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ON THE DIOPHANTINE EQUATION (P(k)
n )2 + (P(k)

n+1
)2 = P(k)

m
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Abstract

A generalisation of the well-known Pell sequence {Pn}n≥0 given by P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn

for all n ≥ 0 is the k-generalised Pell sequence {P(k)
n }n≥−(k−2) whose first k terms are 0, . . . , 0, 1 and each

term afterwards is given by the linear recurrence P(k)
n = 2P(k)

n−1 + P(k)
n−2 + · · · + P(k)

n−k. For the Pell sequence,
the formula P2

n + P2
n+1 = P2n+1 holds for all n ≥ 0. In this paper, we prove that the Diophantine equation

(P(k)
n )2 + (P(k)

n+1)2 = P(k)
m

has no solution in positive integers k, m and n with n > 1 and k ≥ 3.
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1. Introduction

The Pell sequence {Pn}n≥0 is the second-order linear recurrence defined by
Pn+2 = 2Pn+1 + Pn with initial conditions P0 = 0 and P1 = 1. A few terms of this
sequence are

0, 1, 2, 5, 12, 29, 70, . . . .

Diophantine equations related to the sums of powers of consecutive Pell numbers
were studied by several authors. For example, motivated by the well-known identity

P2
n + P2

n+1 = P2n+1, (1.1)

which tells us that the sum of the squares of two consecutive Pell numbers is still a
Pell number, Rihane et al. [6] studied the Diophantine equation

Px
n + Px

n+1 = Pm
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and gave all the solutions of this equation in nonnegative integers m, n and x.
Ddamulira and Luca [2] considered the more general Diophantine equation

Ux
n + Ux

n+1 = Um

in nonnegative integers (n, m, x), where U = (Un)n≥0 is the Lucas sequence given by
U0 = 0, U1 = 1 and Un+2 = rUn+1 + Un for all n ≥ 0. (Note that U coincides with the
Pell sequence when r = 2.)

Luca et al. [5] found all the solutions of the Diophantine equation

Px
n + Px

n+1 + · · · + Px
n+k−1 = Pm

in positive integers (m, n, k, x) and Faye et al. [3] considered the more general
exponential Diophantine equation

Px
n + Px

n+1 = Py
m

in positive integers (m, n, x, y).
For an integer k ≥ 2, we consider a generalisation of the Pell sequence called the

k-generalised Pell sequence or, for simplicity, the k-Pell sequence P(k) = {P(k)
n }n≥−(k−2)

given by the higher order linear recurrence,

P(k)
n = 2P(k)

n−1 + P(k)
n−2 + · · · + P(k)

n−k for all n ≥ 2,

with the initial conditions P(k)
−(k−2) = P(k)

−(k−3) = · · · = P(k)
0 = 0 and P(k)

1 = 1. Note that this
generalisation is in fact a family of sequences, where each new choice of k generates
a distinct sequence. In particular, the usual Pell sequence is obtained for k = 2, that is,
P(2)

n = Pn.
Motivated by the above results, we look at the identity (1.1) in k-generalised Pell

numbers. More precisely, we prove the following theorem.

THEOREM 1.1. The Diophantine equation

(P(k)
n )2 + (P(k)

n+1)2 = P(k)
m (1.2)

has no positive integer solutions (n, k, m) with n > 1 and k ≥ 3.

Usually, such a type of Diophantine equations require Baker-type estimates for
lower bounds for linear forms in the logarithms of algebraic numbers as well as
reduction techniques involving the theory of continued fractions (the Baker–Davenport
method and the LLL algorithm). In our case, we will use only elementary properties
of k-Pell numbers.

2. Auxiliary results

In this section, we shall collect some facts and tools which will be used later.
The characteristic polynomial of P(k) is

Φk(x) = xk − 2xk−1 − xk−2 − · · · − x − 1
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and it is irreducible over Q[x] with just one root γ := γ(k) outside the unit circle. The
other roots are strictly inside the unit circle, that is, γ is a Pisot number of degree k.
This positive real root is called the dominant root of Φk(x).

In [1], the Binet-like formula for the k-Pell numbers is given by

P(k)
n =

k∑
i=1

γi − 1
(k + 1)γ2

i − 3kγi + k − 1
γn

i , (2.1)

where γ = γ1, . . . , γk are the roots of the characteristic polynomial Φk(x). The contri-
bution of the roots inside the unit circle in (2.1) is almost trivial. More precisely, it was
proved that the approximation

|P(k)
n − gk(γ)γn| < 1

2 (2.2)

holds for all n ≥ 2 − k, where

gk(z) =
z − 1

(k + 1)z2 − 3kz + k − 1
. (2.3)

From (2.2), we can write

P(k)
n = gk(γ)γn + Ek(n) where |Ek(n)| < 1

2 .

Also, we have the inequality

γn−2 ≤ P(k)
n ≤ γn−1 for all n ≥ 1. (2.4)

Furthermore, Kılıç and Taşci [4] showed that the terms of the k-Pell sequence
with indices n ∈ {1, 2, . . . , k + 1} coincide with the first k + 1 terms of the Fibonacci
sequence with positive odd indices, that is,

P(k)
n = F2n−1 for 1 ≤ n ≤ k + 1.

In the next lemma, we gather some technical results that will be used later.

LEMMA 2.1 [1, Lemma 3.2]. Let k, l ≥ 2 be integers.

(a) If k > l, then γ(k) > γ(l).
(b) φ2(1 − φ−k) < γ(k) < φ2, where φ = 1

2 (1 +
√

5) is the golden section.
(c) If k ≥ 6, then φ2 − k−1 < φ2(1 − φ−k) < γ(k) < φ2.
(d) gk(x) defined in (2.3) as a function of a real variable is positive, continuous

and decreasing in the interval (ck,∞), where ck = (3k +
√

5k2 + 4)/2(k + 1).
Moreover, gk(φ2) = 1/(φ + 2).

(e) 0.276 < gk(γ(k)) < 0.5.

Note that for k ≥ 10, the value of gk(γ) is not greater than 0.31, as can be seen from
gk(γ) < gk(φ2(1 − φ−k)).

We will also require a lemma that lists all cases when the sum of squares of any two
Fibonacci numbers becomes a Fibonacci number.
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LEMMA 2.2 [7, Theorem 1.1]. Let n, m, r be positive integers such that m ≤ n and let
(n, m, r) be a solution of the Diophantine equation F2

n + F2
m = Fr. Then

(n, m, r) ∈ {(2, 2, 3), (3, 1, 5), (3, 3, 6), (n, n − 1, 2n − 1)}.

3. Proof

PROOF OF THEOREM 1.1. When n = 2, one has (P(k)
2 )2 + (P(k)

3 )2 = 22 + 52 = 29;
however, P(k)

m belongs to the increasing sequence 13, 33, 34, 84, 88, . . . for k ≥ 3 and
m ≥ 4. Thus, there is no solution for n = 2. So we may suppose that n ≥ 3.

From the estimates in (2.4), we obtain

γm−2 ≤ P(k)
m = (P(k)

n )2 + (P(k)
n+1)2 ≤ γ2(n−1) + γ2n = γ2n(1 + γ−2) < γ2n+1

and

γ2(n−1) ≤ (P(k)
n+1)2 < (P(k)

n )2 + (P(k)
n+1)2 = P(k)

m ≤ γm−1,

where we used 1 + 1/γ2(k) < 1 + 1/γ2(3) < 2 < γ(k). Thus, if (m, n, k) is a solution of
(1.2), then m ∈ {2n, 2n + 1, 2n + 2}.

Next, if 3 ≤ n ≤ 5 and 3 ≤ k ≤ 12, then finite computations in Mathematica yield
no solutions for (1.2), whereas if 3 ≤ n ≤ 5 and k > 12, then all three numbers P(k)

n ,
P(k)

n+1 and P(k)
m are Fibonacci numbers with odd indices:

P(k)
n = F2n−1, P(k)

n+1 = F2n+1 and P(k)
m ∈ {F4n−1, F4n+1, F4n+3}.

By Lemma 2.2, the sum of the first two squares cannot be the third value. So, from
now on, n > 5 independently of k.

Let m = 2k + i, i ∈ {0, 1, 2}. Then (1.2) can be written as

(gk(γ)γn + Ek(n))2 + (gk(γ)γn+1 + Ek(n + 1))2 = gk(γ)γ2n+i + Ek(2n + i).

Divide both sides by γ2n to get

(gk(γ) + Ek(n)/γn)2 + (gk(γ)γ + Ek(n + 1)/γn)2 = gk(γ)γi + Ek(2n + i)/γ2n. (3.1)

We write

(gk(γ) + Ek(n)/γn)2 = g2
k(γ) + C1,

where

|C1| = |2gk(γ)Ek(n)/γn + (Ek(n)/γn)2| ≤ 2 · (1/2) · (1/2) · γ−n + (1/4) · γ−2n < γ−n.
(3.2)

Similarly,

(gk(γ)γ + Ek(n + 1)/γn)2 = g2
k(γ)γ2 + C2,

where

|C2| = |2gk(γ)γEk(n + 1)/γn + (Ek(n + 1)/γn)2|
≤ 2 · (1/2) · 3 · (1/2) · γ−n + (1/4) · γ−2n < 2γ−n. (3.3)
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Since |C3| = |Ek(2n + i)/γ2n| < γ−n, we obtain from (3.1), (3.2) and (3.3) that

|gk(γ) + gk(γ)γ2 − γi| = 1
g
|C3 − C1 − C2| < 4 ·

( 1
γn +

2
γn +

1
γn

)
=

16
γn . (3.4)

Computing the left-hand side of (3.4) for k = 3, 4, . . . , 9 and i ∈ {0, 1, 2}, we obtain

0.241 < |gk(γ) + gk(γ)γ2 − γi| < 16
γn <

16
2.54n ,

which contradicts the fact that n > 5.
Now, suppose k ≥ 10. If i = 0, then in the left-hand side of (3.4),

gk(γ)γ2 + gk(γ) − 1 >
(φ2(1 − φ−10))2

φ + 2
+

1
φ + 2

− 1 > 1.14,

leading to 2.54n < 14.04, which is false for n > 5. So, i ∈ {1, 2}.
If i = 1, then

γ > φ2(1 − φ−10) > 2.59

and gk(γ) < 0.31, so γ − gk(γ)γ2 − gk(γ) > 2.59 − 0.31φ4 − 0.31 > 0.15 and we get
γn < 106.7, which is false for γ > 2.59 and n > 5.

Similarly, if i = 2, we also have gk(γ) < 0.31 and γ > 2.59. It follows that
γ2 − gk(γ)γ2 − gk(γ) > 2.592 − 0.31φ4 − 0.31 > 4.27, which is even larger than the
previous estimate, giving us again a contradiction. This completes the proof. �
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