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Abstract

The aim of this review is to summarize the progress made in the determination of the
protonation constants of biologically active ligands: endo- and exogenous L-amino acids and
their derivatives in aqueous and mixed solutions using different experimental techniques. The
knowledge of the protonation constants of the aforementioned ligands is crucial for the
determination of the equilibrium constants of complex formation and thus for the understand-
ing of complex biological reactions such as transamination, racemization, and decarboxylation.
Thus, the protonation constants of ligands are a measure of their ability to form complexes with
metal ions. This knowledge not only helps to understand fundamental biochemical processes,
but also has practical applications in areas such as drug design, where ligands are often targeted
for therapeutic purposes. The activity of the ligands tends to increase after complexation and
their order is consistent with the values of the stepwise dissociation constants of the complexes
formed. Understanding the properties of ligands by determining their protonation constants in
different environments and their interactions with surrounding molecules is crucial to unrav-
eling the complexity of biological systems.
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Introduction

The molecular behavior of ligands in solution is a fascinating and complex field with significant
implications in chemistry, biochemistry, and pharmacology. Understanding the interplay
between ligand and solution is crucial as solvent molecules can influence the electronic structure,
reactivity, and thermodynamics of ligand species. Firstly, the solvation or hydration of ligands in
solution is of paramount importance in understanding how ligands interact with solvents at the
molecular level. Secondly, as entities that bind to metal ions or other molecules, ligands exhibit
protolitic properties (the ability to accept or donate protons) (El-Sherif, 2011). Data on the
protonation constants of biologically active ligands in different media (aqueous and mixed
solutions) are invaluable for understanding their chemistry in biological systems (AlJahdali
et al., 2014).

In vivo reactions primarily occur in aqueous environments, leading to a predominant interest
in the properties of bioligands in such solutions. However, there is evidence in the literature that
water is not a perfect mimic of the in vivo reaction environment. In enzymes, membranes, and
other biologically relevant sites, the values of the protonation constants differ significantly from
those in water, as these environments tend to be more lipophilic than hydrophilic (Fiol et al.,
1995; Partanen, 1998). Concurrently, the ionization state of a ligand can affect its solubility,
membrane permeability, and interaction with biological targets (El-Sherif, 2012). As a result,
studies in environments other than water can provide some insight into the chemistry of
bioligands in living systems.
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Amino acids are particularly important among other chemical
groups because they are the basic building blocks of living organ-
isms. Not only do they form tissues, but they also function as
reactive organic compounds that regulate vital biological processes.
Understanding the physical and protolytic properties of amino
acids is essential to understanding the behavior and synthesis of
proteins and enzymes in living organisms. These compounds are
often regarded as excellent model systems to gain insight into the
properties of naturally occurring metalloproteins (Kozłowski et al.,
1999; El-Sherif et al., 2012a, 2012b).

Understanding the molecular secrets of bioligands in aque-
ous and mixed environments is essential for unraveling the
intricacies of biochemical pathways, drug–receptor inter-
actions, and the design of bioactive compounds (Al-Awadi
et al., 2008; Aljahdali and El-Sherif, 2012). With this in mind,
this review discusses the valuable information available in the
literature on bioactive ligands: endogenous L-amino acids
(alanine, asparagine, cysteine, glycine, glutamine, aspartic acid,
glutamic acid, proline, serine, tyrosine) and exogenous L-amino
acids (arginine, phenylalanine, histidine, leucine, isoleucine,
lysine, methionine, threonine, tryptophan, valine) and their
derivatives in both environments.

Definition and importance of ligand protonation constants

The protonation constant, also known as the acid constant, is the
equilibrium constant for the reaction of a ligand L (or any chemical
species) with a proton (H+) to form the corresponding protonated
species. The equilibrium reaction is written as:

L +H+ ⇄ LH+ ,

where L is the unprotonated form of the ligand, H+ is the proton
and LH+ is the protonated form of the ligand. The protonation
constant (K) is defined as the ratio of the concentrations of the
protonated and unprotonated forms at equilibrium:

K =
LH+½ �
L½ � H+½ � :

Take the negative logarithm of K to obtain the pK value:

pK = � logK:

The pK is a measure of the acidity of the ligand: lower pK values
indicate greater acidity, meaning the ligand is more likely to donate
the proton (Zhou et al., 2018).

Reasons for the determination of ligand protonation
constants

Protonation constants are the equilibrium constants for the
interaction of the proton with charged or uncharged ligands
depending on the availability of hydrogen ions in aqueous and
mixed solutions. These parameters are used to predict the ion-
ization state of the molecule as a function of pH. The main
purposes of determining the protonation constants of ligands
in solution are to:

a) determine the pH values for the different forms of the com-
pound under investigation,

b) perform a quantitative spectrophotometric analysis by select-
ing a suitable pH on the basis of the different UV spectra,

c) isolate the compound withmaximum yield by identifying the
pH range at which theminimum ionization of the compound
occurs,

d) provide additional information on the structure of the newly
synthesized ligand (agreement between theoretically calcu-
lated and experimental protonation constants indicates the
potential correctness of the proposed structure),

e) prepare buffer solutions at different pH values (Martell and
Calvin, 1952; Liptay et al., 1962; Rossotti, 1978),

f) calculate the stability constants of complex formation
between biologically active ligands and metal ions in coord-
ination chemistry,

g) elucidate the intricate mechanisms of metalloenzymes and
their catalytic activities (Sigel and Martin, 1982),

h) study the mobility and bioavailability of metal ions in natural
waters (metal speciation and contaminant fate in environ-
mental chemistry) (Flaschka, 1974).

The side chain groups of amino acids are involved in a variety of
functions, including metal binding, weak interactions, and cofactor
activities. In chemical systems, these groups are useful in the
construction of artificial functionalized complexes, such as the
model active site complexes of metalloenzymes and in the imida-
zolate – bridged multinuclear complexes that form molecular
assemblies (Shimazaki et al., 2009).

Thanks to the protonation constants of amino acids and their
derivatives, we are still discovering new metal ion binding sites in
proteins. The amino acids form stable five-membered chelates with
various metal ions via the amine and carboxylate moieties (N, O –

chelation). Several amino acids possess an additional metal binding
site in the side chain and thus form metal complexes with a variety
of structures. Groups such as the imidazole ring of histidine, the
phenol ring of tyrosine, and the thiol group of cysteine are import-
ant metal binding sites in proteins. Similarly, the carboxylate
groups of aspartate and glutamate and the thioether moiety of
methionine are often involved in metal binding. These and other
amino acid side chain groups form amicroenvironment around the
metal center which is necessary for substrate recognition and
fixation and for the catalytic exercise of enzyme functions through
non-covalent or weak interactions (hydrogen bonding, π-π stacking
interactions, and hydrophobic interactions) (Berthon, 1995).

Methods for the determination of ligand protonation
constants

There are several techniques such as potentiometry, conductome-
try, and spectrophotometry that can be used to determine proton-
ation constants. This paper presents data and results from the use of
the potentiometricmethod as it has the widest range of applicability
and reliability (Woermann, 1973).

Potentiometric titrations are widely used for their precision in
determining the acid–base equilibria of ligands. In this method, a
ligand solution is titrated with a strong base while monitoring
changes in pH. The most commonly used programs for solution
equilibrium constants are PKPOT (Barbosa et al., 1995), PKAS
(Martell and Motekaitis, 1992), BEST (Motekaitis and Martell,
1982), MINIQUAD (Sabatini et al., 1974), MINIQUAD75 (Gans
et al., 1976), SUPERQUAD (Gans et al., 1985), PSEQUAD (Vacca
and Sabatini, 1985), and HYPERQUAD (Gans et al., 1996). All of
these programs use least squares refinement to reduce the differ-
ences between calculated and experimental data to obtain the best
model that gives the best fit. The sum of the squares of the residuals
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between experimental and calculated values is usually very small,
typically between 10�6 and 10�9.

Protonation equilibria in aqueous solution

Amino acidmolecules possess at least one acidic group and one basic
group. This allows an intramolecular acid–base equilibrium reaction
to take place, resulting in the formation of a dipolar tautomeric ion
known as a zwitterion or internal salt. From the above we know that
an amino acid has at least two dissociation constants, the first
corresponding to the case where the COOH group is deprotonated
and the second corresponding to the case where the NH3

+ group is
deprotonated in an aqueous solution (Jhamb et al., 2018). Thus, for
all amino acids, the proton association constants can be expressed as
stepwise protonation constants:

H+ + L� ⇄ HL protonation of –NH2 group
� �

H+ +HL ⇄ H2L
+ protonation of –COO� groupð Þ:

Amino acids that are positively charged at pH 7, such as lysine,
arginine, and histidine, undergo protonation equilibrium reactions:

H+ + L� ⇄ HL protonation of –NH2 group
� �

H+ +HL ⇄ H2L
+ protonation of  side chainð Þ

H+ +H2L
+ ⇄ H3L

2+ protonation of –COO� groupð Þ:
The representative equilibria for amino acids that are negatively

charged at pH 8, including glutamic acid, aspartic acid, and
cysteine:

H+ + L2� ⇄ HL� protonation of –NH2 group
� �

H+ +HL� ⇄ H2L protonation of  side chainð Þ
H+ +H2L ⇄ H3L+ protonation of –COO� groupð Þ .
In aqueous solutions, solvent molecules act as proton acceptors

and therefore play a crucial role in chemical and biochemical
reactions (Murphy et al., 2020). The study of glycine, alanine,
glutamic acid, histidine, tryptophan, and leucine derivatives and
their complexes is of enormous biological interest because such
complexes display interesting antibacterial, antifungal, anticancer,
and antiviral properties (Quyoom, 2014). Leucine, isoleucine, and
valine are metabolically active. In peripheral tissues, they can be
oxidized to produce energy or act as anti-catabolic factors
(especially leucine) by stimulating the synthesis and reducing the
rate of breakdown of muscle protein (Soomro et al., 2008). L-lysine
oxidase (LysOx) isolated from the extracellular growth medium of
Trichoderma cf. aureoviridewas reported by Pokrovsky et al. (2013)
to exhibit significant cytotoxicity and antitumor activity in vitro
against a panel ofmurine and human tumor cell lines and in vivo on
murine tumors and on animals with human tumor xenografts
(breast cancer SKBR3, melanoma Bro, colon cancer HCT116 and
ovarian adenocarcinoma SCOV3).

Amino acids are involved in pathways that feed cancer cells and
provide building blocks for cancer cell growth. The citric acid cycle
(the TCA cycle) is an importantmechanistic example of the involve-
ment of amino acids in cancer. The branched-chain amino acids and
threonine fuel the TCA cycle intermediates, resulting in the release
of ATP and providing the energy required for oncogenic activities.

Cancer cells also use valine, leucine, and isoleucine as ‘alternative
fuels’ to competewith other cells in the tumor stroma for energy and
to optimize nutrient use during tumor development (Green et al.,
2016). The recently discovered V-9302, a selective inhibitor of a
glutamine transporter ASCT2, showed anti-tumor activity in vivo,
demonstrating the utility of a pharmacological agent in oncology
(Schulte et al., 2018). Cysteine uptake also plays an important role in
breast cancer by maintaining redox balance and numerous studies
have shown the efficacy of xCT inhibition on tumor growth
(Timmerman et al., 2013). Amino acids also form derivatives that
contribute to tumor growth and metastasis. Arginine-derived poly-
amines alter gene expression bymodulating global chromatin struc-
ture and cancer cell proliferation (Pegg, 2009). Kynurenine, derived
from tryptophan, induces immunosuppression by binding to and
activating the aryl hydrocarbon receptor (AhR) transcription factor.
This impairs the ability of immune-tolerant dendritic cells (DCs)
and regulatory T cells to target and eliminate cancer cells (Fallarino
et al., 2003).

In addition to the direct involvement of amino acids and their
derivatives in metabolic reprogramming processes, amino acids are
also fundamental in mediating epigenetic regulation and post-
transcriptional modification. For example, DNA and histone
methylation are regulated by balanced metabolite levels in the
methionine cycle, which is influenced by methionine, serine, and
glycine (Maddocks et al., 2017).

The protonation constants of the aqueous amino acids are
required to determine the stability constants of metal-amino acid
complexes. Aiyelabola et al. prepared coordination complexes of
aspartic acid in both basic and acidic media, for Mn2+: L in a
stoichiometric ratio of 1: 2. The antimicrobial activity of the com-
pound [Mn2+(asp)2] was antibacterial and antifungal (Aiyelabola
et al., 2016). Jasmin et al. synthesized a ligand Cu2+ complex by
condensation reaction of isatin for cysteine, glycine, leucine, and
alanine. The ligand Cu2+ complex was tested in antimicrobial
studies using the disk diffusion method. All synthesized complexes
exhibited strong antibacterial activity (Shampa et al., 2017).

AlNaimi et al. synthesized complexes ofMn2+, Co2+, Zn2+, Cd2+,
and Hg2+ with mixed ligands of 5-chlorosalicylic acid and L-valine.
The results obtained in antibacterial studies of models through agar
well diffusion bioassay evidenced the biological efficacy of ligands as
well complexes (Al Naimi et al., 2016). Mixed iron(III) and zinc(II)
complexes with isonitrosoacetophenone (HINAP) and histidine,
proline, and phenylalanine were formed and characterized. The
antimicrobial activity was evaluated against bacteria (Bacillus sub-
tilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia
coli), andCandida albicans fungi. The Fe2+ andZn2+complexeswere
more active against Gram+ bacteria than Gram- bacteria. They also
showed a significant inhibitory effect on the fungi tested. In vitro
antitumor activity assayed against HEP2-type cancer cell lines
(laryngeal cancer cells) showed significant toxicity of the ligands
and their mixed complexes (Rahmouni et al., 2019).

A potentiometric titration technique was used to determine the
protonation constants of glycine, leucine, methionine, phenylalan-
ine, tryptophan, asparagine, glutamine (T = 25 °C, I = 0.1 M KCl)
(İnci and Aydın, 2021); cysteine, tyrosine, histidine, lysine (T = 25 °C,
I = 0.1 M NaCl) (El-Sherif et al., 2014); alanine, serine, isoleucine,
threonine, valine (T = 25 °C, I = 0.1 M NaClO4) (El-Sherif et al.,
2014); methylcystein, methylselenocysteine, selenomethionine
(T = 25 °C, I = 0.1 M NaClO4) (Murphy et al., 2019); proline,
arginine, glutamic acid, aspartic acid, 3,4-dihydroxyphenylalanine,
hydroxyproline (T = 25 °C) (Burger, 1990); substituted salicylal-
dehyde amino acid (Sal–alanine, SalCl–alanine, SalBr–alanine,
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Table 1. Protonation constants of L-amino acids in water, ethanol– water mixtures (E), dioxane–water mixtures (D), and dimethyl sulfoxide–water media (DMSO)

L-amino acid; Derivative Protonation constants (pK)

COOH NH3
+

Other groupsEndogenous Cα Additional Cα Additional

Alanine 2.40
2.88 30% E
2.97 40% E
3.05 50% E
3.06 60% E
3.08 70% E

3.42 30% DMSO
4.11 50% DMSO
4.88 70% DMSO

9.70
9.70 30% E
9.55 40% E
9.45 50% E
9.18 60% E
9.12 70% E

9.65 30% DMSO
9.85 50% DMSO
10.48 70% DMSO

Sal–alanine 2.40 7.42 (=NH+
–)

11.79 (OH)

SalCl–alanine 2.20 7.76 (=NH+
–)

9.69 (OH)

SalBr–alanine 2.22 8.09 (=NH+
–)

10.25 (OH)

Asparagine 2.24 8.92

Cysteine 1.71
2.60 30% E
2.93 50% E
2.82 70% E

10.29
10.25 30% E
10.81 50% E
12.07 70% E

8.36 (SH)
8.23 30% E
7.06 50% E
6.33 70% E

Methylcysteine 2.02 8.79

Methylselenocysteine 2.30 8.86

Glycine 2.33
2.81 30% E
2.89 40% E
2.90 50% E
3.05 60% E
3.06 70% E

9.45
9.54 30% E
9.39 40% E
9.35 50% E
9.20 60% E
9.05 70% E

Sal–glycine 2.43 7.57 (=NH+
–)

11.68 (OH)

SalCl–glycine 1.86 7.58 (=NH+
–)

9.60 (OH)

SalBr–glycine 1.97 7.85 (=NH+
–)

10.74 (OH)

Glutamine 2.38 9.10

Aspartic acid 1.94 3.70 9.62

Glutamic acid 2.18 4.20 9.59

Proline 1.90 10.41

Hydroxyproline 1.80 9.47

Serine 2.42
2.88 30% E
2.87 40% E
2.89 50% E
2.91 60% E
2.90 70% E
2.57 10% D
2.62 20% D
2.82 30% D
3.04 40% D
3.17 50% D
3.35 60% D

3.21 30% DMSO
3.83 50% DMSO
4.82 70% DMSO

9.15
9.18 30% E
9.00 40% E
8.77 50% E
8.68 60% E
8.66 70% E
9.07 10% D
9.10 20% D
9.13 30% D
9.16 40% D
9.20 50% D
9.17 60% D

8.95 30% DMSO
9.12 50% DMSO
9.89 70% DMSO

Sal–serine 2.15 8.00 (=NH+
–)

11.48 (OH)

(Continued)
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Table 1. (Continued)

L-amino acid; Derivative Protonation constants (pK)

COOH NH3
+

Other groupsEndogenous Cα Additional Cα Additional

Tyrosine 2.17
2.48 30% E
3.25 50% E
2.69 70% E

9.03
9.03 30% E
9.06 50% E
8.80 70% E

10.14 (OH)
10.46 30% E
10.90 50% E
10.70 70% E

Sal–tyrosine 2.21 7.68 (=NH+
–)

9.36 (OH)
12.30 (OH)

Exogenous

Arginine 2.30 9.02 15.00 guanid. gr.

Phenylalanine 2.21
2.75 30% E
2.95 40% E
2.98 50% E
3.05 60% E
3.00 70% E

3.38 30% DMSO
4.08 50% DMSO

9.12
9.12 30% E
8.95 40% E
8.79 50% E
8.70 60% E
8.60 70% E

9.06 30% DMSO
9.35 50% DMSO

3,4–dihydroxyphenylalanine 2.20 8.72 9.78 (OH)
13.40 (OH)

Sal–phenylalanine 2.23 7.94 (=NH+
–)

11.93 (OH)

Histidine 1.70
3.00 30% E
2.93 50% E
2.99 70% E

9.08
8.86 30% E
8.53 50% E
8.32 70% E

6.02
6.21 30% E
5.85 50% E
5.73 70% E

Isoleucine 2.47
2.92 30% E
2.98 40% E
3.15 50% E
3.17 60% E
3.24 70% E
2.58 10% D
2.74 20% D
2.97 30% D
3.26 40% D
3.55 50% D
3.74 60% D

9.76
9.55 30% E
9.47 40% E
9.31 50% E
9.20 60% E
9.10 70% E
9.72 10% D
9.63 20% D
9.67 30% D
9.65 40% D
9.70 50% D
9.71 60% D

Leucine 2.47
2.87 30% E
3.01 40% E
3.06 50% E
3.17 60% E
3.25 70% E
2.64 10% D
2.80 20% D
2.99 30% D
3.31 40% D
3.55 50% D
3.75 60% D

3.34 30% DMSO
4.04 50% DMSO
4.80 70% DMSO

9.52
9.60 30% E
9.40 40% E
9.30 50% E
9.07 60% E
9.05 70% E
9.59 10% D
9.64 20% D
9.66 30% D
9.70 40% D
9.72 50% D
9.75 60% D

9.46 30% DMSO
9.77 50% DMSO
10.18 70% DMSO

Lysine 2.04
1.71 30% E
2.68 50% E
2.19 70% E

9.08
8.77 30% E
8.76 50% E
8.48 70% E

10.69
10.20 30% E
10.07 50% E
9.64 70% E

Methionine 2.15
2.67 30% E
2.85 40% E
2.88 50% E
3.00 60% E

9.02
9.05 30% E
8.99 40% E
8.85 50% E
8.67 60% E

(Continued)
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Sal–glycine, SalCl–glycine, SalBr–glycine, Sal–serine, Sal–tyrosine,
Sal–phenylalanine) (T = 25 °C, I = 0.1 M KCl) (El-Sherif and
Aljahdali, 2013) in aqueous solution (Table 1).

Protonation equilibria of amino acids in a mixed medium
(ethanol–water, dioxane–water, dimethyl sulfoxide–water)

Water–organic solvent mixtures have attracted much interest due to
their frequent use and a wide range of applications (reaction media
for a variety of organic and analytical processes such as synthesis,
titrations, or liquid chromatographic separations). Therefore, studies
in media other than water provide insight into the chemistry of
bioligands in living organisms (Diaz-Cruz et al., 2000).

Ethanol is the closest organic solvent to water in terms of
structure and properties and therefore the behavior of dissociation
or protonation in ethanol is similar to that in aqueous solution. The
water–ethanol mixture is of very interesting binary character. One
reason for this is that ethanol dissolvesmost organic acids and bases
better than water. Solvents such as water–ethanol mixtures are thus
a better model for in vivo reactions (Crosby et al., 1970; Hughes
et al., 1986) because themixtures possess both a low polar character
and partially aqueous fractions, as in all biological systems. Their
mixtures are macroscopically homogeneous, but it has been
reported that the water and organic solvent molecules are not
microscopically homogeneously dispersed due to the formation
of hydrogen bonding networks and hydrophobic interactions.
Consequently, the molecular composition of the solvation layer
around a solute molecule is not the same as the bulk mixing ratio of
water and organic solvent (Canel et al., 2006).

Mixed solvents, such as mixtures of water and dioxane, provide
an even better model for in vivo reactions because they are not only
less polar than pure water, but also partially aqueous, as in all
biological systems (Fiol et al., 1995). These mixtures are a favorite
mixed solvent system inwhich to study the association andmobility
of ions because the dielectric constant can be varied over a wide
range. Changes in protonation constants upon the addition of
1,4-dioxane to aqueous solutions are due to increased ion–ion
interactions and changes in solvent–ion and solvent–solvent inter-
actions (Roy et al., 2005).

The use of a water–DMSOmixture has several advantages: (a) the
DMSO–water 50%: 50% mixture has a low hygroscopic character
(pure DMSO is very hygroscopic and it is difficult to control its water
content); (b) compatibility with the standard glass electrode, so that
pH measurements can be carried out in a similar way to a purely
aqueous solution; (c) a wide acidity range (pkw = 15.50), which allows
the study of deprotonation equilibria of weak acids that are difficult
to study in water (Hernández-Molina et al., 1997).

The autoprotolysis constant (Kap) of a solvent is an important
parameter in understanding acid–base equilibria in mixed solvents.
It determines the extreme limits of acidity and basicity in a given
solvent medium. Kilic and Aslan derived a convenient and rapid
potentiometric technique using a combined glass pH electrode for
the determination of autoprotolysis constants in a variety of
aqueous-organic mixed solvents (Kiliç and Aslan, 2005).

Ciolan et al. synthesized the binuclear complex [M2L(AcO)2
(H2O)4] (M=Cu2+, Ni2+, Co2+,Mn2+ and L = (C39H34N4O6)

2�) from
1,3-bis(20-formylphenyl)-1,3-dioxapropane, L-tryptophan and metal
acetate in methanolic medium. The complex [Cu2L(AcO)2(H2O)4]

Table 1. (Continued)

L-amino acid; Derivative Protonation constants (pK)

COOH NH3
+

Other groupsEndogenous Cα Additional Cα Additional

3.02 70% E
3.62 30% DMSO
4.00 50% DMSO

8.62 70% E
9.07 30% DMSO
9.48 50% DMSO

Selenomethionine 2.05 9.29

Threonine 2.45
2.53 10% D
2.60 20% D
2.75 30% D
2.96 40% D
3.18 50% D
3.40 60% D

3.35 30% DMSO
4.06 50% DMSO

9.04
9.02 10% D
9.06 20% D
9.05 30% D
9.05 40% D
9.10 50% D
9.17 60% D

8.95 30% DMSO
9.32 50% DMSO

Tryptophan 2.43
2.83 30% E
3.21 50% E
2.77 70% E

9.32
9.17 30% E
9.05 50% E
8.78 70% E

Valine 2.38
2.85 30% E
2.95 40% E
3.15 50% E
3.16 60% E
3.17 70% E

3.27 30% DMSO
4.04 50% DMSO
4.89 70% DMSO

9.61
9.50 30% E
9.41 40% E
9.30 50% E
9.07 60% E
9.02 70% E

9.34 30% DMSO
9.57 50% DMSO
9.99 70% DMSO

Sal-amino acid, substituted salicylaldehyde amino acid. The % is expressed as volume.
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was the most effective in terms of antimicrobial efficacy and
microbial spectra (Ciolan et al., 2015). Mabrouk et al. synthesized
and characterized Co2+ complexes of the Schiff base with salicy-
laldehyde and three amino acids (valine, leucine, isoleucine) in an
ethyl alcohol solution. Themetal: ligand ratio was 1: 2. Schiff bases
and complexes were tested against different strains of microbes to
determine their biological effects. Co(II) complexes showed
greater bacterial activity against most bacterial species and the
fungus C. albicans (Salama et al., 2017). Obaid et al. prepared
novel mixedmetal–ligand complexes for metal(II) chloride (Co2+,
Ni2+, Cu2+, Zn2+, Cd2+, Hg2+) (L = glycine: alanine: valine) using
50% ethanolic solution as well as 50% distilled water in a molar
ratio of 1:1:1:1. The Cd+2 complex had a higher antibacterial
activity than the other complexes (Obaid et al., 2018). Bougherra
et al. prepared Cu2+ complexes for dimethylglyoxime as well as the
tryptophan, glutamate, proline, arginine, and valine. The anti-
microbial activity of ligand complexes was tested using the agar
diffusion technique with DMSO as solvent against pathogenic
bacteria and fungi. The complexes were more antimicrobial than
the free ligand. Metal chelation significantly affected the anti-
microbial activity of the ligands (Bougherra et al., 2018).

The protonation constants of cysteine, tyrosine, histidine, lysine,
tryptophan (T = 25 °C, I = 0.1 M NaCl) (El-Sherif et al., 2014);
glycine, alanine, valine, leucine, isoleucine, phenylalanine, serine,
methionine (T = 25 °C, I = 0.1 MNaClO4) (El-Sherif et al., 2014) in
various ethanol–water mixtures; leucine, isoleucine, serine, threo-
nine (T = 25 °C, I = 0.1 M NaClO4) (El-Sherif et al., 2014) in
dioxane–water mixtures; alanine, valine, leucine, threonine,
phenylalanine, serine, methionine (T = 25 °C, I = 0.1 M NaNO3)
(El-Sherif et al., 2014) in DMSO–water media are given in Table 1.

Conclusions

The determination of protonation constants is fundamental to
understanding the behavior of amino acids and their interaction
with metal ions in aqueous and mixed solutions. Protonation
constants are important physicochemical parameters that can pro-
vide information about the drug’s properties such as solubility,
lipophilicity, acidity, and alkalinity (Meloun et al., 2007; Roda
et al., 2010).

Amino acids, which are the building blocks of peptides and
proteins, are essential chemicals needed by the body for optimal
metabolism and proper functioning. Amino acids are involved in
various physiological processes such as skeletal muscle function,
atrophic conditions, sarcopenia, and cancer. They play a key role in
cell signaling, homeostasis, gene expression, hormone synthesis,
protein phosphorylation and possess antioxidant properties.
Amino acids are also important precursors in the synthesis of
low molecular weight nitrogenous compounds. The presence of
amino acids and their metabolites, such as glutathione, polya-
mines, taurine, serotonin, and thyroid hormones, at physiological
levels is important for proper body function. Amino acids are also
essential for redox balance, energy regulation, and biosynthetic
support. In addition, amino acid derivatives contribute to epigen-
etic regulation and immune responses associated with tumorigen-
esis and metastasis.

As technology continues to advance, future research into the
determination of ligand protonation constants is expected to seam-
lessly integrate experimental and computational approaches. Fac-
tors such as solvent effects, temperature and the presence of
competing ions can complicate the accuracy of results. However,

researchers are addressing these challenges by developing sophis-
ticated computational methods that simulate the behavior of lig-
ands in different environments, providing a complementary
approach to experimental data. The development of high-
throughput methods and the exploration of new spectroscopic
techniques will further enhance the ability to characterize complex
equilibria in solution.

This review highlights the importance of amino acid proton-
ation constants from coordination chemistry to drug design. As
researchers continue to push the boundaries of knowledge, a deeper
understanding of protonation constants will undoubtedly contrib-
ute to the development of innovative solutions and applications in
various scientific fields. The review highlights the importance of
continued exploration in this field, where each discovery brings us
closer to a comprehensive understanding of the molecular world
immersed in aqueous and mixed environments.
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