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Abstract
In this paper, a new point process is introduced. It combines the nonhomogeneous Poisson process with the gen-
eralized Polya process (GPP) studied in recent literature. In reliability interpretation, each event (failure) from
this process is minimally repaired with a given probability and GPP-repaired with the complementary probability.
Characterization of the new process via the corresponding bivariate point process is presented. The mean numbers
of events for marginal processes are obtained via the corresponding rates, which are used for considering an optimal
replacement problem as an application.

1. Introduction

Stochastic point processes have been widely used in the reliability literature for modeling the processes
of failures and repairs of repairable items. The most popular and the simplest repair in practical imple-
mentation is the perfect repair when an item is “good as new” after the repair (replacement). In what
follows, for convenience, we will consider instantaneous repair; therefore, the processes of failure and
repair coincide forming the renewal process in case of the perfect repair.

Let X denote the lifetime of an item described by its absolutely continuous cumulative distribution
function (c.d.f.) F(t), the probability density function (p.d.f.) f (t), the failure rate _(t) and the survival
function F (t) = 1 − F (t). The other type of repair that is widely used in practice is the minimal repair,
introduced in Barlow and Hunter [6]. After the minimal repair, an item is in the “bad as old” state
meaning that the distribution of its remaining lifetime is the same as just before the failure, that is,

F (t |x) = F̄ (x) − F̄ (x + t)
F̄ (x)

= 1 − exp
{
−

∫ x+t

x
_ (u) du

}
, (1)

where x is the time of failure/repair. It is well-known that the process of minimal repairs is described by
the corresponding nonhomogeneous Poisson process (NHPP) with intensity function/rate _(t). Minimal
repair is, obviously, already an imperfect repair.

Numerous models of imperfect repair has been reported in the literature (see, e.g., Badia and Berrade
[3–5], Navarro et al. [16], Cha and Finkelstein [11] and references therein). Note that, most of the papers
deal with the intermediate case when the repair is better than minimal but worse than perfect. On the
other hand, in practice, there are situations when the repair is worse than minimal. For example, often
the failure of a component in a multicomponent system can increase stress, temperature, humidity,
etc., which results in the increase in the overall failure rate of a system. Also, similar to debugging of
software, the new “bugs” can be inserted during repair. See the relevant discussion and examples in
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Lee and Cha [14]. The generalized Polya process (GPP) introduced and characterized in Cha [9] is an
efficient mathematical tool to model the worse than minimal repair (see the formal definition in the next
section). This process generalizes the NHPP and its failure intensity/intensity process increases with
each event.

In practice, however, at many instances, the type of repair is not predetermined and depends on the
“properties” of each failure. The famous Brown-Proschan model [8] was developed to deal with this
randomness for a combination of minimal and perfect repair. Specifically, according to this model, each
time an item fails, it is perfectly repaired with probability p and is minimally repaired with probability
(1−p). The Brown–Proschan model was extended by Block et al. [7] to a model with an age-dependent
probability p(t), where t is the time since the last perfect repair. This process can be simply characterized.
For instance, the c.d.f. of the time between consecutive perfect repairs that form the corresponding
renewal process, FP (t), is defined as

FP (t) = 1 − exp
{
−

∫ t

0
p (u) _ (u) du

}
. (2)

The goal of our paper is to consider a model similar to the Brown–Proschan model but with two
imperfect repair options, that is, to combine in the described way the minimal and the GPP (worse than
minimal) repairs. This model can be applied at many instances in practice, as some failures are easily
minimally repaired, whereas others result in a worse than minimal repair. Therefore, it will define a
new stochastic point process with each event (failure) minimally repaired with probability p(t) and
GPP-repaired with the complementary probability 1 − p(t).

This appears to be a much more difficult task, as we do not have renewal points now, and the stochastic
intensity of this process is changing with each GPP event (it stays the same for minimal repairs). To do
so, we will characterize the new combined repair process via introducing the relevant bivariate process
and the pooled process, which is the sum of two marginal processes. It will be also shown that some
relevant expected values for the events in the processes can be obtained in a simpler way considering
not the stochastic intensities of processes but the corresponding intensity functions (rates). The latter is
sufficient for considering, as an application, the optimal replacement problem: to find the optimal time
of replacement (perfect repair) that minimizes the long-run cost rate.

The rest of the paper is organized as follows. In Section 2, we provide necessary definitions
and descriptions. Section 3 is devoted to the characterization of the new bivariate counting process.
In Section 4, we derive intensity functions of the processes of interest. Section 5 considers the optimal
replacement problem for items with the described types of repair. Finally, brief conclusions are given
in Section 6.

2. Preliminaries

This supplementary section provides general concepts and main definitions for description of univariate
and multivariate processes via the stochastic intensity. There can be other ways of characterization;
however, for our study, this is the most appropriate one. The discussion in this section basically follows
that of Cha [9] and Cha and Giorgio [12] and contains descriptions that are necessary for the presentation
of further results.

Description of a univariate counting process

Denote by {N (t), t ≥ 0} an orderly point process, and let Ht− ≡ {N (u), 0 ≤ u < t} be its history in
[0, t), that is, the set of all previous point events in [0, t). Observe that Ht− can equivalently be defined
in terms of N (t−) and the sequential arrival points of the events 0 ≤ T1 ≤ T2 ≤ · · · ≤ TN (t−) < t
in [0, t), where Ti is the time from 0 until the arrival of the ith event in [0, t). At many instances and
especially in reliability studies, it is useful to define point processes using the concept of the stochastic
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intensity _t, t ≥ 0 (the intensity process) (Aven and Jensen [1, 2]). As discussed in Cha and Finkelstein
[10], the stochastic intensity _t of an orderly point process {N (t), t ≥ 0} is defined as the following
limit:

_t ≡ lim
Δt→0

P (N (t, t + Δt) = 1|Ht−)
Δt

= lim
Δt→0

E [N (t, t + Δt) |Ht−]
Δt

, (3)

where N (t1, t2), t1 < t2, is the number of events in [t1, t2). It has the following infinitesimal interpretation
(heuristic)

_t dt = E [dN (t) |Ht−] , (4)

which is similar to the ordinary failure (hazard) rate of a random variable (Aven and Jensen [1]).
It is well known that the intensity function (rate) of a point process {N (t), t ≥ 0}, that distinct from

the stochastic intensity does not fully characterize it, is defined as

q(t) ≡ dE [N (t)]
dt

= lim
Δt→0

E [N (t + Δt)] − E [N (t)]
Δt

= lim
Δt→0

E [N (t, t + Δt)]
Δt

.

For orderly processes,

q(t) = lim
Δt→0

P(N (t, t + Δt) = 1)
Δt

.

Therefore, the intensity function q(t) can be considered as an unconditional version of the stochastic
intensity _t.

Using the concept of stochastic intensity, the GPP can be defined as follows.

Definition 2.1. (Generalized Polya process). A counting process {N (t), t ≥ 0} is called the GPP
with the set of parameters (_(t),U, V), U ≥ 0, V > 0, if

(i) N (0) = 0;
(ii) _t = (UN (t−) + V)_(t).

It can be easily seen that the GPP with (_(t),U = 0, V = 1) reduces to the NHPP with the rate
function _(t).

Let now {N (t), t ≥ 0} be interpreted as the failure/instantaneous repair process for a repairable item
with a lifetime characterized by the failure rate _(t), where N(t) is the total number of failures/repairs
in (0, t].

Definition 2.2. (GPP repair). The failure/repair process for an item with the failure rate _(t) is called
the “GPP repair” with parameter U if {N (t), t ≥ 0} is the GPP with the parameter set (_(t),U, 1).

Description of a bivariate counting process

We will use the bivariate counting process for description of the new process that will be defined in the
next section. Let {N(t), t ≥ 0}, where N(t) = (N1(t), N2(t)), be a bivariate process. The corresponding
“pooled” point process {M (t), t ≥ 0} is defined as the sum M (t) = N1(t) +N2(t), whereas the marginal
point processes {Ni (t), t ≥ 0}, for convenience, will be called type i point process, i = 1, 2, respectively.
Furthermore, the events from type i point process {Ni (t), t ≥ 0} will also be called type i events.
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There are two types of regularity that occur in multivariate point processes: (i)marginal regularity and
(ii)regularity (see Cha and Giorgio [12] for corresponding definitions). In this paper, we will consider
regular (also known as orderly) multivariate point processes.

Let HPt− ≡ {M (u), 0 ≤ u < t} be the history (internal filtration) of the pooled process in [0, t), that
is, the set of all point events in [0, t). Observe that HPt− can equivalently be defined in terms of M (t−)
and the sequential arrival points of the events 0 ≤ T1 ≤ T2 ≤ · · · ≤ TM (t−) < t in [0, t), where M (t−)
is the total number of events in [0, t) and Ti is the time from 0 until the arrival of the ith event in [0, t)
of the pooled process {M (t), t ≥ 0}. Similarly, define the marginal histories of the marginal processes
Hit− ≡ {Ni (u), 0 ≤ u < t}, i = 1, 2. Then, Hit− ≡ {Ni (u), 0 ≤ u < t} can also be completely defined
in terms of Ni (t−) and the sequential arrival points of the events 0 ≤ Ti1 ≤ Ti2 ≤ · · · ≤ TiNi (t−) < t in
[0, t), i = 1, 2, where Ni (t−) is the total number of events of type i point process in [0, t), i = 1, 2.

Although multivariate point processes can be defined in different ways, the most convenient general
characterization (especially for applications) can also be done through the stochastic intensity approach.
A “marginally regular bivariate process” can be specified by

_1t ≡ lim
Δt→0

P (N1(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

_2t ≡ lim
Δt→0

P (N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N2(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

_12t ≡ lim
Δt→0

P (N1(t, t + Δt)N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

, (5)

where Ni (t1, t2), t1 < t2, represent the number of events in [t1, t2), i = 1, 2, respectively (see Cox and
Lewis [13]). The functions in Eq. (5) are called the complete intensity functions. For a regular bivariate
process, _12t = 0, and it is sufficient to specify just _1t and _2t in Eq. (5).

3. Characterization of a new bivariate counting process

Let {M (t), t ≥ 0} be an orderly univariate counting process with sequential arrival points of the events
0 ≤ T1 ≤ T2 ≤ · · · . Consider a sequence of random variables {I1, I2, . . .} with Ij = 1 with probability
p(tj) and Ij = 0 with probability 1− p(tj), j = 1, 2, . . ., where tj is the realization of Tj. We assume that,
given {T1, T2, . . . , Tn}, {I1, I2, . . . , In} are independent, n = 1, 2, . . .. Furthermore, given TM (t−)+1, the
random variable IM (t−)+1 does not depend on {T1, T2, . . . , TM (t−) , M (t−); I1, I2, . . . , IM (t−) }, t > 0. We
assume that the conditional stochastic intensity of {M (t), t ≥ 0} with additionally given {I1, I2, · · · } is
specified by

_t |It− ≡ lim
Δt→0

P
(
M (t, t + Δt) = 1|T1, T2, . . . , TM (t−) , M (t−); I1, I2, . . . , IM (t−)

)
Δt

=
©«U

M (t−)∑
j=1

Ij + 1ª®¬_(t). (6)

The interpretation of the conditional stochastic intensity in Eq. (6) is as follows. A counting process
starts at time 0 with baseline intensity _(t). On each event occurrence, with probability p(t), the stochas-
tic intensity increases according to the GPP pattern (GPP repair, type 1 event) and, with probability
1 − p(t), the stochastic intensity is the same as that just before the occurrence of the event (minimal
repair, type 2 event), where t is the occurrence time of the event. Clearly, when p(t) = 1 for all t > 0,
Ij = 1, j = 1, 2, . . . (thus the conditional part {I1, I2, . . . , IM (t−) } is not necessary anymore), the condi-
tional stochastic intensity (6) reduces to the usual stochastic intensity in Definition 2.1 and the counting
process model becomes the GPP. On the other hand, when p(t) = 0 for all t > 0, Ij = 0, j = 1, 2, · · · ,
and the counting process model becomes the NHPP with rate _(t). Thus, the counting process model
in Eq. (6) can be used as the model for a generalized minimal and GPP repairs.
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From the counting process model in Eq. (6), it can be seen that, on each event, the type of event
can be classified into two types: type 1 and type 2. Thus, we can now define a bivariate counting pro-
cess {(N1(t), N2(t)), t ≥ 0}. For convenience, we use the notations defined in the previous section to
describe this bivariate process and the pooled process. To formally characterize the bivariate process
{(N1(t), N2(t)), t ≥ 0} generated from the pooled process {M (t), t ≥ 0}, as mentioned in the previous
section, we need to specify the stochastic intensities _1t and _2t .

Proposition 3.1. The stochastic intensity _1t and _2t for {(N1(t), N2(t)), t ≥ 0} are given by

_1t = (UN1(t−) + 1)p(t)_(t);

_2t = (UN1(t−) + 1) (1 − p(t))_(t).

Proof. Note that each event in {M (t), t ≥ 0} is classified into two types of events independently
of everything else. Note also that the joint history {H1t−;H2t−} can be equivalently defined by
{T1, T2, . . . , TM (t−) , M (t−); I1, I2, . . . , IM (t−) }. Thus,

_1t = lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

= lim
Δt→0

P ({M (t, t + Δt) = 1} ∩ {The event is type 1}|H1t−;H2t−)
Δt

= lim
Δt→0

P (The event is type 1|M (t, t + Δt) = 1;H1t−;H2t−)

×P (M (t, t + Δt) = 1|H1t−;H2t−)
Δt

= p(t) lim
Δt→0

P (M (t, t + Δt) = 1|H1t−;H2t−)
Δt

= p(t) · lim
Δt→0

P
(
M (t, t + Δt) = 1|T1, T2, . . . , TM (t−) , M (t−); I1, I2, . . . , IM (t−)

)
Δt

=
©«U

M (t−)∑
j=1

Ij + 1ª®¬ p(t)_(t) = (UN1(t−) + 1)p(t)_(t).

By similar arguments, we have _2t = (UN1(t−) + 1) (1 − p(t))_(t). �

The following proposition further characterizes the pooled process {M (t), t ≥ 0} and the marginal
processes {Ni (t), t ≥ 0}, i = 1, 2. Denote by _Mt, _Nit , i = 1, 2, the stochastic intensities of the pooled
process {M (t), t ≥ 0} and the marginal processes {Ni (t), t ≥ 0}, i = 1, 2, respectively.

Proposition 3.2. For the pooled process {M (t), t ≥ 0} and the marginal processes {Ni (t), t ≥ 0},
i = 1, 2, the following properties hold.

(i) The stochastic intensity _Mt of the pooled process {M (t), t ≥ 0} is given by

_Mt = _(t), if M (t−) = 0;

otherwise,

_Mt =
∑

i1=0,1

∑
i2=0,1

· · ·
∑

iM (t−)=0,1

©«U
M (t−)∑

j=1
ij + 1ª®¬_(t)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964823000177
Downloaded from https://www.cambridge.org/core. IP address: 3.15.5.44, on 21 Jul 2024 at 07:13:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964823000177
https://www.cambridge.org/core


346 J. H. Cha and M. Finkelstein

×
g(i1, i2, . . . , iM (t−) , T1, T2, . . . , TM (t−) , M (t−))∑

i1=0,1
∑

i2=0,1 · · ·
∑

iM (t−)=0,1 g(i1, i2, . . . , iM (t−) , T1, T2, . . . , TM (t−) , M (t−)) ,

where

g(i1, i2, . . . , im, t1, t2, . . . , tm, m) ≡


m∏
j=1

p(tj)ij (1 − p(tj))1−ij


×
{

m∏
k=1

exp

{
−

∫ tk

tk−1

(
U

k−1∑
l=1

il + 1

)
_(u) du

} (
U

k−1∑
l=1

il + 1

)
_(tk)

}
× exp

{
−

∫ t

ttm

(
U

m∑
l=1

il + 1

)
_(u) du

}
,

with t0 = 0.
(ii) The stochastic intensity _N1t of the marginal processes {N1(t), t ≥ 0} is given by

_N1t = (UN1(t−) + 1)p(t)_(t).

Thus, the marginal process {N1(t), t ≥ 0} is the GPP with the set of parameters (p(t)_(t),U, 1).
(iii) Given the history of type 1 process, type 2 process is conditionally NHPP with the rate function

_(t |H1t−) = (UN1(t−) + 1)_(t), t > 0. (7)

Thus, type 2 process is mixing of the NHPP with respect to the mixing rate function in Eq. (7).

Proof. It is clear that _Mt = _(t) if M (t−) = 0. Now suppose that M (t−) ≥ 1. The pooled process
{M (t), t ≥ 0} can be characterized by its stochastic intensity

_Mt = lim
Δt→0

P
(
M (t, t + Δt) = 1|T1, T2, . . . , TM (t−) , M (t−)

)
Δt

.

From the conditional stochastic intensity in Eq. (6), _Mt can be obtained by

_Mt = E [_t |It− |T1, T2, . . . , TM (t−) , M (t−)] .

Thus, we need the conditional joint distribution of (I1, I2, . . . , IM (t−) |T1, T2, . . . , TM (t−) , M (t−)). The
joint distribution of (I1, I2, . . . , IM (t−) ; T1, T2, . . . , TM (t−) , M (t−)) is given by

g(i1, i2, . . . , im, t1, t2, . . . , tm, m) ≡


m∏
j=1

p(tj)ij (1 − p(tj))1−ij


×
{

m∏
k=1

exp

{
−

∫ tk

tk−1

(
U

k−1∑
l=1

il + 1

)
_(u) du

} (
U

k−1∑
l=1

il + 1

)
_(tk)

}
× exp

{
−

∫ t

ttm

(
U

m∑
l=1

il + 1

)
_(u) du

}
,
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where t0 = 0. Then, the joint distribution of (T1, T2, . . . , TM (t−) , M (t−)) is given by∑
i1=0,1

∑
i2=0,1

· · ·
∑

im=0,1
g(i1, i2, . . . , im, t1, t2, . . . , tm, m).

Thus, the conditional joint distribution of (I1, I2, . . . , IM (t−) |T1, T2, . . . , TM (t−) , M (t−)) is given by

g(i1, i2, . . . , im, t1, t2, . . . , tm, m)∑
i1=0,1

∑
i2=0,1 · · ·

∑
im=0,1 g(i1, i2, . . . , im, t1, t2, . . . , tm, m) .

Then, _Mt can be obtained by

_Mt =
∑

i1=0,1

∑
i2=0,1

· · ·
∑

im=0,1

©«U
M (t−)∑

j=1
ij + 1ª®¬_(t)

×
g(i1, i2, . . . , iM (t−) , T1, T2, . . . , TM (t−) , M (t−))∑

i1=0,1
∑

i2=0,1 · · ·
∑

im=0,1 g(i1, i2, . . . , iM (t−) , T1, T2, . . . , TM (t−) , M (t−)) .

From Proposition 3.1,

_1t = lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

= (UN1(t−) + 1)p(t)_(t),

which does not depend on H2t− . Thus,

_1t = lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−)
Δt

= _N1t

From Proposition 3.1, given a fixed history H1t− , the stochastic intensity _2t is given by a
deterministic function with respect to the history H2t−

(UN1(t−) + 1) (1 − p(t))_(t).

This implies that type 2 process is defined via mixing of the NHPP with respect to the mixing rate
function (7). In other words, given the history of type 1 process, type 2 process is conditionally NHPP
with the rate function in Eq. (7). �

Remark 3.3.

(i) Although the stochastic intensity of the pooled process {M (t), t ≥ 0} can be expressed in explicit
form, the pooled process {M (t), t ≥ 0} does not belong to a known class of processes.

(ii) The marginal process {N2(t), t ≥ 0} belongs to a class of mixed NHPP, but its stochastic intensity
cannot be expressed in a closed form.

In Propositions 3.1 and 3.2, the stochastic intensity functions for the bivariate counting process
{(N1(t), N2(t)), t ≥ 0} and the corresponding marginal processes have been derived. In the follow-
ing result, we derive the expressions for the joint distribution for (N1(t), N2(t)) and the corresponding
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marginal distributions. For the description of the following proposition, we define Λ(t) ≡
∫ t
0 _(x) dx,

Λp(t) ≡
∫ t
0 p(x)_(x) dx, t10 ≡ 0, t1,n1+1 ≡ t,

Poi(n; q) ≡ qn

n!
exp{−q},

g(t11, t12, . . . , t1n1 , n1)

≡ n1!
n1∏
i=1

Up(t1i)_(t1i) exp{UΛp(t1i)}
exp{UΛp(t1i)} − 1

, n1 ≥ 1, 0 < t11 < t12 < · · · < t1n1 < t.

Proposition 3.4. The joint distribution for (N1(t), N2(t)) and the corresponding marginal distributions
are given as follows.

(i) P(N1(t) = n1, N2(t) = n2) =
∫ t

0

∫ t1n1

0
· · ·

∫ t12

0
Poi

(
n2;

n1∑
i=0

(iU + 1) [Λ(t1,i+1) − Λ(t1i)]
)

× g(t11, t12, . . . , t1n1 , n1)dt11 · · · dt1n1

× Γ(1/U + n1)
Γ(1/U)n1!

(1 − exp{−UΛp(t)})n1 (exp{−UΛp(t)})1/U,

n1 = 1, 2, . . . ,

and

P(N1(t) = 0, N2 (t) = n2) = Poi(n2;Λ(t)) · exp{−Λp(t)}.

(ii) P(N1(t) = n1) =
Γ(1/U + n1)
Γ(1/U)n1!

(1 − exp{−UΛp(t)})n1 (exp{−UΛp(t)})1/U .

(iii) P(N2 (t) = n2) = Poi(n2;Λ(t)) · exp{−Λp(t)}

+
∞∑

n1=1

(∫ t

0

∫ t1n1

0
· · ·

∫ t12

0
Poi

(
n2;

n1∑
i=0

(iU + 1) [Λ(t1,i+1) − Λ(t1i)]
)

× g(t11, t12, . . . , t1n1 , n1)dt11 · · · dt1n1

×Γ(1/U + n1)
Γ(1/U)n1!

(1 − exp{−UΛp(t)})n1 (exp{−UΛp(t)})1/U
)
.

Proof. Denote by 0 < T11 < T12 < · · · the sequential arrival times of the marginal process
{N1(t), t ≥ 0}. Clearly, if n1 = 0, P(N2(t) = n2 |N1(t−) = n1) = Poi(n2;Λ(t)). If n1 ≥ 1, from
Proposition 3.2 (iii), given (T11 = t11, T12 = t12, . . . , T1N1 (t−) = t1n1 , N1(t−) = n1),∫ t

0
(UN1(x−) + 1)_(x)dt

=

∫ t11

0
_(x) dx +

∫ t12

t11

(U + 1)_(x) dx + · · · +
∫ t

t1n1

(n1U + 1)_(x) dx

=

n1∑
i=0

(iU + 1) [Λ(t1,i+1) − Λ(ti)],
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and thus the conditional distribution of N2(t) is given by

P(N2(t) = n2 |T11 = t11, T12 = t12, . . . , T1N1 (t−) = t1n1 , N1(t−) = n1)

=

(∑n1
i=0(iU + 1) [Λ(t1,i+1) − Λ(t1i)]

)n2

n2!
exp

{
−

n1∑
i=0

(iU + 1) [Λ(t1,i+1) − Λ(t1i)]
}
.

As the marginal process {N1(t), t ≥ 0} is the GPP with the set of parameters (p(t)_(t),U, 1), from Cha
[9], the joint conditional arrival time distribution of (T11, T12, . . . , T1N1 (t−) |N1(t−)) is given by

n1!
n1∏
i=1

Up(t1i)_(t1i) exp{UΛp(t1i)}
exp{UΛp(t1i)} − 1

.

Thus, for n1 ≥ 1, the conditional distribution of (N2(t) |N1(t)) is given by

P(N2(t) = n2 |N1(t) = n1) =
∫ t

0

∫ t1n1

0
· · ·

∫ t12

0

(∑n1
i=0(iU + 1) [Λ(t1,i+1) − Λ(t1i)]

)n2

n2!

× exp

{
−

n1∑
i=0

(iU + 1) [Λ(t1,i+1) − Λ(t1i)]
}

× n1!
n1∏
i=1

Up(t1i)_(t1i) exp{UΛp(t1i)}
exp{UΛp(t1i)} − 1

dt11 · · · dt1n1 . (8)

On the other hand, from Cha [9], the marginal distribution of N1(t) is given by

P(N1(t) = n1) =
Γ(1/U + n1)
Γ(1/U)n1!

(1 − exp{−UΛp(t)})n1 (exp{−UΛp(t)})1/U . (9)

Combining Eqs. (8) and (9), we can obtain the desired results. �

4. Intensity function approach

In the previous section, the bivariate process {(N1(t), N2(t)), t ≥ 0}, the pooled process {M (t), t ≥ 0}
and the marginal processes {Ni (t), t ≥ 0}, i = 1, 2, have been characterized. As mentioned before,
{M (t), t ≥ 0} does not belong to a known class of processes and it is difficult to obtain further prop-
erties of {N2 (t), t ≥ 0} in explicit forms. On the other hand, in various applications (e.g., as in the
optimal replacement problem considered as a reliability application in the next section), we need only
the expected values of Ni (t), i = 1, 2. Thus, in this section, we derive E [M (t)], E [Ni (t)], i = 1, 2,
relying on the intensity function approach.

Recall that the intensity function (rate) of an orderly counting process {N (t), t ≥ 0} is defined by

q(t) ≡ dE [N (t)]
dt

= lim
Δt→0

E [N (t, t + Δt)]
Δt

= lim
Δt→0

P(N (t, t + Δt) = 1)
Δt

.

Thus, if q(t) is given, E [N (t)] can be obtained as

E [N (t)] =
∫ t

0
q(u) du.

In the following, we denote by qM (t), qN1 (t) and qN2 (t) the intensity functions of {M (t), t ≥ 0} and
{Ni (t), t ≥ 0}, i = 1, 2, respectively.
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Proposition 4.1. The intensity functions qM (t), qN1 (t) and qN2 (t) are given by

qM (t) = _(t) exp{UΛp(t)},

qN1 (t) = p(t)_(t) exp{UΛp(t)},

qN2 (t) = (1 − p(t))_(t) exp{UΛp(t)},

and the expectations are given by

E [M (t)] =
∫ t

0
_(u) exp{UΛp(u)} du,

E [N1(t)] =
1
U

(
exp{UΛp(t)} − 1

)
,

E [N2(t)] =
∫ t

0
(1 − p(u))_(u) exp{UΛp(u)}du.

Proof. As {N1(t), t ≥ 0} is the GPP with the set of parameters (p(t)_(t),U, 1),

P(N1(t) = n) = Γ(1/U + n)
Γ(1/U)n!

(
1 − exp{−UΛp(t)}

)n (
exp{−UΛp(t)}

) 1
U ,

where Λp(t) =
∫ t
0 p(u)_(u) du (see Cha [9]). Thus,

E [N1(t)] =
1
U

(
exp{UΛp(t)} − 1

)
and

qN1 (t) = p(t)_(t) exp{UΛp(t)}.

For the pooled process {M (t), t ≥ 0},

lim
Δt→0

P(M (t + Δt, t) = 1|N1(t) = n)
Δt

= (Un + 1)_(t).

Thus,

qM (t) = lim
Δt→0

P(M (t + Δt, t) = 1)
Δt

= lim
Δt→0

E [P(M (t + Δt, t) = 1|N1(t))]
Δt

= E
[

lim
Δt→0

P(M (t + Δt, t) = 1|N1(t))
Δt

]
= E [(UN1(t) + 1)_(t)]
= _(t) exp{UΛp(t)}.

The expectation of M(t) then can be obtained by

E [M (t)] =
∫ t

0
_(u) exp{UΛp(u)}du.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964823000177
Downloaded from https://www.cambridge.org/core. IP address: 3.15.5.44, on 21 Jul 2024 at 07:13:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964823000177
https://www.cambridge.org/core


Probability in the Engineering and Informational Sciences 351

As the involved processes are all orderly processes and M (t) = N1(t) + N2(t),

qM (t) = lim
Δt→0

P(M (t + Δt, t) = 1)
Δt

= lim
Δt→0

P(N1(t + Δt, t) + N2(t + Δt, t) = 1)
Δt

= lim
Δt→0

P(N1(t + Δt, t) = 1 or N2(t + Δt, t) = 1)
Δt

= lim
Δt→0

P(N1(t + Δt, t) = 1) + P(N2(t + Δt, t) = 1)
Δt

= qN1 (t) + qN2 (t).

Thus,

qN2 (t) = qM (t) − qN1 (t) = (1 − p(t))_(t) exp{UΛp (t)},

and

E [N2(t)] =
∫ t

0
(1 − p(u))_(u) exp{UΛp(u)} du.

�

It is interesting to compare E [N2(t)] with the expected number of events in the NHPP with the
intensity function

∫ t
0 (1 − p(u))_(u) du. Thus, we see the “influence” of the process N1(t) on this

characteristic, which is increasing exponentially in the integrand.
In the next section, we will illustrate these results by considering the corresponding optimal replace-

ment problem. Note that it is possible because we need only the expected values for the numbers of GPP
and minimal repairs.

5. Optimal replacement problem

A system with the baseline failure rate _(t) starts operation at t = 0. On each failure, with probability p(t),
the system is GPP-repaired and with probability 1 − p(t), it is minimally repaired. The corresponding
costs are cGPP and cm, with cGPP > cm. The system is replaced by a new one at its age T. The cost for the
replacement is cr > cGPP. The latter is a natural assumption in preventive maintenance. Otherwise, all
GPP repairs should be replacements in a cost-wise approach. Then, in accordance with periodic (with
period T) replacement policy (see, e.g., Nakagawa [15]), the long-run expected cost rate, which is also
a cost rate for the replacement cycle, is given by the following expression

c(T) =
1
U

(
exp{UΛp(T)} − 1

)
· cGPP +

∫ T
0 (1 − p(u))_(u) exp{UΛp (u)}du · cm + cr

T
.

It is easy to see that limT→0 C (T) = ∞. Assume also that limT→∞ C (T) = ∞. This is absolutely non-
restrictive and even decreasing failure rates _(t), which are usually not considered in the PM modeling,
can comply with this condition. It means that the optimal problem

C (Tm) = min
T≥0

C(T)

has a finite solution in [0,∞).
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Let us rewrite the objective function in the original form when the first term in the numerator is not
integrated. This will help us to see the needed pattern

C (T) =
∫ T
0 p (u) _ (u) exp

{
UΛp (u)

}
du · cGPP +

∫ T
0 (1 − p (u))_ (u) exp

{
UΛp (u)

}
du · cm + cr

T

Consider now two supplementary objective functions

C∗∗ (T) =
∫ T
0 _ (u) exp

{
UΛp (u)

}
du · cGPP + cr

T
(10)

C∗ (T) =
∫ T
0 _ (u) exp

{
UΛp (u)

}
du · cm + cr

T
(11)

The first one is obtained from C(T) by setting cGPP = cm in the second integral in the numerator,
whereas the second one, in the first integral. Thus, in one case, all failures are GPP repaired, in the
other-minimally repaired. Obviously, in accordance with our assumptions on the costs

C∗∗ (T) > C∗ (T) , T > 0. (12)

As we are considering only analytical expressions for expected values for the numbers of events,
it is not important from what real stochastic processes they have originated, what really matters is
these expressions. Therefore, the integral in Eqs. (10) and (11) can be also considered as the expected
value of the number of events in the process of minimal repairs (NHPP) with the intensity function
_ (u) exp

{
UΛp (u)

}
, where as previously, Λp (t) =

∫ t
0 p (u) _ (u) du. However, this periodic optimal

replacement problem for the process of minimal repairs and replacements at t = T , 2T , 3T . . . is
well known and has a finite, unique optimal solution under mild conditions, which in our case can
be formulated for both cases as (Nakagawa [15]):∫ ∞

0
u d(_ (u) exp

{
UΛp (u)

}
) > cr

cGPP
,∫ ∞

0
u d(_ (u) exp

{
UΛp (u)

}
) > cr

cm
.

Those are also absolutely nonrestrictive assumptions (see also Remark 5.1). Therefore, denote by T∗∗ the
optimal solution minimizing the objective function (10) and by T∗ that for (11). Our case is intermediate
between two boundary cases when all events are either minimally or GPP repaired. From this and general
considerations (the smaller costs of repair always result in the larger replacement time) and also from
the fact that under our assumptions, we already know that the optimal replacement time exists and finite,
the following bounds can be obtained for Tm:

T∗∗ < Tm < T∗.

These bounds can be very useful in practice especially when there is no sufficient information with
respect to probability p(t).

Remark 5.1. Note that the additional assumption for the Brown–Proschan model discussed in the
Introduction to hold was

lim
t→∞

∫ t

0
p (u) _ (u) du = ∞
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Table 1. The upper and lower bounds T∗ and T∗∗ when cm = 1, cr = 10, p(t) = 0.5, t ≥ 0
U

_(t) cGPP 0.1 0.2 0.3

t 2 T∗ = 3.6, T∗∗ = 2.8 T∗ = 3.2, T∗∗ = 2.5 T∗ = 2.9, T∗∗ = 2.4
3 T∗ = 3.6, T∗∗ = 2.3 T∗ = 3.2, T∗∗ = 2.2 T∗ = 2.9, T∗∗ = 2.1
5 T∗ = 3.6, T∗∗ = 1.9 T∗ = 3.2, T∗∗ = 1.8 T∗ = 2.9, T∗∗ = 1.7

2t 2 T∗ = 2.5, T∗∗ = 1.9 T∗ = 2.2, T∗∗ = 1.8 T∗ = 2.1, T∗∗ = 1.7
3 T∗ = 2.5, T∗∗ = 1.7 T∗ = 2.2, T∗∗ = 1.5 T∗ = 2.1, T∗∗ = 1.5
5 T∗ = 2.5, T∗∗ = 1.3 T∗ = 2.2, T∗∗ = 1.3 T∗ = 2.1, T∗∗ = 1.2

3t 2 T∗ = 2.1, T∗∗ = 1.6 T∗ = 1.8, T∗∗ = 1.5 T∗ = 1.7, T∗∗ = 1.4
3 T∗ = 2.1, T∗∗ = 1.3 T∗ = 1.8, T∗∗ = 1.3 T∗ = 1.7, T∗∗ = 1.2
5 T∗ = 2.1, T∗∗ = 1.1 T∗ = 1.8, T∗∗ = 1.0 T∗ = 1.7, T∗∗ = 1.0

that guarantees that the distribution described by the failure rate p(t)_(t) dt is proper. This condition is
also relevant for our assumption limT→∞ C (T) = ∞.

To investigate the range between the lower and upper bounds T∗∗ and T∗ in the optimization problem,
numerical analysis has been performed. The results are summarized in Table 1.

As can be seen from Table 1, (i) as cGPP decreases; (ii) as U increases; and (iii) as _(t) increases for
each t, the range between the upper and lower bounds T∗ and T∗∗ becomes smaller.

6. Concluding remarks

In this paper, we propose a new stochastic point process. It combines the NHPP with the GPP and
models the process of failures and instantaneous repairs of a repairable item. Each failure from this
process is minimally repaired with a given probability and GPP-repaired with the complementary
probability.

Characterization of the new process via the corresponding bivariate point process is presented. The
marginal and the pooled processes are defined and described. The latter is the sum of the marginal
processes.

Although the stochastic intensity of the pooled process {M (t), t ≥ 0} can be expressed in explicit
form, the pooled process {M (t), t ≥ 0} does not belong to a known class of processes. On the other
hand, the marginal process {N2(t), t ≥ 0} belongs to a class of mixed NHPP, but its stochastic intensity
cannot be expressed in a closed form.

It is also shown that expected numbers of failures/repairs for marginal processes (and, therefore, for
the pooled one) can be obtained in a simpler way using only the rates of these processes. This enables to
consider the minimization of the expected long-run cost rate for the corresponding optimal replacement
problem. Simple, effective bounds for this characteristic are obtained.

A possible generalization of the developed approach could be in adding the renewal points to the
process while defining the probabilities of each type of repair on each failure (i.e., minimal, GPP and
perfect). However, mathematical feasibility of this setting is still not clear.
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