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The Whitham equation is a non-local, nonlinear partial differential equation that models
the temporal evolution of spatial profiles of surface displacement of water waves. However,
many laboratory and field measurements record time series at fixed spatial locations.
To directly model data of this type, it is desirable to have equations that model the
spatial evolution of time series. The spatial Whitham (sWhitham) equation, proposed
as the spatial generalization of the Whitham equation, fills this need. In this paper, we
study this equation and apply it to water-wave experiments on shallow and deep water.
We compute periodic travelling-wave solutions to the sWhitham equation and examine
their properties, including their stability. Results for small-amplitude solutions align with
known results for the Whitham equation. This suggests that the systems are consistent in
the weakly nonlinear regime. At larger amplitudes, there are some discrepancies. Notably,
the sWhitham equation does not appear to admit cusped solutions of maximal wave height.
In the second part, we compare predictions from the temporal and spatial Korteweg–de
Vries and Whitham equations with measurements from laboratory experiments. We show
that the sWhitham equation accurately models measurements of tsunami-like waves of
depression, waves of elevation, and solitary waves on shallow water. Its predictions also
compare favourably with experimental measurements of waves of depression and elevation
on deep water. Accuracy is increased by adding a phenomenological damping term.
Finally, we show that neither the sWhitham nor the temporal Whitham equation accurately
models the evolution of wave packets on deep water.
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1. Introduction

We investigate the spatial Whitham (sWhitham) equation, proposed by Trillo et al. (2016),
for gravity waves propagating on the surface of water. This equation was motivated by the
success of the temporal Korteweg–de Vries (tKdV) and temporal Whitham (tWhitham)
equations in modelling the evolution of unidirectional waves in shallow water. The
tWhitham equation uses a more accurate linear dispersive term than the tKdV equation
and therefore may be useful for depths ranging from shallow to deep. The tWhitham
equation can also approximate some singularity formation effects, see Whitham (1967) and
Ehrnström & Wahlén (2019). Comparisons with experimental data suggest the tWhitham
equation improves on the tKdV equation in the small-amplitude long-wave regime, see
Trillo et al. (2016) and Carter (2018).

A limitation of temporal models is that they describe how a given surface displacement
profile evolves in time. However, many field and laboratory experiments provide temporal
profiles of the surface displacement at fixed spatial locations and ask how these temporal
profiles evolve in space. This problem arises in many wave phenomena, e.g. in optics, and
there is a long use of ‘spatial evolution’ equations that describe how a signal, e.g. an optical
image, changes along some direction in space. Despite their motivation, spatial equations
have not been used systematically for nonlinear dispersive water-wave models. Herein, we
examine a recently proposed model, the sWhitham equation of Trillo et al. (2016), and
show evidence that this equation can improve on predictions of the tWhitham, tKdV and
spatial KdV (sKdV) equations. We consider this equation mathematically, numerically
and experimentally and compare its properties and predictions with those of the tKdV,
tWhitham and sKdV equations. Our results yield new information on the properties of the
sWhitham equation and its strengths and limitations as a model of unidirectional water
waves.

The motion of a two-dimensional, irrotational, incompressible, inviscid fluid on a
horizontal, impermeable bed can be modelled by

φxx + φzz = 0, for − h0 < z < η, (1.1a)

φt + 1
2 |∇φ|2 + gη = 0, at z = η, (1.1b)

ηt + ηxφx = φz, at z = η, (1.1c)

φz = 0, at z = −h0, (1.1d)

where φ(x, z, t) represents the velocity potential of the fluid, η(x, t) represents the surface
displacement of the fluid, g represents the acceleration due to gravity, h0 represents the
uniform depth of the fluid at rest and x, z, t represent the horizontal, vertical and temporal
coordinates, respectively. See Johnson (2001) for details of this system. Since this system
is a nonlinear free-boundary problem, approximate models are often used. Linear theory
gives the dispersion relation

ω2 = gκ tanh(κh0), (1.2)

where κ and ω are the wavenumber and angular frequency of the linear wave, respectively.
The dimensional tKdV equation (Korteweg & de Vries 1895),

ηt +
√

gh0 ηx + 1
6

h2
√

gh0 ηxxx + 3
2h0

√
gh0 ηηx = 0, (1.3)

is a small-amplitude, long-wave approximation of (1.1). The tKdV equation has been
well studied mathematically (e.g. Ablowitz & Segur 1981; Miles 1981; Lannes 2013) and
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The spatial Whitham equation

experimentally (e.g. Russell 1844; Zabusky & Galvin 1971; Hammack 1973; Hammack &
Segur 1978). It has dispersion relation

ωKdV =
√

gh0

(
κ − 1

6 h2
0κ

3
)

. (1.4)

Equation (1.4) is a unidirectional approximation of (1.2) that is valid in the long-wave
(i.e. κh0 → 0) limit. In order to obtain a weakly nonlinear approximation to (1.1) that
is valid for a wider range of κh0 values, Whitham (1967, 1974) proposed the following
dimensional equation:

ηt +
√

g
h0

K(κ) ∗ η + 3
2h0

√
gh0 ηηx = 0, (1.5)

as a model for the evolution of small-amplitude waves on shallow water. We refer to (1.5)
as the dimensional tWhitham equation. The convolution term is defined by

K(κ) ∗ η = F̃−1
(
K(κ)F̃(η)

)
, (1.6)

where K(κ) is the non-dimensional Fourier multiplier given by

K(κ) = i sgn(κ)
√

κh0 tanh(κh0), (1.7)

and F̃ and F̃−1 represent the Fourier and inverse Fourier transforms in x, respectively.
We write the tWhitham equation and K in forms different than those used by Whitham in
order to simplify the work below. The linear dispersion relation for the tWhitham equation
is

ωW = sgn(κ)
√

gκ tanh(κh0). (1.8)

Equation (1.8) is one root of (1.2), which means that the tWhitham equation exactly models
the wave speed of unidirectional linear waves for any κh0.

Given an initial spatial profile of the surface displacement (i.e. given η for all values of x
at t = 0), (1.3) and (1.5) provide predictions for the spatial profiles of η for t > 0. Because
of this requirement for initial spatial data, these equations are known as evolution-in-time
or ‘temporal’ equations. Many laboratory and field water-wave measurements are made
by recording time series at fixed spatial locations (i.e. using stationary gauges or buoys
to collect time series). Evolution-in-space or ‘spatial’ equations are required to directly
compare with measurements of this type. In these situations, time series at the first
measurement location are used as initial conditions in spatial equations that are solved
to obtain predictions for the time series at the downstream measurement locations. Spatial
equations are commonly used in nonlinear optics, e.g. in the study of pulse propagation in
optical fibres, see for e.g. Manakov (1974) and Agrawal (2019).

Three common methods used for deriving approximate spatial equations from (1.1)
include the following: (i) interchanging the roles of x and t in the derivation of the
temporal equations; (ii) starting with an approximate temporal equation and then applying
the change of variables ηt ∼ −√

gh0 ηx for waves in shallow water; (iii) inverting the
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dispersion relation. Using either (i) or (ii) gives the dimensional sKdV equation

ηx + 1√
gh0

ηt −
√

gh0

6g2 ηttt − 3
2h0

√
gh0

ηηt = 0. (1.9)

Using method (i) for the nonlinear part and method (iii) for the linear part, Trillo et al.
(2016) proposed the following dimensional sWhitham equation:

ηx +
√

h0

g
K−1(ω) ∗ η − 3

2h0
√

gh0
ηηt = 0, (1.10)

where the convolution term is defined by

K−1(ω) ∗ η = F−1
(
K−1(ω)F(η)

)
, (1.11)

using F and F−1 to represent the Fourier and inverse Fourier transforms in t, respectively,
and K−1(ω) as the inverse of K(κ). Although a closed-form expression for K−1(ω) is not
known, the inverse is guaranteed to exist since K(κ) is one-to-one and onto for κ ∈ R. In
general, if the dispersion is monotonic and onto, then the linear initial-value problem can
be written in spatial form. In other words, one can recover the spatial initial condition from
the time series at x = 0 and vice versa. Note that if weak surface tension were included,
then K(κ) would not be one-to-one and a unique inverse would not exist.

In the following, we consider both the mathematical properties of the sWhitham
equation and its applications. Section 2 includes a summary of the mathematical properties
including its conserved quantities, travelling-wave solutions and their stability. Section 3
contains comparisons between measurements from laboratory experiments and predictions
obtained from the tKdV, sKdV, tWhitham and sWhitham equations, and their dissipative
generalizations. Section 4 contains a summary of the results.

2. Properties of the spatial equations

In order to gain an understanding of the sWhitham equation, we present its properties
along with the properties of the sKdV equation for comparative purposes. We define
non-dimensional variables u, χ and τ by

u = η

h0
, χ = x

h0
, τ =

√
g
h0

t. (2.1a–c)

The corresponding non-dimensional sKdV equation is

uχ + uτ − 1
6 uτττ − 3

2 uuτ = 0, (2.2)

and the non-dimensional sWhitham equation is

uχ + K−1(w) ∗ u − 3
2 uuτ = 0, (2.3)

where w = √
h0/g ω is the non-dimensional circular frequency and K is the

non-dimensional Fourier multiplier defined by

K(k) = i sgn(k)
√

k tanh(k), (2.4)

where k = h0κ is the non-dimensional wavenumber.
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The spatial Whitham equation

2.1. Conserved quantities
The sKdV equation is known to have an infinite number of conservation laws, see for
example Ablowitz & Segur (1981). The first three conserved quantities are

Q̃1 =
∫ ∞

−∞
u dτ, (2.5a)

Q̃2 =
∫ ∞

−∞
u2 dτ, (2.5b)

Q̃3 = 1
2

∫ ∞

−∞

(
u2 + 1

6 u2
τ − 1

2 u3
)

dτ, (2.5c)

where Q3 is the Hamiltonian. The sWhitham equation conserves Q̃1,Q̃2 and its
Hamiltonian

Q̃4 = 1
2

∫ ∞

−∞

(
u

(
K−1(w)

iw

)
∗ u − 1

2
u3

)
dτ. (2.6)

The quantities Q1 and Q2 are sometimes referred to as the mass and momentum integrals,
respectively. These interpretations are discussed in depth in Ali & Kalisch (2014). We
emphasize that the quantities Q̃1 to Q̃4 are constant in χ , the non-dimensional spatial
variable. The periodic generalizations of these conserved quantities, Q̃1, Q̃2, Q̃3, Q̃4, for
the tKdV, sKdV, tWhitham and sWhitham equations are included in the Appendix A.

2.2. Travelling-wave solutions
The sKdV equation admits a two-parameter family of travelling-wave solutions given by

u(χ, τ ) = U0 + U2 cn2
(

2E1(m)

T
(τ − γχ) , m

)
, (2.7)

where

U0 = − 16
3T2 E1(m) (E2(m) + (m − 1)E1(m)) , (2.8a)

U2 = 16m
3T2 (E1(m))2 , (2.8b)

γ = 1 + 8
3T2 (m − 2) (E1(m))2 + 8

T2 E1(m)E2(m). (2.8c)

Here T is the (temporal) period of the solution, U2 is the wave height of the solution, m ∈
[0, 1) is known as the elliptic parameter of the Jacobi elliptic function cn(·, m), and E1(m)

and E2(m) are the complete elliptic integrals of the first and second kinds, respectively.
See Byrd & Friedman (1971) for details of elliptic functions. Without loss of generality,
the integration constant, U0, was chosen so that the solutions have zero mean (i.e. Q1 = 0)
because (2.7) is invariant under the transformation

U0 → U0 + ν, γ → γ − 3
2ν, (2.9a,b)

where ν is any real constant. The two-parameter family (the free parameters are T and
m) of solutions given in (2.7) comprises all zero-mean, travelling-wave solutions to the
sKdV equation. A profile of the form u(τ − γχ) of the spatial equation is interpreted as
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γ = 1.1659, H = 0.0739
γ = 1.0765, H = 0.8438
γ = 0.9769, H = 1.286
γ = 0.6513, H = 2.4046

γ = 1.1992, H = 0.0739
γ = 1.1397, H = 0.8438
γ = 1.0667, H = 1.286
γ = 0.7997, H = 2.4046
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1.5
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(b)(a)

Figure 1. Plots of four 2π-periodic, zero-mean, travelling-wave solutions to (a) the sKdV equation and
(b) the sWhitham equation. The γ values and wave heights, H, are included in the legends.

the u(−γ (x − γ −1t)) travelling-wave profile of the temporal evolution. This means that
the non-dimensional real parameter γ corresponds to the inverse of the non-dimensional
wave speed.

Figure 1(a) contains plots of four 2π-periodic solutions of the sKdV equation. The wave
heights, H, and γ values for these solutions are included in the legend. The sKdV equation
does not admit a solution with maximal height, nor does it admit a solution with minimal
γ value. As m → 1, H increases without bound, and γ decreases without bound. Once the
height of the solution becomes large enough, the γ value becomes negative. For solutions
with period T = 2π, this sign transition occurs for solutions with height H ≈ 4.28. Since
γ is the inverse of wave speed, γ going through zero corresponds to the wave speed going
to infinity. This non-physical result may be due to the fact that the sWhitham equation is
a generalization of the sKdV equation, which is a model of small-amplitude waves, and
these waves are well outside the small-amplitude regime.

Ehrnström & Kalisch (2009) proved that the tWhitham equation admits small-amplitude,
periodic travelling-wave solutions and computed some of these solutions. Ehrnström
& Wahlén (2019) proved Whitham’s conjecture that the tWhitham equation admits a
travelling-wave solution with maximal wave height and that this solution is cusped. Carter
(2024) numerically examined the properties of solutions to the tWhitham equation close
to the maximal height.

We consider periodic travelling-wave solutions of the sWhitham equation of the form

u(χ, τ ) = f (τ − γχ) = f (ξ), (2.10)

where γ is a real constant and f is a smooth, real-valued function of ξ = τ − γχ with
non-dimensional temporal period T . Substituting (2.10) into (2.3) and integrating with
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The spatial Whitham equation

respect to ξ once gives

−γ f +
(

K−1(w)

i w

)
∗ f − 3

4
f 2 = B, (2.11)

where B is the constant of integration. This equation is invariant under the transformation

f → f + ν, γ → γ − 3
2ν, B → B + ν

(
γ − 3

4ν
)

, (2.12a–c)

where ν is any real constant. Therefore, without loss of generality, we only consider
travelling-wave solutions of the sWhitham equation that have zero mean.

Equation (2.11) can be solved approximately by assuming f has a Fourier expansion of
the form

f (ξ) =
N∑

j=−N

f̂ ( j) exp
(

2πijξ
T

)
, (2.13)

where N is a large positive integer and the f̂ are complex constants. Since f has zero
mean, f̂ (0) = 0. For simplicity, we assume that the solutions are real and even. Thus,
f̂ (−j) = f̂ ( j) for j = 1, . . . , N. Substituting (2.13) into (2.11) gives

−γ f̂ ( j) +
TK−1

(
2πw

T

)
2πiw

f̂ ( j) − 3
4

N∑
l=−N+j

f̂ ( j − l)f̂ (l) = 0, for j = 1, 2, . . . , N.

(2.14)

We solved this system of nonlinear algebraic equations for the f̂ using Newton’s method
(see Ehrnström & Kalisch (2009) and Carter et al. (2022) for the details in closely related
problems).

Figure 1(b) includes plots of four 2π-periodic, zero-mean, travelling-wave solutions to
the sWhitham equation. As the value of γ decreases, the height of the solution increases.
For the sWhitham equation, the γ value for 2π-periodic solutions becomes negative when
H ≈ 3.70. We do not see evidence of a wave of maximum height that is analogous to the
cusped wave seen in the tWhitham equation, see Ehrnström & Wahlén (2019). This result
is consistent with the fact that stronger dispersion typically has a regularizing effect.

Figure 2 includes plots of four travelling-wave solutions to the sWhitham equation
with period T = 10π. Just as in the T = 2π case, there does not appear to be a solution
with maximal height, nor a solution with minimal γ value. However, once the height
becomes large enough, the solutions no longer increase monotonically on ξ ∈ (−5π, 0).
This is demonstrated in the inset plot in figure 2. This non-monotonic behaviour is not a
numerical artefact. We checked that the purple solution is in fact a travelling-wave solution
by evolving it for multiple periods in evolution code for the sWhitham equation. This
non-monotonic behaviour is not exhibited by solutions to the sKdV, tKdV or tWhitham
equations. Finally, the sWhitham equation does not meet the criteria for monotonic growth
presented in Bruell & Pei (2023). For clarity, we define height by H = max(u) − min(u)

regardless if the solution is monotonic on ξ ∈ (−T/2, 0) or not.

2.3. Stability of travelling-wave solutions
Benjamin & Feir (1967) showed that small-amplitude periodic travelling-wave solutions to
(1.1) are stable with respect to the modulational instability (long-wavelength perturbations)
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Figure 2. Plots of four travelling-wave solutions to the sWhitham equation with period T = 10π. The inset
plot shows that the solutions are not monotonic on ξ ∈ (−5π, 0) when the solution height is sufficiently large.

when 2π/L < 1.363 and are unstable with respect to the modulational instability when
2π/L > 1.363, where L is the spatial wavelength. Bottman & Deconinck (2009) and
Deconinck & Nivala (2010) proved that all travelling-wave solutions of the tKdV equation
are stable regardless of their height or (spatial) period. Due to the similarities between the
tKdV and sKdV equations, these results also establish that all travelling-wave solutions of
sKdV are stable regardless of their height or period. Hur & Johnson (2015) proved that
travelling-wave solutions to the tWhitham equation with sufficiently small amplitude are
stable with respect to the modulational instability if 2π/L < 1.146 and are unstable with
respect to the modulational instability otherwise. The more general work of Binswanger
et al. (2021) also shows that the small-amplitude modulational instability cutoff occurs at
2π/L = 1.146 in the tWhitham equation. Sanford et al. (2014) numerically corroborated
these results. They numerically showed that all periodic travelling-wave solutions of the
tWhitham equation with large enough amplitude, regardless of wavelength, are unstable.
Additionally, they showed that these large-amplitude solutions are unstable with respect to
perturbations of all wavelengths greater than or equal to that of the unperturbed solution.
Finally, they showed that the instability growth rate increases monotonically with the
solution height.

Applying equation (23) of Binswanger et al. (2021) to the sWhitham equation
establishes that all small-amplitude periodic travelling-wave solutions are stable with
respect to the modulational instability regardless of their period. This result is qualitatively
similar to the tKdV and sKdV results, but is qualitatively different than the tWhitham
result.

In order to numerically study the stability of travelling-wave solutions to the sWhitham
equation, we employ the Fourier–Floquet–Hill method of Deconinck & Kutz (2006). First,
enter a coordinate frame moving with the solution via the change of variables

ξ = τ − γχ. (2.15)
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The spatial Whitham equation

This converts (2.3) to

uχ − γ uξ + K−1(w) ∗ u − 3
2 uuξ = 0, (2.16)

and converts travelling-wave solutions of (2.3) into stationary (i.e. ∂χu = 0) solutions of
(2.16). Next, consider perturbed solutions of the form

upert(ξ, χ) = u(ξ) + εv(ξ, χ) + O(ε2), (2.17)

where u is a periodic travelling-wave solution of the sWhitham equation, ε is a small real
constant and εv is the leading-order part of the perturbation. Substituting (2.17) into (2.16)
and linearizing gives

vχ − γ vξ + K−1(w) ∗ v − 3
2 u′v − 3

2 uvξ = 0, (2.18)

where ‘prime’ means derivative with respect to ξ . Without loss of generality assume

v(ξ, χ) = V(ξ)eλχ + c.c., (2.19)

where V is a complex-valued function, λ is a complex constant whose real part corresponds
to the growth rate of the instability and c.c. stands for complex conjugate. Substituting
(2.19) into (2.18) and rearranging gives

γ V ′ − K−1(w) ∗ V + 3
2 u′V + 3

2 uV ′ = λV. (2.20)

All bounded solutions to this equation (i.e. solutions with any period) have the form
V(ξ) = eiμξ W(ξ), where W is a T-periodic function and μ ∈ [−π/T, π/T] is a constant
known as the Floquet parameter, see Deconinck & Kutz (2006). This gives

V(ξ) = eiμξ

∞∑
j=−∞

Ŵ( j)e2πijξ/T , (2.21)

where the Ŵ( j) are complex numbers. In our numerical computations, we use the
truncation

V(ξ) = eiμξ
N∑

j=−N

Ŵ( j)e2πijξ/T , (2.22)

where N is a large positive integer. If there exists a bounded solution to (2.20) with
λ that has a positive real part, then the perturbation grows exponentially in χ and the
corresponding solution to the sWhitham equation is said to be unstable. If all solutions of
(2.20) have λ values that are purely imaginary, then the corresponding solution is said to
be spectrally stable.

Travelling-wave solutions to the sWhitham equation with period T = 2π, height H <

0.842 and γ > 1.14 are spectrally stable. As the wave height surpasses H = 0.842
(and γ falls below 1.14), the solutions become unstable. The spectra corresponding to
solutions with heights just above the critical value are oval-like shapes centred at the
origin. The oval-like shapes correspond to perturbations with μ values near ±0.5. (A
perturbation with μ = 0.5 has a period that is twice that of the unperturbed solution.)
As the height increases further, more μ values lead to instability and the ovals transition
into lemniscates centred at the origin. All non-zero μ values lead to instability when the
complete lemniscate is formed. For solutions with period 2π, the complete lemniscate is
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Figure 3. Plots of the stability results for the sWhitham solutions with T = 2π shown in figure 1(b). The
coloured curves in this figure correspond to the solutions of the same colours in figure 1(b). Panel (a) shows
the stability spectra and (b) shows the maximum growth rate versus the Floquet parameter.

first observed near H = 0.845. These sWhitham stability results are qualitatively different
than the tWhitham results where the first unstable solutions have spectra with lemniscates
centred at the origin. Such spectra are created by perturbations with μ values near zero
and are representative of the modulational instability.

Figure 3(a) includes plots of the stability spectra for the sWhitham solutions shown in
figure 1(b). Figure 3(b) includes plots of max(Re(λ)), i.e. the maximal instability growth
rate, versus μ for the same solutions. The solution with smallest height (coloured blue in
the plots) is spectrally stable since it has a purely imaginary spectrum. The fact that this
solution is stable is consistent with the Binswanger et al. (2021) asymptotic result that
all travelling-wave solutions of the sWhitham equation with sufficiently small amplitudes
are stable with respect to the modulational instability. Additionally, this solution does not
exhibit the ‘bubble’ instabilities seen in the Euler equations, see Deconinck & Oliveras
(2011), or in bidirectional generalizations of the tWhitham equation, see Deconinck &
Trichtchenko (2015). The other three solutions plotted in figure 1 are unstable.

The solution with second smallest height (coloured orange) is unstable. Its stability
spectrum is an oval-like shape centred at the origin that is transitioning into a lemniscate,
see figure 3(a). This sWhitham solution is only unstable with respect to perturbations
with approximately |μ| ∈ [0.1, 0.5]. Since μ near zero does not lead to instability, this
solution is stable with respect to the modulational instability. The solution is most
unstable with respect to perturbations with μ = 0.5. This means that perturbations with
period T = 4π, i.e. twice the period of the underlying solution, grow fastest. These
results are qualitatively different than those obtained for moderate-amplitude 2π-periodic
travelling-wave solutions of the tWhitham equation, see Sanford et al. (2014).

The solution with the third smallest height (coloured green in the plots) is unstable
with respect to perturbations with any non-zero value of μ. The stability spectrum is a
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Figure 4. Plot of the regions of (T, H)-space for which periodic travelling-wave solutions of the sWhitham
equation are unstable (black dots) with respect to the μ = 0.5 instability. Solutions corresponding to (T, H)

in the white bands are stable with respect to μ = 0.5 perturbations. The green stars represent the approximate
location of the most unstable solutions for that period. The red curve shows the approximate values of (T, H)

where γ becomes negative.

lemniscate centred at the origin. The instability growth rates for this solution are larger
than those for the solution with the second smallest height. It is most unstable with respect
to the perturbation with μ = 0.5, a perturbation with T = 4π. Finally, the solution with
the largest height (coloured magenta) is also unstable with respect to perturbations with
any non-zero μ and its stability spectrum is a lemniscate centred at the origin. However,
the growth rates of the instabilities of this solution are smaller than the growth rates of the
solution with third smallest wave height, see figure 3(b).

As the wave height continues to increase, there are alternating bands of stability and
instability. Figure 4 shows regions of (T, H)-space for which periodic travelling-wave
solutions to the sWhitham equation are unstable with respect to μ = 0.5 perturbations
(black dots). For this plot, we only examined μ = 0.5 perturbations because for all (T, H)

pairs we examined, the μ = 0.5 perturbation had the largest instability growth rate. There
does not appear to be a simple relationship between (T, H) and stability. For example, all
four of the 10π-periodic solutions shown in figure 2 are stable, but not all 10π-periodic
solutions are stable. The approximate values of (T, H) where γ turns negative are shown
by the red curve. This curve does not appear to have a simple relationship with stability.
Figure 4 shows that there are bands of instability and stability. This is qualitatively different
than what happens in the tWhitham case where all large-amplitude solutions are unstable
and the growth rate increases monotonically with wave height. It is unintuitive that some
large-amplitude solutions are stable. This unintuitive result may be attributed to the fact
that the sWhitham equation is a model for small-amplitude waves and these solutions are
outside of that range of validity.

Finally, we did not find any solutions to the sWhitham equation that are unstable
with respect to the superharmonic instability, a perturbation that has the same period
as the solution (i.e. μ = 0). Additionally, neither Q2 nor Q3 oscillate for the sWhitham
equation as solution height increases. These results are qualitatively different than the
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tWhitham case where travelling-wave solutions with large-enough amplitude are unstable
with respect to the superharmonic instability, see Carter et al. (2023).

3. Comparisons with experiments

The tKdV equation has been shown to compare favourably with experiments, see for
example Russell (1844), Zabusky & Galvin (1971), Hammack (1973), Hammack & Segur
(1974) and Hammack & Segur (1978). Trillo et al. (2016) showed that both the sKdV and
sWhitham equations accurately model the evolution of experimental waves of depression
on shallow water. Carter (2018) showed that the tWhitham equation more accurately
predicts the evolution of experimental waves of depression than do the tKdV and Serre
equations.

In this section, we present comparisons between predictions obtained from numerical
simulations of the model equations and measurements from four different series of
laboratory experiments including waves of depression and elevation on shallow water
(§§ 3.2 and 3.3), solitons on shallow water (§ 3.4), waves of depression and elevation on
deep water (§ 3.5) and wave packets on deep water (§ 3.6).

3.1. Numerical methods
In order to make comparisons with measurements from laboratory experiments, the
model equations need to be solved numerically. The tKdV and tWhitham equations are
solved numerically using fourth-order operator-splitting in time (see Yoshida 1990) and
periodic boundary conditions in space. The nonlinear parts of the equations are solved
using fourth-order Runge–Kutta in time and a Fourier pseudospectral evaluation of the
nonlinearity on a uniform grid (pointwise multiplication in space and spectral computation
of the derivative). The linear part of the equations is solved exactly in Fourier space. We
use the fast Fourier transform to move between the spatial and spectral variables. The
length of the numerical tank must be large enough that waves do not leave one end of
the domain, wrap around and impact waves on the other end of the domain. Additionally,
the spatial gridpoints must be selected to line up with the experimental gauge locations.
As a check on the results, the numerical preservation of the conserved quantities of the
equations, see the Appendix A, was monitored.

The sKdV and sWhitham equations are solved using the same methods except that space
and time are interchanged. The inverse K−1(w) is evaluated numerically using Newton’s
method. As a check on the results, the preservation of the conserved quantities, see the
Appendix A, was monitored.

3.2. Waves of depression and elevation on shallow water
Hammack & Segur (1978) conducted a series of water-wave experiments in a long, narrow
tank with h0 = 10 cm, and a wavemaker at one end. The wavemaker was a rectangular,
vertically moving piston located on the bottom of the tank next to a rigid wall at one end
of the tank. The piston spanned the width of the tank and had a length of 61 cm, so the
initial wavelength was 122 cm. This experiment is in the shallow-water regime because
the ratio r = h0/L = 0.082 
 1 and tanh(2πr) = 0.47. The experiments were initialized
by rapidly moving the piston downward a prescribed amount. Time series were collected
by wave gauges located 61 + 500j cm for j = 0, . . . , 4 from the upstream end of the tank.
This means that the first gauge was located at the downstream edge of the wavemaker. The
tank was long enough that waves reflecting from the downstream end of the tank did not
impact the time series.
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Figure 5. The experimental time series (blue curve) from the Hammack & Segur (1978) experiment using
A0 = 1.5 cm with the predictions obtained from the tKdV (orange curve) and sKdV (red curve) equations. The
plots are ordered from (a) to (e) by increasing distance from the wavemaker.

We compare predictions from the tKdV, sKdV, tWhitham and sWhitham equations. The
time series collected by the first gauge were used as initial conditions for the simulations of
the spatial equations. The initial conditions for the temporal equations require knowledge
of the surface displacement for all values of x at the initial time, but that information was
not recorded in these experiments. To approximate it, we used the following function as
initial condition for the temporal equations:

η(x, 0) =

⎧⎪⎨
⎪⎩

0 −7869 � x < −183,

−1
2 A0 + 1

2 A0 sn(0.0925434x, 0.99992) −183 � x � 61,

0 61 < x � 7747,

(3.1)

where A0 is the amplitude of the piston motion in centimetres, x is measured in centimetres
and sn(·, m) is a Jacobi elliptic function with elliptic modulus m, see Byrd & Friedman
(1971). This function represents a trough of 122 cm centred at x = −61 cm.

Figure 5 contains plots comparing the experimental time series with the predictions
obtained from the tKdV and sKdV equations for the experiment with A0 = 1.5 cm. Both
equations do a reasonable job of predicting the experimental measurements. However, the
sKdV equation more accurately predicts the phase speed. (This is especially visible at the
downstream gauges.) It is important to note that part of the error in the tKdV prediction is
due to the fact that the initial surface is estimated. This is a shortcoming of the temporal
equations. Both models overpredict the amplitudes at the downstream gauges and this
overprediction increases as the waves travel down the tank. This overprediction is due to
the fact that both tKdV and sKdV are conservative models and the experiment contains
dissipation. See § 3.3 for a discussion of the role dissipation plays.

Figure 6 contains plots comparing the experimental time series with the predictions
obtained from the tWhitham and sWhitham equations for the same experiment.
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Figure 6. The experimental times series (blue curve) from the Hammack & Segur (1978) experiment using
A0 = 1.5 cm with the predictions obtained from the tWhitham (light green curve) and sWhitham (dark green
curve) equations. The plots are ordered from (a) to (e) by increasing distance from the wavemaker.

The differences between the tWhitham and sWhitham predictions are smaller than the
differences between the tKdV and sKdV predictions. Note that part of the error in the
tWhitham prediction is due to the fact that the initial surface displacement is estimated.
Again, this highlights a shortcoming of the temporal equations. Both the tWhitham and
sWhitham equations overpredict the amplitudes of the waves at the downstream gauges
due to their conservative nature, see § 3.3.

The predictions from all four models (tKdV, sKdV, tWhitham and sWhitham) for the
Hammack & Segur (1978) experiment with A0 = 0.5 cm (plots omitted for conciseness)
are more accurate than those in the A0 = 1.5 cm case. However, the results were
qualitatively the same: the spatial equations provide more accurate predictions than do
the temporal equations; the Whitham equations provide more accurate predictions than do
the KdV equations; all four equations overpredicted the wave amplitudes. Finally, we note
that linear theory is not sufficient to model the time series from either the A0 = 0.5 cm
or A0 = 1.5 cm experiments. Predictions obtained from linear theory (plots omitted for
conciseness) are significantly worse than any of the models examined herein.

Using the wave tank described above, Hammack & Segur (1974) conducted another
series of experiments in which the piston was rapidly moved upwards at the start of
the experiment. Time series were recorded at x = 61, 161, 961 and 2061 cm from the
upstream end of the tank. The experimental data from the first gauge was used as the initial
condition for the spatial equations. For the temporal equations, we used the following
initial condition:

η(x, 0) =
⎧⎨
⎩

0 −7869 � x < −183,

0.075 − 0.075 sn(0.0925434x, 0.99992) −183 � x � 61,

0 61 < x � 7747.

(3.2)

996 A42-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.585


The spatial Whitham equation

0

0

0.10
0.15
0.20

0.05

0

0.10
0.15
0.20

0.05

0

0.10
0.15

0.05

0

0.10
0.15

0.05

1 32

t (s)

η
 (

cm
)

η
 (

cm
)

η
 (

cm
)

η
 (

cm
)

4 5 6

0 1 32 4 5 6

0 1 32 4 5 6

0 1 32 4 5 6

(b)

(a)

(c)

(d )

Figure 7. The experimental times series (blue curve) from one of the Hammack & Segur (1974) experiments
with the predictions obtained from the tWhitham (light green curve) and sWhitham (dark green curve)
equations. The plots are ordered from (a) to (d) by increasing distance from the wavemaker.

Figure 7 contains plots comparing the experimental times series with the predictions
obtained from the tWhitham and sWhitham equations. The predictions from the tKdV and
sKdV equations are similar. Both equations do reasonable jobs modelling the experimental
data and the accuracy of the models is approximately the same as it is for the waves of
depression experiments discussed above.

3.3. Dissipative models of waves of depression on shallow water
Figures 5 and 6 show that the tKdV, sKdV, tWhitham and sWhitham equations overpredict
the amplitudes of the waves measured in the experiments. This overprediction is due to the
fact that the equations are conservative, while the experiments contain dissipation. Figure 8
shows that the dimensional quantity

M(x) = 1
τ

∫ τ

0
η(x, t)2 dt, (3.3)

where τ is the dimensional length of the time series, decays nearly exponentially as the
waves travel down the tank for both the A0 = 0.5 cm and A0 = 1.5 cm experiments. In
order to address this, we consider the dimensional dissipative sKdV equation

ηx + 1√
gh0

ηt −
√

gh0

6g2 ηttt − 3
2h0

√
gh0

ηηt + δη = 0, (3.4)

and propose the following ad hoc, dimensional dissipative generalization of the sWhitham
equation:

ηx +
√

h0

g
K−1(ω) ∗ η − 3

2h0
√

gh0
ηηt + δη = 0. (3.5)
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Figure 8. Plots of M versus x for the Hammack & Segur (1978) experiments with (a) A0 = 0.5 cm and
(b) A0 = 1.5 cm. The blue dots represent the experimental measurements, the magenta curves represent the
best-fit exponentials of the experimental data and the black circles represent the dsWhitham predictions.

Here δ is a non-negative constant representing the sum total of all forms of dissipation
in the experiment. We refer to (3.4) and (3.5) as the dissipative sKdV (dsKdV) and the
dissipative sWhitham (dsWhitham) equations, respectively. These equations predict that
M will decay exponentially as x increases (i.e. as the waves travel down the tank). The
single free parameter, δ, is determined by best fitting the measured exponential decay of
M. The δ values for the A0 = 0.5 cm and A0 = 1.5 cm experiments are 7.14 × 10−5 cm−1

and 2.07 × 10−4 cm−1, respectively. This form of dissipation assumes that waves of all
periods decay with the same rate. It is not a wavenumber-dependent form of dissipation.

Figure 9 shows comparisons between the experimental time series and predictions from
the dsKdV and dsWhitham equations. The dsKdV equation does a reasonable job, but
incorrectly models the phase speeds. The dsWhitham equation does an excellent job
modelling the A0 = 1.5 cm experimental time series. The predictions obtained from the
dsWhitham equation are much better than those obtained from the conservative models.
The results for the A0 = 0.5 cm experiment (not shown) are similarly excellent.

3.4. Solitons on shallow water
We conducted experiments on solitons in a 1524 cm long (reflected waves did not impact
the evolving soliton), 25.4 cm wide wave channel in the W.G. Pritchard Fluid Mechanics
Laboratory. The tank is described in detail in Vasan et al. (2017). Briefly, the channel was
cleaned with alcohol and filled with water to a desired depth. A wind was blown over the
water surface along the length of the channel, creating a surface current that carried surface
contaminants to the other end, where they were vacuumed with a wet-vac. The depth was
then measured to be 5.30 cm. We generated solitons using a horizontal displacement of
a piston: a vertical plate that spanned the width and height of the channel. The piston
was programmed using the approach of Goring & Raichlen (1980), to take into account
the real-time displacement of the plate. This approach and the details for our wavemaker
are spelled out in Hammack et al. (2004). Herein, the wavemaker produced a repeatable
soliton solution of the KdV equation with the desired height of 2.00 cm. Hammack et al.
(2004) also generated a soliton solution of KdV with that height in water of depth 5.00 cm.
They measured the spatial wavelength of the soliton to be approximately 80 cm. We did not
measure a spatial wavelength, but the ratio in the present experiments is nearby this value.
Therefore, the ratio of depth to wavelength, r = h0/λ ≈ 0.066, meaning these experiments
are in the shallow-water regime. A capacitance-type wave gauge was used to measure the
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Figure 9. The experimental time series (blue curve) from the Hammack & Segur (1978) experiment using
A0 = 1.5 cm and the predictions obtained from the dsKdV (grey curve) and dsWhitham (black curve)
equations.

surface displacement. For a fixed soliton amplitude, we conducted seven experiments with
the wave gauge moved to the different x-locations, x = 50, 150, 250, 350, 450, 550, 650 cm
away from the piston in its rest position. In these seven experiments, the start time of the
paddle was not synced to the start time of data collection, so that the time series had to be
shifted by hand to match comparisons; hence, we did not test accuracy of wave speed.

Figure 10 shows a comparison of the experimental time series and the predictions
obtained from the dsWhitham equation for all seven gauges. The predictions line-up
very closely with the experimental measurements. Figure 11 shows comparisons of the
experimental time series and the predictions from the sKdV, dsKdV, sWhitham and
dsWhitham equations for the last gauge. Although these experiments involve waves of
elevation instead of waves of depression, the results are similar to those presented in the
previous two subsections. The sWhitham predictions are more accurate than the sKdV
predictions. The dsWhitham equation more accurately models the experimental time series
than did the sWhitham equation. Other plots (omitted for conciseness) show that the
dsWhitham equation is more accurate than the tKdV and sKdV equations. Additionally,
the spatial equations more accurately predict the wave evolution than do the temporal
equations.

3.5. Waves of depression and elevation on deep water
The tWhitham and sWhitham equations were proposed as models for waves on shallow
water. However, they accurately reproduce the phase speeds of all unidirectional linear
waves, regardless of the (uniform) depth of water. Because of this, it is reasonable to ask
whether these equations accurately predict the evolution of waves on deep water.
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Figure 10. The experimental time series (blue curve) from the experiment described in § 3.4 along with the
prediction obtained from the dsWhitham equation (black curve). The plots are ordered by increasing distance
from the wavemaker.

2.0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

9 10 11 12 9 10 11 12

t (s) t (s)

η
(c

m
)

(a) (b)

Figure 11. The experimental time series (blue curve) from the final gauge of the experiment described in § 3.4
along with the predictions obtained from (a) the sKdV (red curve) and sWhitham (dark green curve) equations
and (b) the dsKdV (grey curve) and dsWhitham (black curve) equations.
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In this section, we address this question by comparing predictions from the tWhitham
and sWhitham equations with time series from our experiments of waves on deep water
that are similar to those discussed above in §§ 3.2 and 3.3. In particular, we created an
initial, localized, positive surface displacement and an initial, localized negative surface
displacement. These surface displacements were created in the same tank used for the
soliton experiments (see § 3.4) but with a horizontally aligned piston that had a vertical
displacement. The piston for the experiments in this section was a horizontal plate that was
25.4 cm long in the x-direction, 1 cm tall in the vertical direction and spanned the width of
the tank. The initial wave had a length of λ = 50.8 cm, and the depth was approximately
h0 = 20 cm. The resulting ratio of fluid depth to wavelength was r = h0/λ = 0.393, with
tanh(2πh0/λ) = 0.986, so that the waves were effectively in the deep-water regime.

The plate was impulsively lowered or raised 0.75 cm. To obtain the motion, the operator
moved a Two-Servo Joystick, which sent a signal to a Servo Travel Tuner, in which we
had programmed the desired plate displacement, and then to a Hi-Tec Linear Servo, which
provided the plate motion. (All parts were from www.servocity.com.) There was a vertical
barrier behind the plate so that the resulting waves were forced to travel in the x > 0
direction.

For the positive initial displacement, the tank was filled, and the surface was cleaned as
described above to a depth of 20.18 cm. The plate was levelled parallel to the quiescent
water surface and submerged 0.25 cm. It was dropped 0.75 cm impulsively, creating a
localized positive surface displacement. Four in situ, capacitance wave gauges, located at
x = 4.0, 225.5, 461.4, 679.0 cm from the edge of the plate, provided time series. Figure 12
shows the results. The data from the first gauge are used as the initial conditions for the
spatial equations, so the model output and measurements agree exactly at that location.
At the second gauge site, all three models predict well the oscillations that develop near
the initial displacement and the wave packet that forms farther downstream. Dissipation
becomes important in the surface displacement evolution by the third wave gauge. The
conservative predictions agree qualitatively with the data, while the dsWhitham agrees
both qualitatively and quantitatively, matching quite well even the radiation. By the fourth
gauge, the agreement between the conservative predictions and the data worsens. The
sWhitham prediction more accurately models the phase velocities than does the sKdV
equation. The dsWhitham equation continues to produce a good quantitative comparison
with the data.

For the negative initial displacement, the tank was filled, and the surface was cleaned
as described above to a depth of 20.22 cm. The plate was levelled parallel to the quiescent
water surface and submerged 0.75 cm. It was lifted 0.75 cm impulsively, creating a
localized negative surface displacement. The four in situ, capacitance wave gauges, located
at x = 4.0, 225.6, 462.5, 679.0 cm from the edge of the plate, provided time series.
Figure 13 shows the results. The data from the first gauge is used as the initial condition,
so the model output and measurements agree. Similar to the negative displacement
experiments, all three models predict reasonably well the measured surface displacement
at the second gauge site. Results from the sKdV and sWhitham equations are in qualitative
agreement with data at the third and fourth gauge sites, while the dsWhitham equation
predicts quite well the measured time series at the third and fourth gauge sites.

The sKdV predictions are less accurate than the sWhitham predictions due to phase
velocity issues. Comparisons with sKdV and dsKdV are similar, although they do not
align with the experimental data as well.
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Figure 12. Comparisons of predictions from the (a) sKdV equation, (b) sWhitham equation and
(c) dsWhitham equation when the initial surface displacement is positive. The blue curves correspond to the
measured surface displacement, the red, dark green and black curves correspond to the sKdV, sWhitham and
dsWhitham predictions, respectively. The plots are ordered from (i) to (iv) by increasing distance from the
plate/wavemaker.

3.6. Wave packets on deep water
In order to further test the range of validity of the sWhitham and dsWhitham equations,
we compare their predictions with experimental measurements of wave packets on deep
water. Segur et al. (2005) showed that the dissipative nonlinear Schrödinger (dNLS)
equation provided much more accurate predictions, both quantitatively and qualitatively,
than did the nonlinear Schrödinger (NLS) equation for the experiments discussed in
this section. They also showed that although plane-wave solutions to the NLS equation
are unstable with respect to the modulational instability (also known as the sideband
instability), uniform-amplitude solutions to the dNLS equation are stable with respect to
the modulational instability. Finally, they showed that although the dNLS equation is stable
with respect to the modulational instability, the sidebands may grow a limited amount.

In the Segur et al. (2005) experiments, the wave tank was 1311 cm long, 25.4 cm
wide, had glass sidewalls and bottom and had a constant water depth of h0 = 20 cm.
A plunger-type wavemaker that spanned the width of the tank, had an exponential
cross-section, and oscillated vertically was located at one end of the tank. The wavemaker
created slowly modulated wavetrains with waves of wavelength λ ≈ 15 cm. Since the ratio
r = h0/λ ≈ 1.33 and tanh(2πh0/λ) ≈ 1.00, this experiment is in the deep-water regime.

Figure 14 shows comparisons between the time series recorded in an experiment
from § 6.2 of Segur et al. (2005) and the predictions from the sWhitham equation.
Due to the complexity of the time series, we compare the magnitudes of the dominant
Fourier coefficients instead of the time series themselves. The carrier wave frequency was
f0 = 3.33 Hz. The perturbation frequency was fp = 0.17 Hz. So the sideband frequencies
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Figure 13. Comparisons of predictions from the (a) the sKdV equation, (b) sWhitham equation and
(c) dsWhitham equation when the initial surface displacement is negative. The blue curves correspond to
the measured surface displacement, the red, dark green and black curves correspond to the sKdV, sWhitham
and dsWhitham predictions, respectively. The plots are ordered from (i) to (iv) by increasing distance from the
plate/wavemaker.

were f±n = f0 ± nfp, for n = 1, 2, 3. Figure 14(a) shows the evolution of the carrier
wave and figure 14(b–g) show the six most dominant sidebands. The plots show that the
sWhitham equation does not accurately predict the evolution of these Fourier coefficients.
This discrepancy appears to be related to the modulational instability. The experimental
sidebands grow in magnitude as the waves travel down the tank (the experimental
parameters were chosen so that the sidebands would grow), while the sWhitham equation
predicts no such growth. This is consistent with the fact that the sWhitham equation
is not unstable with respect to the modulational instability. An accurate model of this
experimental data must allow for the sidebands to grow.

Figure 15 shows comparisons between the same experimental data and the predictions
from the dsWhitham equation. These plots show that the dsWhitham equation does not
accurately model the experimental data either. Though, note that the dsWhitham equation
accurately models the evolution of the carrier wave. Similar results are obtained when
the other three deep-water experiments from Carter, Henderson & Butterfield (2018) are
examined. Therefore, it does not appear that the sWhitham or the dsWhitham equation can
accurately model the evolution of wave packets on deep water.

4. Summary

We examined both the mathematical properties and applications of the sWhitham
equation. Our main result is that the sWhitham equation performs better than the tWhitham
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Figure 14. Plots comparing the experimental measurements (blue dots) from the deep-water experiment
described in § 6.2 of Segur et al. (2005) with the predictions from the sWhitham equation (dark green dots).
Panel (a) is the carrier wave and (b–g) are the six most dominant sidebands.
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Figure 15. Plots comparing the experimental measurements (blue dots) from the deep-water experiment
described in § 6.2 of Segur et al. (2005) with the predictions from the dsWhitham equation (black dots).
Panel (a) is the carrier wave and (b–g) are the six most dominant sidebands.
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equation and the spatial and temporal KdV equations for the experiments in both shallow
and deep water considered here.

The sWhitham equation can be used to model how time series of surface displacement
evolve as waves travel in space. Our analysis shows that the sWhitham equation admits
periodic travelling-wave solutions, but does not appear to admit a periodic travelling-wave
solution with maximal height. The sWhitham equation admits some solutions that
are non-monotonic. Small- and moderate-amplitude travelling-wave solutions to the
sWhitham equation are stable with respect to the modulational instability. Some
larger-amplitude travelling-wave solutions are stable while others are unstable depending
on wave period and wave height. There does not appear to be a simple relation between
wave period and height that determines stability or instability.

Our comparisons with experiments show that for waves of depression and solitons on
shallow water, the sWhitham equation provides more accurate predictions for experimental
time series than do the tWhitham, tKdV and sKdV equations. Part of the reason that
the spatial predictions are more accurate than the temporal predictions is that the initial
conditions need to be approximated in the temporal case. Although the sWhitham equation
was proposed as a model for shallow-water waves, we show that the sWhitham equation
accurately models the evolution of initial waves of depression and elevation on deep water.
The predictions obtained from the sWhitham equation are improved by adding dissipation.
Finally, neither the sWhitham nor the dsWhitham equation accurately models the evolution
of wave packets on deep water.
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Appendix A. Conserved quantities

The conserved quantities for the non-dimensional temporal KdV equation are

Q1 =
∫ L

0
u dχ, (A1a)

Q2 =
∫ L

0
u2 dχ, (A1b)

Q3 = 1
2

∫ L

0

(
u2 + 1

6 u2
χ − 1

2 u3
)

dχ, (A1c)
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where L is the χ -period of the solution. The conserved quantities for the non-dimensional
tWhitham equation are Q1, Q2 and

Q4 = 1
2

∫ L

0

(
u

(
K(k)
i k

)
∗ u − 1

2
u3

)
dχ. (A2)

These quantities are conserved in τ .
The conserved quantities for the non-dimensional sKdV equation are

Q5 =
∫ T

0
u dτ, (A3a)

Q6 =
∫ T

0
u2 dτ, (A3b)

Q7 = 1
2

∫ T

0

(
u2 + 1

6 u2
τ − 1

2 u3
)

dτ, (A3c)

where T is the τ -period of the solution. The conserved quantities for the non-dimensional
sWhitham equation are Q5, Q6 and

Q8 = 1
2

∫ T

0

(
u

(
K−1(w)

i w

)
∗ u − 1

2
u3

)
dτ. (A4)

These quantities are conserved in χ .
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