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The Heat Kernel and Green’s Function
on a Manifold with Heisenberg Group
as Boundary

Yilong Ni

Abstract. We study the Riemannian Laplace-Beltrami operator L on a Riemannian manifold with

Heisenberg group H1 as boundary. We calculate the heat kernel and Green’s function for L, and give

global and small time estimates of the heat kernel. A class of hypersurfaces in this manifold can be

regarded as approximations of H1. We also restrict L to each hypersurface and calculate the corre-

sponding heat kernel and Green’s function. We will see that the heat kernel and Green’s function

converge to the heat kernel and Green’s function on the boundary.

1 Introduction

This article is a continuation of [6]. The purpose of these two articles is to study

sub-Riemannian geometry on the Heisenberg group. We construct a Riemannian

manifold with Heisenberg group H1 as boundary. A class of hypersurfaces in this

space can be regarded as copies of the Heisenberg group. The induced Riemannian

metrics on these hypersurfaces tend to the sub-Riemannian metric of the Heisen-

berg group as they approach the boundary. In [6], we were basically dealing with

geodesics. We explored the relations between the properties of the geodesics in the

interior, on the hypersurface, and on the boundary. In this paper, we study the Rie-

mannian Laplace-Beltrami operator L on the Riemannian manifold. We calculate

the heat kernel and Green’s function for L, and give global estimates and small time

asymptotics of the heat kernel. In addition, we restrict L to each hypersurface and

calculate the corresponding heat kernel and Green’s function. When a hypersurface

approaches the boundary the restriction of L to the hypersurface degenerates to the

standard sub-Laplacian of the Heisenberg group H1. Therefore the heat kernel and

Green’s function on the hypersurface converge to the heat kernel and Green’s function

for the sub-Laplacian on the boundary respectively, as the hypersurface approaches

the boundary. This can be easily seen from the expressions of the heat kernel and

Green’s function on the hypersurface.

For convenience of the reader, we recall some basic definitions and results from

[6] here. The 3-dimensional Heisenberg group H1 can be coordinatized as R3 =

(x1, x2, t) = (x, t), with group law

(x, t) ◦ (x ′, t ′) = (x + x ′, t + t ′ + 2ax2x ′
1 − 2ax1x ′

2),
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Green’s Function on a Manifold 591

where a is a positive real parameter. The vector fields

X1 =
∂

∂x1

+ 2ax2
∂

∂t
, X2 =

∂

∂x2

− 2ax1
∂

∂t
, T =

∂

∂t
.

are left invariant and generate the Lie algebra of H1. The Lie algebra relations are

[X1, X2] = −4aT, [X1, T] = [X2, T] = 0.

The Heisenberg (sub-)Laplacian is the left-invariant subelliptic operator

∆H =
1

2
(X2

1 + X2
2).

The Green’s kernel G for this operator was computed by Folland [3]. With pole at the

origin,

G(x, t ; 0, 0) = − 1

2π
√

a2|x|4 + t2
.

The heat kernel for ∆H was first computed by Gaveau[4] and Hulaniki [5]:

(1) P0(x, t ; 0, 0; s) =
1

(2πs)2

∫ +∞

−∞
exp

(
− f (x, t, τ )

s

)
V (τ ) dτ ,

where f (x, t, τ ) = aτ coth(2aτ )|x|2 − iτ t , V (τ ) = 2aτ/ sinh(2aτ ), and θ = τ/s is

dual to t . See [1] for another way to compute the heat kernel.

Next consider H1 as a subset of C2 = {(z, w)}. Introduce a group operation in C2

by

(z, w) ◦ (z ′, w ′) = (z + z ′, w + w ′ + 2iaz̄z ′).

Use also real coordinates x1, x2, y1, y2, with

z = x1 + ix2, w = y1 + i y2.

Introduce the functions

t = y1, u = u(z, w) = y2 − azz̄.

Using the coordinate (x, t, u) = (x1, x2, t, u) the group law is

(x, t, u) ◦ (x ′, t ′, u ′) =
(

x + x ′, t + t ′ + 2a(x2x ′
1 − x1x ′

2), u + u ′) .

Since u : C2 → (R, +) is a group homomorphism our group is isomorphic to the di-

rect product H1 ×R. The corresponding Lie algebra is generated by the left-invariant

vector fields

X1, X2, T, U =
∂

∂u
.
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Consider the complex vector fields

∂

∂z
=

1

2

( ∂

∂x1

− i
∂

∂x2

)
,

∂

∂w
=

1

2

( ∂

∂y1

− i
∂

∂y2

)
,

Z =
∂

∂z
+ 2iaz̄

∂

∂w
, W =

∂

∂w
,

and their conjugates. The Siegel domain

C2
+ = {Im w > azz̄} = {u > 0}

is a sub-semigroup of C2 and if we identify H1 with {u = 0}, the boundary of C2
+,

then H1 is a subgroup of C2 that acts on C2
+ by left and right translations. The oper-

ator

L = ZZ̄ + Z̄Z + 4au(WW̄ + W̄W ) + 2aU =
1

2
(X2

1 + X2
2) + 2au(T2 + U 2) + 2aU

is elliptic in C2
+, self-adjoint in L2(C2

+), and invariant with respect to the H1 action.

In fact, it is easy to see that L is symmetric on C∞
c (C2

+), and extends to a self-adjoint

operator on L2(C2
+).

For each u > 0, the hypersurface H1 × {u} is invariant with respect to the H1

action. The restriction of L to this hypersurface is given by

Lu =
1

2
(X2

1 + X2
2) + 2auT2.

It degenerates to the Heisenberg sublaplacian ∆H as u → 0.

The paper is organized as follows. In Section 2, we calculate the heat kernel for L

in the interior. The kernel with pole at (0, 0, u0) is

(2)

P(x, t, u; 0, 0, u0; s) =
1

(2π)2s3

∫ +∞

−∞
exp

(
−τ coth(2aτ )(a|x|2 + u + u0) − iτ t

s

)

· 2aτ 2

sinh2(2aτ )
I0

(
2
√

uu0
τ

s sinh(2aτ )

)
dτ .

In Sections 3 and 4, we use a method similar to that used in [2] to obtain global

estimates and small time asymptotics for the heat kernel in the interior. The heat

kernel for the operator Lu on H1 × {u} is calculated in Section 5. The heat kernel

with pole at the origin is

(3) Pu(x, t ; 0, 0; s) =
1

(2πs)2

∫ +∞

−∞
exp

(
− fu(x, t ; τ )

s

)
2aτ

sinh(2aτ )
dτ ,

where fu(x, t ; τ ) = aτ coth(2aτ )|x|2 − iτ t + 2auτ 2. We also show that when x 6= 0

the critical points of fu(x, t ; τ ) on the imaginary axis are one-to-one corresponding

to the geodesics from (0, 0) to (x, t), and the length of the geodesic corresponding to
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a critical point iθ is
√

2 fu(x, t ; iθ). Therefore the distance comes into various esti-

mates. When x = 0, the above one-to-one correspondence does not hold, and the

distance from (0, 0) to (0, t) has different forms when t/2πu ≤ 1 or t/2πu > 1. Nev-

ertheless in Section 6 we show that the distance comes into small time asymptotics

when x = 0. In the last two sections, Green’s functions are calculated by integrating

corresponding heat kernels.

2 Heat Kernel for L in the Interior

We try to find the solution of the following equations:

(4)

{
LP =

(
1
2
(X2

1 + X2
2) + 2au(T2 + U 2) + 2aU

)
P =

∂P
∂s

, s > 0

lims→0+ P = δ(x, t).

Since the coefficients of (4) do not depend on t , we take the Fourier transform

with respect to t :

(L1 + L2)P̂ =
∂P̂

∂s
, lim

s→0
P̂(x, θ, s) = δ(x).

where

L1 =
∂2

∂x2
1

+
∂2

∂x2
2

− 4a2x2
2θ

2 − 4a2x2
1θ

2 + 4ax2iθ
∂

∂x1

− 4ax1iθ
∂

∂x2

,

and

L2 = −2auθ2 + 2auU 2 + 2aU .

Suppose that X(x, θ, s) is a solution of the following differential equation

(5) L2X(u, θ, s) =
∂

∂s
X(u, θ, s), s > 0, lim

s→0+
X(u, θ, s) = δ(u − u0).

Applying the operator L1 + L2 to P̂0(x, θ, s)X(u, θ, s) we obtain

(L1 + L2)P̂0(x, θ, s)X(u, θ, s) =
(

L1P̂0(x, θ, s)
)

X(u, θ, s) + P̂0(x, θ, s)L2X(u, θ, s)

=
∂P̂0

∂s
X + P̂0

∂X

∂s
=

∂

∂s

(
P̂0(x, θ, s)X(u, θ, s)

)
,

where P̂0(x, θ, s) is the Fourier transform (with respect to. t) of the heat kernel of H1.

Therefore P̂0(x, θ, s)X(u, θ, s) is the solution we want to find. We then only need to

solve for X. Take the Laplace transform of both sides of the (5) with respect to u:

(6) −F(2auθ2X) + 2aF
(

u
∂2X

∂u2

)
+ 2aF

( ∂X

∂u

)
=

∂F(X)

∂s
,
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where F( f )(v) =
∫ +∞

0
f (u) exp(−uv) du is the Laplace transform of the function f .

Integration by parts gives

F
( ∂X

∂u

)
= vF(X) − X(0, θ, s);

F
(

u
∂2X

∂u2

)
= v2F(uX) − 2vF(X) + X(0, θ, s).

Substituting these into (6) we have

2a
(

v2F(uX)−2vF(X) + X(0, θ, s)
)

+ 2a
(

vF(X)−X(0, θ, s)
)
−2aθ2F(uX) =

∂F(X)

∂s
.

Noticing that F(uX) = − ∂
∂v

F(X), we may rewrite the above equation as

(7) 2a(θ2 − v2)
∂

∂v
F(X) − 2avF(X) =

∂F(X)

∂s
.

The boundary condition lims→0 X(u, θ, s) = δ(u − u0) becomes

lim
s→0

F
(

X(v, θ, s)
)

= F
(
δ(u − u0)

)
= exp(−u0v).

Equation (7) is a first-order partial differential equation. We can solve it by the

method of characteristic lines. The differential equations for the characteristic lines

are {
dv(t)

dt
= 2a

(
θ2 − v2(t)

)
, ds(t)

dt
= −1, dz(t)

dt
= 2av(t)z(t);

(v, s, z)|t=0 = (r, 0, e−u0r),

which give

v(t) = θ
C1e4aθt − 1

C1e4aθt + 1
, s(t) = −t, z(t) = C2e−2aθt (1 + C1e4aθt ),

where C1 = (θ + r)/(θ − r) and C2 = (θ + r)e−u0r/2θ. Eliminating parameters r and

t we obtain

F(X) =
θ

v sinh(2aθs) + θ cosh(2aθs)

· exp

(
−u0θ

θ
(

1 − exp(−4aθs)
)

+ v
(

1 + exp(−4aθs)
)

θ
(

1 + exp(−4aθs)
)

+ v
(

1 − exp(−4aθs)
)

)

=
θ exp

(
−u0θ coth(2aθs)

)

v sinh(2aθs) + θ cosh(2aθs)

· exp

(
u0θ

2

sinh(2aθs)
· 1

v sinh(2aθs) + θ cosh(2aθs)

)

=
A

v + B
exp

( C

v + B

)
,

https://doi.org/10.4153/CJM-2004-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-027-3


Green’s Function on a Manifold 595

where

A =
θ

sinh(2aθs)
exp(−u0θ coth(2aθs), B = θ coth(2aθs), C =

u0θ
2

sinh2(2aθs)
.

Notice that A, B and C are all independent of v. In order to find X we need to take

the inverse Laplace transform of F(X):

X(u, θ, s) = F−1
(

F(X)
)

=
A

2π

∫ +∞

−∞

exp(iuξ)

iξ + B
exp

( C

iξ + B

)
dξ.

The change of variable ζ = ξ − iB gives

X(u, θ, s) =
A

2πi

∫ +∞−iB

−∞−iB

exp(iu(ζ + iB) exp
( C

iζ

) dζ

ζ
.

Let σ =
√

u
C
ζ . Then

X(u, θ, s) =
A

2πi
exp(−uB)

∫ +∞−iB
√

C
u

−∞−iB
√

C
u

exp

(
i
√

uC
(

σ +
1

σ

))
dσ

σ

= A exp(−uB) J0(2i
√

Cu)

=
θ

sinh(2aθs)
exp

(
−(u0 + u)θ coth(2aθs)

)
J0

(
2i
√

uu0
θ

sinh(2aθs)

)
,

where J0(z) is Bessel’s J function.

Taking the inverse Fourier transform of P̂0(x, θ, s)X(u, θ, s), using (1) and noticing

that θ = τ/s, we have the heat kernel of the interior:

P(x, t, u; 0, 0, u0; s) =
1

(2πs)2

∫ +∞

−∞
exp

(
− f

s

)
V (τ )

τ/s

sinh(2aτ )

· exp(−τ

s
(u + u0) coth(2aτ )I0

(
2
√

uu0τ

s sinh(2aτ )

)
dτ

=
1

(2π)2s3

∫ +∞

−∞
exp

(
−τ coth(2aτ )(a|x|2 + u + u0) − iτ t

s

)

2aτ 2

sinh2(2aτ )
I0

(
2τ

√
uu0

s sinh(2aτ )

)
dτ ,

where I0(z) is Bessel’s I function. Recall that I0(z) = J0(iz).

3 A Global Estimate for the Heat Kernel of L

In this section we give a global estimate for the heat kernel of L. The method we are

going to use is quite similar to that used in [2]. Taking advantage of scale invariance,

P(x, t, u; 0, 0, u0; s) = u−3
0 P

( x√
u0

,
t

u0

,
u

u0

; 0, 0, 1;
s

u0

)
,
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we may simplify by taking u0 = 1. The heat kernel can be written as

(8) P(x, t, u; 0, 0, 1; s) =
1

(2π)2s3

∫ +∞

−∞
exp

(
− f

s

)
V(τ , u, s) dτ

where

f = f(x, t, u; 0, 0, 1; τ ) = −itτ + (a|x|2 + u + 1)τ coth(2aτ ) +
2
√

uτ

sinh(2aτ )
,

is the modified complex action function;

V(τ , u, s) =
2aτ 2

sinh2(2aτ )
I0(Z) exp(−Z),

and

Z =
2
√

uτ

s sinh(2aτ )
.

As in [6] we write D = a|x|2 + u + u0 = a|x|2 + u + 1, and E = −2
√

uu0 = −2
√

u.

We have the following estimate for the heat kernel.

Theorem 1 The heat kernel P(x, t, u; 0, 0, 1; s) satisfies the estimate

(9)

P(x, t, u; 0, 0, 1; s) ≤

C
exp(−d2

2s
)

s3
min

(
1 +

d1/2

D1/4
,

s1/2

D1/2

)
min

(
1 +

d1/2

D1/4
,

s1/2

u1/4

)
, s > 0,

where d = d(x, t, u; 0, 0, 1), is the Riemannian distance between (x, t, u) and (0, 0, 1).

The following property of the function I0(z) exp(−z) is easy to see.

Lemma 1

I0(z) exp(−z) ∼ 1√
2πz

, z → +∞,

and

I0(z) exp(−z) ≤ C min(1, z−1/2), z ∈ [0, +∞),

where C is a constant.

From [6], we know that there is a unique shortest geodesic connecting two interior

points (x, t, u) and (0, 0, 1). This geodesic is given by the unique solution θ in the

interval [0.π/2a) of the equation

(10) t = aµ(2aθ)|x|2 + (u + 1)µ(2aθ) − 2
√

u

(
2aθ cos(2aθ)

sin2(2aθ)
− 1

sin(2aθ)

)
.
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The associated action S(x, t, u; 0, 0, 1; θ)
(
= d2(x, t, u; 0, 0, 1)/2

)
is

(11) S(x, t, u; 0, 0, 1; θ) =
2aθ2

sin2(2aθ)

(
a|x|2 + u − 2

√
u cos(2aθ) + 1

)
.

We denote by θc = θc(x, t, u) the unique solution of (10) in the interval [0, π/2a).

Before we prove the theorem, we first consider the case when 2aθc ≤ π − ε0, where

ε0 is a small positive number. The contour for the integral (8) can be moved to the

line Im τ = θc:

P(x, t, u; 0, 0, 1; s) =
1

(2π)2s3

∫

Im τ=θc

exp
(
− f

s

)
V(τ , u, s) dτ .

We know from the proof of Theorem 3 in [6] that, on this line Im τ = θc, Re f has a

strict minimum at τ = iθc, and f|τ=iθc
= d2/2. Therefore we have:

(12) P(x, t, u; 0, 0, 1; s) ≤ exp(− d2

2s
)

(2π)2s3

∫

R

|V(v + iθc)| dv.

If we observe the function f more closely, we may get a better estimation when s/D is

small.

(13)

∂2f

∂τ 2
|τ=iθc

=
4aD

sin2(2aθc)

(
1 − 2aθc cot(2aθc)

)

− E
4a2θc

(
1 + cos2(2aθc)

)
− 4a cos(2aθc) sin(2aθc)

sin3(2aθc)

≥ 4

3
a(a|x|2 + u + 1) + 2

√
u2a

1

3
=

4

3
a(a|x|2 + u +

√
u + 1).

If we write τ = v + iθ, over a sufficiently small interval v ∈ [−δ, δ], δ = δ(ε0), we

have

(14) Re f ≥ d2

2
+

4

4
a(a|x|2 + u +

√
u + 1)v2 ≥ d2

2
+ aDv2.

Outside that interval we have the following calculation:

Re
(

f(x, t, u; v + iθc) − f
(

x, t, u; iθc)
)

= D · Re
(

(v + iθc) coth(2a(v + iθc)) − iθc coth(2aiθc)
)

+ E · Re

(
v + iθc

sinh
(

2a(v + iθc)
) − iθc

sinh(2aiθc)

)
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=
sinh2(2av)D

2a
(

sinh2(2av) + sin2(2aθc)
)

(
2av coth(2av) − 2aθc coth(2aθc)

)

+
E

2a

(
2av sinh(2av) cos(2aθc) + 2aθc cosh(2av) sin(2aθc)

sinh2(2av) + sin2(2aθc)
− 2aθc

sin(2aθc)

)

≥ C(ε0)
D

2a
,

where C(ε0) is some positive constant depending on ε0. Thus we have the following

estimation:

(15)
P(x, t,u; 0, 0, 1; s)

≤ exp(− d2

2s
)

(2π)2s3

(∫ δ

−δ

exp
(
−aDv2

s

)
|V(v + iθc)| dv

+

∫

|v|>δ

exp

(
C(ε0)D

2as

)
|V(v + iθc)| dv

)

≤ C
exp(− d2

2s
)

s3

(∫

R

exp
(
−aDv2

s

)
dv + exp

(
−C(ε0)D

2as

))
min

(
1,

s1/2

u1/4

)

≤ C ′ exp(− d2

2s
)

s3

√
2as

D
min(1, s1/2u−1/4).

In the region under consideration d2 = 2S ∼ D/a, therefore (12) and (15) give the

estimation (9) when 2aθc ≤ π − ε0.

Proof of Theorem 1 Because both f and V have a pole at 2aθ = iπ, the above

estimates blow up as 2aθc → π. We then use another contour instead. Let Γ1 =

{|τ − πi/2a| = π/2a − θc}, a circle around π/2a of radius π/2a − θc and Γ2 =

{Im τ = λπ/2a}, the line 2a Im τ = λπ. Then

P(x, t, u; 0, 0, 1; s) =
1

(2π)2s3

(∫

Γ1

exp
(
− f

s

)
|V(τ )| dτ +

∫

Γ2

exp
(
− f

s

)
|V(τ )| dτ

)

≡ P0(x, t, u; 0, 0, 1; s) + P1(x, t, u; 0, 0, 1; s).

First we consider P1. Choose λ in the interval (1, 3/2] so that Γ1 and Γ2 are disjoint.

Without loss of generality we may assume that t > 0. Then we have

Re f(x, t, u, v + iλπ/2a) =
λπt

2a
+

D

4a

2av sinh(4av) + λπ sin(2λπ)

sinh2(2av) + sin2(λπ)

−
√

uu0

a

2av sinh(2av) cos(λπ) + λπ cosh(2av) sin(λπ)

sinh2(2av) + sin2(λπ)

≥ λπt

2a
.
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From (10), when θc → π/2a, t/D → +∞. Using (10) and (11), we have:

lim
θc→π/2a

t

2aS
= lim

ϕ→π

(
D + E cos ϕµ(ϕ)

)
− E sin ϕ

ϕ2

sin2 ϕ
(D + E cos ϕ)

= lim
ϕ→π

(
µ(ϕ)

ϕ2

sin2 ϕ

− E sin3 ϕ

ϕ2(D + E cos ϕ)

)

= lim
ϕ→π

ϕ − sin ϕ cos ϕ

ϕ2
=

1

π
,

where ϕ = 2aθc. Therefore the distance d from (x, t, u) to (0, 0, 1), satisfies d2 =

2S → πt
a

as θc → π/2a. Thus

P1 ≤ C
exp(− d2

2s
)

s3
exp

(
− (λ − 1) d2

2s

)
min

(
1,

s1/2

u1/4

)
.

Since t/D → +∞ as 2aθc → π, and exp
(
−(λ− 1) d2/2s

)
is dominated by

√
s/d, we

obtain an estimate of the form (9) for P1.

For P0, we set

2aτ = iπ − iξ, F = π(D − E) = π(a|x|2 + u + 1 + 2
√

u), ε = π − 2aθc.

Then the function f can be written as

f =
t

2a
(π − ξ) + D

π − ξ

2a

− cos ξ

sin ξ
+

E

2a

π − ξ

sin ξ

=
t

2a
(π − ξ) − F

2aξ
+

G(x, u, ξ)

2a
,

where G(x, u, ξ) = O(D) is a holomorphic function of ξ for |ξ| < π. Therefore

0 =
∂f

∂τ
(iθc) =

F

2aε2
+

G ′(ε)

2a
− t

2a
.

It follows that

f − fc = − F

2aξ
+

F

2aε
+

G(ξ) − G(ε)

2a
− t

2a
(ξ − ε)

=
F

2a
(

1

ε
− 1

ξ
) +

ξ − ε

2a

(
G ′(ε) − t

)
+ O

( D

2a
|ξ − ε|2

)

=
1

2a

( F

ε
− F

ξ
− F

ε2
(ξ − ε)

)
+ O

( D

2a
|ξ − ε|2

)

=
F

2aε

(
1 − ξ

ε

)(
1 − ε

ξ

)
+ O

( D

2a
|ξ − ε|2

)
,
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uniformly for ε ≤ π/2. On the circle of integration |ξ| = ε, we set ξ = εeiϕ, so that

f − fc can be written as

(16) f − fc =
π(a|x|2 + u + 1 + 2

√
u)

aε
(1 − cos ϕ) + O

( D

2a
ε2(1 − cos ϕ)

)
.

As θc → π/2a, µ(2aθc) ∼ (π − 2aθc)
−2π2 = π2ε−2. Using (10), we have (a|x|2 + u +

1 + 2
√

u)ε−2π2 ∼ t , and therefore

f − fc ∼
( ε

aπ
+ O(ε4)

)
t(1 − cos ϕ).

It follows that for some ε0 > 0,

Re f ≥ Re fc = fc =
d2

2
, |2aτ − iπ| ≤ ε0.

From Lemma 1, |V(τ )| ≤ min(ε−2, s1/2u−1/4ε−3/2) on the circle |iπ−2aπ| = ε, and

the circle has length 2πε. Thus we have the estimate

(17) P0 ≤ C
exp(− d2

2s
)

s3
min

( 1

ε
,

s1/2

ε1/2u1/4

)
.

In this range, ε ∼
√

D/t and d2 ∼ πt/a, so ε ∼
√

D/d, and (17) becomes

(18) P0 ≤ C
exp(− d2

2s
)

s3
(1 + d1/2D−1/4) min(1 + d1/2D−1/4, s1/2u−1/4).

On the other hand, notice 1 − cos ϕ ≥ 2
π2 ϕ

2 for |ϕ| ≤ π, so (16) implies

(19)

P0 =
exp(− d2

2s
)

(2π)2s3

∫

|τ−iπ/2a|=ε/2a

exp
(
−C

Dϕ2

2asε

)
|V(τ , u, s)| dτ

≤ C
exp(− d2

2s
)

s3

∫ π

−π

exp
(
−C

Dϕ2

2asε

)
dϕ · min

( 1

ε
,

s1/2

ε1/2u1/4

)

≤ C
exp(− d2

2s
)

s3

√
asε

D
· min

( 1

ε
,

s1/2

ε1/2u1/4

)
.

Again ε ∼
√

D/d, therefore (19) and (18) imply (9).

4 Small Time Behavior of the Heat Kernel of L

Theorem 2 Given a fixed point (x, t, u) in the interior, then

P(x, t, u; 0, 0, 1; s) =
a exp(−d2

2s
)

(2π)2s2
√

u

(
Θ(x, t, u) + O(

√
s)

)
,
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as s → 0+, where

Θ(x, t, u) =

√
2

f ′ ′(iθc)

(
θc

sin(2aθc)

) 3/2

.

When t/D is large, Θ(x, t, u) has the following behaviour:

(20) Θ(x, t, u) =
π

4a2

1√
D + 2

√
u

(
1 + O(

√
D/t)

)
.

Proof

P(x, t, u; 0, 0, 1; s) =
1

(2π)2s3

∫ +∞

−∞
exp

(
− f

s

)
V(τ , u, s) dτ

=
exp(− d2

2s
)

(2π)2s3

∫ +∞

−∞
exp

(
−Φ(v)

s

)
V(v + iθc, u, s) dv

=
exp(− d2

2s
)

(2π)2s3

(∫ δ

−δ

+

∫

|v|>δ

)
exp

(
−Φ(v)

s

)
V(v + iθc, u, s) dv

≡ exp(− d2

2s
)

(2π)2s3
(Iδ + I ′δ).

Where Φ(v) = f(x, t, u; v + iθc) − f(x, t, u; iθc) and δ ≤ 1 is to be chosen. We know

that on the line τ = v + iθc, v ∈ R, Re f attains its global minimum d2/2 only at iθc; it

is a strictly increasing function of |v|. Also from (14), Re Φ(v) ≥ aD|v|2, for v near 0.

Therefore

|I ′δ | ≤ exp

(
−Φ(δ)

s

) ∫

R

|V(v + iθc)| dv ≤ C exp
(
−aDδ2

s

)
min

(
1,

s1/2

u1/4

)
,

where C = C(x, t, u) > 0. Now turn to the estimate of I ′δ as s → 0+. Φ(0) = 0,

Φ ′(0) = f ′(iθc) = 0 and Φ ′ ′(0) = f ′′(iθc) ≥ 4D/3 (see (13)). So we can write Φ(v)

as

Φ(v) = Φ
′′(0)

v2

2
+ O(|v|3).

We may choose a δ > 0, δ ∈ (0, π/2a − θc, such that

Φ(v) = Φ
′ ′(0)

z2

2
, |v| ≤ δ,

for some new variable z = v + O(v2). Then,

Iδ =

∫ z(δ)

z(−δ)

exp

(
−Φ ′ ′(0)z2

2s

)
V

(
v(z) + iθc

) dv

dz
dz.
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The path of the above integration may be complex. Since the integrand is holomor-

phic in z, by moving the path to the real axis, the error is dominated by exp(−c/s).

Also if we write z = σ + iγ on the path of above integration, then |γ| < cσ2. Thus

we have

(21) Iδ =

∫ δ

−δ

exp
(
−Φ

′ ′(0)z2/2s
)

V
(

v(z) + iθc, s, u
) dv

dz
dz + O

(
exp(−c/s)

)
.

For V
(

v(z) + iθc, s, u
)

, we have the following estimation:

V
(

v(z) + iθc, s, u
)

= 2a
τ 2

sinh2(2aτ )
I0(Z) exp(−Z) τ = v(z) + iθc, Z =

2
√

uτ

s sinh(2aτ )

= 2a
τ 2

sinh2(2aτ )

1√
2πZ

(
1 + O(Z−1)

)

= 2a

(
τ

sin(2aτ )

) 3/2√
s

4π
√

u

(
1 + O

( s

u1/2

))

= a

((
θc

sin(2aθc)

) 3/2

+ O(z)

)
s1/2

π1/2u1/4

(
1 + O

( s

u1/2

))
.

Therefore (21) becomes

Iδ =

∫ δ

−δ

a exp

(
−Φ ′ ′(0)z2

2s

)((
θc

sin(2aθc)

) 3/2

+ O(z)

)
s1/2

π1/2u1/4

·
(

1 + O
( s

u1/2

))
dv

dz
dz + O

(
exp

(
− c

s

))

=

∫ δ

−δ

a exp

(
−Φ ′ ′(0)z2

2s

)(
θc

sin(2aθc)

) 3/2
s1/2

π1/2u1/4

(
1 + O

( s

u1/2

))
dz

+

∫ δ

−δ

a exp

(
−Φ ′ ′(0)z2

2s

)
O(z)

s1/2

π1/2u1/4

(
1 + O

( s

u1/2

))
dz

+ O

(
exp

(
− c

s

))

=

(∫

R

−
∫

|z|>δ

)
a exp

(
−Φ ′ ′(0)z2

2s

)(
θc

sin(2aθc)

) 3/2
s1/2

π1/2u1/4

·
(

1 + O
( s

u1/2

))
dz + O

( s3/2

u1/4

)

=

√
2as

u1/4

(
θc

sin(2aθc)

) 3/2(
1

f ′ ′(iθc)

) 1/2

+ O
( s3/2

u1/4

)
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which gives the estimation for P(x, t, u; 0, 0, 1; s) as s → 0+:

P(x, t, u; 0, 0, 1; s) =
a exp(− d2

2s
)

(2π)2s2u1/4

(√
2

f ′′(iθc)

(
θc

sin(2aθc)

) 3/2

+ O(
√

s)

)

When t/D is very large, ε = π − 2aθc is very small. Using (13), the formula for

f ′ ′(iθc) we have

Θ(x, t, u)

=

√
2

f ′ ′(iθc)

(
θc

sin(2aθc)

) 3/2

=

(
2θ3

c

4aD
(

sin(2aθc) − 2aθc cos(2aθc)
)

+ 2
√

u
(

4a2θc

(
1 + cos2(2aθc)

)
− 2a sin(4aθc)

)
)1/2

=
π

4a2

1√
D + 2

√
u

(
1 + O(ε)

)
.

When t/D is large, ε ∼
√

(D + 2
√

u)/t ∼
√

D/t , which yields (20).

5 Heat Kernel for Lu on the Hypersurface: H1 × {u}
In this section we calculate the heat kernel for Lu on the hypersurface H1 × {u}.

Because of the left invariance under the H1 action, it is enough to consider the heat

kernel with pole at the origin. We need to find the solution of the following equations:

(22)

{
LuPu =

(
1
2
(X2

1 + X2
2) + 2auT2

)
Pu =

∂Pu

∂s
, s > 0

lims→0+ Pu(x, t, s) = δ(x, t).

Since the coefficients of (22) do not depend on t , we take the Fourier transform with

respect to t :

(23)
( ∂2

∂x2
1

+
∂2

∂x2
2

−4a2x2
2θ

2−4a2x2
1θ

2−2auθ2+4ax2iθ
∂

∂x1

−4ax1iθ
∂

∂x2

)
P̂u =

∂P̂u

∂s
.

The boundary condition becomes lims→0 P̂u(x, θ, s) = δ(x). Let

L1 =
∂2

∂x2
1

+
∂2

∂x2
2

− 4a2x2
2θ

2 − 4a2x2
1θ

2 + 4ax2iθ
∂

∂x1

− 4ax1iθ
∂

∂x2

.

Then (23) can be rewritten as

(L1 − 2auθ2)P̂u =
∂P̂u

∂s
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It can be easily seen that

P̂u(x, θ, s) = exp(−2auθ2s)P̂0(x, θ, s),

where P̂0(x, θ, s) is the Fourier transform (with respect to t) of the heat kernel of H1.

Take the inverse Fourier transform of both sides:

Pu =

∫ +∞

−∞
exp(itθ) exp(−2auθ2s)P̂0 dθ

We plug in the formula for the heat kernel of the boundary (1) and notice that θ =

τ/s, we have

Pu(x, t ; 0, 0; s) =
1

(2πs)2

∫ +∞

−∞
exp

(
− f (x, t, τ )

s

)
V (τ ) exp

(
−2au · τ 2

s2
· s

)
dτ

=
1

(2πs)2

∫ +∞

−∞
exp

(
−aτ coth(2aτ )|x|2 − iτ t

s

)
2aτ

sinh(2aτ )

exp
(
−2au

τ 2

s

)
dτ .

It is obvious that limu→0+ Pu(x, t ; 0, 0; s) = P0(x, t ; 0, 0; s), which means the heat ker-

nel for Lu on the hypersurface H1 × {u} converges to the heat kernel for ∆H on H1.

If we set fu(x, t ; τ ) = aτ coth(2aτ )|x|2 − iτ t + 2auτ 2, the heat kernel Pu(x, t ; 0, 0; s)

can be written in the same form as (1):

Pu(x, t ; 0, 0; s) =
1

(2πs)2

∫ +∞

−∞
exp

(
− fu(x, t, τ )

s

)
V (τ ) dτ .

We have the following proposition, which shows the connection between

geodesics from (0, 0) to (x, t) and critical points of fu(x, t ; τ ).

Proposition 1 For any (x, t) with x 6= 0 and t ≥ 0, the function fu(x, t ; τ ) has finitely

many critical points on the imaginary axis, which are one-to-one corresponding to the

geodesics from (0, 0) to (x, t). The length of the geodesic corresponding to a critical point

iθ is
√

2 fu(x, t ; iθ).

Proof From Theorem 5 in [6] the geodesics that join the origin to (x, t) are indexed

by the solutions of

t = aµ(2aθ)|x|2 + 4auθ,

and their lengths lθ are given by

l2
θ = 2S(x, t, 1; θ) =

(2aθ)2

sin2(2aθ)
|x|2 + 4auθ2.

We set

F(θ) = fu(x, t ; iθ) = aθ cot(2aθ)|x|2 + tθ − 2auθ2,

and note that

F ′(θ) = t − aµ(2aθ)|x|2 − 4auθ.

Then the theorem follows from an easy calculation.
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6 Small Time Behavior of the Heat Kernel of Lu

We see in the small time estimate of the heat kernel of L, there is a factor exp(−d2/2s),

where d is the distance from the point to the singularity. On the hypersurface H1 ×
{u}, the distance from (0, t) to the singularity (0, 0) satisfies (see Theorem 6 in [6])

d
(

(0, t), (0, 0)
)

=





|t|√
4au

, |t| ≤ 2πu,

√
π(|t|−πu)

a
, |t| > 2πu.

Therefore we may expect the small time estimates of the heat kernel of Lu have dif-

ferent forms in these two cases. From (3), the heat kernel of Lu can be written as

Pu(0, t ; 0, 0; s) =
1

2a(2πs)2

∫ +∞

−∞

τ

sinh τ
exp

(
−(βτ 2 + ατ i)/s

)
dτ

=
1

2a(2πs)2

∫ +∞

−∞
exp

(
− α2

4βs

) τ

sinh τ
exp

(
−β

s

(
τ − α

2β
i
) 2

)
dτ

where α = t/2a, and β = u/2a. Now let us consider the behavior of Pu(0, t ; 0, 0; s)

as s → 0. We may assume that t > 0.

Case I: α
2β =

t
2u

< π

Since there is no pole for the integrand on the strip {τ | 0 ≤ Im τ < π}, we can

shift the contour a distance α
2β upward:

Pu =
exp(− α2

4βs
)

2a(2πs)2

∫ +∞

−∞

τ + αi/2β

sinh(τ + αi/2β)
exp(−βτ 2/s) dτ .

Since 0 < t < 2πu, the distance between (0, t) and (0, 0) is d = t/
√

4au, and

therefore
α2

4β
=

t2

8au
=

d2

2
.

The heat kernel can be rewritten as

Pu =
exp(− d2

2s
)

2a(2πs)2

√
s

β

∫ +∞

−∞

√
s
β τ + αi/2β

sinh(
√

s
β τ + αi/2β

exp(−tau2) dτ .

As s → 0+,

√
s
β τ + αi/2β

sinh(
√

s
β τ + αi/2β)

=
α/2β

sin(α/2β)

(
1 + O(s)

)
=

t/2u

sin(t/2u)

(
1 + O(s)

)
,
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which gives the following estimate:

Pu =
tπ1/2

(4π)2u
√

au sin(t/2u)

exp(−d2/2s)

s−3/2

(
1 + O(s)

)
, s → 0 + .

Case II: t = 2πu In this case there is a pole πi on the line Im τ = π, so we use

another contour, C(ε), instead. C(ε) is composed of three parts, (−∞+πi,−ε+πi],

[ε + πi, +∞ + πi), and a semi-circle
{

τ
∣∣ |τ − πi| = ε, Im τ < π

}
.

Pu =
exp(− α2

4βs
)

2a(2πs)2

∫

C(ε)

τ

sinh τ
exp

(
−β(τ − πi)2/s

)
dτ .

Letting ε go to 0, the integral over the semi-circle goes to half of the residue, which is

π2, and Pu becomes

Pu =
exp(− α2

4βs
)

2a(2πs)2

(
π2 −

∫ +∞

−∞

τ

sinh τ
exp

(
−β

s
τ 2

)
dτ

)
.

Noticing that

∫ +∞

−∞

τ

sinh τ
exp

(
−β

s
τ 2

)
dτ =

√
πs

β

(
1 + O(s)

)
, s → 0+,

we have

Pu =
exp(−d2/2s)

2a(2πs)2

(
π2 +

√
2aπs

u

(
1 + O(s)

))
.

Case III: 2πu < t < 4πu As in Case I, we shift the contour t/2u upward. There is

only one pole of the integrand in the strip {τ | 0 < Im τ < t/2u}, and the residue is

−πi exp
(
− β

s
( αi

2β − πi)2
)

.

Pu =
exp(− α2

4βs
)

2a(2πs)2

(∫

Im τ=t/2u

τ

sinh τ
exp

(
−β

s

(
τ − αi

2β

) 2
)

dτ

+ 2πi · (−πi) exp

(
−β

s

( αi

2β
− πi

) 2
))

=
exp

(
− α2

4βs
+ u

2as
( t

2u
− π)2

)

2a(2πs)2

(
exp

(
−β

s

( α

2β
− π

) 2
)

·
∫ +∞

−∞

τ + αi/2β

sinh(τ + αi/2β)
exp(−βτ 2/s) dτ + 2π2

)
.

In this case, the distance between (0, t) and (0, 0) is d =
√

π(t − πu)/a, therefore

− α2

4βs
+

u

2as

( t

2u
− π

) 2

= − (t − πu)π

2as
= −d2

2s
.
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Also noticing,

∫ +∞

−∞

τ + αi/2β

sinh(τ + αi/2β)
exp(−βτ 2/s) dτ =

t/2u

sin(t/2u)

√
2aπs

u

(
1 + O(s)

)
, s → 0+,

we have

Pu =
exp(−d2/2s)

4as2

(
1 +

t/2u

sin(t/2u)

√
2aπs

u
exp

(
− u

2as

( t

2u
− π

) 2
)(

1 + O(s)
))

.

Case IV: t ∈
(

2πmu, 2π(m + 1)u
)
, where m > 1 is a positive integer Similar to

Case III, we shift the contour t/2u upward. There are m poles of the integrand in the

strip {τ | 0 < Im τ < t/2u}, and the residues are (−1) jπi exp
(
− β

s
( αi

2β − jπi)2
)

,

j = 1, 2, . . . , m. Therefore we have

Pu =
exp(−d2/2s)

4as2
(1 + exp(−β

s
(

α

2β
− π)2)(

m∑

j=2

(−1) j+1 exp(
β

s
(

α

2β
− jπ)2)

+

∫ +∞

−∞

τ + αi/2β

sinh(τ + αi/2β)
exp(−βτ 2/s) dτ )

=
exp(−d2/2s)

4as2

(
1 + O

(
exp

(
(−t + 3πu)π/2as

)))
, s → 0 + .

Case V: t = 2πmu, where m > 1 is a positive integer As in Case II, there is a pole

mπi on the line Im τ = mπ, so we use contour C(ε) instead, where C(ε) is composed

of three parts, (−∞ + mπi,−ε + mπi], [ε + mπi, +∞ + mπi), and a semi-circle{
τ

∣∣ |τ − mπi| = ε, Im τ < mπ
}

. A similar calculation gives

Pu =
exp(−d2/2s)

4as2

(
1 + O

(
exp

(
(−t + 3πu)π/2as

)))
, s → 0 + .

Remark When t/2u is small(t/2u < π), the heat kernel behaves like

Cs−3/2 exp(−d2/2s).

This behavior is quite similar to the Euclidean case. But when t/2u is big, the heat ker-

nel behaves like (4as2)−1 exp(−d2/2s), which is very similar to the sub-Riemannian

Heisenberg case (see Theorem 2.46 in [2]).

7 The Green’s Function of the Hypersurface H1 × {u}
Theorem 3 The Green’s function of the hypersurface H1 × {u} is

Gu(x, t ; 0, 0) = − 1

4π2

∫ +∞

−∞

1

a cosh(τ )|x|2 − it sinh(τ ) + uτ sinh(τ )
dτ .

https://doi.org/10.4153/CJM-2004-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-027-3


608 Yilong Ni

Proof Integrating the heat kernel Pu with respect to the time variable s, we get the

Green’s function.

Gu(x, t ; 0, 0) = −
∫ ∞

0

Pu(x, t ; 0, 0; s) ds

= −
∫ ∞

0

1

(2πs)2

∫ +∞

−∞
exp

(
−aτ coth(2aτ )|x|2 − iτ t

s

)
2aτ

sinh(2aτ )
exp

(
−2au

τ 2

s

)
dτ ds

= − 1

4π2

∫ +∞

−∞

2aτ

sinh(2aτ )
(∫ ∞

0

1

s2
exp

( 1

s

(
−aτ coth(2aτ )|x|2 + iτ t − 2auτ 2

))
ds

)
dτ

= − 1

4π2

∫ +∞

−∞

2aτ

sinh(2aτ )
· 1

aτ coth(2aτ )|x|2 − iτ t + 2auτ 2)
dτ

= − 1

4π2

∫ +∞

−∞

2aτ

aτ cosh(2aτ )|x|2 − iτ t sinh(2aτ ) + 2auτ 2 sinh(2aτ )
dτ

Changing variable 2aτ → τ , we have

Gu(x, t ; 0, 0) = − 1

4π2

∫ +∞

−∞

1

a cosh(τ )|x|2 − it sinh(τ ) + uτ sinh(τ )
dτ .

It can be easily seen that

lim
u→0+

Gu(x, t ; 0, 0) = lim
u→0+

− 1

4π2

∫ +∞

−∞

1

a cosh(τ )|x|2 − it sinh(τ ) + uτ sinh(τ )
dτ

= − 1

4π2

∫ +∞

−∞

1

a cosh(τ )|x|2 − it sinh(τ )
dτ

= − 1

2π
√

a2|x|4 + t2
.

Therefore Green’s function for Lu on the hypersurface H1 ×{u} converges to Green’s

function for ∆H on H1.

8 The Green’s Function of the Interior

Theorem 4 The Green’s function of L in the interior is

G(x, t, u; 0, 0, u0) = − 1

2π2
· 1

(a|x|2 + u + u0)2 + t2 − 4uu0

.
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Proof From (2), the expression of the heat kernel of the interior, we have

G(x, t, u; 0,0, u0)

= −
∫ ∞

0

P(x, t, u; 0, 0, u0; s) ds

= −
∫ ∞

0

1

(2π)2s3

∫ +∞

−∞
exp

(
−1

s
(a|x|2 + u + u0)τ coth(2aτ ) +

itτ

s

)

· 2aτ 2

sinh2(2aτ )
I0

(
2
√

uu0
τ

s sinh(2aτ )

)
dτ ds.

Changing variable 1
s
→ s,

(24)
G(x, t, u; 0,0, u0)

= − 1

(2π)2

∫ ∞

0

∫ +∞

−∞
s exp

(
−s(a|x|2 + u + u0)τ coth(2aτ ) + itτ s

)

· 2aτ 2

sinh2(2aτ )
I0

(
2
√

uu0
τ s

sinh(2aτ )

)
dτ ds

≡
∫ +∞

−∞

∫ ∞

0

β · exp(α · s) · I0(γ · s)s ds dτ ,

where

α = −(a|x|2 + u + u0)τ coth(2aτ ) + itτ ,

β = − 1

(2π)2

2aτ 2

sinh2(2aτ )
, γ = 2

√
uu0

τ

sinh(2aτ )
.

We have the following integral formula

∫ ∞

0

s exp(α · s) · I0(γ · s) ds = − α

(α2 − γ2)3/2
.

Thus (24) becomes

G(x, t, u; 0,0, u0)

= −
∫ +∞

−∞

1

(2π)2

2aτ 2

sinh2(2aτ )

(a|x|2 + u + u0)τ coth(2aτ ) − itτ
((

(a|x|2 + u + u0)τ coth(2aτ ) − itτ
) 2 − 4uu0t2

sinh2(2aτ )

) 3/2
dτ
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= −
∫ +∞

−∞

1

(2π)2

2a

sinh2(2aτ )

(a|x|2 + u + u0) coth(2aτ ) − it
((

(a|x|2 + u + u0) coth(2aτ ) − it
) 2 − 4uu0

sinh2(2aτ )

) 3/2
dτ

= −
∫ +∞

−∞

1

(2π)2

2a

sinh2(2aτ )

(a|x|2 + u + u0) coth(2aτ ) − it
(

(D − 4uu0) coth2(2aτ ) − 2itD coth(2aτ ) + 4uu0 − t2
) 3/2

dτ .

where D = a|x|2 + u + u0. Changing variable tanh(2aτ ) → v, we can rewrite the

above integral as

∫ 1

−1

1

(2πv)2

( D

v
− it

)( D2 − 4uu0

v2
− 2it

D

v
+ 4uu0 − t2

)−3/2

dv

=

∫ 1

−1

1

(2π)2
(D − itv)

(
(4uu0 − t2)v2 − 2itDv + D2 − 4uu0

)−3/2
dv

= − 1

2π2
· 1

(a|x|2 + u + u0)2 + t2 − 4uu0

.

Thus we get the explicit form of the Green’s function of L in the interior.

Remark We may write G as

G(x, t, u; 0, 0, u0) = − 1

2π2
· 1

(u − u0)2 + 2a(u + u0)|x|2 + t2 + a2|x|4 .

Since u and u0 are positive, around the pole (0, 0, u0), G behaves like the d−2, where

d is the distance to the singularity.
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