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Bohr–Rogosinski radius for a certain class
of close-to-convex harmonic mappings

Molla Basir Ahamed and Vasudevarao Allu

Abstract. Let B be the class of analytic functions f in the unit disk D = {z ∈ C ∶ ∣z∣ < 1} such that
∣ f (z)∣ < 1 for all z ∈ D. If f ∈ B of the form f (z) = ∑∞n=0 an zn , then∑∞n=0 ∣an zn ∣ ≤ 1 for ∣z∣ = r ≤ 1/3
and 1/3 cannot be improved. This inequality is called Bohr inequality and the quantity 1/3 is called
Bohr radius. If f ∈ B of the form f (z) = ∑∞n=0 an zn , then ∣∑N

n=0 an zn ∣ < 1 for ∣z∣ < 1/2 and the
radius 1/2 is the best possible for the class B. This inequality is called Bohr–Rogosinski inequality and
the corresponding radius is called Bohr–Rogosinski radius. Let H be the class of all complex-valued
harmonic functions f = h + ḡ defined on the unit disk D, where h and g are analytic in D with the
normalization h(0) = h′(0) − 1 = 0 and g(0) = 0. Let H0 = { f = h + ḡ ∈H ∶ g′(0) = 0}. For α ≥ 0
and 0 ≤ β < 1, let

W0
H(α, β) = { f = h + g ∈H0 ∶ Re (h′(z) + αzh′′(z) − β) > ∣g′(z) + αzg′′(z)∣, z ∈ D}

be a class of close-to-convex harmonic mappings in D. In this paper, we prove the sharp Bohr–
Rogosinski radius for the class W0

H
(α, β).

1 Introduction

Harmonic mappings play the natural role in parameterizing minimal surfaces in
the context of differential geometry. Planner harmonic mappings have application
not only in the differential geometry but also in the various field of engineering,
physics, operations research, and other intriguing aspects of applied mathematics. The
theory of harmonic functions has been used to study and solve fluid flow problems
(see [10]). The theory of univalent harmonic functions having prominent geometric
properties like starlikeness, convexity, and close-to-convexity appear naturally while
dealing with planner fluid dynamical problems. For instance, the fluid flow problem
on a convex domain satisfying an interesting geometric property has been extensively
studied by Aleman and Constantin [10]. With the help of geometric properties of
harmonic mappings, Constantin and Martin [19] have obtained a complete solution
of classifying all two-dimensional fluid flows.

In this paper, our purpose is to investigate several Bohr-type inequalities which
will be harmonic analog of the inequalities for bounded analytic functions. Below,
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we first recall the classical result of Harald Bohr discovered in 1914, which generates
intensive research activity, what is called Bohr phenomenon.

Let B denote the class of analytic functions in the unit disk D ∶= {z ∈ C ∶ ∣z∣ < 1} of
the form f (z) = ∑∞n=0 anzn such that ∣ f (z)∣ < 1 in D. In the study of Dirichlet series,
in 1914, Bohr [17] discovered the following interesting phenomenon that if f ∈ B, then
its associated majorant series:

M f (r) ∶=
∞

∑
n=0
∣an ∣rn ≤ 1 for ∣z∣ = r ≤ 1

3
.

The constant 1/3, known as the Bohr radius for the class B, is the best possible. Fur-
thermore, for ψa(z) = (a − z)/(1 − az), a ∈ [0, 1), it follows easily that Mψa(r) > 1 if,
and only if, r > 1/(1 + 2a), and hence the radius 1/3 is optimal as a → 1. For the recent
advancements of the Bohr-type inequalities, we refer to the articles [26, 35, 38, 44, 45]
and references therein.

The Bohr inequality can be written in the following distance formulation:

d (
∞

∑
n=0
∣anzn ∣, ∣a0∣) =

∞

∑
n=1
∣anzn ∣ ≤ 1 − ∣ f (0)∣ = d( f (0), ∂D),(1.1)

for ∣z∣ = r ≤ 1/3 and the constant 1/3 is independent on the coefficients of the Taylor
series of f , where d is the Euclidean distance and ∂ f (D) is the boundary of f (D). In
view of the distance form (1.1), the notion of the Bohr phenomenon can be generalized
to a classG consisting of analytic functions f inDwhich take values in a given domain
Ω ⊆ C such that f (D) ⊂ Ω and the class G is said to satisfy the Bohr phenomenon if
there exists largest radius rΩ ∈ (0, 1) such that the inequality (1.1) holds for ∣z∣ = r ≤ rΩ
and for all functions f ∈ G. The largest radius rΩ is called the Bohr radius for the
class G.

A complex-valued function f (z) = u(x , y) + iv(x , y) is called harmonic in D if
both u and v satisfy the Laplace’s equation▽2u = 0 and▽2v = 0, where

▽2 ∶= ∂2

∂x2 +
∂2

∂y2 .

It is well known that under the assumption g(0) = 0, the harmonic function
f has the unique canonical representation f = h + g, where h and g are analytic
functions in D, respectively called, analytic and co-analytic parts of f . If, in addition,
f is univalent, then we say that f is univalent harmonic on a domain Ω. A locally
univalent harmonic mapping f = h + g is sense-preserving whenever its Jacobian
J f (z) ∶= ∣ fz(z)∣2 − ∣ fz̄(z)∣ = ∣h′(z)∣2 − ∣g′(z)∣2 > 0 for z ∈ D.

Let H be the class of all complex-valued harmonic functions f = h + ḡ defined on
the unit disk D, where h and g are analytic D with the normalization h(0) = h′(0) −
1 = 0 and g(0) = 0. LetH0 be defined byH0 = { f = h + ḡ ∈H ∶ g′(0) = 0}. Then each
f = h + ḡ ∈H0 has the following form:

h(z) = z +
∞

∑
n=2

anzn and g(z) =
∞

∑
n=1

bnzn .(1.2)
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In 2013, Ponnusamy et al. [46] considered the following class of harmonic mappings:

P0
H = { f = h + ḡ ∈H ∶ Re h′(z) > ∣g′(z)∣ with g′(0) = 0 for z ∈ D}

and motivated by the class P0
H, Li and Ponnusamy [36] have studied the class P0

H(α)
defined by

P0
H(α) = { f = h + g ∈H ∶ Re (h′(z) − α) > ∣g′(z)∣, 0 ≤ α < 1, g′(0) = 0 for z ∈ D}.

It is easy to see that the class H reduces to the class A of normalized analytic
functions if the co-analytic part of f is zero. A function h ∈ A is called close-to-convex
in D if the complement of h(D) can be written as the union of nonintersecting half
lines. A function h ∈ A is said to be close-to-convex function of order β (0 ≤ β < 1) if
Re (h′(z)) > β for z ∈ D (see [47]). For α ≥ 0 and 0 ≤ β < 1, let

W(α, β) = {h ∈ A ∶ Re (h′(z) + αzh′′(z)) > β in D}.

The class W(α, β) has been studied by Gao and Zhou [23] for β < 1 and α > 1.
In 1977, Chichra [18] introduced the following class W(α) for α ≥ 0:

W(α) = {h ∈ A ∶ Re (h′(z) + αzh′′(z) > 0) in D}.

Moreover, Chichra [18] has proved that functions in the class W(α) constitute a
subclass of close-to-convex functions in D. In 2014, Nagpal and Ravichandran [42]
studied a new subclass W0

H of univalent harmonic mappings and obtained the
coefficient bounds for functions in the class W0

H, where

W0
H = { f = h + ḡ ∈H ∶ Re (h′(z) + zh′′(z)) > ∣g′(z) + zg′′(z)∣ for z ∈ D}.

In 2019, Ghosh and Allu [24] studied the class W0
H(α), where

W0
H(α) = { f = h + ḡ ∈H ∶ Re (h′(z) + αzh′′(z)) > ∣g′(z) + αzg′′(z)∣ for z ∈ D}.

Chichra [18] has shown that if 0 ≤ β < α, then W(α) ⊂W(β). Hence, it is easy to
see thatW0

H(α) ⊂W0
H(β) if 0 ≤ β < α. Therefore, for α ≥ 1,W0

H(α) ⊆W0
H(1). Since

functions in W0
H(1) are starlike, it follows that functions in W0

H(α) are starlike for
α ≥ 1. For α ≥ 0 and 0 ≤ β < 1, let

W
0
H(α, β) = { f = h + g ∈H0 ∶ Re (h′(z) + αzh′′(z) − β) > ∣g′(z) + αzg′′(z)∣ z ∈ D}.

It is known that functions in W0
H(α, β) are close-to-convex harmonic mappings

(see [47]).

Remark 1.1 The class W0
H(α, β) generalizes some of the well-known classes

of harmonic mappings. For example, W0
H(α, 0) =W0

H(α), W0
H(0, β) = P0

H(β),
W0

H(1, 0) =W0
H, and W0

H(0, 0) = P0
H.

From the following results, it is easy to see that functions in the classW0
H(α, β) are

univalent for α ≥ 0 and 0 ≤ β < 1, and they are closely related to functions inW(α, β).

Lemma 1.1 [47] The harmonic mapping f = h + ḡ belongs to W0
H(α, β) if, and only

if, the analytic function Fε = h + εg belongs to W(α, β) for each ∣ε∣ = 1.
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The sharp coefficient bounds and the sharp growth estimates for functions in the
class W0

H(α, β) have been studied in [47].

Lemma 1.2 [47] Let f ∈W0
H(α, β) for α ≥ 0, 0 ≤ β < 1 and be of the form (1.2). Then,

for any n ≥ 2,

(i) ∣an ∣ + ∣bn ∣ ≤
2(1 − β)

n (1 + α(n − 1)) ;

(ii) ∣∣an ∣ − ∣bn ∣∣ ≤
2(1 − β)

n (1 + α(n − 1)) ;

(iii) ∣an ∣ ≤
2(1 − β)

n (1 + α(n − 1)) .

All these inequalities are sharp for the function f = fα ,β given by

fα ,β(z) = z +
∞

∑
n=2

2(1 − β)z̄n

n (1 + α(n − 1)) .(1.3)

Lemma 1.3 [47] Let f ∈W0
H(α, β) and be of the form (1.2) with 0 < α ≤ 1 and

0 ≤ β < 1. Then

∣z∣ +
∞

∑
n=2

2(1 − β)(−1)n−1∣z∣n
n (1 + α(n − 1)) ≤ ∣ f (z)∣ ≤ ∣z∣ +

∞

∑
n=2

2(1 − β)∣z∣n
n (1 + α(n − 1)) .(1.4)

Both the inequalities are sharp for the function f = fα ,β given by (1.3).

Bohr–Rogosinski radius is an analogous to the Bohr radius which has been defined
(see [48]) as follows: If f ∈ B is given by f (z) = ∑∞n=0 anzn , then for an integer N ≥ 1,
we have ∣SN(z)∣ < 1 in the disk {z ∈ C ∶ ∣z∣ < 1/2} and the radius 1/2 is the best possible,
where SN(z) = ∑N

n=0 anzn denotes the Nth partial sum of f . The radius r = 1/2 is
called the Rogosinski radius. For f ∈ B is given by f (z) = ∑∞n=0 anzn , the Bohr–
Rogosinski sum R f

N(z) of f defined by

R f
N(z) ∶= ∣ f (z)∣ +

∞

∑
n=N
∣an ∣rn , ∣z∣ = r.(1.5)

It is worth to notice that for N = 1, the quantity (1.5) is related to the classical Bohr
sum in which ∣ f (0)∣ is replaced by ∣ f (z)∣. The inequality R f

N(z) ≤ 1 is called Bohr–
Rogosinski inequality. If B and R denote the Bohr radius and Bohr–Rogosinski radius,
respectively, then B ≤ R because ∣SN(z)∣ ≤ ∑N

n=0 ∣an ∣∣z∣n ≤ ∑∞n=0 ∣an ∣∣z∣n .
In 2005, Aizenberg et al. [8] generalized the Bohr–Rogosinski inequality for the

holomorphic mappings of the open unit ball into an arbitrary convex domain as
well as studied the multidimensional analog of Rogosinski’s theorem with some
applications. In 2009, Aizenberg [9] proved that the abscissas of Bohr and Rogosinski
for ordinary Dirichlet series, mapping the right half-plane into the bounded convex
domain G ⊂ C are independent of the domain. In 2012, Aizenberg [7] studied Bohr
and Rogosinski radii for Hardy classes H p of holomorphic functions in the unit disk
D as well as the Bohr and Rogosinski radii for the mappings of Reinhradt domains
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in C
n into Reinhardt domains in C

n . In 2020, Alkhaleefah et al. [12] obtained Bohr–
Rogosinski radius for analytic functions f (z) = ∑∞n=0 anzn in unit disk D replacing
the coefficient an of the power series by the derivatives f (n)(z)/n!. Recently, Huang
et al. [25] have generalized and improved some refined versions of Bohr–Rogosinski
inequalities which have been studied by Liu et al. [39]. In 2021, Kayumov et al. [29]
investigated Bohr–Rogosinski phenomenon for analytic functions defined on D in
a general setting and derived Bohr–Rogosinski radii for Cesáro operators on the
space of bounded analytic functions. For the extensive study of Bohr phenomenon
including recent developments, we refer the reader to the articles [1–5, 11, 14–16, 20–
22, 27, 28, 30–32, 34, 37, 40, 41, 43].

In 2017, Kayumov and Ponnusamy [33] obtained the following result on the Bohr–
Rogosinski radius for the analytic functions in the unit disk D.

Theorem 1.1 [33] Suppose that f (z) = ∑∞n=0 anzn is analytic in the unit disk D and
∣ f (z)∣ < 1 in D. Then

∣ f (z)∣ +
∞

∑
n=N
∣an ∣rn ≤ 1 for r ≤ RN ,

where RN is the positive root of the equation 2(1 + r)rN − (1 − r2) = 0. The radius RN
is the best possible. Moreover,

∣ f (z)∣2 +
∞

∑
n=N
∣an ∣rn ≤ 1 for r ≤ R′N ,

where R′N is the positive root of the equation (1 + r)rN − (1 − r2) = 0. The radius R′N is
the best possible.

Recently, Kayumov and Ponnusamy [33] have obtained another interesting result
concerning Bohr–Rogosinski radius considering some power of z in f (z) as the
following.

Theorem 1.2 [33] Suppose that f (z) = ∑∞n=0 anzn is analytic inD such that ∣ f (z)∣ ≤ 1
in D. Then, for each m, N ∈ N,

∣ f (zm)∣ +
∞

∑
n=N
∣an ∣rn ≤ 1 for r ≤ Rm ,N ,

where Rm ,N is the positive root of of the equation 2rN (1 + rm) − (1 − r) (1 − rm) = 0,
and the number Rm ,N cannot be improved. Moreover, limN→∞ Rm ,N = 1 and
limm→∞ Rm ,N = AN , where AN is the positive root of the equation 2rN = 1 − r. Also,
A1 = 1/3 and A2 = 1/2.

Study of sharp refine Bohr–Rogosinski inequalities for functions in the class B

is an important topic in the geometric function theory. The refine Bohr–Rogosinski
inequality for the class B is extensively studied by Liu et al. [39] and Ponnusamy et al.
[44]. For N = 1, it is easy to see that R1 =

√
5 − 2 and R′1 = 1/3. However, recently, Liu

et al. [39] proved the following interesting result showing that the two constants R1
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and R′1 can be improved for any individual function inB (in the context of Theorem 1.1
with N = 1).

Theorem 1.3 [39] Suppose that f ∈ B and f (z) = ∑∞n=0 anzn . Then

A(z) ∶= ∣ f (z)∣ +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a1∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1

for ∣z∣ = r ≤ ra0 = 2/ (3 + ∣a0∣ +
√

5 (1 + ∣a0∣)). The radius ra0 is best possible and
ra0 >

√
5 − 2. Moreover,

B(z) ∶= ∣ f (z)∣2 +
∞

∑
n=1
∣an ∣rn + ( 1

1 + ∣a1∣
+ r

1 − r
)
∞

∑
n=1
∣an ∣2r2n ≤ 1

for ∣z∣ = r ≤ r′a0
, where r′a0

is the unique positive root of the equation

(1 − ∣a0∣3) r3 − (1 + 2∣a0∣) r2 − 2r + 1 = 0.

The radius r′a0
is best possible and 1/3 < r′a0

< 1/(2 + ∣a0∣).

Motivated from the papers [6, 13], the main objective of this paper is to find the
sharp Bohr–Rogosinski radius which are the harmonic analog of Theorems 1.1–1.3 for
the class W0

H(α, β) for α ≥ 0 and 0 ≤ β < 1. In Section 2, we state the main results of
the paper and the proof of the main results will be discussed in Section 3.

2 Main results

Using Lemmas 1.2 and 1.3, we obtain the following sharp Bohr–Rogosinski inequality
and sharp Bohr–Rogosinski radius for the class W0

H(α, β).

Theorem 2.1 Let f = h + g ∈W0
H(α, β) for α ≥ 0 and 0 ≤ β < 1, be of the form (1.2)

with b1 = 0. Then, for N ≥ 2,

(i) ∣ f (z)∣ +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n ≤ d( f (0), ∂ f (D)) for ∣z∣ = r ≤ RN(α, β), where

RN(α, β) is the unique root of

r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) − 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) = 0.

Here, RN(α, β) is the best possible.

(ii) ∣ f (z)∣2 +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n ≤ d( f (0), ∂ f (D)) for ∣z∣ = r ≤ R′N(α, β), where

R′N(α, β) is the unique root of

(r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) −1−
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) =0.

Here, R′N(α, β) is best possible.
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Figure 1: The pictorial representation of the radii in Remark 2.1.

Remark 2.1 For some particular values of α and β, a simple computation gives the
following Bohr–Rogosinski radii (Figure 1):
(i) R2(0.5, 0) ≈ 0.347966, R2(0.5, 0.2) ≈ 0.408906, R2(0.5, 0.3) ≈ 0.442732,

R2(0.5, 0.7) ≈ 0.625477, R2(0.5, 0.9) ≈ 0.797766, R5(0.5, 0) ≈ 0.404549,
R5(0.5, 0.3) ≈ 0.509745, R5(0.5, 0.6) ≈ 0.609243, R5(0.5, 0.9) ≈ 0.844344.

(ii) R′2(0.5, 0) ≈ 0.44221, R′2(0.5, 0.3) ≈ 0.526991, R′2(0.5, 0.5) ≈ 0.596714,
R′2(0.5, 0.7) ≈ 0.688696, R′2(0.5, 0.9) ≈ 0.837519, R′5(0.5, 0) ≈ 0.503019,
R′5(0.5, 0.2) ≈ 0.555796, R′5(0.5, 0.4) ≈ 0.616078, R′5(0.5, 0.6) ≈ 0.68937,
R′5(0.5, 0.98) ≈ 0.959913.

We obtain the next result which is the harmonic analog of Theorem 1.2 for the class
W0

H(α, β).

Theorem 2.2 Let f = h + g ∈W0
H(α, β) for α ≥ 0 and 0 ≤ β < 1, be of the form (1.2)

with b1 = 0. Then, for N ≥ 2, we have

∣ f (zm)∣ +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n ≤ d( f (0), ∂ f (D))

for ∣z∣ = r ≤ Rm ,N(α, β), where Rm ,N(α, β) is the unique root of

rm +
∞

∑
n=2

2(1 − β)rmn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) − 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) = 0.

Here, Rm ,N(α, β) is best possible.
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Figure 2: The pictorial representation of the radii in Remark 2.2.

Remark 2.2 For particular values of α and β, a simple computation gives the Bohr–
Rogosinski radii R2,2(0.5, 0) ≈ 0.507868, R2,2(0.5, 5) ≈ 0.669204, R2,2(0.5, 0.9) ≈
0.880059, R5,2(0.5, 0) ≈ 0.643089, R5,2(0.5, 0, 5) ≈ 0.801547, R5,2(0.5, 0.9) ≈
0.943465, R7,5(0.5, 0) ≈ 0.844912, R7,5(0.5, 0.4) ≈ 0.895644, R7,5(0.5, 0.8) ≈
0.952466 (Figure 2).

In order to establish a harmonic analog of Theorem 1.3 for the class W0
H(α, β), we

obtain the following result.

Theorem 2.3 Let f = h + g ∈W0
H(α, β) for α ≥ 0 and 0 ≤ β < 1, be of the form (1.2).

Then, for any integer p ≥ 1,

∣ f (z)∣p +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) rn + ( 1

2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n ≤ d( f (0), ∂ f (D))

for ∣z∣ = r ≤ R∗p(α, β), where R∗p(α, β) is the unique root of

(r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
p

+
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
1 + r

2(1 − r)
∞

∑
n=2

4(1 − β)2r2n

(n (1 + α(n − 1)))2

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

in (0, 1). Here, R∗p(α, β) is best possible.

We have the following immediate corollary of Theorem 2.3 which is the harmonic
analog of Theorem 1.3 for the class W0

H(α, β).

Corollary 2.1 Let f = h + g ∈W0
H(α, β) for α ≥ 0 and 0 ≤ β < 1, be of the form (1.2).

Then:
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(i) ∣ f (z)∣ +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) ∣z∣n + (

1
2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n ≤ d( f (0),

∂ f (D)) for ∣z∣ = r ≤ R∗1 (α, β), where R∗1 (α, β) is the unique root of

r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
1 + r

2(1 − r)
∞

∑
n=2

4(1 − β)2r2n

(n (1 + α(n − 1)))2

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

in (0, 1). Here, R∗1 (α, β) is best possible.

(ii) ∣ f (z)∣2 +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) rn + ( 1

2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n ≤ d( f (0),

∂ f (D)) for ∣z∣ = r ≤ R∗2 (α, β), where R∗2 (α, β) is the unique root of

(r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
1 + r

2(1 − r)
∞

∑
n=2

4(1 − β)2r2n

(n (1 + α(n − 1)))2

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

in (0, 1). Here, R∗2 (α, β) is best possible.

3 Proof of the main results

Proof of Theorem 2.1 Let f ∈W0
H(α, β) be given by (1.2). Then in view of Lem-

mas 1.2 and 1.3, it is easy to see that the Euclidean distance d( f (0), ∂ f (D)) between
f (0) and the boundary of f (D) is

d( f (0), ∂ f (D)) = lim inf
∣z∣→1

∣ f (z) − f (0)∣ ≥ 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .(3.1)

(i) Let F1 ∶ [0, 1] → R be defined by

F1(r) ∶= r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))(3.2)

− 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

It is easy to see that F1(r) is continuous on [0, 1] and differentiable on (0, 1). Since

∣
∞

∑
n=2

(−1)n−1

n (1 + α(n − 1)) ∣ ≤
1

2(1 − β) for n ≥ 2,

it follows from (3.2) that

F1(0) = −1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) < 0.
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On the other hand, we see that

∞

∑
n=2

1
αn2 + (1 − α)n ≥

∞

∑
n=2

(−1)n−1

αn2 + (1 − α)n .

Therefore, a simple computation shows that

F1(1) = 1 +
∞

∑
n=2

2(1 − β)
n (1 + α(n − 1)) +

∞

∑
n=N

2(1 − β)
n (1 + α(n − 1))

− 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

≥
∞

∑
n=N

2(1 − β)
n (1 + α(n − 1)) > 0.

Clearly, we have F1(0)F1(1) < 0, and hence, by the intermediate value theorem, F1(r)
has at least one root in (0, 1). To show that F1(r) has the unique root in (0, 1), it is
sufficient to show that F1 is strictly monotone in (0, 1). Now a simple computation
shows that

d
dr
(F1(r)) = 1 +

∞

∑
n=2

2(1 − β)nrn−1

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)nrn−1

n (1 + α(n − 1)) > 0

for all r ∈ (0, 1), and hence the function F1 is strictly increasing. Therefore, F1(r) has
the unique root in (0, 1), say RN(α, β). That is, F1(RN(α, β)) = 0 and hence, from
(3.2), we obtain

RN(α, β) +
∞

∑
n=2

2(1 − β)(RN(α, β))n

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)(RN(α, β))n

n (1 + α(n − 1))(3.3)

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

In order to show that RN(α, β) is the best possible, we consider the function f = fα ,β
given by (1.3). It is easy to see that fα ,β ∈W0

H(α, β). For f = fα ,β , a straightforward
computation shows that

d( fα ,β(0), ∂ fα ,β(D)) = 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .(3.4)

Furthermore, it is easy to see that

r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) ≤ 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

αn2 + (1 − α)n

for r ≤ RN(α, β). A simple computation using (3.3) and (3.4) for the function f = fα ,β
and r > RN(α, β) shows that
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∣ fα ,β(z)∣ +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n

= r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))

> RN(α, β) +
∞

∑
n=2

2(1 − β)(RN(α, β))n

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)(RN(α, β))n

n (1 + α(n − 1))

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))
= d( fα ,β(0), ∂ fα ,β(D)).

Therefore, the constant RN(α, β) is best possible. This completes the proof of (i).
(ii). In view of Lemmas 1.2 and 1.3, for ∣z∣ = r, we easily obtain

∣ f (z)∣2 +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n(3.5)

≤ (∣z∣ +
∞

∑
n=2

2(1 − β)∣z∣n
n (1 + α(n − 1)))

2

+
∞

∑
n=N

2(1 − β)∣z∣n
n (1 + α(n − 1))

= (r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) .

It is easy to see that

(r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) ≤ 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

for r ≤ R′N( f ), where R′N( f ) is a root of F2(r) = 0, where F2 ∶ [0, 1] → R is defined by

F2(r) ∶ = (r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))

− 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

By the similar argument being used in the proof of (i), it is easy to see that F2(0) < 0
and F2(1) > 0. Since F2 is continuous on [0, 1] and differentiable on (0, 1), by the
intermediate value theorem there exists a root, say R′N(α, β) of F2 in (0, 1). In fact,
we show that R′N(α, β) is the unique root of F2 in (0, 1). By a simple computation, we
obtain

d
dr
(F2(r)) = 2(r +

∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))(1 +
∞

∑
n=2

2(1 − β)nrn−1

n (1 + α(n − 1)))

+
∞

∑
n=N

2(1 − β)nrn−1

n (1 + α(n − 1)) > 0
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for r ∈ (0, 1) and this shows that F2(r) is strictly increasing in (0, 1). Therefore,
R′N(α, β) is the unique root of F2 in (0, 1). Thus, we have

(R′N(α, β) +
∞

∑
n=2

2(1 − β) (R′N(α, β))n

n (1 + α(n − 1)) )
2

+
∞

∑
n=N

2(1 − β) (R′N(α, β))n

n (1 + α(n − 1))(3.6)

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

To show that R′N(α, β) is the best possible, we consider the function f = fα ,β defined
by (1.3). Using (3.4)–(3.6), for f = fα ,β and r > R′N(α, β), it is easy to see that

∣ fα ,β(z)∣2 +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n

= (r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
2

+
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))

> (R′N(α, β) +
∞

∑
n=2

2(1 − β) (R′N(α, β))n

n (1 + α(n − 1)) )
2

+
∞

∑
n=N

2(1 − β) (R′N(α, β))n

n (1 + α(n − 1))

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))
= d( fα ,β(0), ∂ fα ,β(D)),

which shows that R′N(α, β) is best possible. This completes the proof of (ii). ∎

Proof of Theorem 2.2 In view of Lemmas 1.2 and 1.3, for ∣z∣ = r, we obtain

∣ f (zm)∣ +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n(3.7)

≤ rm +
∞

∑
n=2

2(1 − β)rmn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1)) .

It is easy to see that

rm +
∞

∑
n=2

2(1 − β)rmn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))

≤ 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

for r ≤ Rm ,N(α, β), where Rm ,N(α, β) is a root of F3(r) = 0, where F3 ∶ [0, 1] → R is
defined by

F3(r) ∶= rm +
∞

∑
n=2

2(1 − β)rmn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))(3.8)

− 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .
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Using the similar argument being used in the proof of Theorem 2.1, it can be shows
that Rm ,N(α, β) is the unique root of F3 in (0, 1). Hence, we have

(Rm ,N(α, β))m +
∞

∑
n=2

2(1 − β)(Rm ,N(α, β))mn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)(Rm ,N(α, β))n

n (1 + α(n − 1))

(3.9)

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

Let f = fα ,β be defined by (1.3). In view of (3.4), (3.8), and (3.9), for r > Rm ,N(α, β), a
simple computation shows that

∣ fα ,β(zm)∣ +
∞

∑
n=N
(∣an ∣ + ∣bn ∣) ∣z∣n

= rm +
∞

∑
n=2

2(1 − β)rmn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)rn

n (1 + α(n − 1))

> (Rm ,N(α, β))m +
∞

∑
n=2

2(1 − β)(Rm ,N(α, β))mn

n (1 + α(n − 1)) +
∞

∑
n=N

2(1 − β)(Rm ,N(α, β))n

n (1 + α(n − 1))

= 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))
= d( fα ,β(0), ∂ fα ,β(D)),

and hence the radius Rm ,N(α, β) is best possible. This completes the proof. ∎

Proof of Theorem 2.3 Let f ∈W0
H(α, β) and p ≥ 1 be an integer. Then, in view of

the Lemmas 1.2 and 1.3, we see that

∣ f (z)∣p +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) ∣z∣n + (

1
2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n

≤ (r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
p

+ 1 + r
2(1 − r)

∞

∑
n=2

4(1 − β)2r2n

(n (1 + α(n − 1)))2

+
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1))

≤ 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1))

for ∣z∣ = r ≤ R∗p(α, β), where R∗p(α, β) is a root in (0, 1) of the equation F4(r) = 0,
where

F4(r) ∶=(r +
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)))
p

+ 1 + r
2(1 − r)

∞

∑
n=2

4(1 − β)2r2n

(n (1 + α(n − 1)))2

+
∞

∑
n=2

2(1 − β)rn

n (1 + α(n − 1)) − 1 −
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .
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By the similar argument being used in the proof of the previous theorems, it
is easy to show that F4(0)F4(1) < 0 and d

dr (F4(r)) > 0 in (0, 1). Hence, F4 being
continuous and monotone increasing function, R∗p(α, β) is the unique root of the
equation F4(r) = 0 in (0, 1).

Thus, we have

⎛
⎝

R∗p(α, β) +
∞

∑
n=2

2(1 − β) (R∗p(α, β))n

n (1 + α(n − 1))
⎞
⎠

p

+
1 + R∗p(α, β)

2(1 − rR∗p(α, β))
∞

∑
n=2

4(1 − β)2 (R∗p(α, β))2n

(n (1 + α(n − 1)))2

(3.10)

+
∞

∑
n=2

2(1 − β) (R∗p(α, β))n

n (1 + α(n − 1)) = 1 +
∞

∑
n=2

2(1 − β)(−1)n−1

n (1 + α(n − 1)) .

Therefore, in view of (3.1), we have

∣ f (z)∣p +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) rn + ( 1

2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n ≤ d( f (0), ∂ f (D))

for ∣z∣ = r ≤ R∗p(α, β).
Considering the function f = fα ,β defined by (1.3). Using (3.4) and (3.10), for

f = fα ,β and r > R∗p(α, β), it can be shown that

∣ fα ,β(z)∣p +
∞

∑
n=2
(∣an ∣ + ∣bn ∣) ∣z∣n + (

1
2
+ r

1 − r
)
∞

∑
n=2
(∣an ∣ + ∣bn ∣)2 r2n

> d( fα ,β(0), ∂ fα ,β(D))

which shows that R∗p(α, β) is best possible. This completes the proof. ∎
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