2N +2‖f‖L2(Rn) (A.18)

and∥∥∂xj
f
∥∥
L2(Rn)

≤ 1√
2

(
‖aj,+f‖L2(Rn)+‖aj,−f‖L2(Rn)

)
≤
√
2N +2‖f‖L2(Rn). (A.19)

We notice from formulas (A.12) and (A.16) that

∀N ∈ N,∀f ∈ EN,∀α,β ∈ Nn, xα∂β
xf ∈ EN+|α|+|β|,
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with xα = xα1
1 · · ·xαn

n and ∂β
x = ∂β1

x1
· · ·∂βn

xn
. We deduce from formula (A.18) that for all

N ∈ N, f ∈ EN , and α,β ∈ Nn, with α1 ≥ 1,

∥∥xα∂β
xf
∥∥
L2(Rn)

= ‖x1( xα−e1∂β
xf︸ ︷︷ ︸

∈EN+|α|+|β|−1

)‖L2(Rn) ≤
√
2
√
N + |α|+ |β|

∥∥xα−e1∂β
xf
∥∥
L2(Rn)

.

By iterating the previous estimates, we readily obtain from formulas (A.18) and (A.19)

that for all N ∈ N, f ∈ EN , and α,β ∈ Nn,

∥∥xα∂β
xf
∥∥
L2(Rn)

≤ 2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
‖f‖L2(Rn). (A.20)

We recall the following basic estimates:

∀t≥ 0,∀k ∈ N, tk ≤ etk!, and ∀t > 0,∀A> 0, tA ≤AAet−A (A.21)

(see, e.g., [33, formula (0.3.14)]). Let 0< δ≤ 1 be a positive constant. When N ≤ |α|+ |β|,
with |α|+ |β| ≥ 1, we deduce from formulas (A.3) and (A.21) that for all p ∈ N\{0},

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ 2

|α|+|β|
2 (N + |α|+ |β|)

|α|+|β|
2

≤ 2|α|+|β|(|α|+ |β|)
|α|+|β|

2 ≤
(
2
√
e
)|α|+|β|√

(|α|+ |β|)!

=
(
2δ
√
e
)|α|+|β|

(Γ(|α|+ |β|+1))
1
2

(
1

δp

) |α|+|β|
p

≤
(
2δ
√
e
)|α|+|β|

(Γ(|α|+ |β|+1))
1
2 ((|α|+ |β|)!) 1

p e
1

pδp

=
(
2δ
√
e
)|α|+|β|

e
1

pδp (Γ(|α|+ |β|+1))
1
2 (Γ(|α|+ |β|+1))

1
p .

(A.22)

This estimate also holds when |α|+ |β| = 0. Using Lemmas A.1 and A.2(ii), we deduce
from formulas (A.22) that for all |α|+ |β| ≥N , 0< δ ≤ 1, and p ∈ N\{0},

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !

≤ C2Cpe
1

pδp
√
2ee

1
p p

1
p

(
2
√
2ee

1
p p

1
p δ
)|α|+|β|

Γ

(
|α|+ |β|+1

2

)
Γ

(
|α|+ |β|+1

p

)
≤ p

2
B

(
1

p
,
1

p

)
C2Cpe

1
pδp

√
2ee

1
p p

1
p

(
2
√
2ee

1
p p

1
p δ
)|α|+|β|

×Γ

(
(|α|+ |β|)

(
1

2
+

1

p

)
+

(
1

2
+

1

p
+1

))
. (A.23)
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Set 0< ε≤ 1. We can choose the positive integer p= pε such that

pε ≥ 2,
1

2
+

1

pε
≤ 1

2− ε
,

1

2
+

1

pε
+1≤ 2. (A.24)

Since the gamma function is convex on (0,+∞) and Γ(1) = Γ(2) = 1, we have Γ(x)≤ Γ(2)
for all 1≤ x≤ 2. On the other hand, using the fact that the gamma function is increasing

on [2,+∞), we deduce that Γ(2)≤ Γ(y)≤ Γ(z) for all 2≤ y ≤ z. It implies that

∀1≤ x≤ 2≤ y ≤ z, Γ(x)≤ Γ(y)≤ Γ(z). (A.25)

It follows from formula (A.23) that |α|+ |β| ≥N , 0< δ ≤ 1, and 0< ε≤ 1,

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ K̃ε,δ(Dεδ)

|α|+|β|Γ

(
|α|+ |β|
2− ε

+2

)
, (A.26)

with

K̃ε,δ =
pε
2
B

(
1

pε
,
1

pε

)
C2Cpε

e
1

pεδpε
√
2ee

1
pε p

1
pε
ε > 0 and Dε = 2

√
2ee

1
pε p

1
pε
ε > 0.

(A.27)

On the other hand, when N ≥ |α|+ |β|> 0, we deduce from formula (A.21) and Lemma
A.2(i) that for all 0< δ ≤ 1,0< ε≤ 1,

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ 2

|α|+|β|
2 (N + |α|+ |β|)

|α|+|β|
2

≤ (2δ)|α|+|β|
(
δ−1

√
N
)|α|+|β|

= (2δ)|α|+|β| (δε−2N1− ε
2

) |α|+|β|
2−ε

≤ (2δ)|α|+|β|
(
|α|+ |β|
2− ε

) |α|+|β|
2−ε

eδ
ε−2N1− ε

2 − |α|+|β|
2−ε

≤ (2δ)|α|+|β|Γ

(
|α|+ |β|
2− ε

+1

)
eδ

ε−2N1− ε
2 . (A.28)

Using formula (A.25), we deduce from formula (A.28) that for all 0< δ ≤ 1,0< ε≤ 1,

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
≤ (2δ)|α|+|β|Γ

(
|α|+ |β|
2− ε

+2

)
eδ

ε−2N1− ε
2 , (A.29)

when N ≥ |α|+ |β|> 0. Let us also notice from formula (A.25) that

2
|α|+|β|

2

√
(N + |α|+ |β|)!

N !
= 1≤ (2δ)|α|+|β|Γ

(
|α|+ |β|
2− ε

+2

)
eδ

ε−2N1− ε
2 , (A.30)
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when |α|+ |β| = 0, since Γ(2) = 1. It follows from formulas (A.20), (A.26), (A.29), and

(A.30) that for all 0< ε≤ 1, there exists a positive constant Kε > 1 such that

∀0< δ ≤ 1,∃K̃ε,δ > 1,∀α,β ∈ Nn,∀N ∈ N,∀f ∈ EN,∥∥xα∂β
xf
∥∥
L2(Rn)

≤ K̃ε,δ(δKε)
|α|+|β|Γ

(
|α|+ |β|
2− ε

+2

)
e

N
1− ε

2

δ2−ε ‖f‖L2(Rn). (A.31)

Using the Newton formula, we obtain that for all k ∈ N,

∥∥〈x〉k∂β
xf
∥∥2
L2(Rn)

=

∫
Rn

(
1+

n∑
i=1

x2
i

)k ∣∣∂β
xf(x)

∣∣2 dx
=

∫
Rn

∑
γ∈N

n+1,
|γ|=k

k!

γ!
x2γ̃
∣∣∂β

xf(x)
∣∣2 dx=

∑
γ∈N

n+1,
|γ|=k

k!

γ!

∥∥xγ̃∂β
xf
∥∥2
L2(Rn)

, (A.32)

where we denote γ̃ = (γ1, . . . ,γn)∈Nn if γ = (γ1, . . . ,γn+1)∈Nn+1. It follows from formulas
(A.25), (A.31), and (A.32) that for all 0< ε≤ 1,0< δ ≤ 1,β ∈ Nn,k ∈ N,N ∈ N,f ∈ EN ,

∥∥〈x〉k∂β
xf
∥∥2
L2(Rn)

≤
∑

γ∈N
n+1,

|γ|=k

k!

γ!
K̃2

ε,δ(δKε)
2|γ̃|+2|β|

(
Γ

(
|γ̃|+ |β|
2− ε

+2

))2

e
2N

1− ε
2

δ2−ε ‖f‖2L2(Rn)

≤ K̃2
ε,δ

(
Γ

(
k+ |β|
2− ε

+2

))2

e
2N

1− ε
2

δ2−ε K2|β|+2k
ε δ2|β|

⎛⎜⎜⎝ ∑
γ∈N

n+1,
|γ|=k

k!

γ!

⎞⎟⎟⎠‖f‖2L2(Rn)

= K̃2
ε,δ

(
Γ

(
k+ |β|
2− ε

+2

))2

e
2N

1− ε
2

δ2−ε K2|β|+2k
ε δ2|β|(n+1)k‖f‖2L2(Rn),

(A.33)

since ∑
γ∈N

n+1,
|γ|=k

k!

γ!
= (n+1)k, (A.34)

thanks to the Newton formula. Set r∈ [0,+∞)\N. We can write r= θk+(1−θ)(k+1)> 0,

with k ∈N and θ ∈]0,1[. Using the Hölder inequality, it follows from formula (A.33) that∥∥〈x〉r∂β
xf
∥∥
L2(Rn)

≤
∥∥〈x〉k∂β

xf
∥∥θ
L2(Rn)

∥∥〈x〉k+1∂β
xf
∥∥1−θ

L2(Rn)

≤ K̃ε,δ

(
Γ

(
k+ |β|
2− ε

+2

))θ(
Γ

(
k+1+ |β|

2− ε
+2

))1−θ

× e
N

1− ε
2

δ2−ε K |β|+r
ε δ|β|(n+1)

r
2 ‖f‖L2(Rn). (A.35)
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Using the facts that the gamma function is increasing on [2, +∞) and that k ≤ r, we

deduce from formula (A.35) that∥∥〈x〉r∂β
xf
∥∥
L2(Rn)

≤ K̃ε,δ

(
Γ

(
r+ |β|
2− ε

+2

))θ(
Γ

(
r+1+ |β|

2− ε
+2

))1−θ

e
N

1− ε
2

δ2−ε K |β|+r
ε δ|β|(n+1)

r
2 ‖f‖L2(Rn)

≤ K̃ε,δΓ

(
r+ |β|
2− ε

+3

)
e

N
1− ε

2

δ2−ε K |β|+r
ε δ|β|(n+1)

r
2 ‖f‖L2(Rn),

since 0< 1
2−ε ≤ 1, as 0< ε≤ 1. This ends the proof of Proposition A.3.

A.3. Gelfand–Shilov regularity

We refer the reader to [16, 17, 33, 40] and the references therein for extensive expositions

of Gelfand–Shilov regularity theory. The Gelfand–Shilov spaces Sμ
ν (R

n), with μ,ν > 0,μ+

ν ≥ 1, are defined as the spaces of smooth functions f ∈C∞(Rn) satisfying the estimates

∃A,C > 0, |∂α
x f(x)| ≤ CA|α|(α!)μe−

1
A |x|1/ν , x ∈ Rn,α ∈ Nn,

or equivalently,

∃A,C > 0, sup
x∈Rn

∣∣xβ∂α
x f(x)

∣∣≤ CA|α|+|β|(α!)μ(β!)ν, α,β ∈ Nn,

with α! = (α1!) · · ·(αn!) if α = (α1, . . . ,αn) ∈ Nn. These Gelfand–Shilov spaces Sμ
ν (R

n)

may also be characterized as the spaces of Schwartz functions f ∈ S (Rn) satisfying the

estimates

∃C > 0,ε > 0, |f(x)| ≤ Ce−ε‖x‖1/ν

, x ∈ Rn;
∣∣∣f̂(ξ)∣∣∣≤ Ce−ε‖ξ‖1/μ

, ξ ∈ Rn.

In particular, we notice that Hermite functions belong to the symmetric Gelfand–Shilov
space S

1/2
1/2(R

n). More generally, the symmetric Gelfand–Shilov spaces Sμ
μ(R

n), with μ≥
1/2, can be nicely characterized through decomposition into the Hermite basis (Φα)α∈Nn

(see, e.g., [40, Proposition 1.2]),

f ∈ Sμ
μ(R

n)⇔ f ∈ L2(Rn),∃t0 > 0,

∥∥∥∥(〈f,Φα〉L2 exp
(
t0|α|

1
2μ

))
α∈Nn

∥∥∥∥
l2(Nn)

<+∞

⇔ f ∈ L2(Rn),∃t0 > 0,

∥∥∥∥et0H 1
2μ
f

∥∥∥∥
L2(Rn)

<+∞,

where H=−Δx+‖x‖2 stands for the harmonic oscillator.

A.4. Slowly varying metrics

This section is devoted to recalling basic facts about slowly varying metrics. We refer the

reader to [23, §1.4] for the proofs of the following results. Let X be an open subset in
a finite-dimensional R-vector space V and ‖·‖x a norm in V depending on x ∈X. The

family of norms (‖·‖x)x∈X is said to define a slowly varying metric in X if there exists a

positive constant C ≥ 1 such that for all x ∈X and for all y ∈ V satisfying ‖y−x‖x < 1,
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then y ∈X and

∀v ∈ V ,
1

C
‖v‖x ≤ ‖v‖y ≤ C‖v‖x. (A.36)

Lemma A.4 ([23, Example 1.4.8]). Let X be an open subset in a finite-dimensional R-
vector space V and d(x) a Lipschitz continuous function, positive in X and zero in V \X,

satisfying

∀x,y ∈X, |d(x)−d(y)| ≤ ‖x−y‖,

where ‖·‖ is a fixed norm in V. Then the family of norms (‖·‖x)x∈X given by

‖v‖x =
2‖v‖
d(x)

, x ∈X,v ∈ V ,

defines a slowly varying metric in X.

Let us consider the case when X = V = Rn and ‖·‖ is the Euclidean norm. If 0< ε < 1
and 0<R≤ 1

2(1−ε) , then the gradient of the function ρε(x) =R 〈x〉1−ε
given by

∀x ∈ Rn, ∇ρε(x) =R(1− ε)
x

〈x〉1+ε

satisfies ‖∇ρε‖L∞(Rn) ≤ 1
2 . The mapping ρε is then a 1

2 -Lipschitz positive function, and

Lemma A.4 shows that the family of norms ‖·‖x = ‖·‖
R〈x〉1−ε defines a slowly varying metric

on Rn.

Theorem A.5 ([23, Theorem 1.4.10]). Let X be an open subset in V, an R-vector space

of finite dimension n≥ 1, and let (‖·‖x)x∈X be a family of norms in V defining a slowly
varying metric. Then there exists a sequence (xk)k≥0 ∈XN such that the balls

Bk = {x ∈ V : ‖x−xk‖xk
< 1} ⊂X

form a covering of X,

X =
+∞⋃
k=0

Bk,

such that the intersection of more than N =
(
4C3+1

)n
2× 2 distinct balls Bk is always

empty, where C ≥ 1 denotes the positive constant appearing in the slowness condition

(A.36).

A.5. Instrumental lemmas

This section is devoted to the proofs of instrumental lemmas.

Lemma A.6. Let ρ1,ρ2 :Rn −→ (0,+∞) be two continuous positive functions satisfying

∀x ∈ Rn, 0< ρ1(x)≤ ρ2(x).

If ω is a measurable subset of Rn verifying

∀x ∈ Rn, |ω∩B(x,ρ1(x))| ≥ γ|B(x,ρ1(x))|, (A.37)
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with 1− 1
6n < γ ≤ 1, where B(y,r) denotes the Euclidean ball centered at y ∈ Rn with

radius r > 0 and where |A| denotes the Lebesgue measure of A, then it satisfies

∀x ∈ Rn, |ω∩B(x,ρ2(x))| ≥ γ̃|B(x,ρ2(x))|, (A.38)

with γ̃ = 1− (1−γ)6n > 0.

Proof. Let ω be a measurable subset of Rn satisfying formula (A.37) and x∈Rn. We begin

by recovering B(x,ρ2(x)) by a finite number of balls B
(
xk,

ρ1(xk)
3

)
with ρ1(xk)≤ 3ρ2(xk).

In order to do so, we first notice that B(x,ρ2(x)) is a compact set and that

B(x,ρ2(x))⊂
⋃

y∈B(x,ρ2(x)),
ρ1(y)≤3ρ2(x)

B

(
y,
ρ1(y)

3

)
. (A.39)

Indeed, if y ∈B(x,ρ2(x)) and ρ1(y)> 3ρ2(x), then the continuous function defined for all
t∈ [0,1] by f(t) = ρ1(ty+(1−t)x) satisfies f(0)= ρ1(x)≤ ρ2(x) and f(1)= ρ1(y)> 3ρ2(x).

It follows that there exists 0< t0 < 1 such that ρ1(z) = 3ρ2(x) with z = t0y+(1− t0)x ∈
B(x,ρ2(x)) and y ∈B

(
z, ρ1(z)

3

)
, as

‖z−x‖= t0‖x−y‖< ρ2(x), ‖y− z‖= (1− t0)‖x−y‖< ρ2(x) =
1

3
ρ1(z).

It follows that there exists a finite sequence (xik)0≤k≤N of B(x,ρ2(x)) such that

B(x,ρ2(x))⊂
N⋃

k=0

B

(
xik,

ρ1 (xik)

3

)
and ∀0≤ k ≤N, ρ1 (xik)≤ 3ρ2(x). (A.40)

We can now use the following covering lemma [37, Lemma 7.3]:

Lemma A.7 (Vitali covering lemma). Let (yi)0≤i≤N be a finite sequence of Rn and

(ri)0≤i≤N ⊂ (0,+∞)N+1. There exists a subset S ⊂ {0, . . . ,N} such that

(i) the balls (B(yi,ri))i∈S are 2×2 disjoint and

(ii)
N⋃
i=0

B(yi,ri)⊂
⋃
i∈S

B(yi,3ri).

It follows from Lemma A.7 and formula (A.40) that there exists a subset S ⊂ {0, . . . ,N}
such that the balls

(
B

(
xik,

ρ1(xik)
3

))
k∈S

are 2×2 disjoint and satisfy

B(x,ρ2(x))⊂
⋃
k∈S

B (xik,ρ1 (xik)) . (A.41)

We also notice that ⊔
k∈S

B

(
xik,

ρ1 (xik)

3

)
⊂B(x,2ρ2(x)),
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since if y ∈B

(
xik,

ρ1(xik)
3

)
, then

‖y−x‖ ≤ ‖y−xik‖+‖xik −x‖< ρ1 (xik)

3
+ρ2(x)≤ 2ρ2(x).

It follows from formulas (A.37) and (A.41) that

|ω∩B(x,ρ2(x))|= |B(x,ρ2(x))|− |(Rn \ω)∩B(x,ρ2(x))|

≥ |B(x,ρ2(x))|−
∑
k∈S

|(Rn \ω)∩B (xik,ρ1 (xik))|

≥ |B(x,ρ2(x))|−
∑
k∈S

(1−γ) |B (xik,ρ1 (xik))|

and

|ω∩B(x,ρ2(x))| ≥ |B(x,ρ2(x))|−
∑
k∈S

(1−γ)3n
∣∣∣∣B(xik,

ρ1 (xik)

3

)∣∣∣∣
= |B(x,ρ2(x))|− (1−γ)3n

∣∣∣∣∣⊔
k∈S

B

(
xik,

ρ1 (xik)

3

)∣∣∣∣∣
≥ |B(x,ρ2(x))|− (1−γ)3n|B(x,2ρ2(x))|.

We deduce that

|ω∩B(x,ρ2(x))| ≥ (1− (1−γ)6n)|B(x,ρ2(x))|.

This ends the proof of Lemma A.6.

Lemma A.8. Set 1
2 < s≤ 1,0< t0 ≤ 1, and let A be a closed operator on L2(Rn) which

is the infinitesimal generator of a strongly continuous contraction semigroup
(
e−tA

)
t≥0

on L2(Rn). If the estimates

∃C > 1,∃m1 > 0,∃m2 ≥ 0,∀0< t≤ t0,∀α,β ∈ Nn,∀g ∈ L2(Rn),∥∥xα∂β
x

(
e−tAg

)∥∥
L∞(Rn)

≤ C1+|α|+|β|

tm1(|α|+|β|)+m2
(α!)

1
2s (β!)

1
2s ‖g‖L2(Rn) (A.42)

hold, then the estimates

∃C̃ > 1,∃m̃1 > 0,∃m̃2 ≥ 0,∀0< t≤ t0,∀α,β ∈ Nn,∀g ∈ L2(Rn),∥∥xα∂β
x

(
e−tAg

)∥∥
L2(Rn)

≤ C̃1+|α|+|β|

tm̃1(|α|+|β|)+m̃2
(α!)

1
2s (β!)

1
2s ‖g‖L2(Rn) (A.43)

hold.

Proof.We assume that the estimates (A.42) hold. It follows that there exist some positive

constants (Cα̃(n))α̃∈Nn,|α̃|≤2n such that for all 0< t≤ t0,α,β ∈ Nn,g ∈ L2(Rn),
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∥∥xα∂β
x

(
e−tAg

)∥∥
L2(Rn)

≤
(∫

Rn

dx

(1+‖x‖2)2n

) 1
2 ∥∥∥(1+‖x‖2

)n
xα∂β

x

(
e−tAg

)∥∥∥
L∞(Rn)

≤
∑

α̃∈N
n,

|α̃|≤2n

Cα̃(n)
∥∥xα+α̃∂β

x

(
e−tAg

)∥∥
L∞(Rn)

≤
∑

α̃∈N
n,

|α̃|≤2n

Cα̃(n)
C2n+1+|α|+|β|

tm1(|α|+|β|+2n)+m2
((α+ α̃)!)

1
2s (β!)

1
2s ‖g‖L2(Rn).

(A.44)

Using from formula (2.23) the fact that

∀α,α̃ ∈ Nn, |α̃| ≤ 2n,

(α+ α̃)! =

n∏
j=1

(αj + α̃j)!≤
n∏

j=1

(αj +2n)!≤
n∏

j=1

2αj+2n (αj)!(2n)!≤ (4n(2n)!)n2|α|α!,

we obtain that the estimates (A.43) hold with m̃1 =m1 > 0 and m̃2 =2nm1+m2 > 0.

Lemma A.9. For any k ∈ N, there exists a finite family of real numbers(
Ck

l1,l2

)
l1,l2∈N,

0≤l1+l2≤k+1

satisfying

k∏
j=0

(
(−1)j∂x+x

)
=

∑
l1,l2∈N,

0≤l1+l2≤k+1

Ck
l1,l2x

l1∂l2
x , x ∈ R,

and

∀l1,l2 ∈ N,0≤ l1+ l2 ≤ k+1,
∣∣Ck

l1,l2

∣∣≤ 3k(k+1)
k+1−l1−l2

2 ,

while using for short the following abusive notation for possibly noncommutative differ-
ential operators,

k∏
j=0

Aj(x,Dx) :=A0(x,Dx) · · ·Ak(x,Dx).

Proof. We proceed by induction on k ∈ N. For k = 0 or k = 1, the result readily holds.

Let us assume that it holds true for k ∈ N. We observe that

k+1∏
j=0

(
(−1)j∂x+x

)
=

⎛⎜⎜⎝ ∑
l1,l2∈N,

0≤l1+l2≤k+1

Ck
l1,l2x

l1∂l2
x

⎞⎟⎟⎠((−1)k+1∂x+x
)

=
∑

l1,l2∈N,
0≤l1+l2≤k+1

(−1)k+1Ck
l1,l2x

l1∂l2+1
x +Ck

l1,l2x
l1+1∂l2

x + l2C
k
l1,l2x

l1∂l2−1
x
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=
∑

l1≥0,l2≥1,
1≤l1+l2≤k+2

(−1)k+1Ck
l1,l2−1x

l1∂l2
x +

∑
l1≥1,l2≥0,

1≤l1+l2≤k+2

Ck
l1−1,l2x

l1∂l2
x

+
∑

l1,l2∈N,
0≤l1+l2≤k

(l2+1)Ck
l1,l2+1x

l1∂l2
x . (A.45)

By setting, for all l1,l2 ∈ N with 0≤ l1+ l2 ≤ k+2,

Ck+1
l1,l2

= (−1)k+1Ck
l1,l2−11[1,+∞)(l2)+Ck

l1−1,l21[1,+∞)(l1)

+(l2+1)Ck
l1,l2+11[0,k](l1+ l2), (A.46)

we deduce from equation (A.45) that

k+1∏
j=0

(
(−1)j∂x+x

)
=

∑
l1,l2∈N,

0≤l1+l2≤k+2

Ck+1
l1,l2

xl1∂l2
x . (A.47)

Using the induction property, we deduce that for all l1,l2 ∈ N with 0≤ l1+ l2 ≤ k+2,∣∣∣Ck+1
l1,l2

∣∣∣
≤ 3k(k+1)

k+1−l1−(l2−1)
2 +3k(k+1)

k+1−(l1−1)−l2
2 +3k(k+1)

k+1−l1−(l2+1)
2 +11[0,k](l1+ l2)

≤ 3k(k+2)
k+2−l1−l2

2 +3k(k+2)
k+2−l1−l2

2 +3k(k+2)
k+2−l1−l2

2 = 3k+1(k+2)
k+2−l1−l2

2 .

This ends the proof of Lemma A.9.
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[18] M. Hitrik and K. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic
quadratic operators, Math. Ann. 344(4) (2009), 801–846.

[19] M. Hitrik and K. Pravda-Starov, Semiclassical hypoelliptic estimates for non-
selfadjoint operators with double characteristics, Comm. Partial Differential Equations
35(6) (2010), 988–1028.

[20] M. Hitrik and K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-
selfadjoint semiclassical operators with double characteristics, Ann. Inst. Fourier (Greno-
ble) 63(3) (2013), 985–1032.

[21] M. Hitrik, K. Pravda-Starov and J. Viola, Short-time asymptotics of the regularizing
effect for semigroups generated by quadratic operators, Bull. Sci. Math. 141(7) (2017),
615–675.

[22] M. Hitrik, K. Pravda-Starov and J. Viola, From semigroups to subelliptic estimates
for quadratic operators, Trans. Amer. Math. Soc. 370(10) (2018), 7391–7415.
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[28] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués,
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