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This paper continues and concludes a previous one (Gilbert, 1961).

CORRECTION

The suggestion on page 103 of the previous paper that the F3 mean can provide
extra information (when using the curved model) is wrong, since the F3 mean is still
linearly related to the Fx and F2 means (2F3 = 3F2—F1). This means that (1) the
curved model is not sufficiently general and (2) a scaling test that compares the Fz

mean with the means of previous generations is no guarantee of additivity. This
mistake does not affect the main argument; I apologize for my fallibility.

SELECTION

I shall consider the progress of selecting and selfing, starting from an F2 progeny.
The notation is that of the previous paper. A genotype homozygous for I 'good'
genes, n ' bad', and heterozygous at m loci is referred to as {I, m, n). Its frequency in

and it experiences a selection pressure a'(2jS)my". The relative values of a:/?:y are
constant, but their absolute values in each generation are adjusted so that

ua + 2vf$ + wy = 1.

This form of selection pressure is chosen for its algebraic tractabihty; it implies that
the selection pressures at different loci are the same, and are independent of each
other. Then consideration of the frequency with which (I, m, n) is derived in Fr+1

from each individual in Fr leads to the relations

ur+1 = <x

wT+1 =

The implication—that the distribution remains multinomial in succeeding genera-
tions—is true for the form of selection pressure adopted. Since in F2, u = \v = w = J,
we find that, in Fr+1,

u:v:w = —¥-
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these expressions being suitably multiplied to make their sum unity. This result
can easily be checked by substitution in the above equations. I t applies to genotypic
selection from selfed progenies. Here I shall not consider other mating systems, nor
the difficult problem of relating phenotypic to genotypic selection. At present, this
result is useful only (1) for considering the possible importance, after selection, of the
departures from additivity considered in the previous paper, and (2) as a theoretical
basis for comparing responses to different rates of selection. (It is astonishing how
rare are experiments to compare several different selection rates.) In the absence of
selection, a = 2)3 = y — 1, so that u = w = \ — (£)r+1 and v = (£)r.

If we adopt the curved model considered in the previous paper, the generation
mean is approximately

Fr+1 =

where

y = 2to(«u,).
This expression is obtained simply (if laboriously) by averaging the phenotype

[b + (I — n) d + mK\ &~n over the multinomial distribution in I, m, n, and then substi-
tuting and approximating in 6 in the manner of the previous paper. The expression
is not symmetric in a and y, so that upwards and downwards selection will give
asymmetric results. If there is no selection,

Fr+1 = b + 4d1 + ($y-\h1-2d1).

The recurrence relation 2Fr+1 = 3FT —JV_i then holds for the curved model, and
the limiting value of Fr (as inbreeding proceeds) is b + idx which is equal to 2FZ —Fi.
Here dx is a ' curvature' term which does not appear in the additive theory. On this
theory, therefore, 2_F2—.Fi would be a better predictor than \ (Px +P2) of the average
result of unselected inbreeding. Finally, the limit of upward selection {u= 1,
v = w = 0) is xy(b + d2y), where y is now 2(f+g)l(f—g). This result could of course
have been obtained directly from the original expression for the phenotype of
(/+<7, 0, 0). It is necessary, for the argument of the next section, to note that y is a
function of the degree of genetic dissimilarity between the two parents; it is inde-
pendent of the genotype-phenotype relation.

SCALING TESTS

Giesbrecht (1961) has published some more sets of family means. To fit the expres-
sions given on page 101 of the previous paper to six means, we must solve the
quartic

${x) = x*(P2x
2-2B2x+F1)-2x(B2x

2-2F2x+B1) + (F1x
2-2Blx+P1) = 0

(obtained by eliminating b, du d2, hu h2). In no less than five of Giesbrecht's six
examples, this equation has no real root near x = 1. The diploid inheritance of the
characters concerned cannot be doubted. The curved model therefore cannot be
fitted to Giesbrecht's figures. In the first paragraph we saw that the curved model
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imposed a relation between the F3 mean and the Fx and F2 means, and concluded
that the model is insufficiently general. The same conclusion must obviously be
drawn here. Now it is perfectly simple to generalize the model further, perhaps by
including a multiplicative dominance term so that the phenotype of (I, m, n)
becomes [b + (l — n)d + mh]6l~ntfim. But there are then too many parameters to be
fitted to a limited set of data; statistically speaking, the situation is hopelessly fluid.
Now this unfortunate result is not due merely to the unavoidable errors of estimation
of family means, nor is it entirely due to the vagaries of the genotypic-phenotypic
relation; to some extent it is intrinsic in the genetic relationship between inbred
parents and their offspring. To see this, we consider a hypothetical case wherein
the family means are known exactly and the three scaling tests

P2-2B2+F1 = B2-2F2+B1 = F1-2B1+P1 = 0

are satisfied, so that x = 1 is a solution of <j>(x) = 0. But

±Q = x(P2x
2-2B2x+F1)-(B2x

2-2F2x+B1),

so that the scaling tests ensure, not only that <j> = 0 at x = 1, but also that d<j>jdx — 0.
Consequently, any arbitrary value of x in the neighbourhood of 1 will fit the data.
I take the DxJ 1938 data used by Mather (1949) as an example, because they most
nearly satisfy the scaling tests; other data that satisfy these tests will give similar
results. Take arbitrary values 0-9, 1,1-1 for x, we find:

X

b
dx

d2

\
h2

-exp.)2

0-9
7-86

-0-03
1-71

-1-17
-0-05

0-0019

1
7-31
0-10
0-91

-0-90
0-05
0-0019

1 1
7-09
0-16
0-23

-0-79
0-11
0-0012

(±0-06)
(± 0-05)
(±0-03)
(+ 0-05)
(±0-07)

The figures in brackets are the standard errors of the various parameters.
S(obs. — exp.)2, the sum of squares of deviations of the family means from their
expectations, is quoted here merely to indicate that—as is easily verified—the
different values of x give (roughly) equally good fits. It may be objected that the
additive and multiplicative terms in the model are compensating each other.
This is true as far as the family means are concerned. But when we extrapolate
outside the range from Px to P2, the consequences are quite different. Taking arbi-
trary (but plausible) values for y, the limit of selective advance becomes:

x= 0-9 1 1-1

2/ = 2
3
4
5

9 1 3
9-46
9-64
9-68

9-13
10-04
10-95
11-87

9-13
10-35
11-72
13-26
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We must conclude that the scaling tests do not guarantee additivity; they guaran-
tee an indeterminate situation in which additivity is one solution. Of course, it is
always possible to draw an infinite number of curves through a finite number of
fixed points, but if these points are collinear the curves must usually appear im-
probably tortuous in comparison with the straight line. The present case is peculiar
in that there is no apparent reason to prefer the additive solution, for the alter-
native models seem perfectly reasonable. One can of course invoke Occam's Razor
to argue that, if the system admits an additive interpretation, it should be additive.
But there is no guarantee that the genes will agree.

It follows, then, that predictions of absolute advance under selection—based on
polygene analysis—cannot be relied on. (They may, of course, chance to be accurate
in some cases; but we do not know which cases these will be.) This practical failure
of polygene analysis does not invalidate the theoretical side of polygene work. Such
ideas as that of polygene balance (Mather, 1943) are very valuable. But the practical
difficulties are legion. In the previous paper it was shown that great care is needed
in the choice of scale, before the additive analysis can be used. Worse remains behind;
for it now appears that the assumption of additive gene effects would still be only
an assumption, even if the scaling tests were perfectly satisfied. As soon as we
investigate a simple non-additive model, the situation becomes indeterminate. For
some things (e.g. the heritability) this may not matter much; for others (response
to selection) it clearly does. I have not found a way of resolving this difficulty. The
example above also shows that dominance and curvature are to some extent
confounded. For practical analysis of quantitative inheritance, it seems wiser to
adopt simpler methods, e.g. heritability, combining ability, offspring-parent
regression, or the use of marker genes. It is particularly unfortunate that polygene
analysis should sometimes be advocated as an aid to practical breeding work. Of
course, the simpler methods mentioned also involve an additive hypothesis, and
so might be equally sensitive to failure of additivity. But they might not; for the
unpretentious model underlying the 'heritability' of an outbreeding population is
almost a statistical convention in comparison with the detailed genetic assumptions
involved in the polygene analysis of inbred parents. On the other hand, elaboration
of the 'heritability' model to include terms for dominance, epistacy, etc., is likely
to suffer, once again, from the kind of curvature discussed in this paper. (It is doubt-
ful whether such elaboration is very helpful or meaningful, anyway.) This paper
shows that polygene analysis has an intrinsic theoretical weakness. The curved
model of gene action, being more flexible than the strictly additive model, shows up
this weakness admirably; but neither the additive nor the curved model is sufficiently
flexible to describe real life.

SUMMARY

A modest theory of polygene selection is presented. Recently published data
show that the curved model of gene action (presented in a previous paper) is insuffi-
ciently general. The curved model does, however, show that the scaling tests (used
in the additive type of polygene analysis) do not guarantee additivity; they guaran-
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tee a state of indeterminacy, in -which additivity is one of a range of reasonable
possibilities. These different possibilities give entirely different predictions of
selective advance. The failure (in practice) of polygene analysis does not reduce the
value of polygene concepts.

I wish to thank the Referee for his valuable suggestions.
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