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Splash on a liquid pool: coupled cavity-sheet
unsteady dynamics
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Splashes from impacts of drops on liquid pools are ubiquitous and generate secondary
droplets important for a range of applications in healthcare, agriculture and industry.
The physics of splash continues to comprise central unresolved questions. Combining
experiments and theory, here we study the sequence of topological changes from drop
impact on a deep, inviscid liquid pool, with a focus on the regime of crown splash
with developing air cavity below the interface and crown sheet above it. We develop
coupled evolution equations for the cavity—crown system, leveraging asymptotic theory
for the cavity and conservation laws for the crown. Using the key coupling of sheet and
cavity, we derive similarity solutions for the sheet velocity and thickness profiles, and
asymptotic prediction of the crown height evolution. Unlike the cavity whose expansion is
opposed by gravitational effects, the axial crown rise is mostly opposed by surface tension
effects. Moreover, both the maximum crown height and the time of its occurrence scale
as We>/7. We find our analytical results to be in good agreement with our experimental
measurements. The cavity—crown coupling achieved enables us to obtain explicit estimates
of the crown splash spatio-temporal unsteady dynamics, paving the way to deciphering
ultimate splash fragmentation.

Key words: drops, interfacial flows (free surface), aerosols/atomization

1. Introduction

Impacts of drops on liquid layers are ubiquitous. With sufficient energy, such impacts
can lead to a splash, producing myriads of secondary small and fast droplets of great
importance to understand environmental processes such as raindrops impacting oil spills
on the surface of the ocean (Teal & Howarth 1984; Aguilera et al. 2010; Fingas 2013),
as well as in healthcare, agriculture and wastewater treatment plants. In these systems,

1 Email address for correspondence: Ibouro@mit.edu
1 Equal contribution.

© The Author(s), 2024. Published by Cambridge University Press 1002 A13-1

Check for
updates


mailto:lbouro@mit.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.1105&domain=pdf
https://doi.org/10.1017/jfm.2024.1105

https://doi.org/10.1017/jfm.2024.1105 Published online by Cambridge University Press

R. Dandekar, N. Shen, B. Naar and L. Bourouiba

@ )
! / Droplet e
& Ligament

Wave swell

Figure 1. (a) Splash on deep pool forming a cavity, wave swell, crown and secondary droplets. The crown is
bounded upward by a rim, a bulge, typical of extended free sheets in the air. The rim destabilizes to form the
ligaments and droplets seen ejected upward. Scale bar: 2 mm. (b) Splash on a thin film (Bourouiba 2021a). The
impinging drop liquid and the receiving film liquid are of different colours, showing complex mixing in the
ejected droplets. Scale bar: 4 mm.

pathogens, pesticides or a range of contaminants contained in these impacted pools can be
released and contribute to air contamination via the splash ejection of carrier droplets
and aerosols (Horrocks 1907; Darlow & Bale 1959; Gerba, Wallis & Melnick 1975;
Rein 1993; Barker & Jones 2005; Yarin 2006; Johnson et al. 2013; Traverso et al. 2013;
Bourouiba, Dehandschoewercker & Bush 2014; Gilet & Bourouiba 2014, 2015; Josserand
& Thoroddsen 2016; Jung et al. 2016; Poulain & Bourouiba 2018; Alsved et al. 2019;
Poulain & Bourouiba 2019; Bourouiba 2021a,b). In industrial applications, the control of
spray, thermal coatings, and more also requires understanding of splash (Aziz & Chandra
2000; Fauchais et al. 2004; Dhiman & Chandra 2005).

Upon impact on a pool, a liquid drop of diameter dy and impact velocity ug can
generate a splash (see figure 1). When a splash occurs on a deep pool (figure la),
first, an air cavity forms below the liquid interface while a cylindrical liquid sheet rises
above the surface (figure 1). As the sheet rises, azimuthal instabilities emerge, leading
to the formation of ligaments themselves breaking into secondary droplets, giving it
a crown-like form (figure la). Upon reaching maximum height, the crown starts to
collapse back into the pool. Eventually the cavity collapses as well. During such process a
myriad of secondary droplets can be formed and projected with great speed. Moreover,
a high-pressure stagnation point can be created in the underlying cavity, forming an
upward-rising jet, itself potentially breaking to generate further droplets. The seemingly
simple droplet impact on a liquid pool thus shows a rich behaviour. In many applications,
the resulting complex mixing between the impinging and receiving liquids is of critical
importance. For example, using dyes of different colour, figure 1(b) shows that droplets
of different liquid compositions can be generated after impact. Since the seminal work
of Worthington (Worthington 1877, 1883, 1908; Worthington & Cole 1897) and Edgerton
(Edgerton & Killian 1954), the rich physics governing liquid-on-liquid impacts and the
resulting splash have been the subject of extended interest.

Depending on the energetics of the impact with respect to the interfacial and
gravitational restoring forces, a crown splash can occur (figure 1) or is replaced by a
closing cavity eventually forming a bubble and jet (figure 2a). The Weber number, We,
and Froude number, Fr, are two non-dimensional parameters quantifying the relative
importance of the kinetic energy of the impacting drop to its surface energy or to the
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Figure 2. (a)Image sequence for (i) descending drop, (ii) bending crown, (iii) canopy development, (iv) bubble
formation and (v) bubble burst during a drop—pool impact. These correspond to dimensionless time fug/dy =
8.4, 16.8, 151.5, 185.1 in (ii)—(v) respectively. The impact Weber number is We = 1700 here. In (a ii), the arrow
points to secondary droplets ejected from the splash canopy, typically formed at late time, when it forms.
(b) Image sequence for the typical rise of an approximately cylindrical splash crown, up to maximum height,
obtained for We = 990 and (i)—(v) tug/do = 0, 2, 4, 6, 14. A scale bar of 5 mm is given for each sequence in
(ai,bi).

potential gravitational energy, respectively. They are defined as

2 2
d
— M, Fr = ﬁ’ (1.1a,b)
o gdo

with p the density and o the surface tension of the liquid. An extensive survey of different
impact outcomes as a function of We and Fr is discussed in Murphy et al. (2015).

Most of the focus has been on drop impacts on thin liquid layers in which the layer
thickness H is smaller than the impacting drop diameter dp, i.e. H < dp (Rein 1993;
Weiss & Yarin 1999; Wang & Chen 2000; Roisman & Tropea 2002; Josserand & Zaleski
2003; Cossali et al. 2004; Josserand, Ray & Zaleski 2016). A comprehensive survey
of published experimental and numerical results obtained for thin films is reviewed by
Liang & Mudawar (2016). In contrast, less attention has been paid to impacts on deep
liquid layers (Engel 1966, 1967; Prosperetti & Oguz 1993; Agbaglah et al. 2015), where
the resulting cavity—crown system shows distinctive characteristics. Here, a deep pool is
defined to be one in which the air cavity at its maximum depth does not interact with the
pool boundary. Such a pool has a typical thickness H much greater than the impacting
drop diameter: H > dj.

For impacts on deep pools, the cavity dynamics has received most attention, with an
initial attempt to model its growth dynamics using a drop—cavity energy balance model
Engel (1966, 1967). However, these results were limited given the incorrect potential flow
field used therein (e.g. Lherm & Deguen 2023). Similarly, by assuming that entire drop
initial energy is converted to cavity potential energy, Pumphrey & Elmore (1990) and
Liow (2001) studied the maximum cavity depth D,, in terms of the drop diameter d
and its impacting velocity ug. The accuracy and robustness of such energy analysis for
a hemispherical cavity were further questioned by Bisighini et al. (2010), who instead
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developed a descending sphere model based on potential flow and the Bernoulli equation.
Lherm & Deguen (2023) extended this unsteady solution using a Legendre polynomial
expansion. The cavity temporal evolution was also simulated numerically by Berberovic¢
et al. (2009), Morton, Rudman & Jong-Leng (2000), van Hinsberg et al. (2010), Ray,
Biswas & Sharma (2015) and more recently Wang et al. (2023). Recently, the early time
cavity dynamics immediately after the impact has garnered considerable interest for its key
role in shaping subsequent events of the splash, including the crown formation and ejection
of secondary droplets. During this initial contact, an ejecta consisting of the receiving pool
extends horizontally below the impacting drop before a vertical sheet-like jet develops into
a splash crown (Weiss & Yarin 1999; Thoroddsen 2002; Zhang et al. 2012). The interaction
between these two jets and an entrapped air cushion leads to complex contact surface
dynamics and a rich class of flow instabilities that are the subject of active investigations
(Castrejon-Pita, Castrejon-Pita & Hutchings 2012; Thoraval et al. 2012; Agbaglah et al.
2015; Li et al. 2018). In this study, we focus on the late dynamics when a rising crown
sheet has emerged from the receiving pool.

For drop impacts on thin, inviscid layers, Yarin & Weiss (1995) attributed the crown
formation to the discontinuity in the velocity distribution at the interface using a
quasi-one-dimensional (Q1D) approximation and derived an expression for the temporal
evolution of the crown diameter £, namely £/dy o (tug/dp) 1/2 Roisman & Tropea (2002)
extended the discontinuity theory of Yarin & Weiss (1995) to predict the crown motion
and shape in two dimensions.

Cossali, Coghe & Marengo (1997) also analysed the crown diameter temporal evolution
for impacts on thin films and found that the crown size grows as the square root of time,
in agreement with the prediction of Yarin & Weiss (1995). These findings were verified
numerically by Rieber & Frohn (1999). Several studies aimed to decipher the crown
rim instability (Fullana & Zaleski 1999; Roisman et al. 2007; Krechetnikov & Homsy
2009; Roisman 2010; Zhang et al. 2010), with a particular interest, again, on impacts
on thin films. In contrast to the dynamics on thin films, analytical expressions for the
dynamics of the crown diameter and height for drop impacts on deep pools continue to be
missing. Further, for deep pool impact, the complete sequence and coupling of the events
from cavity to crown to secondary droplets remain poorly understood. For example, the
crown sheet velocity and thickness profiles, which are essential descriptions of the crown
evolution in both time and space, have not been reported, except estimates given by Cossali
et al. (2004) and Aljedaani et al. (2018) in the thin-film regime. Although in principle the
detailed crown dynamics could be examined using numerical simulations (e.g. Fujimoto
et al. 2001; Agbaglah et al. 2015; Fudge, Cimpeanu & Castrejon-Pita 2021), the absence
of a theoretical framework for crown modelling presents major challenges in predictions
for the secondary droplets ejected from the rim of the crown (figure 1).

In this paper, we combine experiments and theory to examine the coupled cavity—crown
system with a focus on the regime of crown splash (figure 1a). For We £ 1600, the crown
bends inwards leading to the formation of a canopy (figure 2aiii) (Engel 1967; Murphy
et al. 2015). The canopy can also lead to the formation of a bubble, that can produce
microdroplets via the well-known film rupture mechanism, the size and speed of which
depend on the thickness and composition of the film (Lhuissier & Villermaux 2012;
Poulain, Villermaux & Bourouiba 2018) as illustrated in figure 2(aiv,v). Film bubble
drops are distinct families of secondary droplets that can be enriched in contamination
from the pool. These were studied elsewhere (Poulain et al. 2018; Poulain & Bourouiba
2018, 2019; Bourouiba 2021a) and are beyond the scope of this paper. As a result, here,
we focus our attention on the range of We identified experimentally to ensure splash
without canopy closure: 500 < We < 1600 for water drops impacting deep-water pools.
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Figure 3. All of the secondary droplets are ejected from the crown rim by 7}, the time of maximum crown
height. The figure shows the point in time in which about 95 % of the microdroplets detected from the crown
have been emitted. This occurs around half the time of maximum crown height over the full range of We
we consider. Here, f,, is the dimensional time at which the crown reaches its maximum height and 7, =
tmy/ O/ pdg ~ 1 is the associated dimensionless time non-dimsionalized with the capillary time. An average of

10 experiments are shown per We here, again, focusing on a regime of crown splash free of canopy closure and
where tracking of appearance of the droplets emitted by the crown is done regardless of their size.

Figure 2(b) and supplementary movie show a typical splash development in this regime
where an approximately cylindrical crown arises, shedding droplets around the rim. It is
interesting to note that for such a splash regime, most secondary droplets are ejected from
the crown rim before the crown reaches its maximum height, an observation that remains
valid over the full range of We in our range of interest (figure 3).

The rest of this paper is structured as follows. In §2 we explain our measurement
methods for the coupled cavity—crown system. We then analyse the cavity evolution in
§ 3 based on the model of Bisighini et al. (2010). We derive an asymptotic solution to
the model that captures the experiments. We devote § 4 to examining the splash crown,
modelled as a double-sided cylindrical sheet. Connection to the cavity expansion is first
established empirically for the crown diameter. We subsequently invoke the thin-film
approximation for the crown sheet, leading to conservation equations for a Q1D flow.
We solve the corresponding initial-value problems asymptotically for the velocity field,
the thickness profile and the height evolution of the crown sheet. Our analytical results are
validated using experimental measurements. We discuss the conclusions in § 5.

2. Experiments and measurement methods

We release one water drop at a time from a range of heights on a liquid pool, made of the
same fluid as that of the impacting drop. We consistently produce water drops of diameter
do ~ 4-4.7 mm as shown in figure 4(a) to impact a tank that ensures deep-pool conditions,
with dimensions on all sides and in depth that are more than 10 times the diameter of
the impacting drop. The effective diameter of the drop is measured from its area and
used as the impacting drop diameter dyp (Wang & Bourouiba 2023, 2018). We vary the
imparted energy of impact by changing the drop release heights, with impact velocities

measured to be up to ug = 5 m s~! at the point of impact. These values are associated
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Figure 4. (a) A drop is released from heights varying from 2 to 5 mm. Backlighting with a diffuser is used to
visualize the splash with a high-speed camera. (b) A typical cavity—crown image with key dimensions labelled
is shown. The rectangle here encloses the corrugated rim without all the attached ligaments. The width b is
the characteristic rim diameter. (c) Left: drop from the surface determined at point of impact using reflection
on the interface. Right: the resulting crown at its maximum height. The crown height is defined between the
unperturbed pool interface to the mean base rim level. Note the relatively higher curvature for heights below
z/do = 0.5, preventing measurements of particle velocity in and thickness of the sheet. This relatively higher
curvature junction is also visible in figure 2(b). We also illustrate the uncertainty of the crown height introduced
mostly by the error on detection of the base of the rim. Note that the error on the edge of rim detection
is typically larger than the standard deviation of crown heights between repeat experiments. Meanwhile, the
variability of rim level measured at different azimuthal angles is typically twice that of the crown height error
shown here. (d) Particle tracking for the sheet velocity measurement. The particles used are of ~50 pm with
error on position of their centre no larger than 2-3 pixels, that is, at most 0.03 mm, which is smaller than their
distance travelled over the sampling time we find sufficient to determine their speed in subsequent sections
and figure 8, e.g. 0.5 mm. (¢) Schematic of the modelled cavity—crown system formed upon drop impact on
a liquid pool in axisymmetric cylindrical coordinates (r, z). The cavity depth D(r), wave swell profile w(r, 1),
crown sheet thickness /(z, ), crown height s(#), crown diameter £(¢), rim diameter b(¢) and crown sheet velocity
vg(z, 1) are shown.
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Quantity of interest 7 do We Fr Bo Re No. of
(ms~")  (mm) x 104 exp.

Cavity depth, D 3-5 4-47 500-1600 195-630 2-3 1.2-2.3 40

Crown sheet velocity, vy 3-5 4-47 500-1600 195-630 2-3 1.2-2.3 20

Crown sheet thickness, & 3.7-5 4.7 900-1600  290-540 3 1.7-2.3 20
Crown diameter, ¢ 3-5 4-47 500-1600 195-630 2- 1.2-2.3 100
Crown height, s 3-5 4-4.7 500-1600 195-630 2- 1223 100

W W

Table 1. Experimental conditions for water drop impacts on water pools when examining various quantities
of interest (leftmost column). Deionized water was used for both the impacting drop and the pool fluid with
density, kinematic viscosity and surface tension p = 1 x 10> kg m™>, =1 x 1073 mPas and o = 72 x
1073 mN m~!, respectively. The values of the Weber number We = pu(z)a’o /o, Froude number Fr = u% /gdo,
Bond number Bo = pgd% /o, Reynolds number Re = pupdy/q and the number of experiments performed are
also provided.

with Weber numbers up to We ~ 1600. To minimize impact effects associated with the
initial shape of an impinging drop, we chose the release heights so that at the impact
time, ¢ = 0, all drops share a similar aspect ratio caused by the capillarity-induced shape
oscillations during free-fall. High-speed imaging is conducted using back-lighting along
with a classical diffuser and at frame rates of 3200-5000 per second (fps) for the colour
camera and 10 000-12 500 fps for the monochrome camera for most impacts, or higher if
need be for the very early time dynamics, and up to 30 000 fps. The experimental set-up
was designed to minimize vibration, and experiments were conducted in a laboratory
with ambient temperature control. Lighting was designed, installed and used to minimize
heating effect on the pool. A combination of imaging was done: some focusing on the
crown above the interface pool; some focusing on the cavity below the interface pool;
and some capturing both top and bottom dynamics across the interface. Measurements
account for the presence of a meniscus with regard to crown height, crown thickness and
velocity profile, as discussed in the relevant sections and figure captions. We only focus
on the range of We identified experimentally to ensure splash without canopy closure:
500 < We < 1600 for water drops impacting deep-water pools, as seen for example in the
sequence of figure 2(a). The range of parameters and values used are given in table 1.
Table 1 also lists five key quantities that we consider for the cavity—crown system
in a splash experiment, as illustrated in figure 4(b). These include the cavity depth D,
the crown diameter ¢, the axial flow velocity in the crown sheet vy, the crown sheet
thickness A and the crown height s. Specifically, D is measured between the undisturbed
pool surface and the lowest cavity point; £ is the horizontal distance between the outer
sheet boundary taken immediately below the lowest elevation of the rim. Note that s
is the vertical distance between the unperturbed pool surface and the spatially averaged
lower rim boundary along the azimuth, 8. We define crown height s based on such a
mean value to remove fluctuations caused by any periodic rim instabilities (e.g. of the
Rayleigh—Plateau type). Specifically, perturbations over the mean value s in the form of
50,0=>", £0Cn (H)e™ e R do not alter s for all permissible time-dependent complex

amplitudes ¢, (¢) and wave modes n € Z due to the identity | _TET[ 5d6 = 0. Averaging also
mitigates random spatial inhomogeneities introduced in the initial impact dynamics. As
a result, our measurement of s is expected to approximate an axisymmetric quantity
well, offering robust characteristics of the splash across experiments repeated under the
same conditions (including camera settings). Note that the modal amplitude ¢, of the rim
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instabilities is not the focus of this paper. For this reason, we also distinguish experimental
uncertainty associated with s from the variability of the rim levels at different azimuthal
locations. Typically, the former is mostly introduced by edge detection algorithms that
determine the rim boundary in images captured under specific settings; whereas the
latter is caused by rim instabilities and inhomogeneous impact, whose magnitude in our
case is at most twice that of the error in s, as shown in figure 4(c). In comparison,
the standard deviation of s measurements obtained between repeated experiments is
consistently smaller than the s error associated with rim edge detection methods at all
times. While length measurements of D, £ and s can be obtained using standard image
processing techniques, measurements of vy and £ require dedicated treatments.

First, to determine the sheet velocity profile, in a separate set of experiments, we seed the
impacting drop and the pool fluid with polyethylene microspheres of ~50 pm in diameter

and a density of 1 40.05 g mL~! at a concentration of about 0.2 g per 10 mL. These
particles are used as flow tracers. Trajectories of the particles entering the crown sheet at
varied times are captured (figure 4d and supplementary movie) for both the drop fluid and
the pool fluid associated with a wide range of impacting Weber numbers (500 < We <
1200).

Next, to measure the sheet thickness profile, we use a light absorption method (Vernay,
Ramos & Ligoure 2015; Wang & Bourouiba 2017; Si et al. 2024). We select the use of
nigrosin which we have established, in prior work (Wang & Bourouiba 2017), to follow
the Beer—Lambert law of absorption even with non-monochromatic white light:

h=ecin (2 2.1
_en<7>, 2.1

where Iy is the incident background light intensity and 7 is the transmitted light intensity
after passage through a film of thickness % (e.g. Wang & Bourouiba 2017; Si et al. 2024).
Here, € = 1/(yC) = 2220 pm with absorptivity y = 4.5 x 107> L (gum)~!, given a
nigrosin dye concentration of C = 0.1 g L™! herein. Moreover, / is the measured intensity
of transmitted light after passage through two films of thickness £, i.e. 2k, rather than just
one. Moreover, in the crown geometry considered here, we measure intensity only above
the point of highest curvature marking the ‘wave swell’, typically above z = 0.5 as seen,
for example, in figure 4(c).

3. Cavity dynamics

We begin our analysis with the evolution of the cavity below the liquid surface generated
by the impacting drop. An axisymmetric cylindrical coordinate system (r, z) with origin
located at the initial drop—pool contact point at time # = 0 is used to describe the
cavity—crown structure (figure 4d). Based on Bisighini et al. (2010), we derive an explicit
approximate expression for the cavity depth D(¢) in the large We and Fr limits that captures
the experimental measurements well, up to maximum depth.

3.1. Governing equations for the cavity

Bisighini et al. (2010) model the cavity as an expanding sphere of radius a(¢) centred at
7z = —z.(¢) along the axial direction. Assuming potential flow for the liquid surrounding
the cavity and consequently balancing pressure along the crater boundary obtained from
the linearized Bernoulli equation with surface tension, i.e. enforcing the Young—Laplace
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equation near the cavity bottom z = —D(¢), one derives the following non-dimensional
ordinary differential equations (ODEs) for the cavity:

342 2 772
a2 -ty e 3.1a)
2¢ Wed? Fra 4a
. 3az. 932 2
o e T 2 3.1b
‘e a 2a Fr ( )

where the overdot denotes time derivatives, the Weber number We and Froude number
Fr are defined in (1.1a,b) and we have chosen the reference length dy (impacting drop
diameter), velocity ugp (impacting velocity) and time dp/up to obtain dimensionless
variables. We henceforth default to this inertial scaling in the rest of this study unless
otherwise stated.

The initial condition associated with (3.1) must be specified at a non-zero time r = 79
2 to allow for sufficient time for the cavity formation caused by the initial drop penetration
process (Fedorchenko & Wang 2004; Berberovi¢ et al. 2009; Wang et al. 2023). Detailed
discussion for such early phase drop deformation is not the focus of this study. Instead, we
close (3.1) with initial values measured experimentally at around ¢ty &~ 1.5 when the cavity
shape starts to take a spherical cap. Subsequently, the crater depth can be modelled using
D(t) = a(t) + z.(t) for t > 19.

3.2. Asymptotic solutions
One important solution to (3.1) in the We — oo and Fr — oo limits, with z(f9) = z(tp) =
0, is given by
a(t) = A — )", z.() =0, (3.2a,b)

where A and ¢, are constants. This scaling law is well known; for example, Berberovic¢
et al. (2009) estimated that A = (5/4)%/°, t, = 6/5.

Next, we develop an asymptotic correction for z., noting that the coupling between a
and z. in (3.1a) is weak if the cavity’s radial expansion dominates its axial translation,
i.e. |z¢./al < 1. In this case, (3.2a,b) also holds for moderate Fr and large We. Therefore,
substituting (3.2a,b) into (3.10) while considering |z./a| < 1 leads to

e 4 2 g (3.3)
“TSe—1) B '
which can be solved exactly to give
—562 + 1015t cl
D(t) = L= At — 1) S , 3.4
(N=a+z.=A0—1)"" + T F (t_ts)l/s—i-q (3.4

where c1 and ¢y are constants determined by initial values. Equation (3.4), parametrized
by Fr, offers an explicit approximate solution to (3.1) in the strict limit of We — oo.
Compared with (3.2a,b), the correction offered by finite Fr > 0 in (3.4) alters the
monotonic behaviour of the original limit and introduces a global maximum for D as ¢
increases. Physically, this is consistent with the fact that the cavity depth must retract
after its initially growth and penetration into the pool due to gravitational effects. The
kinematic reason for such retraction is that the centre of the air cavity —z. given by
(3.3) with Fr > 0O rises over time, i.e. z- < 0 and z. < 0. Originally, Fr enters (3.1b)
because gravitational potential for the liquid flow field around the cavity is incorporated in
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the dynamic Bernoulli equation. Therefore it is primarily the gravitational pull on the
displaced liquid that stops the air cavity from penetrating the pool indefinitely, rather
than surface tension. A direct comparison between these two restoring forces for cavity
retraction is given in § 3.3.1. In contrast, we also show later in § 4.4 that the leading-order
mechanism that modulates the growth of an initially rising crown is surface tension rather
than gravity.

3.3. Experimental and numerical results

We now can compare the cavity depth measurements with the models of (3.1), (3.2a,b) and
(3.4). All experimental data obtained at early times are aggregated and follow (3.2a,b).
However, given the open questions regarding the very initial details of the impact, the
constants are impossible to predict at this time. The constants are found to be A = 1 and
ty = 1.4 using a least-squares method, and close to the values of Berberovié et al. (2009).
Accordingly, z(f9) = z(t9) = 0 and a(#y), a(tp) are evaluated using (3.2a,b) as initial
conditions. Solutions to (3.1) are calculated numerically using a fourth-order Runge—Kutta
scheme.

Figure 5(a) shows comparisons of D(¢) for experiments and theory for three sets of
increasing We and Fr. In all cases, the numerical solution to (3.1) is in agreement with the
measurements over time, well beyond the instant of maximum cavity depth. This is not
surprising as similar verification for the model of Bisighini ez al. (2010) was also provided
in Lherm & Deguen (2023) and Wang et al. (2023) with different initial conditions. In
addition, we show the performance of the two asymptotic solutions (3.2a,b) and (3.4) for
each experiment: the improvement made by the Fr-dependent approximation (3.4) over the
limiting power law (3.2a,b) is clear. Specifically, (3.2a,b) as a monotonically increasing
function can only capture measurements of cavity dynamics at early times, whereas (3.4)
provides a theoretical peak enabled by gravitational effects of finite Fr that overall corrects
(3.2a,b) close to the observed maximum depths.

3.3.1. Universal underlying dynamics on the capillary time scale

Now we consider a different asymptotic regime for (3.1a) where the Fr — oo limit is taken
for large but finite We. By expanding (3.1a) in power series of We™! « 1, we explicitly
derive in Appendix A.l the leading-order solution and its next-order correction as follows:

1 25(t — 15)%/3
N=AGt—1) + — | - "——
a(t) (t—t5) +We[ B2

D(x) 2 25t%° ]
Wel/5 615 18 x 63/5 we2/5’

where in (3.5b) we have used the capillary time 7 (with its dimensional reference Tcqp)

given by
[6 | pd3
T=1 @, Tcap = 6_0" (36a,b)

with 7 the time defined earlier as non-dimensional time with respect to impact time, i.e. t =
dimensional time/(do/ug). As We — oo, (3.5b) thus suggests that D scales with We™!/>
at leading order while a capillary restoring term decays as We™%/>. Figure 5(c) shows the
rescaled D(z)/We!/> as a function of 7. Our experimental data for D of specific ranges of
We and Fr collapse well under such capillary normalization. However, the corresponding
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Figure 5. Time evolution of cavity depth D. In the three panels of (a), experiments are compared to theory
in the limit of We, Fr — oo (see (3.2a,b)) and for the approximation |z./a| < 1 and |z./a| <« 1 for increasing
We and Fr. In each case, the solid line shows numerical solution to (3.1), the dashed line gives the limiting
law of (3.2a,b) and the dash-dotted line plots the approximation of (3.4). (b) Plot of D(f) over inertial time
t shown for (We, Fr) = (500, 183), (633, 232), (871, 303), (1067, 420), (1434, 509), (1530, 612). The dashed
limit (3.2a,b) captures all D(r) data at early times. (¢) Rescaled We™!/>D as a function of capillary time T (see
(3.6a,b)) that collapses the same measurements given in (b). Here the dotted and dashed lines respectively show
the rescaled (3.5b) for We = oo and We = 500, while the solid and dot-dashed lines respectively show (3.4)
evaluated using (We, Fr) = (500, 183) and (1434, 509). The error bars shown capture the error of detection of
the edge of the cavity.

capillarity-dominant model (3.5b) does not capture the collapsed data in this case, whereas
the gravity-dominant model (3.4) shows better agreement.

Note the distinction with the effects of varying We and Fr on the cavity depth evolution
examined next in figure 5(b,c). Under the default inertial scaling, a series of D(r)
measurements by increasing We = 500, Fr = 183 to We = 1530, Fr = 612 are also given
in figure 5(b). We find that all experiments share the same initial rise that follows the large
We, Fr law of (3.2a,b), which justifies our estimation of A = 1 and t; = 1.4 discussed
previously. By increasing We and Fr, larger maxima of D(t,,) are observed at larger times
t = t. In addition, figure 5(c) shows a direct comparison between cavity retraction due
to gravity and surface tension, using (3.4) and (3.5b), respectively. Even at the lowest
experimental value We = 500, the retraction correction of O(We™2/3) in (3.5b) does not
increase quickly enough to take over the leading-order cavity growth D o 72/, whereas
(3.4) of finite Fr successively generates maximum cavity depths near the measured peaks.
Therefore, we conclude that gravity is the dominant restoring force for the cavity.
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4. Crown sheet dynamics and coupling with cavity

In this section we develop a simplified theory for the development of the crown sheet as
a result of drop impact. We take the crown geometry to be approximated as a double-wall
cylinder of spatially uniform diameter £(¢), axially varying thickness h(z, ) < £ and
height s(7), as illustrated in figure 4(e). This simplified geometry does not accommodate a
sheet of oblique angles nor bending near the wave swell and the rim. More elaborate crown
sheet geometries have been studied for drop impact against thin films (Roisman & Tropea
2002; Fedorchenko & Wang 2004), but it was established that films of larger thickness
comparable with the drop size (H/dy ~ 1) always produce a vertical crown perpendicular
to the liquid layer (Wang & Chen 2000; Fedorchenko & Wang 2004). This is consistent
with our impact experiments on a deep pool (H/dy > 1) where a vertically rising crown
sheet can be reasonably identified as the top rim separates away from the bottom wave
swell. In the experiments, both £(¢) and s(¢) are measured immediately below the crown
rim. Due to mass transfer enabled by the outward velocity within the thin sheet, vg|,—s, the
rim destabilizes into corrugations, then ligaments that ultimately fragment into secondary
droplets (figure 1). Here, we idealize the rim as a torus of ring diameter b(¢), neglecting its
local azimuthal topological variation induced by instability and fragmentation. Given the
geometry involved, we also invoke the thin-film approximation. Despite these geometric
simplifications, next we derive analytical expressions for vy, & and s that are in good
agreement with our measurements.

4.1. Crown diameter from cavity dynamics

Following Yarin & Weiss (1995) who related the crown expansion to the propagating
cavity in a thin film as a kinematic discontinuity, the diameter of the crown sheet above
a liquid layer has been investigated extensively, as reviewed by Liang & Mudawar (2016).
In those studies, a power law of the form £(f) = a (¢ + ¢)?, independent of We and Fr, is
widely reported, with the exponent in the range 0.4 < p < 0.5. On the other hand, results
obtained for a crown sheet generated in a deep pool are scarce. Notably, Roisman, van
Hinsberg & Tropea (2008) extended the kinematic discontinuity theory of Yarin & Weiss
(1995) and derived an expression for the cavity evolution, and therefore the crown diameter
measured at its base £ = £(t; We, Fr, H), incorporating a finite liquid layer thickness H
(dimensionless). However, their expression cannot be generalized to the deep-pool limit
as it diverges for H — oo at any finite We and Fr. Instead, its We — oo, Fr — 00
limit exists for any given H, recovering the well-known result of Yarin & Weiss (1995),
Le. £ o4/t +c.

Similar to the geometrical argument made by the kinematic discontinuity theory, here
the crown sheet expansion above a deep pool must also be related to that of the underneath
cavity. Therefore we propose a model such that after the initial sheet formation when
t > to ~ 1, the sheet diameter £ grows in accordance with the asymptotic cavity depth D.
Specifically, using the We — oo limit of (3.5b), we propose

(1) = aD(t +¢) ~ a(t + ¢)*°, 4.1)

where the proportional constant « is independent of time ¢ but could depend on We and Fr,
and the time shift ¢ accounts for the observation that the crown sheet develops measurable
diameters before the cavity forms.

Indeed, (4.1) captures the experimental data well (figure 6). The best-fit & and ¢ values
are of order unity and vary little from a set of We, Fr to another. Moreover, in figure 6(b)
we compare the long-time behaviour of (4.1), i.e. £ o /7, and the thin-film result of Yarin
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Figure 6. Time evolution of the crown diameter £(¢). (a) Experiments are compared with the model of
(4.1), with fitted « = 1.3,¢c =2.2 and « = 1.4, ¢ = 3.7 for We = 630 and 1070, respectively. The two filled
data points mark the time when the maximum cavity size is reached in each corresponding experiment.
(b) Comparison between the large-time asymptotic theory given by (4.1) where £ o< /> and the thin-film
limit of Yarin & Weiss (1995) where £ o 1!/2 against the measurements of We = 1070. We establish that (4.1)
captures the £ data well with the long-time growth scaling closer to />, Note that all proportional constants are
O(1) and in fact their specific value is not needed to model the axial crown development, as we see in § 4.3.1.
The error bars capture the uncertainty of detecting the outer sheet boundary in the radial direction, at rim base
evaluation.

& Weiss (1995), 1.e. £ 172, against measurements obtained for the larger We = 1070 on
a logarithmic scale. As ¢ increases, the data follow more closely the asymptotic growth
given by 2/> compared with the thin-film limit !/2. Capturing the correct scaling law for
the crown diameter is particularly important for our subsequent analysis because we show
next in §§4.3 and 4.4 that the specific best-fit value of the proportional constant « is, in
fact, not needed for the derivation of the crown thickness and height.

Notably, unlike the peaking behaviour observed for the D(#) measurements shown in
figure 5, here we find that the £(¢) data given in figure 6 are close to monotonic, captured
by a power law 72/° that is derived for D(¢) in the strict limit of We, Fr — oo. The fact
that the growth of £(f) under finite We and Fr beyond the time of maximum cavity
depth (labelled in figure 6a) still yields good prediction for the crown requires further
mechanistic investigation left for future work. Informed by the cavity dynamics and its
coupling with the crown, we can now focus on solving for the crown sheet dynamics,
including its thickness in § 4.3 and height in § 4.4.

4.2. Unsteady crown sheet spatio-temporal velocity profile

4.2.1. Quasi-one-dimensional flow

Next we examine the flow velocity field # in the crown sheet using thin-film lubrication
theory (Batchelor 1967). Generally, the sheet flow is axisymmetric, i.e. u = us? + v2
where 7 and Z are, respectively, the radial and axial unit vectors. Here, u is governed by
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the incompressible Navier—Stokes equations:

V.u=0, (4.2a)
Ju 1 2 2

— «Vu=-V —Vu — —, 4.2b
dt tu “ P+ Re “ Fr ( )

where p is pressure and Re = pupdp/ i is the Reynolds number. Before proceeding, we
reiterate the modelling assumption that the crown sheet up to the rim, within 0 < z <
s(t), approximates a vertical wall of inner diameter £(f) — h(z,¢) and outer diameter
£(t) + h(z, t), where the diameter of the central ring £(¢) is axially uniform. Note that
although in experiments £ is measured as the sheet’s outer diameter rather than the central
ring diameter, differences between these two become negligible following the thin-sheet
assumption, i.e. h/€ < 1, h/s < 1. As illustrated in figure 4(e), the crown sheet domain
is double-cylindrical as follows:

£(1)
F— =2

2

h(z, 1)
2

<

D) = {(r,z): 0<

,0<z< s(t)} . (4.3)

Therefore applying the lubrication approximation to (4.2a) and radially expanding the flow
variables leads to the Q1D flow approximation:

€2 — 412 Ju,
Vs =vs(2, 1), ug=ug(z,r, )= ————— KLU (4.4a,b)
8r 0z
that respects the continuity equation (4.2a) and the symmetry condition us(z, £/2, 1) = 0.
A formal derivation of (4.4a,b) is given in Appendix A.2.

The dynamic stress condition for the free surface of D, i.e. the Young—Laplace equation,
implies that p ~ x/We, where k (z, 1) is the surface curvature evaluated at |r — £/2| = h/2.
In the limit of Re — oo, Fr — oo and We — oo, (4.2b) thus simplifies to the inviscid
Burger equation:

vy vy . duy .

— 4+ v;— =0, or equivalently, — = 0 along the parcel’s trajectory. 4.5)

ot 0z dr
For closure, we also prescribe a linear initial profile, vg(z, f9) o z, at some initial time
to > O shortly after the sheet forms such that the initial sheet height is small, i.e. z <
s(to) < 1, and therefore a linear profile is valid as a Taylor series expanded around z = O.
This assumption, including the boundary value v(0, r) = 0, is further verified by direct
measurement of vy in § 4.2.3. As aresult, using method-of-characteristics, (4.5) is uniquely
solved by
_zZ
=4
where 0 < § <« 1 is the offset time required for the onset of sheet formation after drop
impact, with § of the order of a fraction of the inertial reference time dy/ug (0.7-1.4 ms).
A similar time scale for such offset was discussed for drop impacts on solid surfaces (Wang
& Bourouiba 2017). The physical origin for § is discussed in more detail next.

(4.6)

Us

4.2.2. Sheet formation offset
When the drop impacts the liquid substrate, the impact initially imparts a downward
velocity to the fluid parcels in immediate contact with the liquid pool (figure 7a) and
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Figure 7. (a¢) Dynamics in the pool fluid at the instant when the drop fluid seeded with polyethylene
microspheres impacts the pool. The impact imparts a downward momentum to the particles in the drop. Scale
bar: 2 mm. (b) An air cavity forms, and is seen below the liquid surface at t = § = 0.3. The particles in the
drop continue moving downward owing to their high initial momentum. In this experiment, We = 900.

the cavity develops. This allows the drop fluid to spread onto the developing cavity floor.
The accumulated drop fluid is stretched in the radial direction owing to the cavity’s
radial expansion. The discontinuity in the velocity distribution at the interface causes the
formation of an upward-moving lamella that eventually forms the crown sheet (Yarin &
Weiss 1995; Roisman & Tropea 2002). This upward motion stretches the drop fluid in the
vertical direction, leading to the formation of the developing crown sheet. Hence, owing to
the initial phase of lubrication with air cushion and establishment of the ejecta sheet and
crown, it takes time for the sheet to appear. This time is of the order of the time taken for
the air cavity to form below the substrate fluid. For We = 900, we first observe an air cavity
appearing below the receiving liquid surface around t = § ~ 0.3, as shown in figure 7(b).
Note that a similar time scale of O(0.1) for the initial stages of sheet development can be
seen in the experiments of Agbaglah et al. (2015) and numerical simulations of Josserand
et al. (2016). In sum, the offset § of the velocity profile in (4.6) accounts for the very initial
time needed for sheet formation.

4.2.3. Experimental validation

Now we validate our solution for vs(z, t) given by (4.6) against direct experimental
measurements introduced in § 2. Figure 8(a) first shows the trajectories of particles that
were initially seeded in the impacting drop or the substrate pool. In both cases, all selected
particles exhibit linear motion of constant speed for 500 < We < 1200 considered, in
agreement with the Lagrangian interpretation of (4.5), i.e. dvs/dt = 0 where d/dt denotes
material derivative.

Further, figure 8(b) compares directly the complete integral solution (4.6) with the vy
measurements obtained from experimental particle trajectories. For both cases of seeded
impacting drop or pool fluid tracking, vs(z, #) is obtained after averaging six experiments
per We. The averaged data are captured very well with the theoretical expression with § =
0.3. The observation that measurements taken near z = 0 approach vy = 0 also justifies
our choice of the initial linear velocity profile, v,(z, ty) o z for some ty > 8, required to
derive (4.6).

4.3. Crown sheet thickness profile

4.3.1. Analytic thin-film model
Now we turn our attention to the thickness profile (z, ) of the crown sheet. To derive
its governing equations, we utilize the following integral form of the continuity equation
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Figure 8. (a) Trajectories of particles in the crown sheet that were initially seeded in the impacting drop and
the substrate pool. A subset of results for We = 900 is displayed for visual clarity. The same pattern is found for
all We used, namely all particles show linear trajectories of constant velocity. (b) Comparison of the analytic
solution (4.6), with § = 0.3, against the Eulerian sheet flow velocity v, obtained from the particles in a range of
experiments with 500 < We < 1200. A good agreement between the theory and the experiments is observed.

(4.2a) and the simplified momentum equation (4.5):

d
IXE_/ de+y§ X~ up) - ndA =0, (“.7)
dr Jo 902

where x = 1 and y = v, are used for mass and momentum conservation, respectively, over
a subdomain £2 C D. Here u;, defines the boundary velocity of 92, up to an arbitrary
tangential component, and z is the outward unit normal vector. We make the thin-film
approximation as in §4.2.1 and consider a differential volume 2 = D(r) N (z, 7+ dz),
where the volume element reads dV(z, ) = A(z, t) dz = ®wl(t)h(z, t) dz. As such, the
boundary integral in (4.7) can be evaluated using (4.4a,b), the Taylor expansion vs(z, ) ~
Vs + dvg/0zdz and the kinematic condition for the liquid—air interface, which reads

(u—up)-n=0. 4.8)

Therefore enforcing d/, /dz = 0 as a result of (4.7) leads to governing equations for 4 that
read

i [h(z, DL@)] + i [vs(z, DA(z, HL(@)] =0, (4.9q)
ot 0z

% [vs(z, DAz, )L(D)] + E% [vs(z, 02h(z, t)K(t)] =0. (4.9D)

We can derive the analytic solution, with substitution of (4.1) and (4.6) in the limits ¢ > ¢
and ¢ > § into (4.9), giving

oh zoh Th
— 4+ 4 — =0, 4.10
ot + t oz + St (4.10a)
oh  zoh 13k

&, (4.10b)
ot 1tz 5t
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which can be integrated directly as

3/5
h(z,t) = ﬁt—z, (4.11)
b4
where B is a constant to be determined from initial conditions. Note that because (4.9) is
homogeneous and linear in ¢, the proportionality factor « that would appear in (4.1) for
the crown diameter, and which was found to be O(1) for all We, does not affect the crown
thickness profile.

Notably, our theoretical profile (4.11) implies that the crown sheet thickness increases
over time at any given height in its domain. This quality agrees with the estimated sheet
thickness measurements of Cossali et al. (2004) in the thin-film regime, but contrasts the
finding of Aljedaani et al. (2018) where the crown wall rising from a thin film of lower
viscosity stretches and thins quickly over time.

4.3.2. Experimental validation

Here we present the light absorption measurements of thickness / discussed in §2
and make comparison with the similarity solution (4.11). First, for two different We,
figure 9(a,b) gives h profiles as a continuous function of z at an increasing sequence of
times. We clearly observe sheet thinning (decrease of /) in the axial direction at any
given time and local sheet expansion (increase of /) as time increases. The behaviour
of h associated with different We is qualitatively similar. Indeed, figure 9(c) shows a
three-dimensional scatter of & measurements in the (z, ) space, where results from four
different We show little variation as the data appear to lie on a common surface. Finally,
figure 9(d) shows that the similarity profile (4.11) collapses all experimental data from
figure 9(c) very well, with 8 ~ 0.044. We verify such a B value alternatively using
initial values in the next section. Our analytical model shows larger discrepancy against
initial measurements taken at small t = 7y = 1. This deterioration is likely affected by the
accuracy of the asymptotic crown size, £ o 2/5, enabled by the assumption ¢ >> ¢ in (4.1)
that is necessary in the derivation of (4.11).

4.4, Crown height evolution

Having developed accurate models for the crown diameter ¢, axial velocity vy, and sheet
thickness /1 as key components, we finally formulate in this section an ODE system for
the crown height evolution s(¢). The initial-value problem is solved both numerically and

5/7

asymptotically, leading to the discovery of We>/’ scaling for the crown rise that captures

the experiments well.

4.4.1. Governing equations

As illustrated in figure 4(d), in our approximation of the crown’s axial rise, we choose a
control volume around an idealized toroidal rim and neglect the mass and momentum flux
loss due to secondary droplet ejection for now. Based on the same principle of (4.7), the
mass and momentum conservation for the rim read here as

r9 [(i(z)b(r)z] = [vy(s. 1) — §(5)] £(D)h(s, 1) (4.124)
4 9t s » B '
0 21 20 ml(D)b()? ,
Za_t[“’)”(” 5] = - = T LD ) [y, = SO vy (s, ),
(4.12b)
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Figure 9. Evolution of the crown sheet thickness profile /(z, ). We show the axial distribution of / at various
times for (@) We = 1100 and (b) We = 1600. (c¢) A three-dimensional scatter of i(z, f) for 1100 < We < 1800,
where variations due to different We are found to be small. (d) Direct comparison of all measurements and the
similarity solution (4.11). The data collapse and agree with the theory very well. Largest relative deviations
are found among initial data taken at r =ty = 1, marked by open symbols. The inset gives the same plot
using linear scales, where the absolute error made by the theory remains small. Note that the measurements
of thickness start at z = 0.5 to ensure that the region of most extreme curvature due to the wave swell is not
included (recall the region of high curvature at the wave swell boundary seen in figure 4).

where b(¢) is the ring diameter. Importantly, we formally incorporate surface tension and
gravity in the momentum equation (4.12b) while neglecting viscous stresses in the Re —
oo limit informed by the Re values given in table 1. The inviscid simplification is supported
by Oguz & Prosperetti (1990), Trujillo & Lee (2001) and Roisman & Tropea (2002) who
found that for high-velocity impacts on thin films, viscous effects on the dynamics of
crown formation are small. As a result, the ODE system (4.12), parametrized by We and Fr,
can be solved using numerical integration, provided with suitable initial values discussed
next. We note again that (4.12) is linear in ¢, rendering the equations independent of « in
4.1).
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Figure 10. (a—c) Initial crown shapes taken at =1y =140.03 for increasing We: (a) We = 500,
(b) We = 990 and (c) We = 1440. Crown diameter £ and height s¢ are labelled. (d) Initial cavity of a cylindrical
shape at t = to for We = 1070, highlighting depth Dy = 0.23. Scale bar: 2 mm for all panels.

4.4.2. Initial conditions

Considering the delay of crown sheet formation caused by early drop impact, as discussed
in § 4.2.2, we select initial values for (4.12) at r = fp = 1 from experimental measurements
when the crown structure has reasonably emerged. Figure 10(a—c) shows snapshots of the
crown at t = ty for increasing We. It is generally observed that the initial crown height
so slowly increases with We. To simplify, we choose an averaged approximation of sy =
s(to) =~ 0.5 and £9 = £(tp) ~ 1.7 next, citing an overestimation (or underestimation) of
size of the order of 10 % relative to the measurements obtained at low (or high) We values.
Further, we estimate that the initial axial growth rate is approximately so = $(f9) =~ so/1.
Also, at this time the rim thickness is estimated in experiments to be b(fg) ~ 0(0.01), and
therefore we conveniently choose bg = b(tp) =~ 0. In sum, we have

s(1) =8(1) =1/2, b(1)=0. (4.13a.,b)

In Appendix B, we show that our model (4.12) is robust to uncertainties associated with
initial value sg across all We.

Meanwhile, figure 10(d) shows that at t = o = 1 the cavity has not yet reached a
spherical cap shape; instead, it is a cylinder of depth D(#p) = Dy ~ 0.23 and width
comparable to £o &~ 1.7. The associated Dy value is close to the data at initial times
reported by Engel (1967) and Elmore, Chahine & Oguz (2001). As a result, we estimate
next the coefficient 8 in (4.11) by equating the volume of the crown at r =19, as a
cylindrical wall, and that of the cavity, as a cylinder. Notably at this time, a spherical
cavity has not yet formed and our cavity model discussed in § 3 does not apply. This gives

holoso = $¢5Do, (4.14)

where hy = h(so, tp) given by (4.11) is used as initial thickness. It immediately follows that
B = 0.049, in good agreement with the value given in § 4.3.2. This reasonable match also
demonstrates the robustness of the estimated initial values sp and £( against measurements
of all We previously used in the least-squares fit.
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4.4.3. Asymptotic solution
Now we return to (4.12) and derive an asymptotic solution for s. First, substituting (4.1),
(4.6) and (4.11) into (4.12a) gives a first-order ODE for b() that can be directly integrated
to generate
4B3/5  F(2)
bty =,|———+ —=, 4.15

) () 2 (4.15)
where F(7) is in general an arbitrary function of z. However, the initial conditions (4.13a,b)
require that F = —88/.

Meanwhile, (4.12b) can be rearranged using (4.12a) to read

8 b2+4h(s,t)
ntWe Fr T

Because & < b(f) < 1 and 1/Fr < 1, we proceed with the limit that b*/Fr — 0. As a
result, the gravitational effects are assumed to be negligible compared with the capillary
effects in (4.16). This assumption is justified in Appendix B where we show the ratio
between |b?/Fr| and |8/(ntWe)| is small over time at least up to the time of maximum
heights. Therefore, substituting (4.6), (4.11) and (4.15) into the leading-order form of (4.16)
in this limit leads to the asymptotic solution

_ 4pr nF 25 g _1
s(t) = FQ Wo (4’3 exp ( 42,3Wet + kit + k2>) , 4.17)

where W) is the principal Lambert’s W function and kj > are constants determined using
the initial conditions (4.13a,b) again. After some simplification, we obtain

t 25¢12/5 — 607 + 35
s(t)=—=Wo| —exp|—1-— ,
2 42BtWe

where B =~ 0.044 was determined from two independent methods in §§4.3.2 and 4.4.2.
Further applying the limit We — oo to (4.18) leads s(¢¥) — t/2, as expected from the
evaluation of the initial values (4.14).

Our asymptotic result for the crown height s(¢) given in (4.18) already differs from
that of the cavity depth D(¢) given in (3.4). The sheet height (4.18) is controlled by We,
independent of Fr, while the cavity depth (3.4) depends on Fr but not on We. We discuss
the physical significance of this result shortly.

[vs(s, ) — §]%. (4.16)

(4.18)

4.4.4. Maximum crown height

Here we seek analytical expressions for the maximum crown height, s,,, and its time of
occurrence, t,,, based on the explicit asymptotic solution (4.18). As we have shown, such a
maximum exists only if We > 0 is finite, because s(f) — ¢/2 as We — oo. Differentiating
(4.18) with respect to ¢ and requiring s(t,,) = O yields

12/5
5 25t — 601, + 35
= — 51715 4 68We + 6We W, <—exp (—1 —-= mt )) =0. (419

N 42Bt, We

Considering that #,, is expected to be of O(10) and We is large, (4.19) can be approximately
solved as We — oo after removing terms of O(1/t,,) in (4.19) as

5/7
Im = [% (12 +7Wo (—% exp (7/31(‘)416 - %)))] ~ (KBWe) 7, (4.20)
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Figure 11. Evolution of the crown height s. Results for a wide range of We, as labelled in (b), are given. The
corresponding Fr values are the same as those found in figure 5. (@) The s(f) measurements are compared
with the numerical solution to (4.12) and asymptotic theory (4.18) for each We, using solid and dashed lines,
respectively. We see a good match between experiments and our model. (b) All results collapse well after
rescaling both s and 7 by We/7. The collapsed data can be successfully captured by our model using either
We = 632 (small) or We = 1530 (large).

where K = [12 + TWo(—12e12/7/7)]/10 ~ 0.837.
Finally, substituting (4.20) into (4.18) produces an explicit approximation of the
maximum crown height, which can be expanded as We — oo as

S = $(ty) ~ —%WO (— exp (—2—K - 1)) (KBWe)>'T + 0 (We_2/7) . @21

We find that f,, and s,, grow asymptotically as We>/ for large We and all Fr, provided that
the assumption b /Fr < 1 holds. Notably, Cossali et al. (2004) observed similar scaling
for the maximum crown height and its occurring time resulting from drop impact on a thin
film. In their study, experimental measurements are fitted to the power law s, oc We” and
tm o< WeP with 0.65 < p < 0.75, consistent with our exact exponent of 5/7 &~ 0.71 derived
here for deep-pool impacts.

4.4.5. Experimental and numerical results
Next, the asymptotic theory developed in (4.18), (4.20) and (4.21) is compared with
experiments and the numerical solution of the crown height s(¢). Here the ODE system
(4.12) with initial values (4.13a,b) is solved using a variable-order Runge—Kutta method.
Figure 11(a) gives the crown height evolution s(r) for 600 < We < 1600. In all cases,
the numerical solution (4.12) and the asymptotic solution (4.18) capture the experimental
data very well. As expected, the distinctions between numerical and analytical results are
small until maximum height s, is reached, beyond which the theoretical predictions start
to underestimate the measurements. This deterioration is more significant as We increases.
A likely explanation to this observed deviation is that we have neglected the topological
changes of the rim and the associated mass loss due to droplet shedding in our reduced
geometrical model.
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Figure 12. (a) Maximum crown height s, and (b) its time of occurrence t,, as a function We. In both panels,
the numerical solutions given by the filled circles are obtained from (4.12) with the same We and Fr values as
those corresponding experiments. The asymptomatic theory of (4.18) in (a,b) are shown by the solid lines; and
their large- We behaviours that grow as We3/ i.e. (4.21) for s,, and (4.20) for t,,, are given by the dashed lines.
We clearly demonstrate that such theoretical scaling captures the measurements very well.

Although in figure 11(a) we observe prolonged crown growth to higher peak heights as
We increases, rescaling both s and ¢ with We>/”, as informed by the asymptotic forms in
(4.21) and (4.20), collapses the data beautifully (figure 11b).

Finally, the key findings of (4.20) and (4.21) are that both the maximum crown height
s, and the time 7,, of its occurrence scale as We>/” for the entire range of Fr in the limit
of large We. Figure 12 compares this theoretical finding with experiments. Comparison
of s;; as a function of We among measurements, numerical solutions of (4.12) calculated
using the same discrete experimental (We, Fr) parameters and the asymptotic expressions
(4.18) and (4.21) that only deé)end on We is given in figure 12(a). It is established that the
asymptotic relation s, oc We>/7 captures the experimental data very well. The analogous
comparison for t,, is shown in figure 12(b), where again the theoretical expression t,,
We>/7 captures the experimental data very well.

Having established accuracy for both asymptotic results (3.4) and (4.18) respectively for
the cavity depth and the crown height, we note that unlike the cavity that retracts because
of gravitational effects acting on the liquid (see § 3.2), the crown growth up to a finite
maximum height is primarily governed by surface tension effects encapsulated by finite
We. Indeed (4.18) is independent of Fr, and both s, and #,, diverge in the limit of We — oo0.
In sum, it is surface tension rather than gravity that stops an unbounded crown rise.

4.5. Summary

In this section we discuss the theoretical analysis of four quantities that characterize the
crown sheet dynamics resulting from a drop-on-pool impact. According to the idealization
shown in figure 4, our model entails the crown diameter ¢, the axial flow velocity vy, the
sheet thickness /& and the crown height s, not considering, for now, the destabilization
of the rim, precursor of ligament formation and fragmentation into secondary droplets.
We coupled the crown and cavity via the crown diameter ¢ observed to be proportional
to the cavity depth. We consider the crown as a thin sheet, i.e. h < ¢, h < s, and
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Crown variables ~ Governing equations ~ Analytic solutions  Experimental comparisons

Diameter, £(1) 3.1 (3.2a,b), (4.1) Figure 6
Velocity, vs(z, 1) 4.5) (4.6) Figure 8
Thickness, h(z, 1) 4.9) 4.11) Figure 9
Height, s(r) (4.12) (4.18), (4.20), (4.21) Figures 11, 12

Table 2. Key quantities that describe the crown structure generated by a drop impact (figure 4d). A summary
of their corresponding modelled equations, asymptotic solutions and validations against experimental
measurements.

consequently the flow field is QID. We solve conservation of mass and momentum
asymptotically, deriving explicit expressions that predict the corresponding measurements
well, as summarized in table 2. These asymptotic results are parametrized in terms of We
only, independent of Fr.

5. Summary and conclusions

In conclusion, we have addressed a sequence of events that follow the impact of a liquid
droplet on a deep inviscid liquid pool, including the cavity and crown formation. We use a
combined approach of experimental measurements and theoretical modelling to study the
cavity—crown coupled system, with a focus on impacts with Weber numbers 500 < We <
1600 and Froude numbers Fr < 1000, such that a crown splash is enabled while preventing
bubble formation.

We first verify that by simplifying the cavity as an ascending sphere of expanding radius,
the numerical theory of Bisighini et al. (2010) that describes the cavity using an ODE
system successfully captures the temporal evolution of cavity depth D(¢) that we measure.
In particular, we find that the early stage of the cavity growth follows the power law D(r) ~
#?/> derived as the limiting solution to the ODE system as both We — oo and Fr — oo.
Informed by such limit, we show that rescaling depth data using We™'/3D(t) as a function
of dimensionless capillary time 7 collapses experimental measurements well for our range
of We and Fr.

However, the initial dynamics of r2/> growth is unable to explain the experimentally
observed cavity retraction after a maximum depth is reached. To recover this behaviour,
we develop an asymptotic correction to the original double limit as a function of Fr, so that
the large-Fr condition is relaxed. The resulting analytical expression for D(#) possesses
a global maximum and reasonably captures the experimental data up to the measured
maximum depth. We conclude that gravitational effects acting on the displaced liquid are
the primary restoring process causing cavity retraction.

We next examine the crown structure as a double-sided cylindrical sheet with an
idealized toroidal rim on top. Our key strategy is to connect the crown to the elucidated
cavity evolution: the crown diameter £ increases at a rate proportional to the initial cavity
expansion, namely £ ~ /. The proportionality constant of this relation appears to depend
on We and Fr, although only weakly, and the determination of its specific value is actually
not required for our subsequent analysis aiming to elucidate the characteristic quantities of
the crown sheet.

Using the key insight of coupling sheet and cavity, and applying the thin-film
approximation for the sheet thickness s, we therefore obtain a Q1D flow field for the
sheet, with axial velocity vs(z, f) governed by the inviscid Burger equation. The resulting
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similarity solution to vy predicts ballistic motion of Lagrangian fluid parcels, akin to
other thin sheets from drop impact, e.g. on surface of size comparable to that of the
drop (Wang & Bourouiba 2017). We experimentally validate this theory using particle
velocimetry where the impacting drop and the pool fluids are seeded with tracked particles
in independent experiments. Subsequently, using conservation of mass and momentum for
the Q1D flow we derive and validate an explicit self-similar solution for the thickness
profile i(z, t). The derived self-similar thickness profile captures the measured thickness
for all We very well. The thickness is measured using a light absorption method validated
in prior work (Wang & Bourouiba 2017; Si et al. 2024).

Similarly, by applying conservation laws over the idealized crown rim, we formulate an
ODE system that couples the rim size b and the crown height s. Building on the previously
obtained analytical expressions for £, vy and h, we solve the associated initial-value
problem both numerically and asymptotically in the b?/Fr — 0 limit. As a result, we
derive theoretical predictions of s(#) in good agreement with the experimental data for
the entire duration of the splash, including the initial rise and the following fall, for all
We. From the asymptotic solution that is parametrized by We only, we further determine
analytically the maximum crown height and its time of occurrence and we show that both
scale as We>/7. Indeed, rescaling the s(r) data using sWe™>/7 as a function of tWe™>/7
shows excellent collapse of all measurements from different We. We therefore conclude
that unlike the cavity whose expansion is opposed by gravitational effects, the axial crown
rise is mostly opposed by surface tension effects.

Our analysis, rooted here on considering the cavity—crown coupled system, paves the
way to understand the ultimate liquid fragmentation process as a result of impact and
splash where secondary droplets with a distribution of sizes and speeds are ejected
from the crown rim. Such fast-moving secondary droplets are critically important for
contaminant and pathogen dispersal in agriculture, healthcare, and the environment
(Bourouiba 2021b,a) sectors. Further, insights into a single-phase impact could be
extended to impacts with multiphase liquid layers that are relevant in a wide range of
applications including oil spills (e.g. Murphy et al. (2015), and references therein), and
the climate system modelling, via ocean-atmosphere coupling upon creation of droplet
residues and condensation nuclei via such deep pool splashes. Understanding the role of
secondary droplets and the influence of a multiphase layer in contaminant dispersal is the
subject of our ongoing work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1105.
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Appendix A. Asymptotic expansion of the cavity and sheet equations
A.l. The cavity equations for large We

Here we perform a formal asymptotic expansion of the cavity evolution equation (3.1) in
terms of small parameter § = 1/We <« 1 and derive (3.5b) as the leading-order solution
for large We > 1, in the strict limit of Fr — oo. In this limit, together with the initial
condition z(#y) = 0, we note again that the coupling between cavity centre z, and radius a
is weak. Therefore we proceed with the constant solution z.(f) = z.(#p), and consequently,
D(t) = a(t) + z-(tp). Further, we substitute the series expansion a(t) = Zn>0 a,d8" into
(3.1a), giving

agio + 3apal = 0, (Ala)

iy + 3aodoar + (363 + 2avio) a1 +2 =0, (Alb)

at O(1) and O(§), respectively. The general solution to the leading-order equation (Ala)
is given by (3.2a,b), that is,

ap = A(r — 15)*3. (A2)

Therefore using (A2) in (A1b) leads to the following non-divergent first-order solution:

25(t — 5)%/°

m A=, (A3)

a) =

where both A and A; are general constants. Combining (A2) and (A3) we obtain the
large-We asymptotic solution up to O(§) as follows:

1 25(t — 1,)%/° 1
D=Alt—t)P +— |- s A—-t)|+0— ). Ad
a(t) ( ) +We[ B2 +A;( ) + e (A4)

Next, the time transformation ¢ = t/,/6/We can be applied to (A4) with the dominant
powers of We retained explicitly, producing

D a 72/5 2579/5 1
Wel/3 Wel/5 61/5 18 x 63/5A2 We2/3”

(AS)

As We — o0, (AS) establishes that the leading-order behaviour of D as a function of
capillary time t is correctly given by (3.50).

A.2. Lubrication theory for the thin sheet

In this section we derive the Q1D flow velocities given by (4.4a,b) for the rising
sheet. Based on the thin-sheet assumption, i.e. h(z, ) < £(f), we denote € = Hy/Ly K
1 the small parameter that compares a characteristic sheet thickness scale Hy with a
characteristic sheet diameter scale L. Accordingly, we introduce the following local radial
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coordinate 7 for the sheet’s domain described by (4.3):
- 14 c h h (A6)
€er=r— = —-—, =)
2 22
Omitting the subscript ‘s’ in the velocity components, the continuity equation (4.2a) thus
becomes

av n 10u n 2u

9z €0dF  2ei+l
We seek solutions in the form of Taylor series expanded around the central ring, ¥ = 0, as
follows:

(AT)

[e.@] o0
=Y w2 (€M, v=) () (D™, (A8a.b)
n=1 n=0
where the symmetry conditions u|;—y = 0 and v|; = v|_; have been applied. Substituting
(A8a,b) into (A7) gives

20up — 4u

/ 2u; ~ 1 1|~ N2
uy + vy + T+2u2 re + 7 +3uz 4+ v, | (Fe)*+--- =0. (A9)

Equation (A9) therefore demands that at leading order,

12
v~ (2), U~ ure = —(2) (r — 5) L v. (A10a,b)

Similarly, higher-order corrections in terms of v, can be obtained by successively solving

(A9), leading to

_ v,(2) us = 2 vn©)
I 02 3¢2°

so the u-series in (A8a,b) can be summed. In fact, with the approximation v = vy, this

series converges as

(Alla,b)

u

AT = E A ) < w (A12)
=——"Y = —- v0(2).

142F . 8r 0% 0%

One can readily verify that the flow field given by v = vg and (A12) satisfy the continuity
equation (4.2a) exactly.

Appendix B. Robustness of the crown height model

Here, we show that the crown height model developed in § 4.4 is robust to experimentally
measured initial values, and the limiting assumption of surface tension dominating gravity
in (4.16) is valid.

First, we revisit the averaged initial value, so = so = 0.5, that has been prescribed to the
ODE system (4.12) for all We. As observed in figure 10, this approximation overestimates
the measurements at low We but underestimates the experiments at high We, with margins
of around 10 %. To account for this uncertainty, here we solve (4.12) (and equivalently
(4.16)) numerically with a range of initial values s(1) = s(1) = so, while fixing b(1) =0
constant. Results are given for three different representative We and compared with the
experiments in figure 13(a). Specifically, for a small We = 630, the region of solutions
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Figure 13. (a) Crown height, s(f), shown from measurements and numerical solutions of (4.16) given by
variable initial value so for small, medium and large We. Each shaded band corresponds to 10 % variation
near so = 0.5 at a given We. The solid lines are obtained with so = 0.5. The dashed lines are given by
so = 0.5(1 £ 10 %) for We = 630 and 1530, respectively, and so = 0.5(1 £ 5 %) for We = 1070. (b) Ratio of
the two terms that measure gravitional and surface tension effects in the numerical solutions of (4.16). Results
as a function of time are given for the same We and Fr presented in figure 11.

corresponding to the initial values between ¢ = (sg — 0.5)/0.5 € (=10 %, 0) is shown;
for a medium We = 1070, the corresponding region of ¢ € (—5 %, 5 %) is given; and for
a high We = 1530, solutions are generated using o € (0, 10 %). In all cases, the range of
solution response to initial-value uncertainties remains comparable to the experimental
errors. Therefore, we have demonstrated that the crown height dynamics described by
(4.12) and our reduced estimation sy = 0.5 is robust to errors/variability of sp.

Second, we assess the accuracy of the limiting assumption made to simplify (4.16) and

derive (4.18), that is, b>/Fr — 0, and particularly its implication that surface tension plays
a dominant role over gravity at opposing the crown rise. In a direct comparison between
the two contributions made by gravity and capillarity in (4.18), figure 13(b) gives the size
ratio, |b2/Fr|/|8/(nWe)|, as a function of time. Here the evolution of b(¢) is obtained by
numerically solving the full system (4.12) of finite Fr. We find that for all We (and Fr), the
gravitational term b?/Fr makes up less than 10 % of the capillary term 8/(rtWe) at least
until the maximum crown height is reached. Thus, error made by taking the Fr — oo limit
for the large-We asymptotic solution (4.18) is small over this period, explaining the good
performance of (4.18), compared with the full solution, shown in figure 11.
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