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ON STABLE DIFFEOMORPHISM OF EXOTIC SPHERES 
IN THE METASTABLE RANGE 

P. L. ANTONELLI 

1. Introduction. Let 0 / + 1 denote the subgroup of the Kervaire-Milnor 
group 0n consisting of those ^-spheres which imbed with trivial normal bundle 
in Euclidean (n + p + 1)-space, n < 2p. It is known that such imbeddings 
always exist [6], and that the normal bundle is independent of the imbedding 
[10]. Following [2], we write Œn?p for the quotient dn/Qn

p+1. 
The order of ÇlntP, after identifying each element with its inverse, is equal 

to the number of diffeomorphically distinct (orientation preserved) 2W X Sp 

[2; 5]. Indeed, QntP is closely linked to the problem of determining the number 
of smooth structures a(n, p) on Sn X Sp. For instance, if QntP = 0 then a(n, p) 
equals the order of 6n+p [5]. Specific results are easily read off Table I and 
Theorem 2.1. 

In the metastable range, computation of the order of UUtP is reducible to 
an effectively computable homotopy question. Our results are stated in 
Section 2 along with preliminaries. The remaining sections of the paper deal 
with explicit computations. 

2. Statement of results and preliminaries. From [10] it is immediate 
that Qn>P = 0 for p è n — 3 or n S 15, n < 2p, as well as fii6,i2 = 22. The 
following theorem is an extension of these results. 

THEOREM 2.1. If SlntP 9e 0, then 

4 if» s 0(8) 
7 if n= 1(8) 

8 ifn = 2 ,3 ,6 ,7(8) 

15 i f» s 4, 5(8). 

We compute the following table. 

All groups not shown are trivial. Table I shows that Theorem 2.1 is best 
possible for n = 0, 1, 2, 5(8). 
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Table I 

nip 9 10 11 12 £ > 1 3 

16 2 2 3 2 22 22 0 

17 2 2 22 0 0 0 

18 2 2 0 0 0 

19 0 0 0 0 

nip 17 18 • • 26 27 28 ^ ;>29 

32 2 2 2 2 • • 2 2 2 2 22 0 

33 2 2 22 • • 22 0 0 0 

34 22 • • 2 2 0 0 0 

n/p 19 20 21 22 />;>23 

37 22 2 2 2 2 2 2 0 

38 2 2 0 0 0 

&n,p for n ^ 40, n < 2p 

Let <t>n
p+1 : 0n —-> -Kn-i (SO(j> + 1 ) ) denote the homomorphism which assigns 

to each 2W Ç 8n the characteristic class of its (unique) normal bundle in 
codimension p + 1, n < 2p. Then, 

(2.2) QntP = im ^*+i. 

Moreover, since normal bundles to homotopy spheres in Euclidean space are 
fibre-homotopy trivial [18] and stably trivial [14] we have 

(2.3) Qn,p C ker 4 - i p + 1 H ker J^f" 

where in-i
v+l : Trn-i(SO(p + 1)) —> ?rn_i(50) is induced by inclusion, and 

Jn-i
p+1 : irn-i(SO(p + 1)) —» 7rn+2>(Sp+1) is the metastable /-homomorphism 

(see [11]). I t follows from [10] that the inclusion of (2.3) can be improved to 
equality for n ^ 2a — 2, a being a positive integer. 

The main tools of our computations are the Barratt-Mahowald splitting 
theorem [3, Theorem 2], and from [2] the short exact sequence* (n<2p; 
n j* 2a - 2) 

(2.4) 0 -* bpn+1 -> G/+1 -+ cok 7/+1 -» 0, 

*Here bpn+i denotes the subgroup of exotic spheres imbedding in Rn+p+i which bound 
parallelizable manifolds. 
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and the PSH diagram 

%—l p+i 

(2.5) T%{S»% 

Tn-l(SO(P+ 1)) •*W-1(.S0fo + 2)1 
p* 

"n+P (s>+i) ^w^r 

Here, i f is the Hopf homomorphism (see [11]); 5 is just suspension; the top 
sequence is a portion of the nbre-homotopy sequence of the fibering 

SO (p + 2)->S»+1
l 

while the lower sequence is due to G. Whitehead and is exact for n < 2p\ (2.5) 
commutes up to sign. 

The following easily proved proposition is used throughout the paper. 

PROPOSITION 2.6. If tintPo = 0, then Qn>p = 0, for all p ^ p0, for n < 2p. 

We shall also have occasion to use the following proposition. 

PROPOSITION 2.7. QUtP is 2-primary in the metastable range, n < 2p. 

This follows directly from (2.3) and the well-known homotopy-theoretic 
fact that the finite part of ker Jn-i

p+1 is 2-primary in the metastable range. 

3. Proof of (2.1). The proof falls naturally into four parts. We can suppose 
that n ^ 17 throughout because results of [10] establish the theorem in the 
remaining cases n ^ 16. 

Part I. The case n = 0(8). This case follows directly from results stated 
previous to the statement of Theorem 2.1. 

Part II. The case n = 1(8). From [13, p. 168] we have the short exact 
sequence 

0 —> ir85+i(FTOim-8fl+f) -> TT8S(SO(8S - i)) —> 7r8S(SO(m)) -> 0 

for large m and i ^ 6, 5 ^ 2. Let i = 4 and let 5 ^ 2 . Since 

Q ^ C k e r v - i " - 1 , 

it follows from the above sequence that 

kerissss~A = TTss+itFm^-ss+O. 

But from [9], this group is trivial and thus ŒntW_6 = 0 for n = 1(8). This 
coupled with Proposition 2.6 concludes the proof of Part II. 
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Part III . The case n = 2, 3, 6, 7(8). The proof breaks into four cases, 

(i) n = 2(8). From [13, p. 167] it follows that the sequence 

(SO(8S - »)) (SO(m))->0 

is exact for m large and j | 4, S è 2. Set i = 4, and suppose that 5 ^ 2 . 
From [9], TT8s+2(Vmtm-ss+4) — 0- Hence, Bott periodicity [4] implies that the 
homomorphism 

W 8 5 " 4 : TTSS+I(SO(SS - 4)) -> w8S+1(SO) 

has trivial kernel. It follows that tin,n-7 = 0 for w = 2(8). Proposition 2.6 
completes this part of the proof. 

(ii) n = 3(8). From Bott periodicity, 7rw_i(50) = 0, for n = 3(8). There­
fore, using the isomorphism &n>p = ker v_ip + 1 H ker J"n_ip+1, w ^ 2a — 2, 
w < 2p it follows from [10] that ker Jn-i

n~2 = 0. 
We wish to show that Jn-i

n~z restricted to wn-i(SO(n — 3))/im d is a 
monomorphism. In thePSHdiagram (3.3), Tn(S

n~z) = z24, Tn-i(SO(n — 3)) = 
2g + 2̂4, and wn-i(SO(n — 2)) = 28 [13] and neither im 6 nor im P vanishes. 
From exactness of the top sequence, the order of im (d) is greater than or 
equal to 24 so ker d = 0. I t follows that ln-i"~z is a monomorphism on 
wn-i(SO(n — 3))/im d = z8 and since ker Jn_iw_2 = 0, the desired result 
follows. 

We wish to establish that J^i7*"4 is a monomorphism. Consider the PSH 
diagram 

(3.4) Tn(S»~% 

jKn^{SO{n ~ 4)) •*w-i(SO(» - 3)) = s24 + z8 

\2n-S (^~4) • **»-* (5W-3) 

r M-3 
*/n—1 

Now, TTW(5W-4) = 0 [21], and TTW_I(50(W - 4)) = z8 [13], so ïn-i
n~4 is a mono­

morphism. Consider the fibre-homotopy sequence 

-> Tw(7n_2.2) -» *-«-i(SO(* - 4)) A *»_i(SO(* - 2)) -> 
associated with the inclusion j : SO(n — 4) —>SO(n — 2). From [8], we have 
7rn(Fw_2,2) = s2 f° r w = 3(8). It follows that imj* ^ 0. We know that 
j+ = ïn-\~

z ° ïn-i
n~4 and that ln~i~4 is a monomorphism. If 

im v_!w-4 C im d = s24 where d : TTW(5W-3) -> 7r„_i(SO(rc - 3)), 

then the exactness of (3.3) would give imj* = 0, hence im v_iw~4 is isomorphic 
to irn-i(SO(n — 3))/im d. But, as we established above, Jn-i

n~* restricted to 
this subgroup is a monomorphism and it follows that ker Jn-\~

4 = 0. 
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Since TTW(5W-5) = 0, the PSH diagram for Jn-i
n-5 and Jn-i

n~4 shows t h a t 
ker Jn-i

n~5 = 0. Consider the diagram 

0y 

(3.5) Tn(S^ 

w-i(S0(» - Q))^rn-i(SO(n - 5) ) 

W T ^ - 6 ) o n t o > **-*{&-*)' 

p* 

for n = 3 (8) . F rom [3; 9; 22] we have 

7rw_i(SO(tt - 6)) = zs, Tn^(SO(n - 5)) = zs and 7rn_i(5w-6) = 0. 

From exactness of the top sequence, we have ker Jn-i
n~5 = 0, implying t h a t 

ker Jn-i
n~e = 0 as desired. This completes the proof of (ii). 

(iii) n = 6 (8) . From the tables [9] and metastable splitt ing we have 
irn-i(SO(n — 6)) = z2 + z2 and irn-i(SO(n — 5)) = z2. Exactness implies 
t h a t im d 9e 0. I t is known t h a t im P = z2 in this case. I t follows t h a t 
ker Jn-\~

h = 0 implies ker Jn-i
n~e = 0 which is the desired conclusion. In 

order to prove t h a t Jn-i
n~5 is a monomorphism for n = 6(8) first recall t h a t 

irn-i(SO) = 0 and Œw>n_3 = 0 imply ker Jn-i
n~2 = 0 and then use [9], [22] 

and the three successive PSH diagrams to establish ker Jn-\~
h = 0. T h e 

a rguments are part icularly easy and we omit them. 

(iv) n = 7(8) . In the metastable range we have n = 15, 23, . . . . T h e case 
n = 15 was settled in [10] while the case n = 23 is deal t with in the last pa r t 
of this paper, where it is proved t h a t Q23,i2 = 0. For general n, n = 7(8) , the 
result follows from 2.3 above and comparison of Table 4.2 and Table 4.1 in 
[16]. This last determines the appropriate J-homomorphism kernels. 

Part IV. The cases n = 4 , 5 ( 8 ) . F rom (2.3), tin>p C ker i_r*+1 . B u t the 
Bar ra t t -Mahowald splitt ing theorem [3] gives ker in-i

v+l = irn(V2(V+DtV+\) 
for p è 12. Therefore, Qw>w_i4 Q Trn(V2(n-u),n-u) for n ^ 25. Bu t this group 
vanishes for w = 4(8) and furthermore the requirement n < 2p becomes in 
this case n ^ 29. For the case n = 5(8) , irn{V2{n-iz)m-u) = %z and we use 
Proposition 2.7 to obtain the result. T h e proof of Theorem 2.1 is therefore 
complete. 

4. C a l c u l a t i o n of Tab le I. From [10], &i6,i2 = z2 and QU,P = 0 for p ^ 13. 
Since 0i6 = z2, i t follows from Proposition 2.6 t ha t ÇlutP = z2 for 9 ^ p ^ 12. 
This establishes the results of the first row of Table I. 
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PROPOSITION 4.1. Oi7,io = z2. 

Proof. From [13, p. 168, II . 10] we have the short exact sequence 

(4.2) 0 - > TTSS+, (Vm,m-*S+i) - > T8S(S0(8S - i)) - > S2 - > 0 

for i rg 6, 5 ^ 2 and m ^ 85 + 2, using Bott periodicity ir8s(SO(ni)) = 
TT8S(SO) = 22. Letting 5 = 2, m = 19, and i = 5 the sequence becomes 

0 -> 7r17(F19,8) - * TI«(50(11)) -> s2 -> 0. 

We are not able to obtain the middle group from tables of [9] directly. How­
ever, from [8], 7Ti7(Fi9,8) = z2 and it follows from (4.2) that 7ri6(50(ll)) has 
order 4. On the other hand, xi6(50(12)) = z2 [13] and from [22] ineGS11) = 0, 
7ri6+ii(5n) = z2, and 7ri6+i2(5

12) = z2 evaluate groups in the PSH diagram 
below. 

* 1 6 X 

(4.3) 

7T16(50(11))-

\Jun 

^16(50(12)) 

p* 

' 1 6 X 1 ^ 1 6 (S 1 1 ) 
\ff 

T16+11 (-51 1) • 1T16+12 OS12)' 

The proposition will be proved if we can show that ker /1611 = ker £16
n = z2, 

since tin,10 = ker ^ i6 n /^ ker iw11 and ker £i6n £ ker iw11. 
From [22, p. 157], 5 is an isomorphism onto for the 2-primary parts. But, 

the odd primary groups vanish in our case, so 5 is an isomorphism in (4.3). 
Now, the sequence 

0 -> bpn -> 016
12 ~> cok J16

12 -» 0 

is exact and 6i612 = 0 = bpn. Therefore, Ji6
12 is also an isomorphism onto. 

But 7Ti6(5n) = 0 [21], so commutativity of (4.3) gives the desired result. 

PROPOSITION 4.4. Q17f9 = z2. 

Proof. It suffices to show that ker Ji6
10 = z2. Using m = 19, 5 = 2, i = 6 

in the sequence (4.2) we obtain the exact sequence 

0 - > 7ri7(Fl9,9) - » 7Ti 6 (5O(10)) - > Z2 - > 0 . 

From the table in [8], 7ri7(Fi9,9) = z2 + zz + z5 + z1Q, so TTI6(5O(10)) has 
order 26-3-5. Since 0i6

10 = 0, the exactness of 

0 -» bpn • • cok /1 6
1 0 -> 0 

implies that Ji6
10 is an epimorphism. But from [21], the order of 7ri6+io(510) 

is 25-3-5 and hence ker Ji6
10 = z2, and the proof is complete. 
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PROPOSITION 4.5. &i8,io = z2. 

Proof. First note that the sequence 

0 -» bpls -> On1 ^ c o k / i 7 n - > 0 

is exact. Now the order of c o k / n 1 1 is 4, by a simple calculation using 
^n.io = z2, 0n = 22

(4), and 6^i8 = s2 (see [14]). Since from [21], irn+n(Sn) = 
s2

(3), it follows that im Jn11 = z2. It is known that 

ir17(SO(ll)) = TT17(50) + 7r18(F22,n). 
II II 

Z2 Z2 

It follows that ker Jn11 = 7ri8(F22fn) = z2 and thus that flis.io = z2. 

In order to complete the 4th row of Table I, it suffices to compute Œi9ji0 

and fii9fn. The exactness of the sequence 

0 -> bp19 -» e]8
12 -» cok J18

12 -> 0 

together with flis.n = 0 = &/>ig implies that 

Bis12 = Gis = cok Jis = z2 + z8 

where J18 is the stable J-homomorphism, socok/ i 8
1 2 = z2 + z8 (see [14]). 

But from [9], and Bott periodicity wis (SO (12)) = zUQ + s4, while [22] gives 

7T18+12CS12) = ZtS0 + 24(2) + Z2. 

It follows that ker Jis12 = 0 and thus that Qig.n = 0. 
It remains to show that fiig.io = 0. Consider the PSH diagram 

7T19 (S")v 

,x1 8(S0(l l))-

| / l 8 U 

^18(50(12)X 

' 1 8 ' 

*7ri8+ll(511) • 7T18+12(512) 

P* 

r T l 8 OS11) 

jEr 

The pertinent groups are: TIQ(SU) = z2
(2), 7ri8+ii(5n) = z2 + z± + z8, 

7ri8+i2(^
12) = 2̂ + s4

(2) + 248o, a n d TTIS^11) = *24o. The Whitehead product P 
vanishes [21, p. 165]. The short exact sequence 

0 -> bpi9 -> Gig11 -> cok J 1 8
n • 0 

implies that im Jis11 has order 8 since 0i8 — z2 + zs and Qis.io = z2, bpw = 0. 
Since iri8(SO) = 0, any element in ker Jis11 is stably trivial. Therefore, it will 
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suffice to prove that the order of 7ri8 (50 (11)) does not exceed 8. But this follows 
directly from the fibre-homotopy sequence of 

50(11) ->50(22) -> 7*2.11, 

noting that the order of 71-19(̂ 22,11) is exactly 8 [9]. This completes computation 
of the 4th row of Table I. 

We will compute U2o,P for p ^ 11. We will show that 

ker J19
12n7r2o(F24,i2) = 0 

from which it follows that 122o,n = 0, which by Proposition 2.6 proves the 
desired result. Now, 7^0(^24,12) = z2

(4), 7ri9+i2(512) = £264 + ^2(5), follows 
from [9] and [22], respectively. Since /1912 restricted to 7Ti9(50) = z has image 
0264 (see [1]), and Q19.11 = 0, it follows from 2.4, together with 

bp20 — Z2, #19 = £4, 

that cok/1912 = cok J19 = z2, J19 being the stable J-homomorphism, and 
therefore that ker / i 9

1 2 P\ 7^0(1^24,12) = 0. 
Consider the homomorphism J2012 : 2̂0 (50(12)) —» 7r2o+i2(512). One sees 

that 7T20(5O(12)) = s2
(5) and 7r20+i2(512) = z24 + z2

{5) follows from [9; 22]. 
The isomorphism T20(SO (12)) = 7^1(^24,12) used results from the fibre-
homotopy sequence of the fibering 50(12) —> 50(24) —» F24,12 and Bott 
periodicity. From [22] we obtain 02o = £24 and because Q20.11 = 0 implies that 
cok J2012 = cok/20 = 2̂4 (bp2i = 0), we obtain 02i,n = 0, and hence 
«2i,P = 0,P^ 11. 

We will now show that 1222,12 = 0. First note that the order of 02i is 8 and 
that bp22 = z2. But, Q2i,i2 = 0 so that 62i13 = 02i and from the exactness of 
the sequence 

0 -> bp22 -» 92i13 -» cok J2i13 -> 0 

it follows that cok J2113 has order 4. From [9], we have ^21 (50 (13)) = z2 + z4, 
while 7T2i+i3(513) = 24 + £2

(3) comes from tables [19]. Clearly, ker / 2 i 1 3 = 0 
follows, and we have proved the desired result, namely, U22,P = 0, p ^ 12. 

We wish now to show that 1223,i2 = 0. First note that the order of 022 is 4, 
that bp2z = 0, and that cok /22

13 = 022
13 = 022. Since 7r22(50(13)) = s16 [9], 

and 7T22+i3(513) = z1Q + z2
(2) [19], it follows that ker J2213 = 0, which yields 

the desired result. Consequently, 023.P = 0, p ^ 12. 
The remainder of the results of Table I may be derived from [16] by compar­

ing Table 4.1 and Table 4.2 in that paper. 

Acknowledgment. The author wishes to express his gratitude to Mark 
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of this paper. 
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