
Natural Language Processing (2025), 1–32
doi:10.1017/nlp.2024.63

ARTICLE

DocSpider: a dataset of cross-domain natural language
querying for MongoDB
Arif Görkem Özer , Recep Firat Cekinel , Ismail Hakki Toroslu and Pinar Karagoz

Computer Engineering, Middle East Technical University, Ankara, Türkiye
Corresponding author: Arif Görkem Özer; Email: gorkem@ceng.metu.edu.tr

(Received 20 March 2024; revised 23 October 2024; accepted 10 December 2024)

Abstract
Natural language querying allows users to formulate questions in a natural language without requiring
specific knowledge of the database query language. Large language models have been very successful in
addressing the text-to-SQL problem, which is about translating given questions in textual form into SQL
statements. Document-oriented NoSQL databases are gaining popularity in the era of big data due to their
ability to handle vast amounts of semi-structured data and provide advanced querying functionalities.
However, studies on text-to-NoSQL systems, particularly on systems targeting document databases, are
very scarce. In this study, we utilize large language models to create a cross-domain natural language to
document database query dataset, DocSpider, leveraging the well-known text-to-SQL challenge dataset
Spider. As a document database, we use MongoDB. Furthermore, we conduct experiments to assess the
effectiveness of theDocSpider dataset to fine-tune a text-to-NoSQLmodel against a cross-language transfer
learning approach, SQL-to-NoSQL, and zero-shot instruction prompting. The experimental results reveal
a significant improvement in the execution accuracy of fine-tuned language models when utilizing the
DocSpider dataset.

Keywords: natural language querying; text-to-NoSQL; cross-domain transfer learning; large language models; document
database

1. Introduction
In recent years, the availability of massive amounts of data has highlighted the importance of
extractingmeaningful information from these data lakes. Almost every electronic device generates
data sourced from sensors, logging, or for archival purposes which is required to be stored in
data repositories. Databases serve as middleware between the raw data and the end-users. When
users seek to retrieve information from databases, they typically construct queries using database-
specific languages, such as SQL for relational databases.

Besides relational databases, the increasing amounts of data and the need for efficient access
have made NoSQL databases a popular choice among developers and companies due to their
flexible data model, scalability, and high performance. These databases provide developers with
flexibility, eliminating the need to predefine a strict tabular schema as required by relational
databases. NoSQL databases can scale horizontally, allowing applications to effectively manage
high loads. Additionally, NoSQL databases can handle high read/write requests in real time, mak-
ing them preferable for applications involving large volumes of unstructured or semi-structured
data. On the other hand, the well-structured data format, ACID compliance, reliable transactions,

C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/nlp.2024.63
https://orcid.org/0000-0001-8729-7721
https://orcid.org/0000-0003-4574-5578
https://orcid.org/0000-0002-4524-8232
https://orcid.org/0000-0003-1366-8395
mailto:gorkem@ceng.metu.edu.tr
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/nlp.2024.63&domain=pdf
https://www.cambridge.org/core

2 A. G. Özer et al.

User Database

Query
Processor

Query in NL

How many
CS

students?

Query in
database language

1.
2.
3.

Query results

1.
2.
3.

Query results

select count(*)
from students
where major =

'CS'

Database
schema

information

Figure 1. Natural language querying problem.

and data integrity capabilities of relational databases make them more favorable for use cases
requiring high data integrity and consistency.

MongoDBa (Membrey et al. 2010) is a data store for JSON-like documents that supports cre-
ate, read, update, and delete (CRUD) operations. MongoDB stores objects in BSON format which
is a binary encoding of JSON objects. Because of MongoDB’s flexible data model and high-
performance querying capabilities, it is used for data storage in various applications involving
geospatial data (Makris et al. 2021), time-series data (Kang et al. 2015), or data analytics in general
(Mahmood and Risch 2021).

For both relational and NoSQL databases, users are required to have a solid understanding of
database management to effectively query the data. The users should know the data type suitable
for columns, and the available operations and utilities related to each data type. Despite the fact
that these requirements are standard practice for technically proficient users, a significant percent
of the individuals face difficulties in direct interaction with data due to such technical barriers.

Natural language querying (NLQ), which is depicted in Figure 1, is a challenging problem.
Searching and querying databases using natural language (NL) involves translating a given text
statement into an SQL/NoSQL query and executing the translated query against the database, a
process often referred to as text-to-SQL/text-to-NoSQL. This paradigm eliminates the need for
non-technical users to be familiar with database-specific languages, enabling natural interaction
with the database. As stored data increasingly involves multiple modalities (text, tabular, image,
etc.), novel systems try to convert NL query structures into database-specific languages (Chen
et al. 2023).

Early attempts on this task focused on solving this problem for specific database contexts
(Owei, Rhee, and Navathe 1997; Li, Yang, and Jagadish 2005; Paparizos et al. 2009). Without
the existence of language models, such attempts were limited in their ability to handle diverse
query structures and they were only useful for certain databases. The subsequent deep learning

ahttps://www.mongodb.com/

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.mongodb.com/
https://www.cambridge.org/core

Natural Language Processing 3

and language model solutions such as ELMo (Peters et al. 2018) and BERT (Devlin et al. 2019)
remain limited to provide a diverse NLQ solution, since a cross-domain text-to-SQL dataset was
not available at the time, and the models suffer from the generalization problem (Bay and Yearick
2024).

After the introduction of WikiSQL (Bhagavatula, Noraset, and Downey 2015) and Spider (Yu
et al. 2018) datasets, which include a large collection of NL question–SQL statement pairs for
multiple databases, the text-to-SQL solutions had significant advancements. These datasets are
still widely employed to train neural models for this task.

In the state-of-the-art text-to-query solutions, the research focus is mostly on translating NL
queries to SQL statements. There are only a few NLQ studies targeting NoSQL databases that
could be attributed to the scarcity of cross-domain datasets for NoSQL databases. The existing
NLQ studies on NoSQL databases generally consider a specific context and does not target han-
dling the generalization problem for neural models (Majeed, Ahmad, and Khalid 2016; Mondal
et al. 2019). In the literature survey, we have come across only one study challenging the NLQ
problem by providing a cross-domain dataset for the graph database Neo4j, to train models for
translating text-to-Cypher, the query language for Neo4j (Zhao et al. 2023). While Neo4j is the
most popular graph database, its popularity is not as high asMongoDB, among the top 20 database
management systems (Akhtar 2023).

The main goal of this study is to release a cross-domain text-to-NoSQL dataset, DocSpider, tar-
getingMongoDB. The dataset is generated utilizing the Spider text-to-SQL dataset and translating
gold SQL queriesb to their equivalent MongoDB Query Language (MQL) queries. This transfor-
mation is performed using different Large Language Models (LLMs), including state-of-the-art
models and also, in particular, those specifically pretrained on coding tasks. The correctness of the
translation from SQL toMQL is checked with user studies. Furthermore, the usefulness of the pro-
posed dataset is evaluated with cross-domain and in-context learning experiments. Additionally,
the models are fine-tuned with this dataset to verify the dataset’s usefulness. Our contribution can
be summarized as follows:

• Producing and sharing our DocSpider cross-domain text-to-NoSQL dataset by transform-
ing gold SQL queries in the Spider dataset.

• Proposing a novel approach to translate SQL queries to MongoDB database by utilizing
large language models which can be also extended to other NoSQL databases.

• Examining the necessity for our dataset by experimental evaluationsc

The other sections in this paper are organized as follows: In Section 2, related work about
text-to-SQL and text-to-NoSQL tasks are reviewed. In Section 3, methods applied to prepare the
dataset are explained. In Section 4, experiments and experiment results are shared, to illustrate the
benefits of the introduced dataset. The experiment results are discussed in Section 5. Finally, the
paper is concluded in Section 6.

2. Related work
For text-to-SQL and text-to-NoSQL problems, the earlier studies concentrated on rule-based
approaches. However, the success of neural models across various tasks shifted attention to deep
learning-based models. Nowadays, state-of-the-art methods leverage large language models with
prompt engineering.

bSee Section 3 for explanation of gold SQL.
cThe GitHub repository can be found at: https://github.com/arifgorkemozer/docspider

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://github.com/arifgorkemozer/docspider
https://www.cambridge.org/core

4 A. G. Özer et al.

2.1 Text-to-SQL
Rule-basedmethods
As one of the earliest rule-based methods, Owei et al. (1997) leveraged conceptual query language
to generate SQL statements by identifying source tables, target tables, and relationships in the
query composed in natural language. Later on, Kate et al. (2018) proposed a rule-based algorithm,
which includes tokenization, lexical analysis, syntactic analysis, and semantic analysis. On the
other hand, Uma et al. (2019) applied part-of-speech (POS) tagging and regular expressions to
construct accurate SQL queries. The study used a railway system database. Focusing on a non-
English natural language, Jung and Kim (2020) worked on a rule-based solution for SPARQL
in Korean language. They aimed to resolve ambiguities (double meanings) in the NL query by
looking for all possible queries with the A∗ algorithm (Dechter and Pearl 1985) between tables.

Deep learning-basedmethods
For text-to-query translation, Yin et al. (2016) developed a Recurrent Neural Network (RNN)
based model and used row embeddings to train the model. Each layer of the RNN takes the
query embeddings, table row embeddings, and the result of the previous layer as inputs. On
the other hand, Zhong et al. (2017) developed a Seq2SQL model which uses Long Short Term
Memory (LSTM) layers, and they trained the model with reinforcement learning on the WikiSQL
(Bhagavatula et al. 2015) dataset. Xu et al. (2017) presented SQLNet and focused on solving the
problem of having different term orders in the input and improved the work in Seq2SQL. Bazaga
et al. (2021) worked with a transformer model, which was designed to work with multiple tables.
They provided as many sentence variations as they could to learn the embeddings for the English
language to provide improved performance in text-to-SQL translation.

LLM-basedmethods
As one of the first LLM-based solutions, Scholak et al. (2021) proposed the PICARD method, a
text-to-SQL post-processing solution based on T5 (Raffel et al. 2020). This method applies con-
strained beam search on the generated SQLs, allowing the generation of syntactically correct SQL
queries. Gao et al. (2024) proposed DAIL-SQL, which succeeds in leveraging the in-context learn-
ing capacity of LLMs and achieving a balance between performance and token efficiency. Dong
et al. (2023) developed C3 method, which eliminates the bias for usage of certain SQL clauses, by
providing extensive prompts to the ChatGPT model. Rai et al. (2023) introduced token prepro-
cessing with semantic parsing and identified compound boundaries to improve the precision of
parsing SQL tokens and utilized the T5 model on the Spider dataset.

2.2 Text-to-NoSQL
The text-to-NoSQL studies in the literature cover different NoSQL databases and their query lan-
guages (such as document, graph, key-value, and column databases). The use of LLMs is limited;
rather template-based and more basic neural architectures are employed.

Majeed et al. (2016) designed an automated text-to-XQuery converter utilizing linguistic
features such as lemmatization and part-of-speech tagging. Their system identifies keywords,
symbols, attributes, values, and relations among different types of queries. Mondal et al. (2019)
performed syntactic parsing and semantic analysis and then generatedMongoDB queries by using
a synonym table for table fields.

Blank et al. (2019) designed an LSTM (Sak, Senior, and Beaufays 2014) model and utilized
GloVe word embeddings (Pennington, Socher, and Manning 2014) to extract entities in the input
query. The authors also employed reinforcement learning for training their model and targeted
Elasticsearch databases. Hains et al. (2019) presented an approach to convert English to the

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 5

Cypher querying language, which is used for the Neo4j graph database. Pradeep et al. (2019)
proposed an LSTM-based solution to the text-to-NoSQL problem, by creating human-annotated
dataset for a limited number of question types on the MongoDB database. Abdelhedi et al. (2021)
proposed an Object2NoSQL approach to convert UML/OCL to NoSQL queries on different kinds
of NoSQL databases: Cassandra (column), MongoDB (document), Neo4j (graph), and Redis (key-
value). Instead of natural language, they focused on UML queries to provide conversions targeting
Big Data.

Hossen et al. (2023) developed a BERT-based text-to-MongoDB query conversion system and
performed tokenization and part-of-speech tagging as part of the preprocessing. Subsequently,
the Levenshtein distance algorithm is used by them to implement the collection and attribute
extraction. Then a BERT model is trained to identify the operation in the target MongoDB query.
Finally, a syntax tree is used to generate the final query. The authors evaluated their system with
WikiSQL dataset. Kobeissi et al. (2023) proposed a solution to convert natural language queries to
Cypher for the Neo4j database. They detect the intent in the text query and provided a template-
based solution to generate Cypher queries. The authors have provided a case study using event
logs of a loan application system. Zhang et al. (2023a) provided a template-based solution using
BART (Lewis et al. 2020) for the vaccine adverse events on Elasticsearch database.

For both text-to-SQL and text-to-NoSQL problems, LLM-based models have proven to be
successful for query generation. However, as recent state-of-the-art studies have shown, prompt
engineering is vital for generating accurate responses from LLMs. Therefore, in this study,
these suggestions are incorporated into the solution when designing the prompts for the LLMs.
Additionally, we considered models that have demonstrated success when selecting LLMs for
query generation.

2.3 Cross-domain datasets
Addressing the NLQ problem in a specific context can be considered easier compared to multi-
context domains, owing to the narrower scope. On the other hand, models trained with a
cross-domain dataset might perform better on varying domains. In the text-to-SQL scope, the
emergence of datasets such asWikiSQL, Spider, CoSQL (Yu et al. 2019), BIRD (Li et al. 2024), and
Archer (Zheng et al. 2024a) has provided researchers with opportunities to work on cross-domain
datasets.

The Spider dataset stands out for cross-domain model training, as the text–SQL statement
pairs are grouped into multiple query complexity levels, which allows researchers to benchmark
capability of their models effectively. The query complexity levels were determined according to
the number of SQL components and the complexity of the gold query such as whether it is a
nested or not. LLMs have demonstrated significant success in the text-to-SQL task within the
Spider challenge. Therefore, our study aims to leverage LLMs to release the DocSpider dataset by
converting the Spider dataset into text-to-MongoDB queries. We use various LLMs to expand the
dataset and examine the performance of different LLM types (e.g., code LLMs vs. base LLMs, or
open-source LLMs vs. proprietary LLMs) on this task.

In contrary to text-to-SQL problem, the only cross-domain and context-independent NoSQL
dataset in the literature is CySpider. The authors created the dataset from the Spider dataset, and
they translated SQL statements to Cypher statements. They implemented an algorithm to map
SQL clauses to their corresponding SQL-equivalent Cypher clauses. In this line, our study pre-
sented here leverages LLMs to generate MQL queries. Even though we focused on MongoDB, our
approach can be applicable to any NoSQL database. Additionally, we performed a user study to
assess the consistency of the generated ground-truth queries.

To the best of our knowledge, the only existing studies on manually curating a dataset for
the text-to-MongoDB problem are those of Mondal et al. (2019) and Pradeep et al. (2019).
More specifically, the authors evaluated their text-to-MongoDB system using the datasets they

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

6 A. G. Özer et al.

Figure 2. The pipeline overview.

annotated. Unfortunately, the datasets are not publicly available. As a result, DocSpider appears
as the first publicly available cross-domain text-to-MongoDB dataset.

3. Preparation of DocSpider dataset
Our reference dataset, Spider,d is a benchmark dataset for the text-to-SQL problem, comprising
10,181 questions and 5,693 SQL queries across 200 databases with multiple tables, covering 138
different domains. The main reason for choosing this dataset as input is that it is widely used for
text-to-SQL, and that the dataset can be considered realistic since the samples were annotated by
humans across diverse databases. At the time of writing this paper, MiniSeeke holds the first place
on this challenge with 91.2% execution accuracy on the test set.

It is always possible to return the same query results with different SQL queries, and there
should be an ideal, non-complex way of querying the database. In the Spider dataset, given an
NL query, the corresponding SQL statement provided by human annotators is considered as the
gold-standard SQL, namely the gold SQL. While translating NL queries into MQL queries, gold
SQLs from Spider dataset are also used. While solving the text-to-SQL problem, LLM prompts
contained database information and the gold SQL to fine-tune (Scholak et al. 2021) the models,
or to do in-context learning (Gao et al. 2024; Dong et al. 2023). Hence, we aim to transform the
gold SQL queries to their equivalent MQL queries by using LLMs.

According to the Spider leaderboard, LLMs that were successful on coding tasks performed
better on SQL generation task. Thus, while selecting the LLMs, we considered those specifically
pretrained on coding tasks or demonstrating proficiency in coding. MT-bench (Zheng et al. 2023)
is a benchmark specifically designed to assess LLMs on different question categories. It consists of
80 questions and evaluates the models’ coding, math, reasoning, and conversational flow skills
comprehensively. Therefore, we considered language models that achieved satisfactory scores
in MT-bench’s coding evaluations. The following subsections detail the implementation of the
dataset transformation pipeline, which is developed in Python.

Figure 2 and Figure 3 illustrate the overall pipeline of the proposed dataset construction
approach. First, the Spider data is transferred to the MongoDB database; the details of the data
migration process are provided in Section 3.1. Second, LLMs are employed to generate MQL
queries for the given text questions and their corresponding gold SQL pairs. During the MQL
query generation, prompts to LLMs are used, including the schema and foreign key relations.
The details of SQL-equivalent MQL query generation are presented in Section 3.2. Subsequently,
as discussed in Section 3.3, the generated MQL queries and gold SQL queries are executed on
databases and the execution results are compared. Based on the execution results, queries that
yield similar results withminor differences (such as ordering and projection) are manually manip-
ulated. Finally (see Section 3.4), a subset of the DocSpider dataset is annotated by the reviewers to
assess the consistency and the reliability of the dataset.

dhttps://yale-lily.github.io/spider
ehttps://www.seek.ai/

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://yale-lily.github.io/spider
https://www.seek.ai/
https://www.cambridge.org/core

Natural Language Processing 7

Figure 3. The proposed dataset construction and evaluation pipeline.

3.1 Datamigration
The first problem that we addressed is migrating relational data from the relational database
to the MongoDB database. Since the original Spider dataset was shared as SQLite databases,f
we used them as the source to create databases and collections in MongoDB database server.

fhttps://www.sqlite.org/

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.sqlite.org/
https://www.cambridge.org/core

8 A. G. Özer et al.

Unlike SQLite tables, the MongoDB collections do not require data type definitions for columns.
This enabled a migration process without any issue of type-compatibility.

During the migration of all SQLite databases, first all table names are found. Then all the table
content is exported with column name information. Later table name is used as the collection
name, and column names are used as field names in MongoDB database. Below, the SQL queries
that were executed sequentially for the data migration are presented.

SELECT name
FROM sqlite_master
WHERE type=’table’

retrieves the names of all tables in the
SQLite database

SELECT ∗ FROM <table_name> retrieves all rows in the given table

PRAGMA table_info(<table_name>) retrieves column names and column types from
the given table

Note that, after exporting the relational data, we used the PyMongog Python library to import
the data into the MongoDB database. The migration step was needed to prepare the environment
to run the generated MQL queries.

3.2 Generating SQL-equivalent MongoDB queries
We used LLMs that perform well on coding and math tasks to transform gold SQL queries to
their equivalent MQL counterparts. To be more specific, instruction prompts were provided to
the LLMs (GPT4 (Achiam et al. 2023), GPT3.5 (aka ChatGPT) (Brown et al. 2020), and DeepSeek
Coder 33B (Guo et al. 2024)) for generating MQL queries. Instruction prompting is a technique
that includes task-specific instructions to the model to explain the intention (Ye et al. 2023).

We provided prompts for each input in the Spider dataset, ensuring that they encompass
schema information with foreign key relationships and questions. Additionally, the gold SQL
statement is provided to guide the models, particularly for equality constraints, due to the case-
sensitive nature of the data stored in databases. For example, when querying all female students,
the model needs to understand how the gender field is formatted (“F”, “Female,” etc.). Since this
information is only available in the gold SQL expression, we decided to include the gold SQL in the
prompt. The template prompt format is presented in Figure 4a, and a sample prompt for MQL
query generation is shown in Figure 4b. More example prompts for MQL generation via LLMs
could be found at Appendix A.

3.3 Evaluation of the generated MongoDB queries
In the Spider challenge,h the performance of each model is evaluated on two metrics: Exact Set
Matching Accuracy and Execution Accuracy. While exact set matching accuracy decomposes each
SQL statement into several clauses and conducts set comparison in each SQL clause, execution
accuracy focuses on if the predicted query result rows are identical to the actual query result rows.
In this study, we evaluate the correctness of the generatedMQL queries according to the execution
accuracymetric.

At this stage, we executed the generated MQL queries on MongoDB and gold SQLs on SQLite
database. It is noteworthy that the Spider’s test set did not contain the gold SQLs. Therefore,
MQL queries were generated for 7,000 training and 1,034 validation instances, for 166 different
databases. To establish a match, the number of resulting rows must be identical in both gold and
generated queries.

ghttps://pymongo.readthedocs.io/en/stable/
hhttps://yale-lily.github.io/spider

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://pymongo.readthedocs.io/en/stable/
https://yale-lily.github.io/spider
https://www.cambridge.org/core

Natural Language Processing 9

Write only the MongoDB with no explanation

for the query using the following

schema. Do not select extra columns

that are not explicitly requested.

Schema:

<table_1(column_1, column_2, ...)

<table_2(column_1 column_2, ...)

...

...

Foreign keys:

<table_1>.<column_1> = <table_2>.<column_2>

...

...

Question:

<NL question>

Gold SQL:

<gold SQL query provided from Spider>

Prompt template

Write only the MongoDB with no explanation

for the query using the following

schema. Do not select extra columns

that are not explicitly requested.

Schema:

publication(Publication_ID, Book_ID,

Publisher, Publication_Date, Price)

book(Book_ID, Title, Issues, Writer)

Foreign keys:

publication.Book_ID = book.Book_ID

Question:

What are the dates of publications in

descending order of price?

Gold SQL:

SELECT Publication_Date

FROM publication

ORDER BY Price DESC

Example prompt

(a) (b)

Figure 4. Prompt engineering for MQL query generation.

Execution accuracy requires a one-to-one match, and only MQL queries that return the same
rows are considered at the beginning. However, when LLMs are used for MQL generation, it is
seen that the generated queries sometimes return the same rows in different order, or the same
rows with extra columns. To increase the number of MongoDB queries in the DocSpider ground-
truth dataset, such queries are manually updated for correcting the ordering and projection and
are included in the ground-truth dataset.

We defined four quality levels to classify generated MQL queries based on the query result
equivalence:

• Same: Both query results should be identical. If the query results are in different order, but
gold SQL does not have order by clause; these are also considered as identical. This is the
most strict comparison metric among the four quality levels.

• Extra fields: The generated MQL query returns the same rows with additional fields.
• Unordered: Both query results must be the same, except they are ordered differently. In
other words, the gold SQL statement includes the order by clause and the order of the result
set of the generated MQL and gold SQL are different.

• Unordered extra fields: The MongoDB query returned extra fields and the query results
have different ordering. This quality level is the lowest one acceptable for queries that can
be included in the ground-truth dataset.

More specifically, if a query is classified as extra_fields (or unordered_extra_fields), it means
there is a projection error to fix. If the MQL query result ordering is different than the
SQLite query result ordering and the gold SQL query includes order by clause, then it means
that there is an ordering error to fix, and the generated MQL is classified as unordered (or
unordered_extra_fields). Subsequently, the queries were manually updated by adding/modifying:

• $project clauses for the queries satisfying extra_fields and unordered_extra_fields quality
levels.

• $sort clauses for the queries satisfying unordered and unordered_extra_fields quality levels.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

10 A. G. Özer et al.

Table 1.Number of ground-truth queries generated by language models

Dataset Model Number of queries

Train GPT4 3,670
.. .

Train DeepSeek Coder 33B 2,818
.. .

Train-total - 4,043
.. .

Dev GPT4 554
.. .

Dev DeepSeek Coder 33B 434
.. .

Dev GPT3.5 371
.. .

Dev-total - 620

This process increased the number of queries that can be used as a train set of DocSpider
dataset. However, pure execution accuracy (one-to-one match, same quality level) is used for
evaluation in the experiments conducted in Section 4.

After performing the corrections to the MQL queries generated by LLMs, the union of the
generated MQL queries by different LLMs was collected. In Table 1, the number of successfully
translated gold SQLs by each LLM are presented. For instance, GPT4 generated 3,670 SQL-
equivalent queries, while DeepSeek Coder generated 2,818 SQL-equivalent queries. By taking the
union of these, we obtained 4,043 SQL-equivalent MQL queries that can be considered as the gold
MQL queries for the DocSpider dataset.

The Spider dataset classified the SQL queries into four difficulties: easy, medium, hard, and
extra hard. The hardness of each query was determined according to the number of SQL com-
ponents and query structure (nested structure, keywords, and aggregations). The difficulty level
distribution of the original Spider dataset and DocSpider dataset are presented in Figure 5. Even
though we cannot fully transform the Spider dataset into MQL queries using LLMs, the difficulty
level distribution of the DocSpider dataset is very similar to that of the Spider dataset.

3.4 User study
We considered the generated MQL queries as “gold MQLs” if they satisfied any of the given qual-
ity levels and afterward had the final manual correction. However, to assess the correctness of
these queries, the generated MQL queries need to be evaluated by human reviewers. To this aim,
300 sample queries out of 4,043 were selected from the corrected set, and we aim to assess the
truthfulness of the generatedMQL queries considering the prompt given in Section 3.2. The anno-
tators marked incorrect queries as false and the correct queries as true. The queries were selected
randomly, but the hardness distribution was kept similar to the DocSpider dataset distribution.

The annotators were selected from graduate students who had a Computer Science background
and had passed the Database Management course. We had six annotators and each annotator was
given 110 queries to review where 100 queries were fromDocSpider and 10 queries from incorrect
MQL queries (generated by LLMs). The annotators were not informed about which of the given
queries were incorrect. In addition, each query was annotated by at least two reviewers such that if
there was a conflict between a pair of reviewers on a specific instance, then we asked a third meta-
reviewer to review the instance and applied the majority voting. As a result of the user study, only
6 out of 300 queries from the DocSpider dataset were marked as incorrect.

Note that six queries annotated as incorrect returned the same query results with the gold
SQL queries due to the sparsity of sample instances in the Spider databases. For instance,

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 11

DocSpider train set DocSpider dev set

Spider train set Spider dev set

(a) (b)

(c) (d)

Figure 5. Difficulty level distribution of the queries in the data splits.

the following gold SQL query in the Spider dataset was translated into the MongoDB query
provided below:

SELECT DISTINCT product_details
FROM products

db. Products.find({},
{product_details: 1, _id: 0})

Even though the generated MQL query retrieves product_details from the products collection,
it does not ensure that the returned values in the product_details field are distinct. It fetches all
documents without eliminating duplicates.

Furthermore, it has been observed that the Spider dataset, despite being manually curated,
contains some ambiguous instances. Consider the following sample:

List the name, date and result
of each battle.

SELECT name, date FROM battle

In this instance, although the name, date, and result of each battle are requested, the gold SQL
query does not include the result of the battles. Therefore, the DocSpider dataset might include
some confusing instances. According to the user study, approximately 2% of the ground-truth
MQL queriesmay be incorrect. This ambiguity can be addressed using the Reciprocal Rank Fusion

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

12 A. G. Özer et al.

RAG approach Rackauckas (2024) which generates multiple queries for a single input and re-
ranks them based on their reciprocal scores. Another promising method is Step-Back Prompting
Zheng et al. (2024b) which involves generating amore abstract version of the user query to retrieve
more relevant information for generating a response. However, this phenomenon needs a more
in-depth exploration which we address as future work.

Finally, we assessed inter-annotator agreement to ensure the consistency of annotations.
Cohen’s Kappa (Cohen 1960) serves as the primary pairwise measure for inter-annotator agree-
ment. The Cohen’s κ scores for each question set were computed as 0.45, 0.64, and 0.81, indicating
strong agreement in the second and third question sets, and reasonable agreement in the first set.

4. Experiments
In this section, we present the conducted experiments to assess the potential usefulness of this
dataset for tackling the text-to-NoSQL problem. The following experiments were conducted using
the DocSpider dataset:

1. Assessing LLM execution accuracy with zero-shot learning. The objective is to determine
whether LLMs are already capable of translating NL queries into MQL queries or a text-to-
NoSQL dataset is necessary for solving the text-to-NoSQL problem.

2. Text-to-SQL-to-NoSQL: Whether transforming text-to-NoSQL problem to SQL-to-
NoSQL problem makes an improvement on execution accuracy scores. This is for under-
standing how successful LLMs would be, when SQL outputs from text-to-SQL model is
used to reinforce LLMs on text-to-NoSQL task.

3. Assessing LLM execution accuracy by fine-tuning with DocSpider dataset. The objective
is to verify that the DocSpider dataset is useful and provides significant improvement on
execution accuracy scores for solving NL query to MQL query problem.

4. Verifying the usefulness of the DocSpider dataset by testing for a collection with nested-
structured entries. The objective for this experiment is to analyze the effectiveness of the
models fine-tuned with DocSpider dataset for nested MQL queries.

The following subsections explain the environment setup for the experiments. Also we share
the experiment results as tables in these subsections. The detailed discussion about experiment
results and our prominent observations about the performance of the employed LLMs can be
found in Section 5.

4.1 Setup
In the experiments, Mistral 7B (Jiang et al. 2023), DeepSeek Coder 33B (Guo et al. 2024), GPT3.5
(gpt-3.5-turbo-0613), GPT4o (gpt-4o-2024-08-06), and CodeLlama 70B (Roziere et al. 2024) lan-
guage models were employed. While selecting language models, we took into consideration their
coding scores on the MT-Bench (Zheng et al. 2023) and Spider challenge leaderboard. Moreover,
we intentionally selected both open-source LLMs such as DeepSeek Coder 33B and CodeLlama
and proprietary LLM such as GPT3.5 and GPT4o to discuss the pros and cons of using open-
source LLM for this task. Additionally, the Mistral-7B was chosen to assess the performance of a
small, multi-purpose language model for text-to-NoSQL. The models were downloaded from the
Huggingface’si repository and were evaluated on the execution accuracy metric, and the results
after hyperparameter tuning are reported. The details about hyperparameter tuning can be found
in Section 4.4.

ihttps://huggingface.co/

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://huggingface.co/
https://www.cambridge.org/core

Natural Language Processing 13

Table 2.Zero-shot execution accuracy percentages

Model Overall exec.accuracy Easy Medium Hard Extra hard

Mistral 7B 20.4% 26.5% 26.4% 9.8% 0%
.. .

DeepSeek Coder 33B 29.2% 27.3% 35.8% 20.6% 17.7%
.. .

CodeLlama 70B 42.0% 43.9% 46.3% 38.2% 26.6%
.. .

GPT3.5 45.4% 45.5% 53.1% 39.2% 22.8%
.. .

GPT4o 71.0% 76.5% 73.3% 66.6% 45.5%

Write only the MongoDB with no explanation for the query

using the following schema. Do not select extra

columns that are not explicitly requested.

Schema:

<table_1(column_1, column_2, ...)

<table_2(column_1 column_2, ...)

Foreign keys:

<table_1>.<column_1> = <table_2>.<column_2>

...

Question:

<NL question>

Figure 6. Prompt template used in the experiments.

In the experiments, top-p sampling (Holtzman et al. 2020) decoding strategy was employed
while generating tokens. Sampling decoding generates the next token according to its condi-
tional probability. In top-p sampling, the smallest set of words whose cumulative distribution
is above the threshold probability is considered while generating tokens. The number of words
dynamically changes according to the next token’s probability distribution. We set the probability
threshold at 0.9 in the experiments.

The generic prompt template provided to the LLMs in the experiments is given in Figure 6. In
addition, more examples can be seen at Appendix B. Recalling from Section 3.2, while preparing
DocSpider dataset, we provided the gold SQL expression in the prompt. However, for the text-to-
NoSQL experiments, we removed the gold SQL expression from the prompt, to experiment the
real-life scenario for NLQ problem.

In the subsequent experiments, we utilized DocSpider’s development set to evaluate the lan-
guagemodels. Similarly, during fine-tuning, the training set was randomly split into 90% for actual
training and 10% for validation. Furthermore, the exact execution accuracy values (precision
level=“same”) were calculated in the following experiments.

4.2 Experiment 1: zero-shot text-to-NoSQL results
The goal of this experiment is to evaluate the baseline performance of certain LLMs on text-
to-NoSQL task. More specifically, we provided the prompt template given in Section 4.1 to the
models and expecting them to generate the corresponding MQL queries. This experiment is
performed against Spider’s dev dataset. As shown in Table 2, GPT4o outperformed the open-
source LLMs on execution accuracy by a significant margin. GPT-4o has approximately 1 trillion
parameters which enable it to learn more complex information, and this leads to an enhanced
performance across various tasks.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

14 A. G. Özer et al.

Table 3.Text-to-SQL-to-NoSQL execution accuracy percentages

Model Overall exec.accuracy Easy Medium Hard Extra hard

DAIL-SQL+Rule-based converter 26.8% 42.4% 30.0% 14.7% 3.7%
.. .

DAIL-SQL+Mistral 7B 29.4% 29.5% 42.0% 12.7% 1.3%
.. .

DAIL-SQL+DeepSeek Coder 33B 45.8% 50.0% 51.8% 36.3% 27.8%
.. .

DAIL-SQL+CodeLlama 70B 49.4% 44.7% 57.7% 46.1% 29.1%
.. .

DAIL-SQL+GPT3.5 58.6% 59.1% 65.4% 55.9% 35.4%

4.3 Experiment 2: text-to-SQL-to-NoSQL results
In this experiment, we explored the potential improvement by leveraging existing text-to-SQL
solutions. Therefore, we formulated the text-to-NoSQL problem as a text-to-SQL-to-NoSQL
problem.

As the name implies, text-to-SQL-to-NoSQL pipeline consists of two steps. In the first step, we
employed the DAIL-SQL (Gao et al. 2024) model, which achieved 86.2% execution accuracy on
Spider’s unseen test set, to translate the text inputs to SQL expressions. DAIL-SQL model gives
the highest accuracy so farj in the Spider challengek at the time of writing this paper.

As the second step, the generated SQL expressions are translated to MQL statements. To this
aim, we used a rule-based conversion and the also employed a set of LLMs. We searched for a
comprehensive model that converts SQL queries to MQL queries, but only a couple of rule-based
web tools (Russell 2016; Kotzen 2020) were available. We employed Russell (2016)’s converter
model to evaluate its performance against language models. Note that the SQL queries generated
by DAIL-SQL were provided as input to the converter.

Furthermore, we utilized LLMs to carry out SQL-to-NoSQL task. Similarly, DAIL-SQL’s pre-
dicted queries were provided to LLMs to generate MQL queries. To fulfill this, we replaced the
“Question“ field in the prompt (given in Section 4.1) with the generated SQL expression and asked
the language models to transform it into an equivalent MQL statement. According to Table 3,
GPT3.5 demonstrated superior performance compared to open-source models across all hard-
ness levels. In addition, the models that were specifically pretrained for coding tasks performed
better than Mistral 7B on SQL-to-NoSQL generation. This outcome was expected, given that the
tokenizer in Mistral-like, multi-purpose language models may struggle to tokenize SQL clauses
accurately.

4.4 Experiment 3: fine-tuning results
We used three Nvidia A100 GPUs with 40GB VRAM, setting the maximum sequence length to
4096 tokens, a batch size of 8 for Mistral and 4 for DeepSeek-Coder and trained for 3 epochs. The
train/validation loss graphs are presented in Appendix D. Note that we used the checkpoints with
the minimum validation loss for the inference.

First of all, we fine-tuned GPT3.5 (gpt-3.5-turbo-0613) and GPT4o (gpt-4o-2024-08-06) for 3
epochs on Open AI’s API. For the open-source models, we used the Huggingface’s Trainer class
which allows instruction format and conversational fine-tuning. Besides it supports parameter-
efficient fine-tuning with QLoRA (Dettmers et al. 2023). The batch size was set to 4, epochs to 3,
the initial learning rate to 1e-4 with linear weight scheduler, and the Adam optimizer was used.

jHighest accuracy among the studies with their source code shared.
khttps://yale-lily.github.io/spider

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://yale-lily.github.io/spider
https://www.cambridge.org/core

Natural Language Processing 15

Table 4.Fine-tuning execution accuracy percentages

Model Overall exec.accuracy Easy Medium Hard Extra hard

Mistral 7B 40.7% 49.2% 41.4% 28.4% 39.2%
.. .

DeepSeek Coder 33B 70.8% 84.1% 73.9% 65.7% 41.8%
.. .

GPT3.5 71.1% 78.8% 70.4% 70.6% 60.8%
.. .

GPT4o 81.1% 91.6% 82.1% 77.5% 64.5%

Table 5.The average cosine similarity values for correct and incorrect MQLs for fine-
tunedmodels

Model Correctly predicted MQLs Incorrectly predicted MQLs

Mistral 7B 0.976 0.923
.. .

DeepSeek Coder 33B 0.971 0.930
.. .

GPT3.5 0.974 0.908
.. .

GPT4o 0.964 0.941

While fine-tuning the language models (in this experiment), we employed the QLoRA tech-
nique which efficiently quantizes the frozen model weights to 4-bit NormalFloat and integrates
LoRA (Hu et al. 2021) adapters to the model. LoRA is a parameter-efficient fine-tuning tech-
nique that decomposes a model’s weight matrix into smaller rank matrices. In this way, LoRA
introduces a small set of new parameters and these parameters are only fine-tuned, which pro-
vides more compute and resource-efficient training of LLMs without a significant performance
loss. We set the dimension of the low-rank matrices (r) to 32, establishing the scaling factor for
the weight matrices (lora_alpha) at 32, and specifying a dropout probability of 0.05 for the LoRA
layers (lora_dropout).

In Table 4, execution accuracy results after fine-tuning with the DocSpider dataset are pre-
sented. According to the results, the languagemodels that were reported to performwell on coding
tasks such as GPT3.5, GPT4o, and DeepSeek Coder 33B performed above 70%. Additionally,
DeepSeek Coder, which is an open-source language model, performed better than GPT3.5 on easy
and medium instances. Last but not least, even though Mistral 7B is not specifically pretrained
for coding tasks, it achieved 40.7% execution accuracy after fine-tuning with a considerably small
text-to-NoSQL dataset.

Text embedding-based evaluation
In addition to using execution accuracy metric for text-to-NoSQL task, we performed an anal-
ysis with the cosine similarity metric in order to evaluate the LLM performance. To achieve
this, predicted MQLs are generated by using the DocSpider test set. First, using Reimers (2019)’s
SBERTmodel, predicted and actual MQLs are considered as sentences and embedding vectors are
obtained for MQLs. Then, for each predicted-actual MQL embedding vector pair, the cosine sim-
ilarity is calculated. Following this, the average of the cosine similarity values for the correct and
incorrect MQLs are calculated separately. The results show that the that correctly predictedMQLs
have higher average cosine similarity value than the incorrectly predicted MQLs, for fine-tuned
models. The fine-tuned models and their average cosine similarity values are presented in 5.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

16 A. G. Özer et al.

4.5 Experiment 4: nested queries
In relational databases, it is a common practice to a express a relationship between two databases
through primary key—foreign key pairs, instead of storing the table in the joined form. This is
found to be preferable due to normalization considerations.

Unlike relational databases, MongoDB collections are capable of storing nested documents.
Besides a single value, a field can hold an object, which can be considered as a reference to
another table in a relational database. This leads to nested structures and nested queries on such
collections.

In order to analyze the effectiveness of the DocSpider dataset to fine-tune an LLM to handle
nested structures and nested query translation, another experiment is conducted. In this experi-
ment, GPT3.5 fine-tuned with DocSpider dataset is used for the text-to-MQL task. This model is
chosen since it gives the highest performance improvement (from 45.4% to 71.1%) in fine-tuning
analysis on DocSpider test collections (as given in Table 2 and Table 4). As a native database hav-
ing a nested structure, the sample dataset shared inMongoDB’s websitel is used for the evaluation.
Twenty queries are hand-crafted for this experiment, details of which are given in Appendix C.

The query generation performance of GPT3.5 fine-tuned with DocSpider dataset is compared
against base GPT3.5 model. It is seen that the base GPT3.5 model is able to generate nine queries
correctly out of twenty test queries, whereas the fine-tuned model generated thirteen of them suc-
cessfully out of twenty. Therefore, the query generation accuracy of the base model is still about
45%, whereas with the fine-tuning using DocSpider, the accuracy increases to 65% for nested
structures. Hence, it is seen that the DocSpider dataset is effective for fine-tuning an LLM to
improve performance on generating nested MongoDB queries.

5. Discussion
The primary goal of this study has been to explore the need for a cross-domain text-to-NoSQL
dataset for MongoDB. Additionally, we have evaluated the impact of pretrained knowledge bases
in LLMs on addressing this issue. While our emphasis has been on MongoDB in this study, the
methodology can be adapted to similar tasks and databases. However, the success of the models
may differ based on the pretrained knowledge embedded in LLMs and the syntactic similarity of
query languages to SQL-like structures.

While looking at the results of the Experiment 1 given in Table 2, it is hard to say that base
LLMs are successful on text-to-NoSQL task. Due to model sizes, CodeLLama 7B (42%), GPT3.5
(45.4%), and GPT4o (71%) had reasonably higher execution accuracy than Mistral 7B (20.4%)
and DeepSeek Coder 33B (29.2%). The best model for zero-shot learning on text-to-NoSQL task
appears as the base GPT4o model with 71% execution accuracy; however, its overall execution
accuracy is far from being successful from the NLQ problem perspective. Hence, the base LLMs
capabilities are shown to be limited for the text-to-NoSQL task.

Another prominent observation is that, as given in the Experiment 2 highlighted in Table 3,
in the absence of an annotated NoSQL dataset, reframing the problem as text-to-SQL-to-NoSQL
consistently yields superior results compared to the zero-shot text-to-NoSQL approach. In other
words, if the outputs of a text-to-SQL model is fed to a model with SQL-to-NoSQL translation
capabilities, then whole system is more accurate than zero-shot learning with base LLMs on
text-to-NoSQL translation task. When the results of the Experiment 2 are inspected compared
to the Experiment 1 results, a consistent increase is observed for each of the models: Mistral 7B’s
accuracy from 20.4% to 29.4%; DeepSeek Coder 33B’s from 29.2% to 45.8%; CodeLlama 7B’s
from 42% to 49.4% and lastly GPT3.5’s accuracy from 45.4% to 58.6%. While GPT3.5 has the

lhttps://www.mongodb.com/docs/atlas/sample-data/sample-airbnb/

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.mongodb.com/docs/atlas/sample-data/sample-airbnb/
https://www.cambridge.org/core

Natural Language Processing 17

best results for the Experiment 2, DeepSeek Coder 33B’s translation performance is also vastly
improved by ∼ 56%.

Furthermore, the results of the Experiment 3 in Table 4 clearly shows the positive effect of hav-
ing a text-to-NoSQL dataset to fine-tune an LLM in order to solve the NLQ problem for NoSQL
databases. When the results are compared against the Experiment 2 in Table 3, it is observed that
although constructing a text-to-SQL-to-NoSQL solution could give moderate results, far better
results are achievable by fine-tuning with a dataset specialized for the text-to-NoSQL task. A fine-
tuned LLM on text-to-NoSQL data can outperform any type of text-to-SQL-to-NoSQL solution,
whether it is a rule-based converter, or a text-to-SQL solution supported with an LLM.

Comparing the results of the Experiment 3 against the Experiment 1 in Table 2, it is seen that
Mistral 7B’s accuracy increased from 20.4% to 40.7%, DeepSeek Coder 33B’s from 29.2% to 70.8%,
GPT3.5’s accuracy increased from 45.4% to 71.1%, and lastly GPT4o’s accuracy increased from
71% to 81.1%. Fine-tuning by the DocSpider dataset provided performance improvements by
∼ 100% on Mistral 7B, by ∼ 140% on DeepSeek Coder 33B, by ∼ 36% on GPT-3.5, and by ∼ 14%
on GPT-4o. Another important observation is that, despite the DocSpider dataset’s modest size,
through fine-tuning (40.7%),Mistral 7B competes with the zero-shot performance of the ten times
larger CodeLlama 7B (42.0%).

In addition, in all experiments, the LLMs that were either specifically pretrained on coding
tasks (CodeLlama 7B and DeepSeek Coder 33B) or general-purpose LLMs that performed well
on coding tasks (GPT3.5 and GPT4o) consistently outperformed Mistral 7B. It can be attributed
to their pretrained knowledge, that is, during pretraining they may have learned the MongoDB
query structure from examples. In contrast, Mistral and similar LLMs might be pretrained more
on conversational and dialog generation tasks. Consequently, when selecting a language model, it
becomes crucial to prefer a model whose pretraining objective aligns with the intended task.

Finally, we assessed the proposed dataset using both open-source and proprietary LLMs.
Given the resource-intensive nature of CodeLlama and GPT, fine-tuned versions of Mistral 7B
or DeepSeek Coder 33B could serve as viable alternatives (specifically DeepSeek Coder 33B, with
70.8% accuracy). Fine-tuning a model such as GPT is a resource-intensive process—potentially
hitting financial, computational, and hardware constraints—and an open-source language model
can be utilized to achieve competitive results.

6. Conclusion
Interacting with databases by using NL has been a challenge for a long time. Several studies
addressed this problem by converting NL queries into SQL statements on relational databases.
Utilizing cross-domain datasets such as Spider for text-to-SQL task, and with the advancements
in LLMs, major improvements have been achieved on the text-to-SQL problem. However, for the
text-to-NoSQL task, the obtained improvements are still limited.

In this study, we introduce theDocSpider dataset, the first cross-domain text-to-NoSQL dataset
for the MongoDB document database. MongoDB is selected as the target database considering
its increasing use as the data store in software projects. During the MongoDB query generation
phase, we performed instruction prompting by including NL query, table-column information,
foreign keys, and gold SQL statements to utilize LLMs. By applying manual post-processing on
the generated MongoDB queries, we obtained 4,043 NL–MongoDB query pairs from Spider train
dataset, and 620 NL–MongoDB query pairs from Spider development dataset and included these
question–query pairs into DocSpider dataset.

Our approach for text-to-NoSQL query generation from a text-to-SQL dataset is adaptable
and can be extended to other NoSQL databases. Subsequently, we demonstrated the necessity
of a text-to-NoSQL dataset through comparisons with cross-language transfer learning and in-
context learning approaches. Our experiments demonstrated that fine-tuning LLMs with the

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

18 A. G. Özer et al.

DocSpider dataset significantly improved the query translation accuracy compared to their base
versions. To be more specific, Mistral 7B’s accuracy increased from 20.4% to 40.7%, DeepSeek
Coder 33B’s accuracy rose from 29.2% to 70.8%, GPT-3.5’s accuracy improved from 45.4% to
71.1%, andGPT-4’s accuracy increased from 71.0% to 81.1%. Additionally, DocSpider’s usefulness
is also confirmed for querying nested-structured MongoDB collections. The related experiment
demonstrated a performance improvement from 45% to 65% when utilizing the GPT-3.5 model.

Reliance on language models susceptible to hallucination (Zhang et al. 2023b) may certainly
be a limitation for our approach. Context-aware decoding can be a promising way to mitigate
this problem (Shi et al. 2023; Tonmoy et al. 2024). For query translation evaluation, we used the
execution accuracy metric, which compares the outputs of two given queries. This provides a
more practical means of verification than the sub-query comparisons. However, there could be
alternative answers that yield the same results with an optimal query structure, involving fewer
operations.

Last but not least, we have not observed major error patterns in generated MQL statements.
However, errors tend to be more frequent with less common syntactic structures, such as queries
requiring NOT IN or those containing regular expressions. We plan to address this issue further
in future work to determine if some of these errors can be corrected through postprocessing.

Acknowledgments. This research received the support of the EXA4MIND project, funded by the European Union’s
Horizon Europe Research and Innovation Programme, under Grant Agreement N◦ 101092944. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union or the European
Commission. Neither the European Union nor the granting authority can be held responsible for them. The work is also
supported by EuroHPC Development Access Call with Project ID DD-23-122. We would like to thank the research assis-
tants Aslı Umay Öztürk, Can Ünaldı, and Yiğit Sever from the Department of Computer Engineering in METU for their
suggestions and contributions to the user study.

References
Abdelhedi F., Brahim A. A. and Zurfluh G. (2021). Ocl constraints checking on nosql systems through an mda-based

approach. International Journal of Data Warehousing and Mining (IJDWM) 17(1), 1–14.
Achiam J.,Adler S.,Agarwal S.,Ahmad L.,Akkaya I., Leoni Aleman F.,Almeida D.,Altenschmidt J.,Altman S.,Anadkat

S., Avila R., Babuschkin I., Balaji S., Balcom V., Baltescu P., Bao H., Bavarian M., Belgum J., Bello I., ... Radford A.
(2023). GPT-4 Technical Report. arXiv preprint arXiv:2303.08774

Akhtar A. (2023). Popularity ranking of database management systems. arXiv preprint arXiv: 2301.00847
Bay Y. Y. and Yearick K. A. (2024). Machine learning vs deep learning: the generalization problem. arXiv preprint arXiv:

2403.01621
Bazaga A., Gunwant N. and Micklem G. (2021). Translating synthetic natural language to database queries with a polyglot

deep learning framework. Scientific Reports 11(1), 18462.
Bhagavatula C. S., Noraset T. and Downey D. (2015). Tabel: Entity linking in web tables. In International Semantic Web

Conference, Cham: Springer International Publishing, pp. 425–441.
Blank S., Wilhelm F., Zorn H.-P. and Rettinger A. (2019). Querying nosql with deep learning to answer natural language

questions. Proceedings of the AAAI Conference on Artificial Intelligence 33(1), 9416–9421.
Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A.,

Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse
C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I. and
Amodei D. (2020). Language models are few-shot learners. In Advances in Neural Information Processing Systems, vol. 2,
Curran Associates, Inc, pp. 1877–1901.

Chen Z., Gu Z., Cao L., Fan J., Madden S. and Tang N. (2023). Symphony: Towards natural language query answer-
ing over multi-modal data lakes, In 13th Conference on Innovative Data Systems Research, CIDR 2023, Amsterdam, The
Netherlands, pp. 8–151. www.cidrdb.org.

Cohen J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46.
Dechter R. and Pearl J. (1985). Generalized best-first search strategies and the optimality of a. Journal of the ACM (JACM)

32(3), 505–536.
Dettmers T., Pagnoni A., Holtzman A. and Zettlemoyer L. (2023). Qlora: efficient finetuning of quantized LLMs. In

Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY:
Curran Associates Inc.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2301.00847
https://arxiv.org/abs/2403.01621
www.cidrdb.org
https://www.cambridge.org/core

Natural Language Processing 19

Devlin J., Chang M.-W., Lee K. and Toutanova K. (2019). BERT: pre-training of deep bidirectional transformers for-
language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, June 2-7, 2019, Vol. 1 (Long and Short
Papers), Minneapolis, MN: Association for Computational Linguistics, pp. 4171–4186.

Dong X., Zhang C., Ge Y., Mao Y., Gao Y., Lin J., Lou D. (2023). C3: zero-shot text-to-sql with chatgpt. arXiv preprint
arXiv: 2307.07306

Gao D.,Wang H., Li Y., Sun X., Qian Y., Ding B. and Zhou J. (2024). Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB Endowment 17(5), 1132–1145.

GuoD.,ZhuQ.,YangD.,Xie Z.,DongK.,ZhangW.,ChenG.,Bi X.,WuY., Li Y. K., Luo F., XiongY. and LiangW. (2024).
Deepseek-coder: when the large language model meets programming–the rise of code intelligence. CoRR, abs/2401.14196.

Hains G. J., Khmelevsky Y. and Tachon T. (2019). From natural language to graph queries, In 2019 IEEE Canadian
Conference of Electrical and Computer Engineering (CCECE). IEEE, pp. 1–4

Holtzman A., Buys J., Du L., Forbes M. and Choi Y. (2020). The curious case of neural text degeneration. In International
Conference on Learning Representations.

Hossen K. M., Uddin M. N., Arefin M. and Uddin M. A. (2023). BERT model-based natural language to nosql query
conversion using deep learning approach. International Journal of Advanced Computer Science and Applications 14(2)

Hu E. J., Shen Y.,Wallis P., Allen-Zhu Z., Li Y.,Wang S.,Wang L. and ChenW. (2021). Lora: low-rank adaptation of large
language models. CoRR, abs/2106.09685.

Jiang A. Q., Sablayrolles A.,Mensch A., Bamford C., Chaplot D. S., Casas de las D., Bressand F., Lengyel G., Lample G.,
Saulnier L., Lavaud L. R. Lachaux M.-A., Stock P., Scao T. L., Lavril T., Wang T., Lacroix T. and Sayed W. E. (2023).
Mistral 7b. CoRR, abs/2310.06825.

Jung H. and Kim W. (2020). Automated conversion from natural language query to sparql query. Journal of Intelligent
Information Systems 55(3), 501–520.

Kang Y.-S., Park I.-H., Rhee J. and Lee Y.-H. (2015). MongoDB-based repository design for IoT-generated RFID/sensor big
data. IEEE Sensors Journal 16(2), 485–497.

Kate A., Kamble S., Bodkhe A. and Joshi M. (2018). Conversion of natural language query to SQL query, In 2018 Second
International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, pp. 488–491

Kobeissi M., Assy N., Gaaloul W., Defude B., Benatallah B. and Haidar B. (2023). Natural language querying of process
execution data. Information Systems 116, 102227.

Kotzen R. (2020). SQL to MongoDB query converter. https://github.com/synatic/noql/. (accessed 2024).
Lewis M., Liu Y., Goyal N., Ghazvininejad M., Mohamed A., Levy O., Stoyanov V. and Zettlemoyer L. (2020).

BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, pp. 7871–7880.

Li J.,Hui B.,QuG., Yang J., Li B., Li B.,Wang B.,Qin B.,Geng R.,Huo N., Zhou X., Ma, C., Li G., Chang K. C., Huang F.,
Cheng R. and Li Y. (2024). Can LLM already serve as a database interface? a big bench for large-scale database grounded
text-to-sqls. In Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red
Hook, NY: Curran Associates Inc.

Li Y., Yang H. and Jagadish H. V. (2005). Nalix: an interactive natural language interface for querying xml, In Proceedings
of the 2005 ACM SIGMOD international conference on Management of data, SIGMOD ’05, New York, NY: Association for
Computing Machinery, pp. 900–902.

Mahmood K. and Risch T. (2021). Scalable real-time analytics for iot applications, In 2021 IEEE International Conference on
Smart Computing (SMARTCOMP), Los Alamitos, CA: IEEE, IEEE Computer Society, pp. 404–406.

Majeed M. T., Ahmad M. and Khalid M. (2016). Automated XQuery generation for nosql. In 2016 Sixth International
Conference on Innovative Computing Technology (INTECH). IEEE, pp. 507–512

Makris A., Tserpes K., Spiliopoulos G., Zissis D. and Anagnostopoulos D. (2021). MongoDB vs PostgreSQL: a comparative
study on performance aspects. GeoInformatica 25, 243–268.

Membrey P., Plugge E., Hawkins D. and Hawkins T. (2010). The Definitive Guide to MongoDB: the noSQL Database for
Cloud and Desktop Computing. Springer

Mondal S., Mukherjee P., Chakraborty B. and Bashar R. (2019). Natural language query to nosql generation using query-
response model. In 2019 International Conference on Machine Learning and Data Engineering (iCMLDE), Los Alamitos,
CA: IEEE, IEEE Computer Society, pp. 85–90.

Owei V., Rhee H.-S. and Navathe S. (1997). Natural Language Query Filtration in the Conceptual Query Language. In 2014
47th Hawaii International Conference on System Sciences, vol. 3, Los Alamitos, CA: IEEE Computer Society, pp. 539–549.

Paparizos S., Ntoulas A., Shafer J. and Agrawal R. (2009). Answering web queries using structured data sources. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, SIGMOD ’09, New York, NY:
Association for Computing Machinery, pp. 1127–1130.

Pennington J., Socher R. and Manning C. D. (2014). GloVe: Global vectors for word representation, In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for
Computational Linguistics, pp. 1532–1543.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/2307.07306
https://github.com/synatic/noql/
https://www.cambridge.org/core

20 A. G. Özer et al.

Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K. and Zettlemoyer L. (2018). Deep contextualized word
representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1 (Long Papers), New Orleans, LA: Association for Computational
Linguistics, pp. 2227–2237.

Pradeep T., Rafeeque P. and Murali R. (2019). Natural language to nosql query conversion using deep learning, In
International Conference on Systems, Energy & Environment (ICSEE), 2019, GCE Kannur, Kerala, July 2019.

Rackauckas Z. (2024). Rag-fusion: a new take on retrieval-augmented generation. International Journal on Natural Language
Computing (IJNLC) 13(1), 37–47.

Raffel C., Shazeer N., Roberts A., Lee K., Narang S.,Matena M., Zhou Y., Li W. and Liu P. J. (2020). Exploring the limits
of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research 21(1), 5485–5551.

Rai D., Wang B., Zhou Y. and Yao Z. (2023). Improving generalization in language model-based text-to-SQL semantic
parsing: two simple semantic boundary-based techniques. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics, vol. 2 (Short Papers), Toronto, Canada: Association for Computational Linguistics,
pp. 150–160.

Reimers N. and Gurevych I. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-networks. In Conference on
Empirical Methods in Natural Language Processing

Rozière B., Gehring J., Gloeckle F., Sootla S., Gat I., Tan X. E., Adi Y., Liu J., Sauvestre R., Remez T., Rapin J.,
Kozhevnikov A., Evtimov I., Bitton J., Bhatt M., Ferrer C. C., Grattafiori A., Xiong W., Défossez A., Copet J., Azhar
F., Touvron H., Martin L., Usunier N., Scialom T. and Synnaeve G. (2024). Code Llama: Open foundation models for
code.

Russell V. (2016). SQL to MongoDB query converter. https://github.com/vincentrussell/sql-to-mongo-db-query-converter/
(accessed 2024).

Sak H., Senior A. W. and Beaufays F. (2014). Long short-term memory recurrent neural network architectures for large
scale acoustic modeling. In INTERSPEECH, pp. 338–342.

Scholak T., Schucher N. and Bahdanau D. (2021). PICARD: Parsing incrementally for constrained auto-regressive decoding
from language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online
and Punta Cana, Dominican Republic, Association for Computational Linguistics, pp. 9895–9901.

Shi W., Han X., Lewis M., Tsvetkov Y., Zettlemoyer L. and tau Yih S. W. (2023). Trusting your evidence: hallucinate less
with context-aware decoding. In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), Mexico City, Mexico: Association for
Computational Linguistic, pp. 783–791.

Tonmoy S. M. T. I., Zaman S. M. M., Jain V., Rani A., Rawte V., Chadha A. and Das A. (2024). A comprehensive survey
of hallucination mitigation techniques in large language models.

Uma M., Sneha V., Sneha G., Bhuvana J. and Bharathi B. (2019). Formation of sql from natural language query using nlp.
In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), IEEE, pp. 1–5.

Xu X., Liu C. and Song D. (2017). SQLNet: generating structured queries from natural language without reinforcement
learning. ArXiv, abs/1711.04436.

Ye S.,Hwang H., Yang S., Yun H., Kim Y. and Seo M. (2023). Investigating the effectiveness of task-agnostic prefix prompt
for instruction following. In NeurIPS. 2023 Workshop On Instruction Tuning and Instruction Following

Yin P., Lu Z., Li H. and Kao B. (2016). Neural enquirer: learning to query tables in natural language. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 2308–2314.

Yu T., Zhang R., Er H., Li S., Xue E., Pang B., Lin X. V., Tan Y. C., Shi T., Li Z. and et al. (2019). Cosql: A conversational
text-to-sql challenge towards cross-domain natural language interfaces to databases. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 1962–1979.

Yu T., Zhang R.,Yang K.,YasunagaM.,WangD., Li Z.,Ma J., Li I.,YaoQ.,Roman S. and et al. (2018). Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 3911–3921.

Zhang W., Zeng K., Yang X., Shi T. and Wang P. (2023a). Text-to-esq: A two-stage controllable approach for efficient
retrieval of vaccine adverse events from nosql database. In Proceedings of the 14th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics, pp. 1–10.

Zhang Y., Li Y., Cui L., Cai D., Liu L., Fu T.,Huang X., Zhao E., Zhang Y., Chen Y., Wang L., Luu A. T., BiW., Shi F. and
Shi S. (2023b). Siren’s song in the ai ocean: a survey on hallucination in large language models. ArXiv abs/2309.01219.

Zhao Z., Liu W., French T. and Stewart M. (2023). Cyspider: A neural semantic parsing corpus with baseline models for
property graphs. In Australasian Joint Conference on Artificial Intelligence, Springer, pp. 120–132.

ZhengD., LapataM. and Pan J. Z. (2024a). Archer: A human-labeled text-to-SQL dataset with arithmetic, commonsense and
hypothetical reasoning. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics, vol. 1 (Long Papers), St. Julian’s, Malta: Association for Computational Linguistics, pp. 94–111.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

 2019, GCE Kannur, Kerala, July 2019, Available at SSRN: https://ssrn.com/abstract$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}3436631 or http://dx.doi.org/10.2139/ssrn.3436631
https://github.com/vincentrussell/sql-to-mongo-db-query-converter/
https://www.cambridge.org/core

Natural Language Processing 21

ZhengH. S.,Mishra S.,ChenX.,ChengH.-T.,Chi E.H., LeQ. V. and ZhouD. (2024b). Take a step back: Evoking reasoning
via abstraction in large language models.

Zheng L., Chiang W.-L., Sheng Y., Zhuang S.,Wu Z., Zhuang Y., Lin Z., Li Z., Li D., Xing E. P., Zhang H., Gonzalez J. E.
and Stoica I. (2023). Judging LLM-as-a-judge with mt-bench and chatbot arena. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY: Curran Associates Inc.

Zhong V., Xiong C. and Socher R. (2017). Seq2SQL: generating structured queries from natural language using reinforce-
ment learning.

Appendix
A. Prompt examples for MQL generation
Below are the sample queries in different difficulty levels: “easy,” “medium,” “hard,” and “extra
hard.” These prompts are given to LLMs for the Spider train dataset. Recalling from Section 3.2,
gold standart SQLs are given in the prompts to improve the MongoDB query generation. Later,
a postprocessing is applied (depending on the precision level mentioned in Section 3.3) on the
generated MQL query.

A.1 Query #1 (easy)
Write only the SQL with no explanation for the query using the following
schema. Do not select extra columns that are not explicitly requested.
<</SYS>>
Schema:
department(Department_ID, Name, Creation, Ranking, Budget_in_Billions,

Num_Employees)
head(head_ID, name, born_state, age)
management(department_ID, head_ID, temporary_acting)
Foreign keys:
management.head_ID = head.head_ID
management.department_ID = department. Department_ID
Question:
How many heads of the departments are older than 56?
Gold SQL:
SELECT count(∗) FROM head WHERE age > 56

A.2 Query #35 (medium)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.
Schema:
city(City_ID, Official_Name, Status, Area_km_2, Population,

Census_Ranking)
farm(Farm_ID, Year, Total_Horses, Working_Horses, Total_Cattle, Oxen,

Bulls, Cows, Pigs, Sheep_and_Goats)
farm_competition(Competition_ID, Year, Theme, Host_city_ID, Hosts)
competition_record(Competition_ID, Farm_ID, Rank)
Foreign keys:
farm_competition. Host_city_ID = city. City_ID
competition_record. Farm_ID = farm. Farm_ID
competition_record. Competition_ID = farm_competition. Competition_ID

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

22 A. G. Özer et al.

Question:
Show the years and the official names of the host cities of competitions.
Gold SQL:
SELECT T2.Year, T1.Official_Name FROM city AS T1
JOIN farm_competition AS T2 ON T1.City_ID = T2.Host_city_ID

A.3 Query #86 (hard)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.
Schema:
Addresses(address_id, line_1, line_2, city, zip_postcode,

state_province_county, country)
People(person_id, first_name, middle_name, last_name, cell_mobile_number,

email_address, login_name, password)
Students(student_id, student_details)
Courses(course_id, course_name, course_description, other_details)
People_Addresses(person_address_id, person_id, address_id, date_from,
date_to)
Student_Course_Registrations(student_id, course_id, registration_date)
Student_Course_Attendance(student_id, course_id, date_of_attendance)
Candidates(candidate_id, candidate_details)
Candidate_Assessments(candidate_id, qualification, assessment_date,

asessment_outcome_code)
Foreign keys:
Students.student_id = People.person_id
People_Addresses.address_id = Addresses.address_id
People_Addresses.person_id = People.person_id
Student_Course_Registrations.course_id = Courses.course_id
Student_Course_Registrations.student_id = Students.student_id
Student_Course_Attendance.student_id = Student_Course_Registrations.

student_id
Student_Course_Attendance.course_id = Student_Course_Registrations.

course_id
Candidates.candidate_id = People.person_id
Candidate_Assessments.candidate_id = Candidates.candidate_id
Question:
Find the cell mobile number of the candidates whose assessment code is

’Fail’?
Gold SQL:
SELECT T3.cell_mobile_number FROM candidates AS T1
JOIN candidate_assessments AS T2 ON T1.candidate_id = T2.candidate_id
JOIN people AS T3 ON T1.candidate_id = T3.person_id WHERE

T2.asessment_outcome_code = ’Fail’

A.4 Query #172 (extra hard)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 23

Schema:
station(id, name, lat, long, dock_count, city, installation_date)
status(station_id, bikes_available, docks_available, time)
trip(id, duration, start_date, start_station_name, start_station_id,

end_date, end_station_name, end_station_id, bike_id, subscription_type,
zip_code)

weather(date, max_temperature_f, mean_temperature_f, min_temperature_f,
max_dew_point_f,mean_dew_point_f, min_dew_point_f, max_humidity,
mean_humidity, min_humidity,max_sea_level_pressure_inches,
mean_sea_level_pressure_inches, min_sea_level_pressure_inches,
max_visibility_miles, mean_visibility_miles, min_visibility_miles,
max_wind_Speed_mph, mean_wind_speed_mph, max_gust_speed_mph,
precipitation_inches, cloud_cover, events, wind_dir_degrees,
zip_code)

Foreign keys:
status.station_id = station.id
Question:
What are names of stations that have average bike availability above 10

and are not located in San Jose city?
Gold SQL:
SELECT T1.name FROM station AS T1 JOIN status AS T2 ON T1.id =

T2.station_id
GROUP BY T2.station_id HAVING avg(bikes_available) > 10
EXCEPT SELECT name FROM station WHERE city = ’San Jose’

B. Prompt examples used in the experiments
Below are the sample queries for different difficulty levels: “easy,” “medium,” “hard,” and “extra
hard.” These prompts are picked among 620 ground-truth queries mentioned in Table 1 (verified
MQL queries generated from Spider dev dataset) and used in different experiments.

B.1 Query #181 (easy)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.
Schema:
airlines(uid, Airline, Abbreviation, Country)
airports(City, AirportCode, AirportName, Country, CountryAbbrev)
flights(Airline, FlightNo, SourceAirport, DestAirport)
Foreign keys:
flights. DestAirport = airports. AirportCode
flights. SourceAirport = airports. AirportCode
Question:
What country is Jetblue Airways affiliated with?

B.2 Query #268 (medium)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

24 A. G. Özer et al.

Schema:
employee(Employee_ID, Name, Age, City)
shop(Shop_ID, Name, Location, District, Number_products, Manager_name)
hiring(Shop_ID, Employee_ID, Start_from, Is_full_time)
evaluation(Employee_ID, Year_awarded, Bonus)
Foreign keys:
hiring. Employee_ID = employee. Employee_ID
hiring. Shop_ID = shop. Shop_ID
evaluation. Employee_ID = employee. Employee_ID
Question:
Find the number of shops in each location.

B.3 Query #381 (hard)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.
Schema:
Ref_Template_Types(Template_Type_Code, Template_Type_Description)
Templates(Template_ID, Version_Number, Template_Type_Code,

Date_Effective_From, Date_Effective_To, Template_Details)
Documents(Document_ID, Template_ID, Document_Name, Document_Description,

Other_Details)
Paragraphs(Paragraph_ID, Document_ID, Paragraph_Text, Other_Details)
Foreign keys:
Templates. Template_Type_Code = Ref_Template_Types. Template_Type_Code
Documents. Template_ID = Templates. Template_ID
Paragraphs. Document_ID = Documents. Document_ID
Question:
What are the ids of documents that contain the paragraph text ’Brazil’

and ’Ireland’?

B.4 Query #517 (extra hard)
Write only the MongoDB with no explanation for the query using the
following schema. Do not select extra columns that are not explicitly
requested.
Schema:
Addresses(address_id, line_1, line_2, line_3, city, zip_postcode,

state_province_county, country, other_address_details)
Courses(course_id, course_name, course_description, other_details)
Departments(department_id, department_name, department_description,

other_details)
Degree_Programs(degree_program_id, department_id, degree_summary_name,

degree_summary_description, other_details)
Sections(section_id, course_id, section_name, section_description,

other_details)
Semesters(semester_id, semester_name, semester_description,

other_details)
Students(student_id, current_address_id, permanent_address_id,

first_name, middle_name, last_name, cell_mobile_number, email_address,
ssn, date_first_registered, date_left, other_student_details)

Student_Enrolment(student_enrolment_id, degree_program_id, semester_id,
student_id, other_details)

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 25

Student_Enrolment_Courses(student_course_id, course_id,
student_enrolment_id)

Transcripts(transcript_id, transcript_date, other_details)
Transcript_Contents(student_course_id, transcript_id)
Foreign keys:
Degree_Programs.department_id = Departments.department_id
Sections.course_id = Courses.course_id
Students.permanent_address_id = Addresses.address_id
Students.current_address_id = Addresses.address_id
Student_Enrolment.student_id = Students.student_id
Student_Enrolment.semester_id = Semesters.semester_id
Student_Enrolment.degree_program_id = Degree_Programs.degree_program_id
Student_Enrolment_Courses.student_enrolment_id = Student_Enrolment.

student_enrolment_id
Student_Enrolment_Courses.course_id = Courses.course_id
Transcript_Contents.transcript_id = Transcripts.transcript_id
Transcript_Contents.student_course_id = Student_Enrolment_Courses.

student_course_id
Question:
What is the name and id of the department with the most number of

degrees ?

C. Nested query experiment
C.1 Hand-crafted queries
Below are the hand-crafted queries for this experiment:

1. Find the listing ids and names in Istanbul with hosts that their
government id is verified
2. Find the listing ids and names in Istanbul with hosts that their
facebook account is verified
3. Show the listing ids and names in Brazil with the exact location
unknown
4. Show the listing ids and names with free parking and hair dryer in
Porto, with at least 100 reviews
5. Show the listing ids and names in Montreal with a flexible
cancellation policy
6. Find listing ids and names with at least 3 bedrooms in Barcelona
7. Find pet-friendly listing ids and names in Sydney with a rating of 95
or above
8. Show the listing ids and names in New York with a minimum stay of 3
nights or less
9. Find listing ids and names in Rio De Janeiro with at least 2 bathrooms
10. Show the listing ids and names with a sea view in Istanbul
11. Find listing ids and names in Montreal with review score for
cleanliness over 8
12. Show the listing ids and names in New York with hosts that offer
breakfast
13. Find listing ids and names in Hong Kong with review score for
communication over 9 and offers Wifi and Cable TV

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

26 A. G. Özer et al.

14. List listing ids with names which have private rooms in New York with
hosts that verified email
15. List listing ids with names which have shared rooms in New York with
a flexible cancellation policy
16. Find listing ids with names which have private rooms that requires
minimum stay of 3 nights in New York
17. Find listing ids with names in Hong Kong with no reviews from the
customers
18. Show the listing ids with names which have shared rooms with couch
type beds in Barcelona
19. Show listing ids with names which have private rooms that are cheaper
than 1000 dollars in New York
20. Find the listing ids and names in Istanbul with hosts that provide
Wifi

C.2 Prompt structure
Here is the generic prompt structure that is used for this experiment:

Write only the MongoDB with no explanation for the query using the
following schema.
Do not select extra columns that are not explicitly requested.
There are column names that have dot character in them, they represent
nested document structure.
For nested columns, wrap column name with double quote characters while
using them in the MongoDB query.

Schema:
listings_and_reviews(listing_url, name, summary, space,
description, neighborhood_overview, notes, transit, access,
interaction, house_rules, property_type, room_type, bed_type,
minimum_nights, maximum_nights, cancellation_policy, last_scraped,
calendar_last_scraped, first_review, last_review, accommodates,
bedrooms, beds, number_of_reviews, bathrooms, amenities, price,
extra_people, guests_included, images.thumbnail_url,
images.medium_url, images.picture_url, images.xl_picture_url,
host.host_id, host.host_url, host.host_name, host.host_location,
host.host_about, host.host_thumbnail_url, host.host_picture_url,
host.host_neighbourhood, host.host_is_superhost,
host.host_has_profile_pic, host.host_identity_verified,
host.host_listings_count, host.host_total_listings_count,
host.host_verifications, address.street, address.suburb,
address.government_area, address.market, address.country,
address.country_code, address.location.type,
address.location.coordinates, address.location.is_location_exact,
availability.availability_30, availability.availability_60,
availability.availability_90, availability.availability_365,
review_scores.review_scores_accuracy,
review_scores.review_scores_cleanliness, review_scores.review_
scores_checkin,
review_scores.review_scores_communication, review_scores.review_
scores_location, review_scores.review_scores_value,
review_scores.review_scores_rating,

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 27

reviews.date, reviews.listing_id, reviews.reviewer_id,
reviews.reviewer_name, reviews.comments)

Question:
Find the listing ids and names in Istanbul with hosts that their

government id is verified

C.3 Base model outputs
- Find the listing ids and names in Istanbul with hosts that their
government id is verified
db.listings_and_reviews.find({ ”address.market”: ”Istanbul”, ”host.

host_identity_verified”: true }, { ”listing_id”: 1, ”name”: 1 })
–-–-–--
+ Find the listing ids and names in Istanbul with hosts that their
facebook account is verified
db.listings_and_reviews.find({ “address.market”: “Istanbul”, “host.
host_verifications”: /.∗facebook.∗/i }, { “listing_id”: 1, “name”: 1 })
–-–-–--
+ Show the listing ids and names in Brazil with the exact location
unknown
db.listings_and_reviews.find({”address.country”: ”Brazil”,

”address.location.is_location_exact”: false}, {_id: 0, ”listing_id”:
1, ”name”: 1})

–-–-–--
- Show the listing ids and names with free parking and hair dryer in
Porto, with at least 100 reviews
db.listings_and_reviews.find({ ”amenities”: { $all: [”Free parking”,

”Hair dryer”] }, ”address.market”: ”Porto”, ”number_of_reviews”:
{ $gte: 100 } }, { ”listing_id”: 1, ”name”: 1 })

–-–-–--
+ Show the listing ids and names in Montreal with a flexible cancellation
policy
db.listings_and_reviews.find({”address.market”: ”Montreal”,

”cancellation_policy”: ”flexible”}, {”listing_id”: 1, ”name”: 1,
”_id”: 0})

–-–-–--
+ Find listing ids and names with at least 3 bedrooms in Barcelona
db.listings_and_reviews.find({bedrooms: {$gte: 3}, ”address.market”:

”Barcelona”}, {listing_id: 1, name: 1})
–-–-–--
- Find pet-friendly listing ids and names in Sydney with a rating of 95
or above
{ ”property_type”: ”Apartment”, ”address.market”: ”Sydney”,

”amenities”: {”$regex”: ”.∗pet.∗”, ”$options”: ”i”},
”review_scores.review_scores_rating”: {”$gte”: 95} }

–-–-–--
+ Show the listing ids and names in New York with a minimum stay of 3
nights or less
db.listings_and_reviews.find({ ”address.market”: ”New York”,

”minimum_nights”: { $lte: 3 } }, { ”listing_id”: 1, ”name”: 1 })
–-–-–--
+ Find listing ids and names in Rio De Janeiro with at least 2 bathrooms

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

28 A. G. Özer et al.

db.listings_and_reviews.find({ ”address.market”: ”Rio De Janeiro”,
”bathrooms”: {”$gte”: 2} }, { ”listing_url”: 1, ”name”: 1 })

–-–-–--
- Show the listing ids and names with a sea view in Istanbul
db.listings_and_reviews.find({ ”address.market”: ”Istanbul”,

”description”: /sea view/i }, { ”listing_id”: 1, ”name”: 1 })
–-–-–--
+ Find listing ids and names in Montreal with review score for
cleanliness over 8
db.listings_and_reviews.find({ ”address.market”: ”Montreal”,

”review_scores.review_scores_cleanliness”: { $gt: 8 } }, { ”name”: 1,
”reviews.listing_id”: 1 });

–-–-–--
- Show the listing ids and names in New York with hosts that offer
breakfast
{ ”address.market”: ”New York”, ”amenities”: { ”$regex”: ”breakfast” } }
–-–-–--
+ Find listing ids and names in Hong Kong with review score for
communication over 9 and offers Wifi and Cable TV
db.listings_and_reviews.find({ ”address.market”: ”Hong

Kong”, ”amenities”: {$all: [”Wifi”, ”Cable TV”] },
”review_scores.review_scores_communication”: { $gt: 9 } }, {
”listing_id”: 1, ”name”: 1 })

–-–-–--
+ List listing ids with names which have private rooms in New York with
hosts that verified email
db.listings_and_reviews.find({ ”room_type”: ”Private room”,

”address.market”: ”New York”, ”host.host_verifications”: /email/i },
{ ”name”: 1, ”listing_url”: 1 })

–-–-–--
- List listing ids with names which have shared rooms in New York with a
flexible cancellation policy
{ ”property_type”: ”Shared room”, ”address.market”: ”New York”,

”cancellation_policy”: ”flexible” }
–-–-–--
- Find listing ids with names which have private rooms that requires
minimum stay of 3 nights in New York
db.listings_and_reviews.find({ ”name”: /private room.∗new york/i, ”room_

type”: ”Private room”, ”minimum_nights”: 3 }, { ”listing_id”: 1 })
–-–-–--
- Find listing ids with names in Hong Kong with no reviews from the
customers
db.listings_and_reviews.find({”neighborhood_overview”: ”Hong Kong”,

”number_of_reviews”: {$eq: 0}}, {”listing_id”: 1, ”name”: 1})
–-–-–--
- Show the listing ids with names which have shared rooms with couch type
beds in Barcelona
db.listings_and_reviews.find({ ”bed_type”: ”Couch”, ”room_type”: ”Shared

room”, ”address.market”: ”Barcelona” }, { ”listing_id”: 1, ”name”: 1 })
–-–-–--

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 29

- Show listing ids with names which have private rooms that are cheaper
than 1000 dollars in New York
db.listings_and_reviews.find({”room_type”: ”Private room”, ”price”:

{ $lt: 1000 }, ”address.government_area”: ”New York”},{”listing_id”:
1,”name”: 1})

–-–-–--
- Find the listing ids and names in Istanbul with hosts that provide Wifi
db.listings_and_reviews.find({ ”host.host_location”: ”Istanbul”,

”amenities”: { $regex: /wifi/i } }, { ”listing_id”: 1, ”name”: 1,
”_id”: 0 })

9/20 correct queries

C.4 Fine-tunedmodel outputs
- Find the listing ids and names in Istanbul with hosts that their
government id is verified
db.listings_and_reviews.find({ ”address.market”: ”Istanbul”, ”host.host_

identity_verified”: true, ”host.host_total_listings_count”:
{ $gte: 1 } }, { _id: 0, name: 1, ”host.host_id”: 1 })

–-–-–--
+ Find the listing ids and names in Istanbul with hosts that their
facebook account is verified
db.listings_and_reviews.find({ ”address.market”: ”Istanbul”,

”host.host_verifications”: /.∗facebook.∗/, ”host.host_identity_
verified”: true }, { _id: 0, name: 1, ”host.host_id”: 1 })

–-–-–--
+ Show the listing ids and names in Brazil with the exact location
unknown
db.listings_and_reviews.find({ ”address.country”: ”Brazil”,

”address.location.is_location_exact”: { $ne: true } }, { ”name”: 1,
”listing_id”: 1, ”_id”: 0 })

–-–-–--
- Show the listing ids and names with free parking and hair dryer in
Porto, with at least 100 reviews
db.listings_and_reviews.find({ $and: [{ ” address.market”: ”Porto”

}, { ”amenities”: { $all: [/”Free parking”/, /”Hair dryer”/] } },
{ ”number_of_reviews”: { $gte: 100 } }] }, { ”listing_id”: 1, ”name”:
1, ”_id”: 0 })

–-–-–--
+ Show the listing ids and names in Montreal with a flexible cancellation
policy
db.listings_and_reviews.find({ ”address.market”: ”Montreal”,

”cancellation_policy”: /flexible/i }, { _id: 0, listing_id: 1, name:
1 })

–-–-–--
+ Find listing ids and names with at least 3 bedrooms in Barcelona
db.listings_and_reviews.find({ ”address.market”: ”Barcelona”,

”bedrooms”: { $gte: 3 } }, { ”listing_id”: 1, ”name”: 1, ”_id”: 0 })
–-–-–--
- Find pet-friendly listing ids and names in Sydney with a rating of 95
or above

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

30 A. G. Özer et al.

db.listings_and_reviews.find({ address: { $regex: /sydney/i } }, { name:
1, _id: 0, listing_id: 1 }) .sort({ ”review_scores_rating”: -1 })

–-–-–--
+ Show the listing ids and names in New York with a minimum stay of 3
nights or less
db.listings_and_reviews.find({ ”address.market”: ”New York”,

minimum_nights: { $lte: 3 } }, { name: 1, listing_id: 1, _id: 0 })
–-–-–--
+ Find listing ids and names in Rio De Janeiro with at least 2 bathrooms
db.listings_and_reviews.find({ ”address.market”: ”Rio De Janeiro”,

”bathrooms”: { $gte: 2 } }, { listing_id: 1, name: 1, _id: 0 })
–-–-–--
+ Show the listing ids and names with a sea view in Istanbul
db.listings_and_reviews.find({ $and: [{ ”address.market”: ”Istanbul” },

{ amenities: /sea view/i }] }, { name: 1, ”address.market”: 1 })
–-–-–--
+ Find listing ids and names in Montreal with review score for
cleanliness over 8
db.listings_and_reviews.find({ ”address.market”: ”Montreal”,

”review_scores.review_scores_cleanliness”: { $gt: 8 } }, { _id: 0,
”reviews.listing_id”: 1, name: 1 })

–-–-–--
+ Show the listing ids and names in New York with hosts that offer
breakfast
db.listings_and_reviews.find({ $and: [{ ”address.market”: ”New York” },

{ amenities: { $regex: /breakfast/, $options: ’i’ } }] }, { name: 1,
_id: 0, listing_id: 1 } })

–-–-–--
+ Find listing ids and names in Hong Kong with review score for
communication over 9 and offers Wifi and Cable TV
db.listings_and_reviews.find({ ”address.market”: ”Hong Kong”,

”review_scores.review_scores_communication”: { $gte: 9 },
”amenities”: { $regex: /wifi/i, $regex: /cable tv/i } }, { ”name”: 1,
”reviews.listing_id”: 1, ”_id”: 0 })

–-–-–--
- List listing ids with names which have private rooms in New York with
hosts that verified email
db.listings_and_reviews.find({ ”bedrooms”: 1, ”address.market”:

”newyorkcity”, ”host.host_email_verified”: ”t” }, { ”name”: 1,
”listing_id”: 1, ”_id”: 0 })

–-–-–--
- List listing ids with names which have shared rooms in New York with a
flexible cancellation policy
db.listings_and_reviews.find({ ”bed_type”: ”Real Bed”, ”address.market”:

”New York”, ”room_type”: ”Shared room”, ”cancellation_policy”:
”flexible” }, { ”name”: 1 })

–-–-–--
+ Find listing ids with names which have private rooms that requires
minimum stay of 3 nights in New York

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 31

db.listings_and_reviews.find({ ”name”: { ”$regex”: /private room/ },
”minimum_nights”: { ”$gte”: 3 }, ”address.market”: ”New York” }, {
”listing_id”: 1, ”_id”: 0 })

–-–-–--
- Find listing ids with names in Hong Kong with no reviews from the
customers
db.listings_and_reviews.aggregate([{ $match: { ”address.market”: ”Hong

Kong”, ”reviews”: { $exists: false } }, }, { $project: { _id: 0,
listing_id: 1 } }])

–-–-–--
- Show the listing ids with names which have shared rooms with couch type
beds in Barcelona
db.listings_and_reviews.find({ ”bed_type”: ”Real Bed”, ”property_type”:

/Shared room/, ”address.market”: ”Barcelona” }, { ”name”: 1,
”listing_id”: 1, ”_id”: 0 })

–-–-–--
+ Show listing ids with names which have private rooms that are cheaper
than 1000 dollars in New York
db.listings_and_reviews.find({ $and: [{”address.market”: ”New York”},

{”price”: { $lt: 1000 }}, {”room_type”: ”Private room”}] }, { ”name”:
1, ”_id”: 0 })

–-–-–--
+ Find the listing ids and names in Istanbul with hosts that provide Wifi
db.listings_and_reviews.find({ $and: [{ ”address.market”: ”Istanbul” },

{ amenities: /wifi/i }] }, { listing_id: 1, name: 1, _id: 0 })
13/20 correct queries

D. Fine-Tuning Loss Graphs
According to the loss graphs, which are directly taken from the model outputs, and given in
Figure 7, both train and validation losses decrease gradually which indicate that the fine-tuned
models do not suffer from overfitting.

Figure 7. Fine-tuning train-val loss graphs.
Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

32 A. G. Özer et al.

GPT3.5 train loss GPT3.5 validation loss

GPT4o train loss GPT4o validation loss

(e) (f)

(g) (h)

Figure 7. (Continued)

Cite this article: Özer AG, Cekinel RF, Toroslu IH and Karagoz P. DocSpider: a dataset of cross-domain natural language
querying for MongoDB. Natural Language Processing https://doi.org/10.1017/nlp.2024.63

Downloaded from https://www.cambridge.org/core. 22 Feb 2025 at 04:56:14, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/nlp.2024.63
https://www.cambridge.org/core

	
	Introduction
	Related work
	Text-to-SQL
	Rule-based methods
	Deep learning-based methods
	LLM-based methods
	Text-to-NoSQL
	Cross-domain datasets
	Preparation of DocSpider dataset
	Data migration
	Generating SQL-equivalent MongoDB queries
	Evaluation of the generated MongoDB queries
	User study
	Experiments
	Setup
	Experiment 1: zero-shot text-to-NoSQL results
	Experiment 2: text-to-SQL-to-NoSQL results
	Experiment 3: fine-tuning results
	Text embedding-based evaluation
	Experiment 4: nested queries
	Discussion
	Conclusion
	Appendix

	Prompt examples for MQL generation
	
	A.1 Query #1 (easy)
	A.2 Query #35 (medium)
	A.3 Query #86 (hard)
	A.4 Query #172 (extra hard)
	Prompt examples used in the experiments
	
	B.1 Query #181 (easy)
	B.2 Query #268 (medium)
	B.3 Query #381 (hard)
	B.4 Query #517 (extra hard)
	Nested query experiment
	
	Hand-crafted queries
	C.2 Prompt structure
	C.3 Base model outputs
	C.4 Fine-tuned model outputs
	Fine-Tuning Loss Graphs
	

