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1. Introduction. Consider the following quasilinear parabolic problem




ut − div(a(t, x, u)∇u) = f (t, x, u,∇u), t > 0, x ∈ �,

∂u
∂ν

(t, x) = 0, t > 0, x ∈ ∂�,

u(0, x) = ϕ(x), x ∈ �,

(1)

where � is a bounded domain in �n with a C2-boundary ∂�, ν is the outer normal on
∂�, and ∂

∂ν
stands for the derivative of u in the direction of ν.

Many authors have studied the problem (1) (see [1, 2, 6] and citations therein)
by discussing the existence and uniqueness of local solutions, the global existence
of solutions, blow-up behavior of solutions etc. Due to the difficulty produced by
nonlinear part f , these problems for (1) still need to be investigated.

Our aim is to prove the global existence of classical solutions for the problem (1).
Our method is not only based on maximum principles, but also relies on recent results
for the time evolution of the extrema of a function [2, 3] and comparison theorems [4].
This method permits us to obtain a new result for (1) under quite general assumptions
on the nonlinearity. The result we obtain improves the recent result in [2].

Throughout this paper, we assume that

a ∈ C2(�+ × � × �, �n×n), f ∈ C1(�+ × � × � × �n, �),

and

〈a(t, x, w)η, η〉 ≥ c|η|2, (t, x, w) ∈ �+ × � × �, η ∈ �n,

∗E-mail: mcsyzy@zsu.edu.cn
†E-mail: yin@maths.lth.se

https://doi.org/10.1017/S0017089505002442 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002442


238 ZHAOYANG YIN

where �+ = [0,∞) and c > 0. Fix p > n. It is known from the classical parabolic theory
[1, 6] that, given initial data

ϕ ∈ W =
{
φ : φ ∈ W s,p(�),

∂φ

∂ν

∣∣∣∣
∂�

= 0
}
, s ∈

[
1, min

{
1 + 1

p
, 2 − n

p

})
,

there exists some maximal T = T(ϕ) > 0 and a unique solution

u ∈ C1((0, T); C(�)) ∩ C((0, T); C2(�)) ∩ C([0, T); W ).

Moreover, if T < ∞, one has

lim sup
t↑T

‖u(t, ·)‖L∞(�) = ∞

if the nonlinearity f satisfies for (t, x, w, η) ∈ �+ ×� × � × �n the growth condition

| f (t, x, w, η)| ≤ h(t, w)(1 + |η|2) (2)

with some h ∈ C(�+ × �, �+).

2. Main results. We prove that under certain conditions on the nonlinear part f ,
the solutions to (1) are global in time for any initial data ϕ ∈ W .

We first recall the notation of maximal and minimal solutions for ordinary
differential equations. Let w ∈ C(�+ × �, �) be given.

A solution r ∈ C1([0, t0), �) with t0 > 0, of the scalar differential equation
z′ = w(t, z(t)) is said to be a maximal solution if for every solution z of the equation on
[0, t0) with z(0) = r(0), the inequality

z(t) ≤ r(t), t ∈ [0, t0)

holds. A minimal solution is defined similarly by reversing the above inequality. It is
known (see e.g. [7]) that for every w ∈ C(�+ × �, �) and every z0 ∈ �, there exists
some t0 = t0(z0) > 0 such that there exist unique maximal and minimal solutions of
the cauchy problem

z′ = w(t, z(t)), z(0) = z0,

defined on [0, t0).
We will need the following three useful lemmas in the sequel.

LEMMA 1 [4]. Let w(t, z) ∈ C(�+ × �, �) and let r(t) be the maximal solution of
the ordinary differential equation

z′(t) = w(t, z), z(0) = z0,

defined on some interval [0, T ] with T > 0. If q(t) : [0, T ] → � is absolutely continuous
and satisfies

q′(t) ≤ w(t, q(t)), a.e. on [0, T ],

with q(0) ≤ z0 = r (0), then q(t) ≤ r(t), t ∈ [0, T ].
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LEMMA 2 [4]. Let w(t, z) ∈ C(�+ × �, �) and let ρ(t) be the minimal solution of
the ordinary differential equation

z′(t) = w(t, z), z(0) = z0,

defined on some interval [0, T ] with T > 0. If q (t) : [0, T ] → � is absolutely continuous
and satisfies

q′(t) ≥ w(t, q(t)), a.e. on [0, T ],

with q(0) ≥ z0 = ρ(0), then q(t) ≥ ρ(t), t ∈ [0, T ].

LEMMA 3 [2]. Let T > 0 and u ∈ W 1,1((0, T); C(�)), where � is a bounded domain
in �n. Then for every t ∈ (0, T) there exists at least one pair of points ξ (t), ζ (t) ∈ � with

m(t) := min
x∈�

[u(t, x)] = u(t, ξ (t)), M(t) := max
x∈�

[u(t, x)] = u(t, ζ (t)),

and the functions m(t), M(t) are absolutely continuous on (0, T) with

dm
dt

(t) = ut(t, ξ (t)) and
dM
dt

(t) = ut(t, ζ (t)) a.e. on (0, T).

We now present the main results of the paper.

THEOREM 1. Assume that f satisfies (2) and the condition

w1(t, u) ≤ f (t, x, u, 0) ≤ w2(t, u),

for some w1, w2 ∈ C(�+ × �, �). If for any initial data ϕ ∈ W such that the minimal
solution ρ(t) of the scalar ordinary differential equation

zt = w1(t, z), z(0) = m(0) = min
x∈�

{ϕ(x)}

exists globally in time and the maximal solution r(t) of the scalar ordinary differential
equation

zt = w2(t, z), z(0) = M(0) = max
x∈�

{ϕ(x)}

exists globally in time, then the corresponding unique classical solution to (1) is defined
globally in time.

Proof. Let u be the classical solution of (1) with the initial data ϕ and let T > 0 be
the maximal existence time of u. Set

m(t) := min
x∈�

[u(t, x)], M(t) := max
x∈�

[u(t, x)].

By Lemma 3, we know that M(t) is absolutely continuous on (0, T). Next, we prove
that

M′(t) ≤ w2(t, M(t)) a.e. on (0, T). (3)
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Let ζ (t) be the point where M(t) is attained. If ζ (t) ∈�, then it follows that (see
[5]) ∇u(t, ζ (t)) = 0 and

n∑
i,j=1

aij(t, ζ (t), u(t, ζ (t)))
∂2u(t, ζ (t))

∂xi∂xj
≤ 0.

In view of the growth conditions of f , applying the above lemma and using the equa-
tion (1), we get

dM(t)
dt

= ut(t, ζ (t))

=
n∑

i,j=1

aij(t, ζ (t), u(t, ζ (t)))
∂2u(t, ζ (t))

∂xi∂xj
+ f (t, ζ (t), u(t, ζ (t)), 0)

≤ w2(t, M(t)).

Thus, we find that (3) holds true for ζ (t) ∈ �.
If ζ (t) ∈ ∂�, we construct a ball B(ζ (t), r) having center at ζ (t) and radius r > 0.

Let us consider the uniformly elliptic operator

Lu = div(a(t, x, u)∇u) =
n∑

i,j=1

aij
∂2u

∂xi∂xj
+

n∑
j=1

(
n∑

i=1

∂ai,j

∂xi

)
∂u
∂xj

in B(ζ (t), r) ∩ �. Since M(t) is the maximum of u(t, x) in B(ζ (t), r) ∩ � and ∂u
∂ν

(t, ζ (t)) =
0, by the strong maximum principle (see [8]), we know that it is impossible to have
Lu(t, x) ≥ 0 for all x ∈ B(ζ (t), r) ∩ � unless u ≡ M(t) in B(ζ (t), r) ∩ �.

If u ≡ M(t) in B(ζ (t), r) ∩ �, then we can choose ζ 1(t) ∈ � instead of ζ (t), and we
obtain the inequality (3).

Assume now u is not constant in B(ζ (t), r) ∩ �. Then there exists xr ∈ B(ζ (t), r) ∩ �

such that Lu(t, xr) < 0. Therefore Lu(t, ζ (t)) ≤ 0, since r can be made arbitrarily small
and u(t, ·) ∈ C2(�). Next, let {τ1, . . . , τn−1} be a basis of the tangent plane to ∂� at
ζ (t). Using local coordinates and the fact that ζ (t) is a maximum point of u, it follows
that

〈∇u(t, ζ (t)), τj〉�n = 0 for j = 1, . . . , n − 1.

Note furthermore that ∂νu(t, ζ (t)) = 〈∇u(t, ζ (t)), ν(ζ (t))〉�n = 0 by the boundary
condition in (1). We find that ∇u(t, ζ (t)) = 0 since

{τ1, . . . , τn−1, ν(ζ (t))}

forms a basis of �n. As in the case ζ (t) ∈ �, we also obtain the inequality (3) if
ζ (t) ∈ ∂�.

Similarly, we can prove that

m′(t) ≥ w1(t, m(t)) a.e. on (0, T). (4)
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Provided T < ∞, it follows that lim supt→T ‖u(t, ·)‖C(�) = ∞. Thus, we obtain a
sequence {tk} ⊂ (0, T) converging to T such that

lim
tk→T

M(tk) = ∞ or lim
tk→T

m(tk) = −∞.

Suppose first that limtk→T M(tk) = ∞.
By the hypothesis of the theorem, we have that the maximal solution r(t) of the

scalar ordinary differential equation

zt = w2(t, z), z(0) = M(0) = max
x∈�

{ϕ(x)}

exists globally in time. Applying Lemma 1, in view of (3), we obtain

M(t) ≤ r (t), t ∈ �+.

This contradicts the fact that limtk→T M(tk) = ∞.
Similarly, if limtk→T m(tk) = −∞, by the hypothesis of the theorem, we have that

the minimal solution ρ(t) of the scalar ordinary differential equation

zt = w1(t, z), z(0) = m(0) = min
x∈�

{ϕ(x)}

exists globally in time. Applying Lemma 2, in view of (4), we obtain

m(t) ≥ ρ(t), t ∈ �+.

This contradicts the fact that limtk→T m(tk) = −∞. Therefore, T = ∞ and the solution
u exists globally in time. This completes the proof of the theorem. �

As a particular case of Theorem 1, we obtain the following corollary.

COROLLARY 1. Assume that f satisfies (2) and the growth condition

h(t, w) ≤ θ (t)µ(w),

with some θ ∈ C(�+, �+) and µ ∈ C(�, (0,∞)).

(i) If

∫ ∞

0

ds
µ(s)

=
∫ 0

−∞

ds
µ(s)

= ∞,

then for any initial data ϕ ∈ W the corresponding unique classical solution to (1.1) is
defined globally in time.

(ii) If an initial data ϕ ∈ W satisfies

∫ ∞

0
θ (s) ds < min

{∫ m(0)

−∞

ds
µ(s)

,

∫ ∞

M(0)

ds
µ(s)

}
,

where m(0) = minx∈�{ϕ(x)} and M(0) = maxx∈�{ϕ(x)}, then the corresponding unique
classical solution to (1) is defined globally in time.
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Proof. Let u be the classical solution of (1) with the initial data ϕ and let T > 0 be
the maximal existence time of u. Set

m(t) := min
x∈�

[u(t, x)], M(t) := max
x∈�

[u(t, x)].

By Lemma 3, we know that M(t) and m(t) are absolutely continuous on (0, T). Using
the growth condition of the corollary and following the similar proof on the inequalities
(3) and (4), we can prove

M′(t)
µ(M(t))

≤ θ (t) a.e. on (0, T) (5)

and

− m′(t)
µ(m(t))

≤ θ (t) a.e. on (0, T). (6)

Provided T < ∞, it follows that lim supt→T ‖u(t, ·)‖C(�) =∞. Thus, we obtain a
sequence {tk} ⊂ (0, T) converging to T such that

lim
k→∞

M(tk) = ∞ or lim
k→∞

m(tk) = −∞.

(i) Suppose first that limk→∞ M(tk) = ∞. Since θ (t) ∈ C((0,∞), �+), we have that∫ T
t1

θ (s) ds = l <∞. Note that since
∫ ∞

0
ds

µ(s) = ∞ and µ(s) ∈ C(�, (0,∞)), we have that
there is a n ∈ N such that ∫ M(tn)

M(t1)

ds
µ(s)

> l.

Thus, by (5), we have that

l <

∫ M(tn)

M(t1)

ds
µ(s)

=
∫ tn

t1

M′(t)
µ(M(t)

dt ≤
∫ T

t1

θ (s) ds = l.

This leads to a contradiction. Similarly, if limk→∞ m(tk) = −∞, using (6), we also
obtain a contradiction. Therefore, T = ∞ and the solution u exists globally in time.
This proves part (i) of the theorem.

(ii) Suppose first that limk→∞ m(tk) = −∞. Since
∫ m(0)
−∞

ds
µ(s) >

∫ ∞
0 θ (s) ds, there is a

n ∈ N such that ∫ m(0)

m(tn)

ds
µ(s)

> d =
∫ ∞

0
θ (s) ds.

Then (6) leads to the contradiction

d <

∫ m(0)

m(tn)

ds
µ(s)

= −
∫ tn

0

m′(t)
µ(m(t)

dt ≤
∫ ∞

0
θ (s) ds = d.

Similarly, if limk→∞ M(tk) = ∞, using (5), we also obtain a contradiction. There-
fore, T = ∞ and the solution u exists globally in time. This completes the proof of
corollary. �
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EXAMPLE 1. Consider the problem (1) with

| f (t, x, w,∇w)| ≤ 1
(1 + t)2

(1 + w2)(1 + |∇w|2). (7)

Take θ (t) = 1
2(1 + t)2 and µ(s) = 1 + s2, a straightforward computation shows that

∫ ∞

0
θ (t) dt = 1

2
<

π

6
= min

{∫ ∞
√

3

ds
µ(s)

,

∫ −√
3

−∞

ds
µ(s)

}
.

Applying Corollary 1, we get that the solutions of (1) are global for any initial data
satisfying |ϕ(x)| ≤√

3 on � if (7) holds. Observe that the recent results in [2] are not
applicable here. �

EXAMPLE 2. Consider the problem (1) with

f (t, x, u,∇u) = t(u − u7)(1 + |∇u|2). (8)

Take w1(t, u) = w2(t, u) = t(u − u7). We have that the solutions of the scalar ordinary
differential equation

zt = t(z − z7), z(0) = z0. (9)

are unique as long as they exist in time. Therefore, the maximal solution of (9) is the
unique solution of (9).

Next, we shall show that the unique solution of (9) with z0 = M(0) = maxx∈�{ϕ(x)}
exists globally in time.

Multiplying equation (9) by z(t), we obtain

1
2

(z2(t))′ = t(z2 − z8) ≤ tz2.

By means of the Gronwall inequality, we get

z2(t) ≤ z2(0)et2
, t ∈ �+.

Thus, we have

|z(t)| ≤ M(0)e
t2
2 , t ∈ �+.

It follows that the unique solution of (9) with z0 = M(0) = maxx∈�{ϕ(x)} exists globally
in time. Using an analagous argument, we can also prove that the minimal solution of
(9) with z0 = m(0) = minx∈�{ϕ(x)} exists globally in time.

Applying Theorem 1, we get that the solutions of (9) are global for any initial data.
Observe that the recent results in [2] and [9] are not applicable here. �

REMARK 1. Note that Theorem 2 in [2] and Corollary 1 are special cases of
Theorem 1 with w2(t, u) = −w1(t, u) = γ (u) and Theorem 1 with w2(t, u) = −w1(t, u) =
θ (t)µ(u), respectively. �

Using the Lyapunov functional and recent results on comparison theorems in
Lemma 1 and Lemma 2, we can prove the following theorem.
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THEOREM 2. Assume that f satisfies (2),

f (t, 0, 0) = 0 for all t ∈ �+, (10)

and there exists V ∈ C1(�+ × �, �) with

lim
|r|→∞

V (t, r) = ∞ for each fixed t ∈ �+, (11)

Vr(t, r) ≥ 0 for all (t, r) ∈ �+ × �+, (12)

Vr(t, r) ≤ 0 for all (t, r) ∈ �+ × �−, (13)

and such that for all (t, r) ∈ �+ × �,

Vt(t, r) + Vr(t, r) f (t, r, 0) ≤ w(t, V (t, r)), (14)

for some w ∈ C(�+ × �, �). If the initial data ϕ ∈ W satisfies ϕ ≤ 0 (resp. ϕ ≥ 0) and
is such that the maximal solution r(t) of the scalar ordinary differential equation

zt = w(t, z), z(0) = V (0),

exists globally in time, where

V (0) = V
(

0, max
x∈�

ϕ(x)
)(

resp. V (0) = V
(

0, min
x∈�

ϕ(x)
)

.

Then the corresponding unique classical solution to (1) is defined globally in time.

Proof. Let u be the classical solution of (1) with the initial data ϕ and let T > 0 be
the maximal existence time of u. Set

m(t) := min
x∈�

[u(t, x)], M(t) := max
x∈�

[u(t, x)].

By Lemma 3, we know that M(t) and m(t) are absolutely continuous on (0, T).
Following the similar proof on the inequalities (3) and (4), we can prove

M′(t) ≤ f (t, M(t), 0) a.e. on (0, T) (15)

and

m′(t) ≥ f (t, m(t), 0) a.e. on (0, T). (16)

Consider the ordinary differential system

du
dt

= f (t, u, 0), u(0) = 0. (17)

Note that f ∈ C1 and (10) holds, so that u(t) ≡ 0 is the unique solution of (17). Thus,
u(t) ≡ 0 is also the maximal solution of (17).

If the initial data ϕ ≤ 0, then M(0) ≤ 0. By Lemma 1, we obtain that

M(t) ≤ 0 t ∈ [0, T).

From the above relation, we infer that

m(t) ≤ M(t) ≤ 0 t ∈ [0, T). (18)
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Applying the inequalities (16) and (18), in view of hypotheses (13) and (14), we obtain

d
dt

V (t, m(t)) ≤ w(t, V (t, m(t))) a.e. on (0, T). (19)

Provided T < ∞, it follows that

lim sup
t→T

‖u(t, ·)‖C(�) = ∞.

Thus, in view of (18), we obtain a sequence {tk} ⊂ (0, T) converging to T such that

lim
k→∞

m(tk) = −∞.

In view of (11), we have that limk→∞ V (tk, m(tk)) = ∞.
By the hypothesis of the theorem, we have that the maximal solution r(t) of the

scalar ordinary differential equation

zt = w(t, z), z(0) = V (0, m(0)) = V
(

0, min
x∈�

ϕ(x)
)

,

exists globally in time. Applying Lemma 1, in view of (19), we obtain

V (t, m(t)) ≤ r(t), t ∈ �+.

This contradicts limtk→T V (tk, m(tk)) = ∞.
If the initial data ϕ ≥ 0, then m(0) ≥ 0. Note that u(t) ≡ 0 is also the minimal

solution of (17). By Lemma 2, we obtain

m(t) ≥ 0, t ∈ [0, T).

From the above relation, we deduce that

M(t) ≥ m(t) ≥ 0, t ∈ [0, T). (20)

Applying the inequalities (15) and (20), in view of hypotheses (12) and (14), we obtain

d
dt

V (t, M(t)) ≤ w(t, V (t, M(t))) a.e. on (0, T). (21)

Provided T < ∞, it follows that

lim sup
t→T

‖u(t, ·)‖C(�) = ∞.

Thus, in view of (20), we obtain a sequence {tk} ⊂ (0, T) converging to T such that

lim
k→∞

M(tk) = ∞.

By the hypothesis of the theorem, we have that the maximal solution r(t) of the
scalar ordinary differential equation

zt = w(t, z), z(0) = V (0, M(0)) = V
(

0, max
x∈�

ϕ(x)
)

,
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exists globally in time. Applying Lemma 1, in view of (21), we obtain

V (t, M(t)) ≤ r(t), t ∈ �+.

This contradicts limtk→T V (tk, M(tk)) = ∞. Therefore, T = ∞ and the solution u exists
globally in time. This completes the proof of the theorem. �

As a particular case of Theorem 2, we have the following corollary.

COROLLARY 2. Assume that f satisfies (2),

f (t, 0, 0) = 0, for all t ∈ �+,

and there exists V ∈ C1(�+ × �, �+) with

lim
|r|→∞

V (t, r) = ∞ for each fixed t ∈ �+,

Vr(t, r) ≥ 0 for all (t, r) ∈ �+ × �+,

Vr(t, r) ≤ 0 for all (t, r) ∈ �+ × �−,

and such that for all (t, r) ∈ �+ × �,

Vt(t, r) + Vr(t, r) f (t, r, 0) ≤ θ (t)µ(V (t, r)),

for some θ ∈ C(�+, �+), µ ∈ C(�+, (0,∞)). If the initial data ϕ ∈ W satisfies ϕ ≤ 0
(resp. ϕ ≥ 0) and for all T > 0 ∫ T

0
θ (t) dt <

∫ ∞

V (0)

ds
µ(s)

,

where

V (0) = V
(

0, max
x∈�

ϕ(x)
) (

resp. V (0) = V
(

0, min
x∈�

ϕ(x)
))

,

then the corresponding unique classical solution to (1) is defined globally in time.

Proof. Let u be the classical solution of (1) with the initial data ϕ and let T > 0 be
the maximal existence time of u. Set

m(t) := min
x∈�

[u(t, x)], M(t) := max
x∈�

[u(t, x)].

If the initial data ϕ ≤ 0, then M(0) ≤ 0. Using the hypothesis of the corollary and
following the same proof of (18) and (19), we can obtain

m(t) ≤ M(t) ≤ 0 t ∈ [0, T) (22)

and

d
dt

V (t, m(t)) ≤ θ (t)µ(V (t, m(t))) a.e. on (0, T). (23)

Provided T < ∞, it follows that

lim sup
t→T

‖u(t, ·)‖C(�) = ∞.
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Thus, in view of (22), we obtain a sequence {tk} ⊂ (0, T) converging to T such that

lim
k→∞

m(tk) = −∞.

In view of the hypothesis of the corollary, we have that

lim
k→∞

V (tk, m(tk)) = ∞.

For simplicity, we denote V (t, m(t)) by V (t). Since θ (t) ∈ C((0,∞), �+), we have
that

∫ T
0 θ (s) ds = l < ∞. Note that since

∫ ∞
V (0)

ds
µ(s) > l and µ(s) ∈ C(�, (0,∞)), we have

that there is a n ∈ N such that ∫ V (tn)

V (0)

ds
µ(s)

> l.

Thus, by (23), we would have a contradiction

l <

∫ V (tn)

V (0)

ds
µ(s)

=
∫ tn

0

dV (t)
µ(V (t, m(t)))

≤
∫ T

0
θ (s) ds = l.

This forces T = ∞.
If the initial data ϕ ≥ 0, then m(0) ≥ 0. Using the hypothesis of the corollary and

following the same proof of (20) and (21), we can obtain

M(t) ≥ m(t) ≥ 0, t ∈ [0, T) (24)

and

d
dt

V (t, M(t)) ≤ θ (t)µ(V (t, M(t))) a.e. on (0, T). (25)

Provided T < ∞, it follows that

lim sup
t→T

‖u(t, ·)‖C(�) = ∞.

Thus, in view of (24), we obtain a sequence {tk} ⊂ (0, T) converging to T such that

lim
k→∞

M(tk) = ∞.

Similarly, using (25), we also obtain a contradiction. Therefore, T = ∞ and the solution
u exists globally in time. This completes the proof of the corollary. �

EXAMPLE 3. Consider the following reaction-diffusion equation


ut − �u = u3 (1 + 4|∇u|2)
2(1 + t)2 , t > 0, x ∈ �,

∂u
∂ν

(t, x) = 0, t > 0, x ∈ ∂�,

u(0, x) = ϕ(x), x ∈ �,

(26)

where � is a bounded domain in �n with a C2-boundary ∂�.
Note that f (t, r, 0) = r3

2(1 + t)2 and set

V (t, r) = r2, (t, r) ∈ �+ × �.
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A straightforward computation shows that

Vt(t, r) + Vr(t, r)f (t, r, 0) = r4

(1 + t)2
= V2

(1 + t)2
.

Set θ (t) = 1
(1+t)2 and µ(s) = s2. Observe that∫ ∞

1

ds
µ(s)

=
∫ ∞

1

1
s2

ds = 1 =
∫ ∞

0

1
(1 + t)2

dt.

Thus, the hypotheses of Corollary 2 are clearly satisfied. Applying Corollary 2, we have
that if the initial data ϕ ≤ 0 satisfies

V (0) =
[

min
x∈�

ϕ(x)
]2

≤ 1

or the initial data ϕ ≥ 0 satisfies

V (0) =
[

max
x∈�

ϕ(x)
]2

≤ 1,

then the corresponding solution to (26) exists globally in time. Observe that the recent
results in [2, 4] are ineffective here. �

REMARK 2. Note that Theorem 1 in [9] and Corollary 2 are special cases of
Theorem 2 with w(t, V (t, r)) = θ (t)µ(V (t, r)).
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