
Robotica (2024), 1–50
doi:10.1017/S0263574724001954

RESEARCH ARTICLE

An omnidirectional mecanum wheel automated guided
vehicle control using hybrid modified A∗ algorithm
Ankur Bhargava1 , Mohammad Suhaib1 and Ajay K. S. Singholi2

1Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
2University School of Automation & Robotics, Guru Gobind Singh Indraprastha University, New Delhi, India
Corresponding author: Ankur Bhargava; Email: ankurgsb21@gmail.com

Received: 11 April 2024; Accepted: 21 October 2024

Keywords: automated guided vehicle; hybrid modified A∗ (HMA∗) algorithm; particle swarm optimization (PSO);
omnidirectional mecanum wheel; path planning

Abstract
This paper presents Hybrid Modified A∗ (HMA∗) algorithm which is used to control an omnidirectional mecanum
wheel automated guided vehicle (AGV). HMA∗ employs Modified A∗ and PSO to determine the best AGV path. The
HMA∗ overcomes the A∗ technique’s drawbacks, including a large number of nodes, imprecise trajectories, long
calculation times, and expensive path initialization. Repetitive point removal refines Modified A∗’s path to locate
more important nodes. Real-time hardware control experiments and extensive simulations using Matlab software
prove the HMA∗ technique works well. To evaluate the practicability and efficiency of HMA∗ in route planning
and control for AGVs, various algorithms are introduced like A∗, Probabilistic Roadmap (PRM), Rapidly-exploring
Random Tree (RRT), and bidirectional RRT (Bi-RRT). Simulations and real-time testing show that HMA∗ path
planning algorithm reduces AGV running time and path length compared to the other algorithms. The HMA∗

algorithm shows promising results, providing an enhancement and outperforming A∗, PRM, RRT, and Bi-RRT in
the average length of the path by 12.08%, 10.26%, 7.82%, and 4.69%, and in average motion time by 21.88%,
14.84%, 12.62%, and 8.23%, respectively. With an average deviation of 4.34% in path length and 3% in motion
time between simulation and experiments, HMA∗ closely approximates real-world conditions. Thus, the proposed
HMA∗ algorithm is ideal for omnidirectional mecanum wheel AGV’s static as well as dynamic movements, making
it a reliable and efficient alternative for sophisticated AGV control systems.

1. Introduction
Automated guided vehicle (AGV) plays a major function in Industry 4.0, the most recent industrial
revolution. For robots in motion, planning a path has been a significant area of research throughout
their evolution. The steps needed to navigate an environment full of obstacles in the best way are
referred to as “path planning” [1]. These issues have to be taken into consideration by AGV path
planning algorithms. The optimization goals of routing computations are the shortest route, the least
path nodes, and minimizing turn magnitude. These computations are made to take an autonomous
vehicle from its current position to its objective location, avoid obstacles, and improve its motion
track [2]. The local path planner is in service of making changes in real time so that the path stays
on track with the global path and avoids any moving or fixed obstacles that the global path planner
doesn’t see. The vehicle’s navigation system uses both methods of planning. Effective global and local
path planning are crucial for autonomous vehicle navigation, particularly for mecanum wheeled-based
vehicles. They have different goals and use different methods of navigation. When the AGV operates
in a static or dynamic environment, there is a need to determine its path planning type [3]. Using

C© The Author(s), 2024. Published by Cambridge University Press

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954
https://orcid.org/0009-0002-3133-8365
https://orcid.org/0000-0002-1438-5963
https://orcid.org/0000-0001-7538-4086
mailto:ankurgsb21@gmail.com
https://doi.org/10.1017/S0263574724001954

2 Ankur Bhargava et al.

real-time local path and sensor data integration, AGV may maneuver in unexpected and dynamic envi-
ronments [4]; however, because it heavily relies on the environment around it, dynamic route planning
alone might not be sufficient to identify the completely ideal route [5]. Before the AGV moves, the
global perfect path is found by scanning the current environment map model utilizing a static path
planning mechanism. With unparalleled flexibility and efficiency, omnidirectional mecanum wheels
on AGVs transformed complex industrial mobility. Traditional path planning and control algorithms
struggle with static and dynamic real-time control. Conventional techniques such as A∗ can provide
optimal pathways, but they aren’t appropriate for dynamic applications since they are computationally
costly and lead to jerky trajectories. Although effective, Probabilistic Roadmap (PRM)-based global
travel planning is not adaptable in real-time or in densely populated places. Large regions can be
rapidly investigated with Random Tree (RRT) and Bidirectional RRT (Bi-RRT) methods, but they also
generate less-than-ideal pathways that must be relaxed after processing, adding to the computational
load [6].

While state-of-the-art techniques such as the Modified Elman Recurrent Neural Network are effec-
tive for learning-based dynamic control, their relevance to real-world AGV navigation is constrained
by their difficulty with standardization in unstructured circumstances and their enormous data set
requirements [7]. Hybrid swarm optimization techniques integrate various meta-heuristics to optimize
routes; yet, they are slow for convergence and ineffective when running in real time [8]. Kinematic
path-tracking controls employ the Back-Stepping Slice Genetic robust Algorithms being durable but
computationally costly and challenging to scale in applications that require real-time control [9].
Recent hybrid algorithms like RRT∗-PSO [10] and the A∗–FAHP Hybrid Algorithm [11] incorpo-
rate path planning with Particle Swarm Optimization [12] and Fuzzy Analytic Hierarchy Process
[13]; however, they have significant computational costs and impoverished convergence in unpre-
dictable circumstances. A more durable and effective solution is needed due to these limitations.
To solve these issues, this article suggests a Hybrid Modified A∗ method that combines modi-
fied A∗’s path optimal with PSO real-time adaptability and efficient swarm-based techniques and
compares with A∗, PRM, RRT, and Bi-RRTs to prove the effectiveness of HMA∗. This complete
method simplifies and speeds up omnidirectional AGV path planning in complicated and dynamic
contexts.

AGV setups with omnidirectional mecanum wheels are highly useful due to their distinctive fea-
ture of being able to move in any direction regardless of orientation. This feature allows them to
move across restricted spaces with more dexterity and accuracy, which makes it ideal for compli-
cated and rapid industrial environments [14]. Although mecanum wheel AGVs have several benefits,
operating and maneuvering them is very challenging. Precise and efficient path planning is necessary
to fully utilize them, and this necessitates the inclusion of advanced algorithms capable of handling
the intricacies of omnidirectional movement. Traditional path planning algorithms, such as A∗, are
still commonly used, but they often fall short of optimizing routes for mecanum wheel AGVs due to
their reliance on predetermined movement patterns and restrictions when it comes to handling dynamic
obstacles [15].

The Hybrid Modified A∗ algorithm was created especially for omnidirectional mecanum wheel AGVs
in order to overcome difficulties stated above. The proposed algorithm synergizes the robust pathfinding
capabilities of the MA∗ algorithm with dynamic path optimization techniques tailored for omnidirec-
tional navigation. Through the utilization of multi-sensor fusion, the algorithm is able to dynamically
adapt to continuous changes in the surrounding environment, thereby guaranteeing the most effective
route selection and avoiding obstacles.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 3

The paper’s outline is as follows: Section 2 provides literature review, and Section 3 provides the
detail about AGV’s locomotion. Section 4 provides a summary of Modified A∗ and PSO evolution-
ary algorithms, while Section 5 provides Hybrid Modified A∗ (HMA∗) algorithm in detail. Section 6
presents the experiment of path planning and simulation. Section 7 examines obstacle environment-
based simulation and real-time experiments. Section 8 offers experimental validation, and Section 9
gives the conclusion and the scope for the future.

2. Literature review
One of the biggest problems with the task is that the algorithms used to plan paths for autonomous
vehicles are very complicated. Static route design employs procedures that can be broadly classified
into artificial intelligence algorithms and heuristic algorithms [16]. Numerous heuristic techniques have
been thoroughly studied, including A∗ [17], Dijkstra [18], D∗ [19], LPA∗ [20], RRT [21], and PRM [22].
A∗ algorithm based on guidelines, inverted length weighted interpolation for the D∗ Lite method [23],
enhanced PRM algorithm [24], hybrid heuristic-based A∗ method [25], B-spline curve combined with A∗

[26], bidirectional alternate searching A∗ technique [27], RRT method with an APF background [28],
Triangle inequality-based RRT-connect algorithm [29], and quickly growing arbitrary tree algorithm
[30] are a few of the recent advances. Furthermore, a multitude of artificial intelligence optimization
techniques, including genetic algorithms (GAs) [31], divergent evolutionary [32], ants colonies opti-
mizing (ACO) [33], and particle swarm optimizing (PSO) [34], are employed in static path planning.
The path planning process is optimized through the application of these solutions. Several novel meth-
ods, including enhanced PSO with minimum-maximum normalization [35], adaptive ACO [36], GA
based on the Bessel curve [37], and PSO based on the smoothing principle [38], have been developed
to solve difficulties in static path planning. A method integrating a logarithmic decline strategy with
Cauchy perturbation, drawing on a bat method [39], a combination of whale optimization approach
[40] and differential evolution for vehicle routing [41], an enhanced artificial fish swarm approach with
continuous segmented Bessel curve for mobile robot trajectory planning [42], and optimization of chem-
ical processes for global route planning [43] are a few examples of the new solutions to global path
planning issues that have been made possible by the continuous evolution of AI optimization algo-
rithms. Additionally, in order to circumvent the constraints that are associated with single-approach
systems, hybrid path planning approaches have been investigated [44]. Two different static approaches
are combined in these methods. Examples include a hybrid Dijkstra-BFS algorithm to enhance process-
ing efficiency and path accuracy [45], a hybrid A∗-ACO method to reduce running time and improve
the planning of paths in complex environments [46], Dijkstra-ACO that optimizes the route using
ACO after initial path planning [47], D∗-GWO demonstrating its practicality and effectiveness [48],
and ACPSO that combines PSO with the A∗ algorithm’s heuristic function [49, 50]. While a single
A∗ processing is quick but produces a lot of pivot points, extra nodes, and erroneous paths, a single
PSO’s path search is precise but struggles with population initialization in complex environments [51].
Most of the previous emphasis has been concentrated on enhancing the path smoothness and heuristic
function of A∗ in static circumstances; there have been very few attempts to simultaneously enhance
A∗ and PSO. The comparative performance of the algorithms found in literature review is as follows
(Table I):

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

4
AnkurBhargava

etal.

Table I. Performance comparison of algorithms.

Author Approach Advantages Disadvantages
J. Guo, X.
Huo et al.
[17]

A∗ algorithm • Optimal Path Finding: Guarantees the shortest
path if a path exists.
• Efficiency: Typically faster than Dijkstra’s
algorithm due to its use of heuristics.
• Widely Used: Well-documented and
understood, making it easy to implement and
modify.

• Memory Intensive: Can consume a lot of
memory for large maps.
• Heuristic Dependency: The efficiency highly
depends on the heuristic function used.
• Not Suitable for Dynamic Environments:
Struggles with real-time changes in the
environment.

K. Wei, Y.
Gao et al.
[18]

Dijkstra algorithm • Optimal Path: Guarantees the shortest path.
• Simplicity: Conceptually simple and easy to
implement.
• Versatile: Can be used with various types of
graphs (weighted, unweighted).

• Computationally Expensive: Time complexity is
higher compared to A∗ when no heuristic is used.
• Memory Usage: Requires significant memory
for large graphs.
• Inefficient for Large Networks: Performance
degrades with the size of the network.

J. Guo et al.
[19]

D∗ algorithm • Dynamic Adaptation: Efficiently handles
changes in the environment.
• Optimal Paths: Provides optimal paths for the
current known map.
• Reusable Paths: Efficient for reusing paths by
updating only the necessary parts.

• Complexity: More complex to implement
compared to A∗ and Dijkstra.
• Computational Overhead: Higher
computational cost due to continuous updates.
• Initial Setup Time: Takes more time to initially
compute paths.

Karur, K
et al. [20]

LPA∗ algorithm • Dynamic Handling: Handles dynamic changes
efficiently.
• Incremental Updates: Updates paths
incrementally, reducing computational overhead.
• Optimal Path Finding: Provides optimal paths
similar to A∗.

• Complexity: More complex to understand and
implement.
• Memory Usage: Requires additional memory for
storing incremental changes.
• Overhead: Additional computational overhead
for maintaining incremental updates.

https://doi.org/10.1017/S0263574724001954 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724001954

Robotica
5

Table I. Continued.

Author Approach Advantages Disadvantages
Wang, X.,
Wei, J. et al.
[21]

RRT
(Rapidly-exploring
Random Tree)
algorithm

• Exploration Efficiency: Quickly explores large
spaces.
• Scalability: Scalable to high-dimensional spaces.
• Simple Implementation: Relatively simple to
implement.

• Suboptimal Paths: Does not guarantee the
shortest path.
• Completeness: May not always find a path if one
exists.
• Randomness: Can produce paths that are not
smooth.

Li, Q. et al.
[22]

PRM (Probabilistic
Roadmap)
algorithm

• Efficient Preprocessing: Good for multi-query
environments.
• Scalability: Scales well to high-dimensional
spaces.
• Smooth Paths: Produces smoother paths
compared to RRT.

• Memory Usage: Requires significant memory
for storing roadmaps.
• Initialization Time: Long preprocessing time for
building the roadmap.
• Path Quality: Path quality can vary depending
on the roadmap.

S. He, T.
Xing et al.
[23]

D star algorithm
(Lite method)

• Real-Time Updates: Efficiently updates paths in
real-time.
• Optimality: Provides optimal paths.
• Lower Computational Cost: Less
computationally intensive than the original D∗

algorithm.

• Complexity: Implementation complexity can be
high.
• Memory Usage: Requires additional memory for
path updates.
• Initial Computation: Initial path computation
can be time-consuming.

M. P.
Gopika
et al. [24]

PRM algorithm
(improved)

• Path Quality: Produces higher quality paths
compared to basic PRM.
• Efficiency: More efficient in finding paths in
complex environments.
• Scalability: Handles high-dimensional spaces
well.

• Complex Implementation: More complex to
implement than basic PRM.
• Computational Cost: Higher computational cost
due to additional improvements.
• Memory Usage: Increased memory usage for
storing enhanced roadmaps.

https://doi.org/10.1017/S0263574724001954 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724001954

6
AnkurBhargava

etal.

Table I. Continued.

Author Approach Advantages Disadvantages
Katiyar S
et al. [28]

APF-based RRT
algorithm

• Path Quality: Produces smoother paths by
incorporating artificial potential fields.
• Obstacle Avoidance: Improved obstacle
avoidance capabilities.
• Exploration Efficiency: Maintains efficient
exploration of the environment.

• Complexity: More complex to implement due to
the combination of APF and RRT.
• Computational Cost: Higher computational cost
for path planning.
• Parameter Tuning: Requires careful tuning of
parameters for optimal performance.

Wang J
et al. [30]

RRT-connect
algorithm

• Fast Path Planning: Faster than basic RRT due
to bidirectional search.
• High Success Rate: Higher success rate in
finding paths.
• Simplicity: Relatively simple to implement.

• Suboptimal Paths: Does not guarantee the
shortest path.
• Randomness: Can produce non-smooth paths.
• Memory Usage: Requires additional memory for
bidirectional search trees.

Xiaohua
Cao et al.
[34]

PSOs (Particle
Swarm
Optimization)
algorithm

• Optimization Capability: Effective for global
optimization problems.
• Scalability: Scales well to high-dimensional
problems.
• Simplicity: Simple and easy to implement.

• Convergence Speed: Can have slow
convergence.
• Local Minima: Prone to getting stuck in local
minima.
• Parameter Sensitivity: Performance depends on
parameter settings.

V. Ruiz
Molledo
et al. [35]

Adaptive ACO (Ant
Colony
Optimization)
algorithm

• Optimization Efficiency: Efficient in finding
optimal paths.
• Dynamic Handling: Adapts well to changes in
the environment.
• Scalability: Scales well to large and complex
environments.

• Computational Cost: High computational cost
due to multiple iterations.
• Parameter Tuning: Requires careful tuning of
parameters for optimal performance.
• Complexity: More complex to implement and
understand.

https://doi.org/10.1017/S0263574724001954 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724001954

Robotica
7

Table I. Continued.

Author Approach Advantages Disadvantages
Rong Lin
et al. [36]

GA based on the
Bessel curve
algorithm

• Path Smoothness: Produces smooth paths due
to Bessel curve integration.
• Optimization Capability: Effective for global
optimization.
• Adaptability: Adapts well to various
environments.

• Complexity: Complex to implement and
understand.
• Computational Cost: Higher computational cost
due to genetic algorithms.
• Convergence: Convergence can be slow.

Si, Q et al.
[41]

whale optimization
approach and
differential
evolution algorithm

• Optimization Efficiency: Effective in global
optimization.
• Simplicity: Simple and easy to implement.
• Adaptability: Adapts well to various types of
optimization problems.
• Simplicity: Simple to implement and
understand.
• Robustness: Robust to changes in the
environment.

• Convergence Speed: Can have slow
convergence.
• Parameter Sensitivity: Performance is sensitive
to parameter settings.
• Local Minima: liable to become confined in
nearby minima.
• Parameter Tuning: requires precise parameter
adjustment.
• Complexity: Implementation can be complex
for certain problems.

M. Jiang
et al. [42]

Enhanced artificial
fish swarm
approach

• Optimization Capability: Effective for global
optimization problems.
• Adaptability: Adapts well to dynamic
environments.
• Scalability: Scales well to high-dimensional
problems.

• Computational Cost: High computational cost
due to complex operations.
• Parameter Tuning: Requires careful tuning of
parameters for optimal performance.
• Implementation Complexity: More complex to
implement compared to basic fish swarm
approaches.

Yassami, M.
et al. [45]

Hybrid
Dijkstra-BFS
algorithm

• Efficiency: Combines the strengths of Dijkstra
and BFS for efficient pathfinding.
• Scalability: Scales well to large graphs.
• Optimal Paths: Provides optimal paths.

• Complexity: More complex to implement than
individual algorithms.
• Memory Usage: Requires significant memory
for large graphs.
• Initial Computation: Initial path computation
can be time-consuming.

https://doi.org/10.1017/S0263574724001954 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724001954

8
AnkurBhargava

etal.

Table I. Continued.

Author Approach Advantages Disadvantages
S. Abi et al.
[46]

Hybrid A∗-ACO
method

• Path Optimality: Provides high-quality paths by
combining A∗ and ACO.
• Efficiency: Efficient in finding paths in complex
environments.
• Adaptability: Adapts well to dynamic changes.

• Complexity: Complex to implement and
understand.
• Computational Cost: Higher computational cost
due to the combination of algorithms.
• Parameter Tuning: Requires careful tuning of
parameters for optimal performance.

Z. Nie et al.
[47]

Dijkstra-ACO
algorithm

• Optimization Capability: Combines the
strengths of Dijkstra and ACO for optimal paths.
• Dynamic Handling: Adapts well to changes in
the environment.
• Path Quality: Provides high-quality paths.

• Complexity: More complex to implement than
individual algorithms.
• Computational Cost: Higher computational cost
due to the combination of algorithms.
• Memory Usage: Requires additional memory for
storing paths.

G. Shial
et al. [48]

D∗-GWO (Grey
Wolf Optimizer)
algorithm

• Optimization Efficiency: The GWO can help the
D∗ algorithm find optimal paths in complicated
scenarios.
• Dynamic Handling: Effective in dynamic
contexts due to D∗’s real-time adaptability and
GWO’s global optimization.
• Exploration and Exploitation Balance: Solution
quality improves with GWO’s
exploration-exploitation balance.

• Complexity: Integration of GWO with D∗

makes the algorithm harder to implement and
understand.
• Computational Cost: Optimization and
real-time path updates may increase computing
costs in the combined strategy.
• Parameter Sensitivity: For best hybrid algorithm
performance, GWO parameters must be carefully
tuned.

https://doi.org/10.1017/S0263574724001954 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574724001954

Robotica 9

Several hybrid approaches have been proposed, some of which are as follows Dijkstra-BFS, A∗-ACO,
and Dijkstra-ACO hybrid techniques are examples; however, these approaches primarily address specific
constraints of individual algorithms instead of offering a comprehensive solution that tackles multiple
issues simultaneously. These innovations have not been properly integrated with heuristic approaches
in order to make use of their combined strengths, despite the fact that several research have proposed
improvements to PSO and ACO, such as adaptive ACO and PSO with smoothing principles. A lack
of uniformity is frequently observed in the evaluation of algorithms, with different measurements and
experimental setups being utilized. Because of this inconsistency, it is difficult to arrive at conclusive
results regarding the effectiveness of various treatments [52]. PSO is known for its sensitivity to initial
population settings. Although there has been a lot of research on individual improvements to heuris-
tic algorithms like A∗, Dijkstra, and RRT, as well as AI optimization techniques like PSO and ACO,
there aren’t the comprehensive solutions that successfully combine the advantages of these methods
to address multiple constraints at once. Dijkstra-BFS, A∗-ACO, and Dijkstra-ACO hybrid algorithms
optimize processing speed and path correctness but often focus on technique restrictions [53].

Hybrid methods increase efficiency in challenging circumstances by solving multiple problems at
once while offering a broader response. Robust, effective, and adaptive algorithms to handle AGVs’
many real-world challenges are lacking. The limitations of this demonstrate the need for additional
study and improvement in path planning for AGVs. These domains mostly concern the development of
algorithms that are more dependable, efficient, and flexible. The Hybrid Modified A∗ (HMA∗) algorithm,
which combines Modified A∗ with PSO, was created in response to this situation. The Modified A∗

algorithm first establishes the initial path, from which duplicate point elimination is used to remove
essential nodes. The best global path is subsequently identified by PSO, which is seeded with these
significant nodes and mixes a random opposition-based method of learning with a random inertia weight.
AGV path planning models are used to assess a method with a more expansive goal function. Its unique
features are below:

• The Hybrid Modified A∗ method improves multiple constraints by combining MA∗ heuristics
with Particle swarm optimization.

• The algorithm’s dynamic heuristic enhances path planning precision by adjusting to changing
environmental conditions and PSO findings. The Hybrid Modified A∗ uses PSO to optimize the
initial population, that is, minimizing the dependence on initial population decisions.

• In hybrid technique, the PSO’s multi-objective capabilities optimize path length, smooth-
ness, and obstacle avoidance simultaneously. The system responds to environmental changes,
constructing it ideal for instantaneous applications with unexpected challenges.

• The hybrid approach finds optimal or near-optimal routes faster than either alone by MA∗ and
PSO. The suggested approach is flexible for multiple uses as it operates under various AGV types
and operating circumstances.

3. Locomotion of the AGV
AGVs with four Mecanum wheels are agile and can go anywhere. Each roller on a Mecanum wheel is 45
degrees; thus, the AGV can go sideways, diagonally, forward, and backward without moving orientation.
Mecanum wheel AGVs are ideal for flexible, accurate industrial applications since they can negotiate
confined spaces and complex situations. By managing each wheel’s speed and direction, the AGV can
conduct precise actions, including spinning on the spot, improving its operational efficiency in multiple
settings [54].

As shown in Figure 1, four-wheel omnidirectional AGV is made up of four Mecanum wheels. The
following is the nomenclature of symbols used, ψ is the constant slope angle of the rollers, Or is the
moveable AGV coordinate framework, Oq is an abbreviation for fixed coordinating framework, Owi is
the wheel coordinating framework, Pwi is the wheel position vector in Owi [54].

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

10 Ankur Bhargava et al.

Figure 1. The schematic of automated guided vehicle.

The rollers around the edges of these wheels are tilted at a constant angle. For this case, the angle ψ is
45 degrees, which means that the wheel can move easily at an angle of 45 degrees with the motion that is
pushing it. Each wheel has a permanent magnet direct current motor connected to it. This motor provides
the torque that the AGV needs to move. It is now considered that the AGV is moving across a level,
uniformly distributed surface. To discover the equation of motion, it is presumed that each component
of the AGV, including the wheels, is rigid. We make use of the Or and Oq coordinate frames within the
framework of the kinematic modeling scenario as in ref. [54, 65].

There is a wheel coordinate frame denoted by Owi (where i = 1 to 4). Pwi is the wheel’s position vector
in Owi as in ref. [55]:

Pwi (where i = 1 to 4) = [xwiywiϕwi]
T (3a)

θ̇ix (where i = 1 to 4) shows how fast the wheel is turning around the hub, θ̇ir (where i = 1 to 4)
represent the roller angular velocity, and θ̇iz (where i = 1 to 4) represents the wheel angular velocity
around the contact point where it is located. Ri (where i = 1 to 4) represents the radius of the wheel, ψi

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 11

(where i = 1 to 4) is the angle of the roller slope for each wheel, and a roller’s radius is denoted by the
letter r. This is how we can write the AGV’s motion vector as in ref. [55]:

Ṗwi =
⎡
⎣ ẋwi

ẏwi

φ̇wi

⎤
⎦ =

⎡
⎣ 0 r sin (ψi) 0

Ri −r cos (ψi) 0
0 0 1

⎤
⎦

⎡
⎣ θ̇ix

θ̇ir

θ̇iz

⎤
⎦ (3b)

Let

Tr
wi =

⎡
⎣ cos

(
φr

wi

) − sin
(
φr

wi

)
dr

wiy

sin
(
φr

wi

)
cos

(
φr

wi

)
dr

wix

0 0 1

⎤
⎦ (3c)

In the given equation, the rotating angle of Owi concerning Or is denoted by φr
wi(where i = 1 to 4). In

addition, the distance in radians between two coordinate frames is shown bydr
wix and dr

wiy.
Let us say that the equation for the AGV’s position vector in Or is Pr = [xr yr φr]T, then the relationship

between Pr and Pwi may be expressed as Pr = Tr
wi.Pwi. Furthermore, it is evident from Figure 1 that the

value of φr
w1 = φr

w2 = φr
w3 = φr

w4 = 0. Consequently, the AGV’s velocity vector may be stated as [65]:⎡
⎣ ẋr

ẏr

φ̇r

⎤
⎦ =

⎡
⎣ 1 0 dr

wiy

0 1 dr
wix

0 0 1

⎤
⎦

⎡
⎣ ẋwi

ẏwi

φ̇wi

⎤
⎦ (3d)

From (3b) and (3d) we get,

Ṗr = Jiq̇i (3e)

where

Ji ∈ R3×3 =
⎡
⎣ 0 r sin (ψi) dr

wiy
Ri −r cos (ψi) dr

wix
0 0 1

⎤
⎦

Ji is the Jacobian matrix of the ith wheel and

q̇i =
[
θix θir θiz

]
Remark 1: |Ji|=0 and ψi = 0
Consequently, Mecanum wheels do not exhibit any signs of singularity.
Remark 2: rank(Ji) = 3
Therefore, there are three degrees of freedom associated with each wheel.
As each of the four wheels is the same, the following equations are used to figure out its geometric

and kinematic properties:
R1 = R2 = R3 = R4 = R and,
dr

w1x = a; dr
w1y = b; dr

w2x = −a; dr
w2y = b; dr

w3x = −a; dr
w3y = −b; dr

w4x = a; dr
w4y = −b

Regarding this, the Jacobian matrix for each wheel can be found as follows:

J1 =
⎡
⎣ 0 r/1.414 b

R −r/1.414 a
0 0 1

⎤
⎦ J2 =

⎡
⎣ 0 −r/1.414 b

R −r/1.414 −a
0 0 1

⎤
⎦

J3 =
⎡
⎣ 0 r/1.414 −b

R −r/1.414 −a
0 0 1

⎤
⎦ J4 =

⎡
⎣ 0 − r

1.414
−b

R − r
1.414

a
0 0 1

⎤
⎦ (3f)

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

12 Ankur Bhargava et al.

The solution to the inverse kinematics problem can be obtained by using equations (3e) and (3f) as
in ref. [56]. ⎡

⎣ ẋr

ẏr

φ̇r

⎤
⎦ = R

4

⎡
⎣ −1 1 −1 1

1 1 1 1
1/a + b −1/a + b −1/a + b 1/a + b

⎤
⎦ ×

⎡
⎢⎢⎣
θ̇1

θ̇2

θ̇3

θ̇4

⎤
⎥⎥⎦

(3g)

where θ̇i (where i = 1 to 4) is the angular velocity of each wheel.
Remark 3: It is possible for the AGV to follow any desired trajectory even if the value of φr is equal

to zero. This is something that can be observed from the kinematic solution that has been constructed.
As an illustration, the AGV need not alter its orientation if it follows a curved path, one of the primary
justifications for its usage in cramped spaces. Within the global coordinate system Oq, the velocity vector
may be expressed as follows since position and rotation are closed-loop feedback [54]:

Ṗq = [
ẋqẏqφ̇

]T = R(ϕ)Ṗr (3h)

where

R (ϕ)=
⎡
⎣ cos (φ) − sin (φ) 0

sin (φ) cos (φ) 0
0 0 1

⎤
⎦

is the rotation matrix of Or with regard to Oq.
The above equations are essential for finding out the wheel velocities and the needed revolutions

per minute (rpm) necessary for a mecanum wheel AGV in order to accomplish the required linear and
angular motions in various environments for real-time obstacle avoidance and path planning. The next
section discusses about the algorithms that are implemented on the AGV for its control in static and
dynamic environments.

4. Modified A∗ and PSO evolutionary algorithms
By the implementation of Modified A∗, the conventional A∗ algorithm, which is frequently used in the
process of path finding and network travel, is enhanced. In contrast to A∗, which finds the shortest path by
calculating the expense of traveling from one location to another using a heuristic, MA∗ usually performs
modifications for the intention of improving the computational effectiveness, accuracy, or flexibility
of the system in surroundings that are complex and dynamic [55].These changes might include the
following:

Dynamic re-planning: Altering current routes to take account of new circumstances or impediments.
Heuristic improvement is a method of adjusting the heuristic function to the specific issue in order to
incorporate discovery and extraction in an appropriate manner.

Integration of hybrid systems: To overcome its limitations in extremely dynamic or unpredictable
environments, MA∗ is sometimes used in conjunction with other optimization techniques such as PSO.

PSO is an algorithm for evolution that draws influence from the way groups of animals, such as fish
or birds, behave together. A population, or swarm, of particles looks for the most suitable solution in
PSO by traveling over the correct space [34]. Every particle modifies its place of existence according to
two criteria.

• Personal best (pBest): A fundamental idea in PSO, pBest, or personal best, is the finest location
that a single particle possesses thus far while moving across the solution space. When moving,
the particle assesses the objective function at its current position. For that particle, the current
position becomes the new pBest if it provides a better objective value than the previous position.

• Global best (gBest):The best position or solution that each particle in the swarm discovered after
all iterations is often referred as gBest. The gBest place is one that behaves the greatest among
all the particle locations at every iteration, determined using an objective function.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 13

4.1. The modified–A∗ (MA∗) algorithm
The MA∗ algorithm merges the Dijkstra algorithm with Breadth-First Search (BFS), combining
Dijkstra’s heuristic global search with BFS’s systematic approach [57]. This fusion is known for its
robustness and effectiveness in AGV path planning. The algorithm commences at the initial node and
evaluates its child nodes, processing them in turn. It continues this process until the target node is found
and added to the OpenList. The next node to process is chosen based on the lowest A(n) value, using
the function formula to estimate costs as in ref. [58].

A(n) = B(n) + C(n) (4.1a)

In the MA∗ algorithm, the estimated total cost A(n) for achieving the target from the start to the
current position is divided into two parts, that is B(n), the real cost, and C(n), the heuristic estimate [58].
Manhattan distance, which aggregates absolute coordinate differences, or the distance from Euclid, the
distance in a straight line, can be used by C(n). The heuristic chosen is Euclidean distance, in this study
because of its accuracy, and the algorithm uses an eight-way search on a raster map with obstacles [59].

B (n) = [(ys − yn)
2 + (zs − zn)

2]1/2

C (n) = [(yn − yt)
2 + (zn − zt)

2]1/2 (4.1b)
Here, yn and zn are the current node’s abscissa and ordinate, respectively, and ys and zs are for the

source or starting nodes. The target node’s abscissa and ordinate are yt and zt (Figure 2).

Figure 2. Example of MA∗ algorithm.

Two sets are created from all extended nodes by the MA∗ algorithm:

• OpenList: There are nodes in the OpenList that have been found but not thoroughly investigated.
The algorithm selects the node having less overall estimated cost among these nodes, which are
candidates for expansion.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

14 Ankur Bhargava et al.

• CloseList: Nodes that have previously been processed are stored in the CloseList to avoid having
to be revisited. This eliminates the requirement for repeated calculations and improves search
times by avoiding needless node expansion.

• Together, the OpenList and CloseList allow the MA∗ algorithm to effectively achieve its objective
through enabling it to systematically examine the most probable paths, removing recurrent checks
and loops.

The MA∗ algorithm has many advantages like faster path finding, efficient handling of dynamic envi-
ronments, reduced computational complexity, improved memory utilization, better scalability, more
accurate heuristics, handling of multiple objectives, and smoother path generation as compared to
traditional A∗ algorithm. Below is the compression between A∗ and MA∗ algorithm.

The A∗ algorithm, tested using MATLAB 2023 on an Intel i7 workstation, demonstrates the following
results on 10 x 10, 20 x 20, and 30 x 30 grid maps (Figure 3).

Figure 3. Matlab results based on the conventional A∗ method’s simulation in various map contexts.
(a) The map measures 10 by 10. (b) The map measures 20 by 20. (c) The map measures 30 by 30.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 15

Figure 4. Workflow of the MA∗ algorithm program.

The workflow of the MA∗ algorithm is shown in Figure 4. The Modified A∗ (MA∗) algorithm, tested
using MATLAB 2023 on an Intel i7 workstation, demonstrates superior efficiency compared to the
traditional one. Tested on 10 x 10, 20x 20, and 30 x 30 grid maps, the MA∗ algorithm decreases the
number of nodes searched, minimizes turn points, and shortens computation time, as shown in Table II.
While the overall path length reduces as compared to A∗, MA∗ excels in optimizing route smoothness
and driving performance, especially as map size increases [60] (Figure 5).

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

16 Ankur Bhargava et al.

Table II. Comparative analysis of A∗ and MA∗.

Size of the map
(in Units)

Algorithm Calculated average
time (in seconds)

Nodes
(in numbers)

Length of the path
(in Units)

10 X 10 A∗ 23.94 64 14.48
MA∗ 13.51 38 14.31

20 X 20 A∗ 38.03 188 30.37
MA∗ 32.38 82 27.28

30 X 30 A∗ 43.60 440 45.68
MA∗ 35.70 128 43.56

Figure 5. Matlab results of the MA∗ algorithm’s simulation in various map contexts. (a) The map
measures 10 by 10. (b) The map measures 20 by 20. (c) The map measures 30 by 30.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 17

4.2. Particle swarm optimization (PSO) algorithms
From bird feeding data, Kennedy and Eberhart created Particle Swarm Optimization (PSO) [61]. A
cluster of randomly initialized particles indicating potential fixes searches for the ideal solution in a
multidimensional space in PSO. The simplicity and fast convergence of PSO make it popular in flow
shop scheduling, medical picture classification, nonlinear power system optimization, and AGV path
planning [61, 62].

The PSO method iteratively refines particle positions and velocities to obtain the optimal solution by
evaluating Gbest and Pbest. As an example, the following equation shows how its position and speed
are updated [62]:

vj+1
i = ωvj

i + c1r1(Pbestji − xj
i) + c2r2(Gbestj − xj

i)
xj+1

i = xj
i + vj+1

i
(4.2a)

An increase in the potential for self-learning factor denoted by c1 of a bird increases the bird’s incen-
tive to arrive in its most advantageous spot, where ω represents inertia, that is indicates the amount
of weight that is carried by flying to its ideal place [62]. vj+1

i indicates the i-th particle’s total process
velocity in the (j + 1)th iteration. A bird is more likely to fly to the group’s optimum position if its social
learning factor, or c2, is high. Here, r1 and r2 are uniformly distributed random values, and pbestjiis the
particle’s optimal solution identified in the i-th search after j iterations. After the jth iteration, Gbestj is
the optimal solution. The symbol xj

i positions the i-th particle after j repetitions [63]. The Workflow of
the PSO algorithm is shown below with Matlab 2023 simulation result (Figures 6 and 7).

Figure 6. Workflow of the PSO algorithm.
https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

18 Ankur Bhargava et al.

Figure 7. PSO algorithm implementation in Matlab.

5. Implementing the Hybrid Modified A∗ algorithm
The Hybrid Modified A∗ (HMA∗) method combines PSO and modified A∗ (MA∗) to improve path
finding. The method of “particle swarm optimization,” or “PSO,” optimizes populations by modifying
particle placements and speeds. This technique also considers fish and avian behavior [64]. By using
MA∗’s ordered search and PSO’s optimization, HMA∗ can find network routes efficiently and effec-
tively while improving path quality. HMA∗ improves the path planning and navigation for automated
guided vehicle. Dynamic heuristics adapt to environmental changes, enhancing accuracy of the system
[64]. HMA∗ changes paths in real time for best routing accuracy and smoother navigation in congested
areas, unlike PRM, which employs pre-computed maps [12]. HMA∗ provides high-performance obsta-
cle avoidance, and post-processing enables stable paths [65]. Lowering search space and processing
time improves HMA∗’s scalability and computational efficiency, making it suited for complex, dynamic
AGVs.

5.1. Steps of algorithm
Step 1: The raster method creates the raster map and initiates the MA∗ method’s parameters.
Step 2: Make two void sets, designated as closeList and openList. The nodes that have been investigated
are included in a closeList, whilst the nodes that have not yet been explored are included in an openList.

After the first node has been incorporated into openList, the current node will be demolished if it is
on a path that includes both the previous and next nodes in the current node’s sequence, indicating that
the node is redundant. For example, node A will be eliminated if it is collinear with node S, the node

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 19

before it, and node B, the node after it. The redundant path node’s judging process can be written as in
ref. [59]:

J1 = zn − zn−1

yn − yn−1

J2 = zn+1 − zn

yn+1 − yn

(5.1a)

For the current node n, the abscissa and ordinate are represented by yn and zn, respectively. On the
other hand, yn−1 and zn−1 are meant to represent the node n −1, and similarly, yn + 1 and zn + 1 are for
node n + 1. If J1 is equals to J2, the present node is redundant and co-linear with both the nodes that
came before it and the nodes that will come after it.. If J1 is not equal to J2, then the present node is not
redundant and does not have any co-linearity with the nodes that came before or after it.
Step 3: Determine which node in openList has the lowest f(n) value, and then transform that node as an
active node. When evaluating duplicated transition nodes, the implicit function listed below is employed
as in ref. [59]:

path = f (y, z) =
(

z−zn−1

zn+1−zn−1

)
−

(
y−yn−1

yn+1−yn−1

)
,

obs = f (y, z) = (
y − yobs

)2 + (z − zobs)
2 − r2

obs

(5.1b)

Here, yobs and zobs represent each obstacle’s abscissa and ordinate and robs is the obstacle area radius
following expansion. There are barriers between the two turning sites when path = obs; in opposite
case, that is when path �= obs, the intermediate turning locations are superfluous or redundant because
there are no obstacles between them.
Step 4: Remove the current node “n” and add it to closeList rather than openList.
Step 5: The goal is to determine whether or not the node “n” to be targeted. In the event that it is the
node of interest, the current node identified as ‘n’ should be used as the source node in order to scan the
eight neighbors.
Step 6: It is necessary to ascertain which of the eight nearby neighbors of the points of node “n” are
included in list, if they are not obstacles. If this is the case, figure out each node’s f(n) value, choose
whatever node has the lowest value of f(n) to be the upcoming node n + 1, and then go back to step
number four. Add it to openList and compute f(n) if it is not in openList.
Step 7: The redundant node removal technique is utilized to eliminate the points that were present in
the initial path, that is, remove path nodes and transition points that are redundant in nature.
Step 8: When traveling through the remaining nodes in the route points set or path-points set , each PSO
optimization iteration should start and terminate at the separated nodes n and n + 2.
Step 9: One must provide the population no. (possize), the maximum no. of repetitions (Tmax), the
factor based on self-learning (c1), the factor based on social learning (c2), the inertia weights correlation
coefficients (ωmax and ωmin), and the iteration to establish the PSO parameters. In order to enhance the
PSO algorithm’s performance, the adaptive inertia weight [66] is frequently employed.

ω= (ωmax +ωmin)×
(

p
j
gbest

pj−1
gbest

)
− wmax×j

Tmax
(5.1c)

where ωmin is the minimum inertia weight; ωmax is the maximum inertia weight, the ideal fitness (global)
at the jth iteration is denoted by pj

gbest, the ideal fitness (global) at the j-1th iteration is denoted by pj −1
gbest

and Tmax represents the highest possible quantity of possible iteration.
The algorithm can quickly depart from the optimal local solution by changing the inertia weight to

a random number with a predetermined range. The algorithm’s search is improved as a result of these
efforts, which also preserve the population’s diversity. It is for this reason that this research suggests a

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

20 Ankur Bhargava et al.

stochastic inertia weight by employing the following equation, which is derived from the linear declining
inertia weight as in ref. [66].

ω=ωmax − (ωmax −ωmin)×
(

j
Tmax

)
× eρ (5.1d)

ρ is a number that can be chosen at random and falls anywhere between −0.1 and 0.1.
Step 10: In order to produce a new historical ideal population, every element of the group undergoes
disruption to the individual ideal gbest as well as the individual ideal pbest, respectively. This is done in
order to build an entirely novel population. The new population is supposed to be increased as the main
objective. The random technique, which can be expressed as follows, is used to first randomly generate
the initial particles with a particular population size as in [67].

pos y = yn + ((yn+2 − yn) × ro)
pos z = zn + ((zn+2 − zn) × ro)

(5.1e)

Here, the random particle coordinates are presented by posy and posz, respectively, and the node
coordinates are represented by yn and zn, respectively.

The y and z coordinates of nodes that are divided from node n are denoted by the symbols yn+2 and
zn+2, respectively. A random number that falls somewhere between 0 and 1 is denoted by the symbol ro.
After the population has been initialized, a random approach is utilized to initialize the velocity of each
individual particle once more as in ref. [68]. This can be represented as follows:

vy = vmax × ro

vz = vmax × ro
(5.1f)

Here, vmax represents the maximum speed, and the velocities of each particle on the abscissa and
ordinate coordinates are represented by vy and vz respectively.

Each particle’s fitness is computed following the initialization of the population and population veloc-
ity. The particles that doesn’t avoid barriers have a fitness value of zero, whereas the other particles
lacking it are the individual optimum solution pbest. The most advantageous group solution, denoted
by letter gbest, is found to be the particle that has the greatest efficiency or highest fitness. The fitness
calculation is as follows [67, 68]:

f = k × c,
k = ∑n

m=1

√
(ym+1 − ym)2 + (zm+1 − zm)2

c =
{

1, path �= obs

0, path = obs

(5.1g)

where f, k, and c denote the fitness value of particle, particle path distance, and collision test function
respectively; zm and ym denote ordinate and abscissa of the node m. The ordinate and abscissa of node
m’s adjacent nodes are denoted by zm + 1 and ym + 1. The fact that the value of m equals one indicates that
the node m is the launching node of the local route is indicated by this value. On the other hand, when
m equals n, it signifies that m is the node that serves as the aim or target of the local path [69].
Step 11: The fitness values of the global ideal, denoted by ‘gbest’, and the individual ideal, denoted by
‘pbest’ should be compared to the fitness value determined for the opposite position [69]. In the event
that the particle’s fitness value is sufficiently high at the opposite position, it will be moved to its original
location. If that not be the case, it will not be transferred.
Step 12: Find out if the maximum quantity of repetitions, Tmax, has been reached; if it has not, return to
the eleventh step and terminate the iteration while preserving the local optimization route.
Step 13: Check to see if the destination node is included in the iteration; if it is, the process should be
terminated and the total path, which is the sum of the local pathways, should be reported. If not, proceed
to step eight once more (Figures 8, 9 and 10).

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 21

Figure 8. Hybrid modified A∗ algorithm flow chart.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

22 Ankur Bhargava et al.

Figure 9. Matlab simulation of HMA∗ algorithm in Map1 to Map 6.

Figure 10. Generalized pseudo-code steps of hybrid modified A∗ algorithm.
https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 23

5.2. Problem modeling
Path planning must reduce AGV runtime. Most path planning algorithm research measures path length.
AGV running time depends on path length, turning radius, path planning method, computation time,
and path nodes. Therefore, these variables are in the following objective functions.

A. Objective function for minimizing path length

Path length directly impacts AGV’s linear travel time; hence, the path design method aims to mini-
mize it. Therefore, the goal function should prioritize path length that must be the shortest. The objective
function of shortest length of the path is given as in ref. [69]:

min D(y, z) =
n−1∑
i=1

√
(yi+1 − yi)2 + (zi+1 − zi)2 (5.2a)

Here, n is the nodes in total number, while yi and zi are node i’s abscissa and ordinate and yi + 1 and
zi + 1 for node i + 1.

B. Objective function for the shortest Path node

The AGV must choose its next move at each node. Decision-making frequency increases with node
count, limiting AGV motion fluency. The objective function should reduce path nodes to handle this.
The formula for this function is given as in ref. [69]:

Min P (n) = nth node in the path. (5.2b)

C. Objective function for the shortest Turning amplitude
The AGV’s motion stability, path smoothness, and overall travel time are directly influenced by the

amplitude of its turns. Smaller turning amplitudes lead to greater stability, smoother paths, and shorter
travel durations. Consequently, the AGV’s objective function should be designed to minimize the turning
amplitude [69]. The corresponding formula is as follows:

minI(θ) =
n−2∑
i=1

θn

θn =

∣∣∣∣∣∣∣∣
arctan

⎛
⎜⎜⎝

zn+1 − zn

yn+1 − yn

− zn+2 − zn+1

yn+2 − yn+1

1 + zn+1 − zn

yn+1 − yn

× zn+2 − zn+1

yn+2 − yn+1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
(5.2c)

(n = nth node in the path.)

D. Objective function for minimizing operating time

Vehicle efficiency depends on AGV path planning algorithm execution time, which influences oper-
ational effectiveness. Thus, the objective function should minimize algorithm operation time. This
objective function formula is given as in [71]:

MinC(a) = Rt (5.2d)

where Rt is the algorithm running time.
The goal-oriented functions are able to influence the execution time of the AGV in either a direct

or indirect manner without causing any conflicts. We may integrate these objective functions into a

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

24 Ankur Bhargava et al.

single, complete objective function that minimizes AGV running time [69, 70]. Presenting the combined
objective function:

mint(n) = D(y, z)

vL
+ P(n) × to + I(θ)

vs
+ C(a) (5.2e)

where vL denotes the AGV’s linear speed of motion. In this work, vL = 1 m/s. When the AGV arrives
at a node, to stands for the amount of time it needs to make a decision. This paper uses to = 0.1 s. The
AGV’s turning speed, or the amount of time it takes to turn one radian, is represented by vs. This paper
uses π rad/s for vs.

6. Experiment of path planning simulation
To prove that the Hybrid Modified A∗ algorithm is a good way to plan routes for AGVs, experiment will
utilize it. To do this, it will be necessary to evaluate the Hybrid Modified A∗ algorithm in conjunction
with A∗, PRM, RRT, and Bi-RRT. Researchers discovered that even when faced with substantial chal-
lenges depicted on the environment map, the hybrid intelligent optimization technique autonomously
produced a path that maximized efficiency [71].

6.1. Description of the problem
In addition to its other functions, the intelligent warehouse also serves as the environment for path plan-
ning. Despite obstacles, the automated guided vehicle (AGV) continues to navigate towards completing
its tasks [71]. When it comes to the process of planning a path, it is of the utmost importance to deter-
mine the smallest possible length of the path and to reduce the overall rotating radius [72]. In order to
generate the environment map, the following assumptions were taken into consideration:

1. There are fixed, predefined areas wherein obstructions will be detected.
2. The AGV operates at a constant rate.
3. Because the environment map only appears in two dimensions, it is feasible to ignore the AGVs

and barriers height information.

6.2. Composition of models
Raster, visible, and topological diagrams are frequently employed for environment modeling in path
planning. This study builds an environment map model using a raster technique. The workspace where
the AGV is tested is represented by a 20 x 20 decimeter (or 200 × 200 cm) two-dimensional raster map.
The raster-based environment map models that were employed for assessment are shown in Figure 11.
The percentage of environment maps with obstacles covered is 25% on map 1, 30% on map 2, 35%
on map 3, 40% on map 4, 45% on map 5, and 20% on map 6. On these maps, physical barriers
are shown in blue, and derivable areas are shown in white. For the AGV to operate correctly, the
starting and target nodes should be (1,1) and (20,20), respectively. The most crucial element in deter-
mining the path planning algorithm’s evaluation is path length. AGV runtime is influenced by path
length, node count, turning amplitude, and algorithm planning time. Linear transit time is impacted
by path planning, which shortens AGV paths [13]. Number of nodes that are located along the path
affects AGV’s decision-making time and motion fluency, which in turn affects how quickly it moves in
the direction of its destination. Turn amplitude affects AGV smoothness, motion stability, and travel
time; smoother, more stable, and faster motion times are achieved with smaller turning amplitudes
(Figure 11).

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 25

Figure 11. Maps of the environment with obstacles (20 X 20 (in decimeters)).

7. Simulation and real-time experiments
Setting up the conditions for obstacle environment simulations includes setting limits, goals, and rules.
The following step is to select effective routing and obstacle avoidance algorithms. The chosen method
is optimized for higher efficiency by a series of testing and data-gathering steps pertaining to path length,
finish time, and rate of success [13, 73]. This systematic technique helps the design and evaluation of
obstacle simulations by assisting robotics and navigation analysis. Mecanum wheel AGV navigation is
tested in simulations to make sure algorithms and strategies work in actual situations. The following
describes the various parts and process.

For the purpose of evaluating navigation algorithms, the virtual setting of an AGV is replicated in
either two or three dimensions, including walls and barriers. The size, form, and position of sensors of
an AGV must be incorporated into a precise model so as to offer realistic simulations that’s particularly
true for mecanum wheels. The evaluation and control of AGVs is accomplished through the modeling
of navigating, routing, and avoiding obstacles algorithms in Matlab (R2023a) and ROS environment
specially for dynamic obstacle avoidance [65]. The evaluation regarding the trajectory of the AGV, the
amount of crashes, the length of the route, and the duration of execution are employed to determine
performance. A comparison of algorithms provides data on their advantages, disadvantages, and ways
of improvement. Improvements in the speed and navigational efficiency of automated guided vehicles
(AGVs) may have achieved via recurring simulations, updated analysis-based programs, and enriched
the situations.

Table III to Table VIII show the functional values of simulation and real-time experimental data
from Map 1 to Map 6; comparison of the percentage deviation in the experimental path length and
simulation path length is presented in Table IX; comparison of the percentage deviation in experimental
motion time and simulation motion time is presented in Table X; comparison of the percentage difference
or enhancement in experimental path length and experimental motion time between HMA∗ and other
algorithms is presented in Table XII and Table XIII respectively (Figures 12–23).

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

26 Ankur Bhargava et al.

Figure 12. Simulation analysis of the AGV’s navigation in map 1.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 27

Figure 13. An experimental analysis of the AGV’s navigation in map 1.

Table III. The simulation and experimental functional values of each algorithm in map 1.

Parameters for Map 1 A∗ PRM RRT Bi-RRT HMA∗

Node No. 28.00 6.00 20.00 18.00 6.00
Turn amplitude (rad) 6.27 2.20 11.20 11.57 1.95
Operating time (s) 0.04 0.75 0.01 0.01 0.46
Simulation path length (cm) 307.76 301.66 292.88 289.87 272.97
Simulation motion time (s) 29.63 27.38 26.99 25.23 23.28
Experimental path length (cm) 323.14 321.54 309.91 304.33 288.56
Experimental motion time (s) 30.98 28.66 28.41 26.53 24.04

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

28 Ankur Bhargava et al.

Figure 14. Simulation analysis of the AGV’s navigation in map 2.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 29

Figure 15. An experimental analysis of the AGV’s navigation in map 2.

Table IV. The simulation and experimental functional values of each algorithm in map 2.

Parameters for Map 2 A∗ PRM RRT Bi-RRT HMA∗

Node No. 22.00 9.00 17.00 17.00 9.00
Turn amplitude (rad) 6.18 3.51 10.63 8.56 2.17
Operating time (s) 0.04 0.74 0.01 0.01 0.24
Simulation path length (cm) 318.99 309.91 306.48 291.52 279.41
Simulation Motion time (s) 31.29 29.29 28.24 25.86 24.40
Experimental path length (cm) 333.53 326.05 319.53 305.32 290.45
Experimental motion time (s) 32.15 30.05 29.22 27.36 25.24

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

30 Ankur Bhargava et al.

Figure 16. Simulation analysis of the AGV’s navigation in map 3.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 31

Figure 17. An experimental analysis of the AGV’s navigation in map 3.

Table V. The simulation and experimental functional values of each algorithm in map 3.

Parameters for Map 3 A∗ PRM RRT Bi-RRT HMA∗

Node No. 24.00 10.00 18.00 22.00 5.00
Turn amplitude (rad) 7.80 3.25 17.85 13.86 2.65
Operating time (s) 0.08 0.77 0.02 0.02 1.39
Simulation path Length (cm) 319.69 312.68 309.03 292.26 282.77
Simulation motion time (s) 31.82 29.51 28.67 26.88 25.16
Experimental path Length (cm) 335.8 327.14 320.48 308.73 294.98
Experimental motion time (s) 32.85 30.36 30.05 28.1 26.21

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

32 Ankur Bhargava et al.

Figure 18. Simulation analysis of the AGV’s navigation in map 4.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 33

Figure 19. An experimental analysis of the AGV’s navigation in map 4.

Table VI. The simulation and experimental functional values of each algorithm in map 4.

Parameters for Map 4 A∗ PRM RRT Bi-RRT HMA∗

Node No. 26.00 6.00 35.00 33.00 7.00
Turn amplitude (rad) 7.84 3.25 15.15 14.43 0.34
Operating time (s) 0.04 0.82 0.01 0.02 0.61
Simulation path length (cm) 323.85 317.88 306.48 293.76 283.98
Simulation motion time (s) 32.04 29.63 28.44 28.66 26.24
Experimental path length (cm) 339.97 329.93 321.17 309.1 295.2
Experimental motion time (s) 33.94 31.13 30.07 29.64 27.02

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

34 Ankur Bhargava et al.

Figure 20. Simulation analysis of the AGV’s navigation in map 5.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 35

Figure 21. An experimental analysis of the AGV’s navigation in map 5.

Table VII. The simulation and experimental functional values of each algorithm in map 5.

Parameters for Map 5 A∗ PRM RRT Bi-RRT HMA∗

Node No. 22.00 7.00 28.00 28.00 4.00
Turn amplitude (rad) 6.27 4.05 16.32 13.68 1.33
Operating time (s) 0.06 0.80 0.01 0.02 0.29
Simulation path length (cm) 327.16 315.69 308.58 298.11 287.22
Simulation motion time (s) 33.82 31.47 30.86 29.93 27.41
Experimental path length (cm) 342.62 330.55 324.9 310.33 300.24
Experimental motion time (s) 34.78 32.45 31.55 30.76 28

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

36 Ankur Bhargava et al.

Figure 22. Simulation analysis of the AGV’s navigation in map 6.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 37

Figure 23. An experimental analysis of the AGV’s navigation in map 6.

Table VIII. The simulation and experimental functional values of each algorithm in map 6.

Parameters for Map 6 A∗ PRM RRT Bi-RRT HMA∗

Node No. 22.00 10.00 33.00 32.00 6.00
Turn amplitude (rad) 5.65 2.29 11.16 10.45 1.25
Operating time (s) 0.03 0.64 0.02 0.01 0.24
Simulation path length (cm) 308.07 310.08 297.10 291.25 275.62
Simulation motion time (s) 28.65 27.80 26.62 25.29 23.27
Experimental path length (cm) 321.63 320.56 308.2 303.6 285.6
Experimental motion time (s) 29.28 28.55 27.32 25.89 23.75

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

38 Ankur Bhargava et al.

Table IX. Comparison of the percentage deviation in experimental path length and simulation path
length.

EPL: Experimental Path Length
(in cm)

SPL: Simulation Path Length
(in cm)

A∗ PRM RRT Bi-RRT HMA∗

Environment EPL SPL EPL SPL EPL SPL EPL SPL EPL SPL
Map 1 323.14 307.76 321.54 301.66 309.91 292.88 304.33 289.87 288.56 272.97
% Deviation 5.00 6.59 5.81 4.98 5.71
Map 2 333.53 318.99 326.05 309.91 319.53 306.48 305.32 291.52 290.45 279.41
% Deviation 4.55 5.20 4.25 4.73 3.95
Map 3 335.80 319.69 327.14 312.68 320.48 309.03 308.73 292.26 294.98 282.77
% Deviation 5.03 4.62 3.70 5.63 4.31
Map 4 339.97 323.85 329.93 317.88 321.17 306.48 309.10 293.76 295.20 283.98
% Deviation 4.97 3.79 4.79 5.22 3.95
Map 5 342.62 327.16 330.55 315.69 324.90 308.58 310.33 298.11 300.24 287.22
% Deviation 4.72 4.70 5.28 4.09 4.53
Map 6 321.63 308.07 320.56 310.08 308.20 297.10 303.60 291.25 285.60 275.62
% Deviation 4.40 3.38 3.73 4.24 3.62
Average
%Deviation

4.77 4.71 4.59 4.81 4.34

Table X. Comparison of the percentage deviation in experimental motion time and simulation motion
time.

EMT: Experimental Motion Time
(in Seconds)

SMT: Simulation Motion Time
(in Seconds)

A∗ PRM RRT Bi-RRT HMA∗

Environment EMT SMT EMT SMT EMT SMT EMT SMT EMT SMT
Map 1 30.98 29.63 28.66 27.38 28.41 26.99 26.53 25.23 24.04 23.28
% Deviation 4.55 4.67 5.26 5.15 3.26
Map 2 32.15 31.29 30.05 29.29 29.22 28.24 27.36 25.86 25.24 24.40
% Deviation 2.74 2.59 3.47 5.80 3.44
Map 3 32.85 31.82 30.36 29.51 30.05 28.67 28.10 26.88 26.21 25.16
% Deviation 3.23 2.88 4.81 4.53 4.17
Map 4 33.94 32.04 31.13 29.63 30.07 28.44 29.64 28.66 27.02 26.24
% Deviation 5.93 5.06 5.73 3.41 2.97
Map 5 34.78 33.82 32.45 31.47 31.55 30.86 30.76 29.93 28.00 27.41
% Deviation 2.83 3.12 2.23 2.77 2.15
Map 6 29.28 28.65 28.55 27.80 27.32 26.62 25.89 25.29 23.75 23.27
% Deviation 2.19 2.69 2.62 2.37 2.06
Average
%Deviation

3.57 3.50 4.02 4.00 3.00

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 39

Table XI. Experiment-based path length and motion time of the algorithms in different maps.

PL: Path Length (in cm) MT: Motion Time (in Seconds)
A∗ PRM RRT Bi-RRT HMA∗

Environment PL MT PL MT PL MT PL MT PL MT
Map 1 323.14 30.98 321.54 28.66 309.91 28.41 304.33 26.53 288.56 24.04
Map 2 333.53 32.15 326.05 30.05 319.53 29.22 305.32 27.36 290.45 25.38
Map 3 335.80 32.85 327.14 30.36 320.48 30.05 308.73 28.10 294.98 26.21
Map 4 339.97 33.94 329.93 31.13 321.17 30.07 309.10 29.64 295.20 27.02
Map 5 342.62 34.78 330.55 32.45 324.90 31.55 310.33 30.76 300.24 28.00
Map 6 321.63 29.28 320.56 28.55 308.20 27.32 303.60 25.89 285.60 23.75

Figure 24. Algorithm comparison according to motion time.

Figure 25. Algorithm comparison according to path length.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

40 Ankur Bhargava et al.

Figure 26. Chart comparing different approaches based on motion time.

Figure 27. Chart comparing different approaches based on path length.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 41

Table XII. Comparison of the percentage difference in experimental path length between HMA∗

and other algorithms.

A∗-HMA∗ PRM-HMA∗ RRT-HMA∗ Bi-RRT-HMA∗

% Change in % Change in % Change in % Change in
Environment path length path length path length path length
Map 1 10.70 10.25 6.88 5.18
Map 2 12.91 10.91 9.10 4.87
Map 3 12.15 9.83 7.95 4.45
Map 4 13.16 10.52 8.08 4.49
Map 5 12.36 9.16 7.59 3.25
Map 6 11.20 10.90 7.33 5.92
Average 12.08 10.26 7.82 4.69

Table XIII. Comparison of the percentage difference in experimental motion time between
HMA∗ and other algorithms.

A∗-HMA∗ PRM-HMA∗ RRT-HMA∗ Bi-RRT-HMA∗

% Change in % Change in % Change in % Change in
Environment motion time motion time motion time motion time
Map 1 22.40 16.12 15.38 9.38
Map 2 21.05 15.54 13.14 7.23
Map 3 20.21 13.66 12.77 6.72
Map 4 29.22 13.20 10.14 8.83
Map 5 19.49 13.71 11.25 8.97
Map 6 18.88 16.81 13.06 8.26
Average 21.88 14.84 12.62 8.23

8. Experimental validation
Mecanum wheels allow omnidirectional movement in automated guided vehicles (AGVs) by using
inclined rollers to enable movement in any direction without rotation. This capability, unlike traditional
wheels that require steering, allows AGVs to move sideways, diagonally, or rotate in place, offering
exceptional maneuverability in tight spaces. To fully leverage this, advanced algorithms for path plan-
ning, navigation, localization, and collision avoidance are essential. Path planning must account for
dynamic limits such as maximum speed and acceleration, while navigation and control algorithms must
optimize trajectory planning for smooth and precise movement. Localization algorithms need to incorpo-
rate the AGV’s motion model and sensors, like odometry and wheel encoders, for accurate positioning.
Collision avoidance algorithms must ensure safe navigation by considering the AGV’s unique movement
capabilities (Figures 24, 25, 26, 27 and 28).

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

42 Ankur Bhargava et al.

Figure 28. AGV design and implementation using laser-cut mecanum wheels with robotic arm.

Table XIV. Overview of hardware and software.

Parameters Technical Specifications
Dimensions of AGV 300∗200∗450 mm
Type of motor Permanent Magnet brushed motor
AGV weight 7 KG
AGV Maximum payload 11 KG
AGV Maximum speed 2.5 m/s
Working environment Indoor and outdoor
Sensing and feedback RP Lidar, IMU, Depth Camera
Slam technique Hector, RTAB-Map, Gmapping, and Cartographer
Algorithms A∗, MA∗, PSO, PRM, RRT, Bi-RRT, HMA∗

Navigation and drive ROS navigation Stack, Web-based GUI, Hand Gesture
Simulation tool ROS,Gazebo, Rviz, Matlab
Actuation Nvidia Jetson Nano, and Arduino Mega
Operating system ROS Melodic in Ubuntu 18.04 or Neotic in Ubuntu 20.04
Encoder parameters 500 line AB phase high precision photoelectric encoder
Rated current of motors 360mA
Rated torque 1.0 kgf.cm
Rated motor voltage 12V
Rated motor power 4.32 W
Drive structure Mecanum Wheel with pendulum suspension
Depth camera Asrta Pro, Intel Real Sense
IMU sensor MPU 9250
USB Interface 4 X USB 3.0
Network interface Gigabit Ethernet/ M.2 Key E

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 43

Figure 29. The avoidance of obstacles in real-time using HMA∗ algorithm.

The Hybrid Modified A∗ (HMA∗) approach-based AGV control in random environment, as shown in
Figure 29, combines the optimization powers of PSO with the heuristic search efficiency of MA∗. In this
way, HMA∗ is able to analyze intricate settings. The AGV is equipped with two lidar sensors to detect
obstacles and measure distance accurately, as well as two vision sensors to improve its ability to perceive
its surroundings and identify objects. The CPU is a Jetson Nano, that performs complex calculations for
the Hybrid Modified A∗ method, sensor data fusion, as well as making decisions. The mecanum wheels
travel effortlessly and precisely because of an STM32 motor controller, which provides precise motor
control. To further improve avoiding obstacles and safety in difficult circumstances, six ultrasonic sen-
sors are set all around the AGV to provide additional detection of proximity abilities. For the framework
to work, the connections among the sensors and the Jetson Nano controller are crucial. The interfaces
between the lidar sensors and the Jetson Nano enable real-time distance measurement processing and
high-speed information transmission. The vision sensors are connected by CSI (Camera Serial Interface)
ports, which enable the Jetson Nano to receive high-definition video feeds for object detection and envi-
ronmental mapping. The Jetson Nano’s GPIO (General-Purpose Input/Output) links can be used to
connect the ultrasonic sensors to transmit proximity data, that is needed to detect obstructions in close
proximity. Precise motor controls and feedback have been rendered feasible by the UART (Universal
Asynchronous Receiver-Transmitter) connection that connects the STM32 motor control module to the
Jetson Nano. With this sophisticated configuration, which guarantees precise navigation, localization,
and collision avoidance in a variety of experimental circumstances, the AGV’s omnidirectional capa-
bilities may be fully utilized [74]. The main block diagram of the hardware arrangement is as follows
(Figure 30):

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

44 Ankur Bhargava et al.

Figure 30. AGV’s overall control structure.

A thorough description of the hardware setup of the AGV to be found in Table XIV. After imple-
menting the HMA∗ algorithm into the AGV to evaluate its effectiveness the real-time experiment is
performed with the following procedures:

1. Create a map illustrating the surroundings. Figure 31(a) shows both the experimental area and
the map constructed on the ROS platform.

2. Identify a desired initial position and target location on the map.

Place arbitrary obstacles along the planned path of the AGV and observe whether the AGV can
successfully navigate these random obstacles. This procedure verifies that the HMA∗ algorithm works
as intended when faced with unforeseen obstacles.

The AGV begins global path planning for traveling from its current initial position to the target loca-
tion, as shown in Figure 31(b). It travels along the route that has been planned globally, moving through
tight spaces with ease. The AGV uses sensor data to determine the first random barrier, avoids it, and
then re-enters the global path to keep moving in the direction of the goal. As seen in Figure 31(c), the
AGV uses sensors to detect and maneuver through new obstacles as it moves, finally arriving at the
designated target location. The navigational area is 500 cm by 150 cm in size. Due to the HMA∗ algo-
rithm, the automated guided vehicle (AGV) successfully traversed a 548 cm course in 55 s, avoiding
every obstacle and proving its effectiveness in a matter of seconds. The experimental findings show that
when the Modified A∗ and PSO (HMA∗) path optimization methods are combined, the AGV can travel
through restricted areas effectively. The AGV is able to avoid random obstacles and plan globally the
best paths because of this method. The relationship between linear and angular velocities and differ-
ent obstacle configurations is also investigated in this study. The surroundings with one obstacle are
depicted in Figure 32(a), which shows the changes in angular and linear velocities as the AGV approach
and avoids the obstacle. The two-obstacle environment shown in Figure 32(b) illustrates how velocities
change when the AGV maneuvers around both obstacles. Lastly, an environment with three obstacles
is shown in Figure 32(c), where the graphs illustrate the greatest changes in the AGV’s velocities as it
navigates around the obstacles.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 45

(a) Experimental Site and Gmapping Map Construction for AGV

(b) Obstacle avoidance for the random obstacle

(c) AGV move to target location

Figure 31. Experimental results with sensor fusion for HMA∗ validation.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

46 Ankur Bhargava et al.

(a) The surroundings involving one obstacle.

(b) The surroundings involving two obstacles.

(c) The surroundings involving three obstacles.

Figure 32. Performance comparison of velocity in different environment.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001954

Robotica 47

9. Conclusion
This study shows how a Hybrid Modified A∗ (HMA∗) method can find AGV’s collision-free shortest
path quickly. As seen in Figures 12–23, the different algorithms adopt different paths to reach their goals.
In each map, various algorithms are applied to determine the optimal path. The HMA∗ algorithm consis-
tently produces smoother pathways across the six maps because the routes it selects are generally shorter,
have fewer path nodes, and involve fewer turns. This efficiency is primarily due to the algorithm’s ability
to identify more direct routes. The tables accompanying the maps offer a clear comparison of the algo-
rithm’s success in achieving efficient path planning. The HMA∗ algorithm can avoid static and random
obstacles for AGVs as shown in Figure 31. It also adjusts local pathways and provides collision-free
navigation in complex settings. The hybrid algorithm can avoid random obstacles, alter local pathways,
and navigates in complex environments without colliding and quickly reaching the objective.

• The HMA∗ algorithm outperforms A∗, PRM, RRT, and Bi-RRT in average path length by
12.08%, 10.26%, 7.82%, and 4.69%, respectively, across six maps. Additionally, HMA∗ demon-
strates superior performance in average motion time, achieving improvements of 21.88%,
14.84%, 12.62%, and 8.23% over the same algorithms as shown in Table XII and Table XIII.

• The HMA∗ algorithm shows promising results with an average deviation of 4.34% in path length
and 3% in motion time between simulation and experiments as shown in Table IX and Table X,
demonstrating a close approximation to real-world conditions.

• The HMA∗ method effectively avoids collisions in situations with static and random barriers
(Figure 31). Its dynamic local path adjustment ensures reliable navigation in complicated and
uncertain environments. Real-world AGVs must be adaptable to quickly changing environmental
conditions.

• The HMA∗ algorithm’s collision-free and fast navigation under various conditions makes it
practical and versatile for industrial and logistical applications.

• Further research may examine to improve the HMA∗ algorithm’s ability to recognize and avoid
obstacles in real-time at extremely dynamic situations by integration of sophisticated sensor
fusion methodologies.

Anyone can download the codes and videos created for this purpose by visiting this link:
https://github.com/ankurgsb21/Hybrid-Modified-A-star-Algorithm-Modified-A-star-PSO-

Author Contributions. Under the guidance of Prof. (Dr.) Mohd. Suhaib and Prof. (Dr.) Ajay K.S. Singholi, Ankur Bhargava
was responsible for the study’s conception, design, data collection, methodology, visualization, and investigation. Prof. Mohd.
Suhaib and Prof. Ajay K. S. Singholi provide assistance with writing, reviewing, editing, and statistical analysis.

Financial Support. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Competing interests. The authors declare no competing interests exist.

Ethical Approval. Not applicable.

References
[1] Z. Yao, W. Zhang, Y. Shi, M. Li, Z. Liang, F. Li and Q. Huang, “RimJump: Edge-based shortest path planning for a 2D

map,” Robotica 37(4), 641–655 (2019). doi: 10.1017/S0263574718001236.
[2] M. H. Tanveer, C. T. Recchiuto and A. Sgorbissa, “Analysis of path following and obstacle avoidance for multiple wheeled

robots in a shared workspace,” Robotica 37(1), 80–108 (2019). doi: 10.1017/S0263574718000875.
[3] M. Sharma and H. K. Voruganti, “Multi-objective optimization approach for coverage path planning of mobile robot,”

Robotica 42(7), 1–25 (2024). doi: 10.1017/S0263574724000377.
[4] H. Khan, S. Khatoon, P. Gaur, M. Abbas, C. A. Saleel and S. A. Khan, “Speed control of wheeled mobile robot by nature-

inspired social spider algorithm-based PID controller,” Processes 11(4), 1202 (2023). doi: 10.3390/pr11041202.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://github.com/ankurgsb21/Hybrid-Modified-A-star-Algorithm-Modified-A-star-PSO-
https://doi.org/10.1017/S0263574718001236
https://doi.org/10.1017/S0263574718000875
https://doi.org/10.1017/S0263574724000377
https://doi.org/10.3390/pr11041202
https://doi.org/10.1017/S0263574724001954

48 Ankur Bhargava et al.

[5] O. A. R. A. Wahhab and S. A., “Al-Araji “Path planning and control strategy design for mobile robot based on hybrid swarm
optimization algorithm,” Int J Intell Eng Syst 14(3), 565–579 (2021). doi: 10.22266/ijies2021.0630.48.

[6] S. Liu, S. Liu and H. Xiao, “Improved gray wolf optimization algorithm integrating A∗ algorithm for path planning of mobile
charging robots,” Robotica 42(2), 536–559 (2024). doi: 10.1017/S0263574723001625.

[7] Z. E. Kanoon, A. S. Al-Araji and M. N. Abdullah, “An intelligent path planning algorithm and control strategy design for
multi-mobile robots based on a modified elman recurrent neural network,” Int J Intell Eng Syst 15(5), 400–415 (2022). doi:
10.2266/ijies2022.1031.35.

[8] M. A. El Aziz, A. A. Ewees and A. E. Hassanien, “Hybrid Swarms Optimization Based Image Segmentation,” In: Hybrid
Soft Computing for Image Segmentation, (S. Bhattacharyya, P. Dutta, S. De and G. Klepaceds.) (Springer, Cham, 2016).
doi: 10.1007/978-3-319-47223-2_1.

[9] A. S. Al-Araji, “Development of kinematic path-tracking controller design for real mobile robot via back-stepping slice
genetic robust algorithm technique,” Arab J Sci Eng 39(12), 8825–8835 (2014). doi: 10.1007/s13369-014-1461-4.

[10] A. A. A. Rasheed, A. S. Al-Araji and M. N. Abdullah, “Static and dynamic path planning algorithms design for a wheeled
mobile robot based on a hybrid technique,” Int J Intell Eng Syst 15(4), 167–181 (2022). doi: 10.22266/ijies2022.0831.16.

[11] C. Kim, J. Suh and J.-H. Han, “Development of a hybrid path planning algorithm and a bio-inspired control for an omni-
wheel mobile robot,” Sensors 20(15), 4258 (2020). doi: 10.3390/s20154258.

[12] J. F. S. and S. R., “Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar
environment,” Robotica 42(4), 977–1000 (2024). doi: 10.1017/S0263574723001819.

[13] T. D. Tolossa, M. Gunasekaran, K. Halder, H. K. Verma, S. S. Parswal, N. Jorwal, F. O. Maria Joseph and Y. V. Hote,
“Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters,” Robotica 1–24 (2024).
doi: 10.1017/S0263574724001140.

[14] C. Yuan, Y. Chang, Y. Song, S. Lin and F. Jing, “Design and analysis of a negative pressure wall-climbing robot with an
omnidirectional characteristic for cylindrical wall,” Robotica 42(7), 2226–2242 (2024). doi: 10.1017/S0263574724000493.

[15] N. Nfaileh, K. Alipour, B. Tarvirdizadeh and A. Hadi, “Formation control of multiple wheeled mobile robots based on
model predictive control,” Robotica 40(9), 3178–3213 (2022). doi: 10.1017/S0263574722000121.

[16] N. Mao, J. Chen, E. Spyrakos-Papastavridis and J. S. Dai, “Dynamic modeling of wheeled biped robot and controller design
for reducing chassis tilt angle,” Robotica, 1–29 (2024). doi: 10.1017/S0263574724001061.

[17] J. Guo, X. Huo, S. Guo and J. Xu, “A Path Planning Method for the Spherical Amphibious Robot Based on Improved A-star
Algorithm,” In: 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan (2021)
pp. 1274–1279. doi: 10.1109/ICMA52036.2021.9512805.

[18] K. Wei, Y. Gao, W. Zhang and S. Lin, “A Modified Dijkstra’s Algorithm for Solving the Problem of Finding the Maximum
Load Path,” In: 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), Kahului,
HI, USA (2019) pp. 10–13. doi: 10.1109/INFOCT.2019.8711024.

[19] J. Guo, L. Liu, Q. Liu and Y. Qu, “An Improvement of D∗ Algorithm for Mobile Robot Path Planning in Partial Unknown
Environment,” In: 2009 Second International Conference on Intelligent Computation Technology and Automation,
Changsha, China (2009) pp. 394–397. doi: 10.1109/ICICTA.2009.561.

[20] K. Karur, N. Sharma, C. Dharmatti and J. E. Siegel, “A survey of path planning algorithms for mobile robots,” Vehicles
3(3), 448–468 (2021). doi: 10.3390/vehicles3030027.

[21] X. Wang, J. Wei, X. Zhou, Z. Xia and X. Gu, “AEB-RRT∗: An adaptive extension bidirectional RRT∗ algorithm,” Auton
Robot 46(6), 685–704 (2022). doi: 10.1007/s10514-022-10044-x.

[22] Q. Li, Y. Xu, S. Bu and J. Yang, “Smart vehicle path planning based on modified PRM algorithm,” Sensors 22(17), 6581
(2022). doi: 10.3390/s22176581.

[23] S. He, T. Xing and J. Ma, “Research on Solid Rate Filtering Technique based on Inverse Distance Weighted Interpolation of
Navigation Radar,” In: 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference
(ITAIC), Chongqing, China (2022) pp. 838–841. doi: 10.1109/ITAIC54216.2022.9836465.

[24] M. P. Gopika, G. R. Bindu, M. Ponmalar, K. Usha and T. R. Haridas, “Smooth PRM Implementation for Autonomous
Ground Vehicle,” In: 2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS), Bangalore, India
(2022) pp. 1–5. doi: 10.1109/ICDDS56399.2022.10037275.

[25] N. Yang, L. Han, C. Xiang, H. Liu, T. Ma and S. Ruan, “Real-time energy management for a hybrid electric vehicle based
on heuristic search,” IEEE Trans Veh Technol 71(12), 12635–12647 (2022). doi: 10.1109/TVT.2022.3195769.

[26] S. A. Eshtehardian and S. Khodaygan, “A continuous RRT∗-based path planning method for non-holonomic mobile robots
using B-spline curves,” J Ambient Intell Human Comput 14(7), 8693–8702 (2023). doi: 10.1007/s12652-021-03625-8.

[27] C. Li, X. Huang, J. Ding, K. Song and S. Lu, “Global path planning based on a bidirectional alternating search A∗ algorithm
for mobile robots,” Comput Ind Eng 168, 108123 (2022). doi: 10.1016/j.cie.2022.108123.

[28] S. Katiyar and A. Dutta, “Comparative analysis on path planning of ATR using RRT∗, PSO, and modified APF in CG-space,”
Proc Inst Mech Eng Pt C: J Mech Eng Sci 236(10), 5663–5677 (2022). doi: 10.1177/09544062211062435.

[29] L. Zhang, X. Shi, Y. Yi, L. Tang, J. Peng and J. Zou, “Mobile robot path planning algorithm based on RRT_Connect,”
Electronics 12(11), 2456 (2023). doi: 10.3390/electronics12112456.

[30] J. Wang, W. Chi, M. Shao and M. Q.-H. Meng, “Finding a high-quality initial solution for the RRTs algorithms in 2D
environments,” Robotica 37(10), 1677–1694 (2019). doi: 10.1017/S0263574719000195.

[31] U. A. Umar, M. K. A. Ariffin, N. Ismail and S. H. Tang, “Hybrid multiobjective genetic algorithms for integrated dynamic
scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment,”
Int J Adv Manuf Technol 81(9-12), 2123–2141 (2015). doi: 10.1007/s00170-015-7329-2.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.22266/ijies2021.0630.48
https://doi.org/10.1017/S0263574723001625
https://doi.org/10.2266/ijies2022.1031.35
https://doi.org/10.1007/978-3-319-47223-2_1
https://doi.org/10.1007/s13369-014-1461-4
https://doi.org/10.22266/ijies2022.0831.16
https://doi.org/10.3390/s20154258
https://doi.org/10.1017/S0263574723001819
https://doi.org/10.1017/S0263574724001140
https://doi.org/10.1017/S0263574724000493
https://doi.org/10.1017/S0263574722000121
https://doi.org/10.1017/S0263574724001061
https://doi.org/10.1109/ICMA52036.2021.9512805
https://doi.org/10.1109/INFOCT.2019.8711024
https://doi.org/10.1109/ICICTA.2009.561
https://doi.org/10.3390/vehicles3030027
https://doi.org/10.1007/s10514-022-10044-x
https://doi.org/10.3390/s22176581
https://doi.org/10.1109/ITAIC54216.2022.9836465
https://doi.org/10.1109/ICDDS56399.2022.10037275
https://doi.org/10.1109/TVT.2022.3195769
https://doi.org/10.1007/s12652-021-03625-8
https://doi.org/10.1016/j.cie.2022.108123
https://doi.org/10.1177/09544062211062435
https://doi.org/10.3390/electronics12112456
https://doi.org/10.1017/S0263574719000195
https://doi.org/10.1007/s00170-015-7329-2
https://doi.org/10.1017/S0263574724001954

Robotica 49

[32] T. Wang, R. Dong, R. Zhang and D. Qin, “Research on stability design of differential drive fork-type AGV based on PID
control,” Electronics 9(7), 1072 (2020). doi: 10.3390/electronics9071072.

[33] J. Xiao, X. Yu, K. Sun, Z. Zhou and G. Zhou, “Multiobjective path optimization of an indoor AGV based on an improved
ACO-DWA[J],” Math Biosci Eng 19(12), 12532–12557 (2022). doi: 10.3934/mbe.2022585.

[34] X. Cao and M. Zhu, “Research on global optimization method for multiple AGV collision avoidance in hybrid path,” Opti
Control Appl Meth 42(4), 1064–1080 (2021). doi: 10.1002/oca.2716.

[35] V. Ruiz Molledo and J. E. Sierra Garcia, “Simulation tool for hybrid AGVs based on IEC-61131,” IEEE Lat Am Trans 20(2),
317–325 (2022). doi: 10.1109/TLA.2022.9661472.

[36] R. Lin, “Research into the automatic guidance system for AGVs used for logistics based on millimeter wave radar imaging,”
Wire Commun Mobile Comput 2022, 8 (2022). doi: 10.1155/2022/3104017.

[37] A. G. Gad, “Particle swarm optimization algorithm and its applications: A systematic review,” Arch Computat Methods Eng
29(5), 2531–2561 (2022). doi: 10.1007/s11831-021-09694-4.

[38] Y. Qiao, Y. Fu and M. Yuan, “Communication-control co-design in wireless networks: A cloud control AGV example,”
IEEE Internet Things J 10(3), 2346–2359 (2023). doi: 10.1109/JIOT.2022.3211766.

[39] P. Durst, X. Jia and L. Li, “Multi-Objective Optimization of AGV Real-Time Scheduling Based on Deep
Reinforcement Learning,” In: 42nd Chinese Control Conference (CCC), Tianjin, China (2023) pp. 5535–5540. doi:
10.23919/CCC58697.2023.10240797.

[40] X. Yuan, X. Yuan and X. Wang, “Path planning for mobile robot based on improved bat algorithm,” Sensors 21(13), 4389
(2021). doi: 10.3390/s21134389.

[41] Q. Si and C. Li, “Indoor robot path planning using an improved whale optimization algorithm,” Sensors 23(8), 3988 (2023).
doi: 10.3390/s23083988.

[42] M. Jiang, D. Yuan and Y. Cheng, “Improved Artificial Fish Swarm Algorithm,” In: 2009 Fifth International Conference on
Natural Computation, Tianjian, China (2009) pp. 281–285. doi: 10.1109/ICNC.2009.343.

[43] W.-M. Dai and E. S. Kuh, “Simultaneous floor planning and global routing for hierarchical building-block layout,” IEEE
Tran Comput-Aided Des Integr Circuits and Syst 6(5), 828–837 (1987). doi: 10.1109/TCAD.1987.1270326.

[44] M. H. Korayem, S. Nosoudi, S. Khazaei Far and A. K. Hoshiar, “Hybrid IPSO-automata algorithm for path planning of
micro-nanoparticles through random environmental obstacles, based on AFM,” J Mech Sci Technol 32(2), 805–810 (2018).
doi: 10.1007/s12206-018-0129-x.

[45] A. Bhargava, M. Suhaib and A. S. Singholi, “A review of recent advances, techniques, and control algorithms for automated
guided vehicle systems,” J Braz Soc Mech Sci Eng 46(7), 419 (2024). doi: 10.1007/s40430-024-04896-w.

[46] S. Abi, B. Benhala and H. Bouyghf, “A Hybrid DE-ACO Algorithm for the Global Optimization,” In: 2020 IEEE 2nd
International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco
(2020) pp. 1–6. doi: 10.1109/ICECOCS50124.2020.9314533.

[47] Z. Nie and H. Zhao, “Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization,” In:
2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Shanghai, China (2019)
pp. 222–226. doi: 10.1109/ICIIBMS46890.2019.8991502.

[48] G. Shial, S. Sahoo and S. Panigrahi, “An enhanced GWO algorithm with improved explorative search capability for global
optimization and data clustering,” Appl Artif Intell 37(1), 1 (2023). doi: 10.1080/08839514.2023.2166232.

[49] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh and S. Mirjalili, “Particle swarm optimization:
A comprehensive survey,” IEEE Access 10, 10031–10061 (2022). doi: 10.1109/ACCESS.2022.3142859.

[50] T. M. Shami, A. A. El-Saleh and A. M. Kareem, “On the Detection Performance of Cooperative Spectrum Sensing
using Particle Swarm Optimization Algorithms,” In: 2014 IEEE 2nd International Symposium on Telecommunication
Technologies (ISTT), Langkawi, Malaysia (2014) pp. 110–114. doi: 10.1109/ISTT.2014.7238187.

[51] X. Chen, Y. Zhao, J. Fan and H. Liu, “Three-Dimensional UAV Track Planning based on the GB-PQ-RRT∗ Algorithm,” In:
42nd Chinese Control Conference (CCC), Tianjin, China (2023) pp. 4639–4644. doi: 10.23919/CCC58697.2023.10240961.

[52] W. Guan and K. Wang, “Autonomous collision avoidance of unmanned surface vehicles based on improved
A-star and dynamic window approach algorithms,” IEEE Intel Transp Syst Magaz 15(3), 36–50 (2023).
doi: 10.1109/MITS.2022.3229109.

[53] B. Cao, Z. Yang, L. Yu and Y. Zhang, “Research on the Star Algorithm for Safe Path Planning,” In: 2023 IEEE International
Conference on Control, Jilin, China (2023) pp. 105–109. doi: 10.1109/ICCECT57938.2023.10141167.

[54] A. Bhargava, A. S. Singholi and M. Suhaib, “A Study on Design and Control of Omni-Directional Mecanum Wheels
based AGV System,” In: 2023 14th International Conference on Computing Communication and Networking Technologies
(ICCCNT), Delhi, India (2023) pp. 1–6. doi: 10.1109/ICCCNT56998.2023.10306665.

[55] S. Li, J. Gu, Z. Li, S. Li, B. Guo, S. Gao, F. Zhao, Y. Yang, G. Li and L. Dong, “A visual SLAM-based
lightweight multi-modal semantic framework for an intelligent substation robot,” Robotica 42(7), 1–15 (2024).
doi: 10.1017/S0263574724000511.

[56] Z. Chen, X. Zhang, L. Wang and Y. Xia, “A Fast Path Planning Method Based on RRT Star Algorithm,” In: 2023 3rd
International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China (2023)
pp. 258–262. doi: 10.1109/ICCECE58074.2023.10135365.

[57] S. Zhang, A. Li, J. Ren and R. Ren, “Kinematics inverse solution of assembly robot based on improved particle swarm
optimization,” Robotica 42(3), 833–845 (2024). doi: 10.1017/S0263574723001789.

[58] Y.-J. Pak, Y.-S. Kong and J.-S. Ri, “Robust PID optimal tuning of a delta parallel robot based on a hybrid opti-
mization algorithm of particle swarm optimization and differential evolution,” Robotica 41(4), 1159–1178 (2023).
doi: 10.1017/S0263574722001606.

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.3390/electronics9071072
https://doi.org/10.3934/mbe.2022585
https://doi.org/10.1002/oca.2716
https://doi.org/10.1109/TLA.2022.9661472
https://doi.org/10.1155/2022/3104017
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1109/JIOT.2022.3211766
https://doi.org/10.23919/CCC58697.2023.10240797
https://doi.org/10.3390/s21134389
https://doi.org/10.3390/s23083988
https://doi.org/10.1109/ICNC.2009.343
https://doi.org/10.1109/TCAD.1987.1270326
https://doi.org/10.1007/s12206-018-0129-x
https://doi.org/10.1007/s40430-024-04896-w
https://doi.org/10.1109/ICECOCS50124.2020.9314533
https://doi.org/10.1109/ICIIBMS46890.2019.8991502
https://doi.org/10.1080/08839514.2023.2166232
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1109/ISTT.2014.7238187
https://doi.org/10.23919/CCC58697.2023.10240961
https://doi.org/10.1109/MITS.2022.3229109
https://doi.org/10.1109/ICCECT57938.2023.10141167
https://doi.org/10.1109/ICCCNT56998.2023.10306665
https://doi.org/10.1017/S0263574724000511
https://doi.org/10.1109/ICCECE58074.2023.10135365
https://doi.org/10.1017/S0263574723001789
https://doi.org/10.1017/S0263574722001606
https://doi.org/10.1017/S0263574724001954

50 Ankur Bhargava et al.

[59] Y. Liu, X. Wang, Y. Zhang and L. Liu, “An integrated flow shop scheduling problem of preventive maintenance and degra-
dation with an improved NSGA-II Algorithm,” IEEE Access 11, 3525–3544 (2023). doi: 10.1109/ACCESS.2023.3234428.

[60] X. Liu, R. Feng, S. Zhou and Y. Yang, “A Novel PSO-SGD with Momentum Algorithm for Medical Image Classification,”
In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA (2021) pp. 3408–
3413. doi: 10.1109/BIBM52615.2021.9669876.

[61] H. Jingjing, L. Xun, M. Wenzhe, Y. Xin and Y. Dong. Path Planning Method for Mobile Robot Based on
Multiple Improved PSO. In: 2021 40th Chinese Control Conference (CCC), Shanghai, China (2021) pp. 1485–1489,
10.23919/CCC52363.2021.9550590

[62] M. H. Demir and M. Demirok, “Designs of particle-swarm-optimization-based intelligent PID controllers and DC/DC
buck converters for PEM fuel-cell-powered four-wheeled automated guided vehicle,” Appl Sci 13(5), 2919 (2023).
doi: 10.3390/app13052919.

[63] M. Ding, X. Zheng, L. Liu, J. Guo and Y. Guo, “Collision-free path planning for cable-driven continuum robot based on
improved artificial potential field,” Robotica 42(5), 1350–1367 (2024). doi: 10.1017/S026357472400016X.

[64] H. Khan, S. Khatoon and P. Gaur, “Stabilization of wheeled mobile robot by social spider algorithm based PID controller,”
Int J Inf Tecnol 16(3), 1437–1447 (2023). doi: 10.1007/s41870-023-01438-w.

[66] A. Bhargava, A. S. Singholi and M. Suhaib, “Design and Development of a Visual - SLAM based Automated Guided
Vehicle,” In: 2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications
(ICAECC), Bengaluru, India (2023) pp. 1–7. doi: 10.1109/ICAECC59324.2023.10560331.

[67] X. Y. Sandoval-Castro, S. Muñoz-Gonzalez, M. A. Garcia-Murillo, P. D. Ferrusca-Monroy and M. F. Ruiz-Torres, “Four-
bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size
modification,” Robotica 42(6), 1–15 (2024). doi: 10.1017/S026357472400078X.

[68] W. Chen, H. Cheng, W. Zhang, H. Wu, X. Liu and Y. Men, “Modeling and invariably horizontal control for the parallel mobile
rescue robot based on PSO-CPG algorithm,” Robotica 41(11), 3501–3523 (2023). doi: 10.1017/S0263574723001133.

[69] B. Wang, P. Li, C. Yang, X. Hu and Y. Zhao, “Robotica: Decoupled elastostatic stiffness modeling of hybrid robots,” Robotica
42(7), 1–19 (2024). doi: 10.1017/S0263574724000675.

[70] Z. Weidong, H. Xianlin, G. Xiao-Zhi and P. Hongjun, “Multi-Objective Longitudinal Trajectory Optimization for
Hypersonic Reentry Glide Vehicle based on PSO Algorithm,” In: 34th Chinese Control Conference (CCC), Hangzhou,
China (2015) pp. 2350–2356. doi: 10.1109/ChiCC.2015.7260001.

[71] I. A. Raptis, C. Hansen and M. A. Sinclair, “Design, modeling, and constraint-compliant control of an autonomous morphing
surface for omnidirectional object conveyance,” Robotica 40(2), 213–233 (2022). doi: 10.1017/S0263574721000473.

[72] X. Liu, L. Wang and Y. Yang, “Model-free adaptive robust control based on TDE for robot with disturbance and input
saturation,” Robotica 41(11), 3426–3445 (2023). doi: 10.1017/S0263574723001078.

[73] G. Gao, D. Li, K. Liu, Y. Ge and C. Song, “A study on path-planning algorithm for a multi-section continuum robot in
confined multi-obstacle environments,” Robotica 1–24 (2024). doi: 10.1017/S0263574724001383.

[75] B. Liu, G. Jiang, F. Zhao and X. Mei, “Collision-free motion generation based on stochastic optimization and
composite signed distance field networks of articulated robot,” IEEE Robot Autom Lett 8(11), 7082–7089 (2023).
doi: 10.1109/LRA.2023.3311357.

[76] T. D. Nguyen, “Kinematic Model and Stable Control Law Proposed for Four Mecanum Wheeled Mobile Robot Platform
Based on Lyapunov Stability Criterion,” In: 2023 International Symposium on Electrical and Electronics Engineering
(ISEE), Ho Chi Minh, Vietnam (2023) pp. 144–149. doi: 10.1109/ISEE59483.2023.10299844.

Cite this article: A. Bhargava, M. Suhaib and A. K. S. Singholi, “An omnidirectional mecanum wheel automated guided vehicle
control using hybrid modified A∗ algorithm”, Robotica. https://doi.org/10.1017/S0263574724001954

https://doi.org/10.1017/S0263574724001954 Published online by Cambridge University Press

https://doi.org/10.1109/ACCESS.2023.3234428
https://doi.org/10.1109/BIBM52615.2021.9669876
https://doi.org/10.23919/CCC52363.2021.9550590
https://doi.org/10.3390/app13052919
https://doi.org/10.1017/S026357472400016X
https://doi.org/10.1007/s41870-023-01438-w
https://doi.org/10.1109/ICAECC59324.2023.10560331
https://doi.org/10.1017/S026357472400078X
https://doi.org/10.1017/S0263574723001133
https://doi.org/10.1017/S0263574724000675
https://doi.org/10.1109/ChiCC.2015.7260001
https://doi.org/10.1017/S0263574721000473
https://doi.org/10.1017/S0263574723001078
https://doi.org/10.1017/S0263574724001383
https://doi.org/10.1109/LRA.2023.3311357
https://doi.org/10.1109/ISEE59483.2023.10299844
https://doi.org/10.1017/S0263574724001954
https://doi.org/10.1017/S0263574724001954

	An omnidirectional mecanum wheel automated guided vehicle control using hybrid modified A"002A` algorithm
	Introduction
	Literature review
	Locomotion of the AGV
	Modified A* and PSO evolutionary algorithms
	The modified-A* (MA*) algorithm
	Particle swarm optimization (PSO) algorithms

	Implementing the Hybrid Modified A* algorithm
	Steps of algorithm
	Problem modeling

	Experiment of path planning simulation
	Description of the problem
	Composition of models

	Simulation and real-time experiments
	Experimental validation
	Conclusion

