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Abstract. We define balanced self-similar quasi-round carpets and compare the carpet
moduli of some path families relating to such a carpet. Then, using some known results
on quasiconformal geometry of carpets, we prove that the group of quasisymmetric
self-homeomorphisms of every balanced self-similar quasi-round carpet is finite.
Furthermore, we prove that some balanced self-similar carpets in the unit square with
strong geometric symmetry are quasisymmetrically rigid by using the quasisymmetry of
weak tangents of carpets.
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1. Introduction
Bonk, Kleiner, and Merenkov established a nice quasiconformal geometry of carpets, by
showing that quasisymmetric maps between carpets behave like conformal maps between
regions [1–5, 10, 11]. We shall state some results of this theory in §2.

Motivated by the quasisymmetric rigidity of the standard Sierpiński carpet given by
Bonk and Merenkov [4, 5], we study the following question.

Question 1.1. Which self-similar Sierpiński carpets are quasisymmetrically rigid?

We start with definitions and notation. A topological homeomorphism f : (X, dX) →
(Y , dY ) of metric spaces is called quasisymmetric if there is a homeomorphism
η : [0, ∞) → [0, ∞) such that

dY (f (x), f (y))
dY (f (x), f (z))

≤ η

(
dX(x, y)
dX(x, z)

)
for all x, y, z ∈ X, x �= z.
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In the case Y = X, we say that f is a quasisymmetric self-homeomorphism of X. Denote by
QS(X) the collection of quasisymmetric self-homeomorphisms of X. It is well known that
QS(X) is a group (cf. [7, 13]). If QS(X) = ISO(X), we say that X is quasisymmetrically
rigid. Hereafter, ISO(X) is the group of all isometries of X onto itself.

Let C be the complex plane. For a subset E of C, we denote by cl(E), ∂E, int(E),
and diam(E) its closure, boundary, interior, and diameter, respectively. A subset S of C is
called a carpet if

S = D \
∞⋃
j=1

Dj ,

where D is a closed Jordan region and Dj , j ≥ 1, are open Jordan regions satisfying:
(1) cl(Dj ), j ≥ 1, are pairwise disjoint subsets of int(D);
(2) limj→∞ diam(Dj ) = 0; and
(3) int(S) = ∅.

In this case, we also say that S is a D-carpet. The boundaries ∂D, ∂Dj , j ≥ 1, are
called peripheral circles of S, among which ∂D is called the outer peripheral circle of S
and denoted by O. Denote the family of peripheral circles of S as

C(S) := {O} ∪ {∂Dj : j ≥ 1}.
The carpets have the following topological properties (cf. [2, 15]). They are all

topologically equivalent. The group of topological self-homeomorphisms of an arbitrarily
given carpet is uncountable. Any homeomorphism h : S → T of carpets S and T sends
peripheral circles of S to peripheral circles of T.

We say that a carpet is quasi-round if its peripheral circles are uniform quasicircles.
Here, a K-quasicircle is a topological circle in C satisfying

diam(γxy) ∧ diam(C \ γxy) ≤ K|x − y|
for all x, y ∈ C, where γxy is a subarc of C of endpoints x and y. We say that the peripheral
circles of a carpet are uniform quasicircles if they are K-quasicircles for some common
constant K ≥ 1.

Definition 1.2. We say that a D-carpet is self-similar, if there is a family � consisting of
finite contractive similarities of C such that

S =
⋃
φ∈�

φ(S)

and that φ(int(D)), φ ∈ �, are pairwise disjoint subsets of int(D). In this case, the family
� is called an IFS of S.

Here, a map φ : C → C is called a contractive similarity, if there is a constant r ∈ (0, 1)
such that |φ(x)− φ(y)| = r|x − y| for all x, y ∈ C. For a self-similar D-carpet with IFS
�, we have assumed the open set condition for the open set int(D), so such a carpet is of
Hausdorff dimension less than 2 (cf. [6]).
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FIGURE 1. Examples of balanced self-similar quasi-round carpets.

Let S be a self-similar D-carpet with IFS �. Then, the set

int(D) \
⋃
φ∈�

φ(D)

is open and its bounded components are Jordan domains whose boundaries are called the
first generation peripheral circles of S. We denote by C1(S) the family of such peripheral
circles.

Definition 1.3. We say that a self-similar carpet is balanced if the family C1(S) is finite
and modS�(O, M; S) takes the same value for allM ∈ C1(S), where modS�(O, M; S) is
the carpet modulus of the path family �(O, M; S).

The definition of carpet modulus will be given in §3. Clearly, every self-similar carpet S
with #C1(S) = 1 is balanced. Let S be a self-similar quasi-round carpet with #C1(S) > 1.
If for every pairM , C ∈ C1(S) there is an h ∈ QS(S) such that h(O) = O and h(M) = C,
then S is balanced. By this fact and geometric symmetry, we easily construct a lot of
balanced self-similar quasi-round carpets. We illustrate six such carpets in Figure 1.

The first main result of this paper is as follows.

THEOREM 1.4. Let S be a balanced self-similar quasi-round carpet. Then, QS(S) is a
finite group.

Theorem 1.4 generalizes the corresponding results of [4, 16]. The proof is still based on
comparing the carpet moduli modS�(O, M; S) and modS�(C1, C2; S), whereM ∈ C1(S)
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and C1, C2 ∈ C(S), with C1 �= C2 and {C1, C2} �= {O, J } for any J ∈ C1(S). At present,
we do not know if the inequality

modS�(C1, C2; S) < modS�(O, M; S)

is always true, but we prove that it is true for enough of pairs C1, C2 in §4. By
this discussion and quasiconformal geometry of carpets, we give a complete proof of
Theorem 1.4 in §5.

Applying Theorem 1.4 and the quasisymmetry of weak tangents of carpets, we may
prove that some self-similar carpets with strong geometric symmetry are quasisymmetri-
cally rigid.

LetQ := {z = x + iy : 0 ≤ x, y ≤ 1} be the unit square. Let γ0 and γ1 be the diagonals
ofQ passing through the vertices 0 and 1, respectively. Let γh and γv be the horizontal and
vertical median lines of Q. Let R0, R1, Rh, and Rv be the reflections in γ0, γ1, γh, and γv .
Let rπ/2, rπ , and r3π/2 be the rotations of angles π/2, π , and 3π/2 around the center ofQ.
Then,

ISO(Q) = {id, rπ/2, rπ , r3π/2, R0, R1, Rh, Rv}.

Definition 1.5. We say that a self-similar Q-carpet S is symmetric if

ISO(S) = ISO(Q).

A balanced self-similar Q-carpet is not necessarily symmetric. In Figure 1, the five
self-similar Q-carpets are all balanced, but only the final two are symmetric.

It is clear that every symmetric self-similarQ-carpet S with #C1(S) = 4 is balanced and
quasi-round, so the group QS(S) is finite by Theorem 1.4. We obtain a sufficient condition
for such a carpet to be quasisymmetrically rigid. In what follows, we say that a family of
contractive similarities is homogeneous if their similarity ratios are equal to each other.

THEOREM 1.6. Let S be a symmetric self-similar Q-carpet with #C1(S) = 4. Suppose that
there is a peripheral circle C ∈ C1(S) and a point z ∈ C ∩ γ0 such that the family

�z := {φ ∈ � : z ∈ φ(Q)}

is homogeneous and of #�z = 3. Then, S is quasisymmetrically rigid.

For example, the final two symmetric self-similar Q-carpets in Figure 1 satisfy the
assumption condition of Theorem 1.6. Also, there are symmetric self-similar Q-carpets
with #C1(S) = 4, which do not satisfy this condition; see Figure 2.

Theorem 1.6 improves the result of Zeng and Su [16]. We remark that a similar result can
be formulated for symmetric self-similar T-carpets, where T is a closed solid equilateral
triangle. For example, one may prove that the first carpet in Figure 1 is quasisymmetrically
rigid. The quasisymmetric rigidity question of general balanced self-similar Q-carpets and
T-carpets is still open.
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FIGURE 2. Two carpets not satisfying the conditions of Theorem 1.6.

2. Quasiconformal geometry of carpets
In this section, we state some results from quasiconformal geometry of carpets that will be
used in proving Theorem 1.4.

See Bonk [2]. Let S be a carpet and C(S) be the family of its peripheral circles. The
family C(S) is said to be uniformly relatively separated if

inf
{

dist(C1, C2)

diam(C1) ∧ diam(C2)
: C1, C2 ∈ C(S), C1 �= C2

}
> 0,

where dist(C1, C2) = minz∈C1,w∈C2 |z− w| is the Euclidean distance between C1 and C2

and a ∧ b = min{a, b}. We call S a Bonk–Sierpiński carpet if it is of measure zero and its
peripheral circles are uniformly relatively separated uniform quasicircles. It is known that
this class of carpets are quasisymmetrically invariant.

The following extension theorem is due to Bonk [2].

LEMMA 2.1. Let S be a quasi-round carpet in C. Then, every quasisymmetric embedding
f : S → C has a quasiconformal extension F : Ĉ → Ĉ.

The following three circle theorem is also due to Bonk [2].

LEMMA 2.2. Let S be a Bonk–Sierpiński carpet in C. Let C1, C2, C3 be three
distinct peripheral circles of S. If f is an orientation-preserving quasisymmetric
self-homeomorphism of S such that f (Cj ) = Cj , j = 1, 2, 3, then f is the identity.

The following rigidity theorems are due to Bonk and Merenkov [4].

LEMMA 2.3. Let S be a Bonk–Sierpiński carpet in C. Let C1, C2 be two distinct
peripheral circles of S. Then, the group of all orientation-preserving quasisymmetric
self-homeomorphisms of S that fix C1 and C2 setwise is a finite cyclic group.

LEMMA 2.4. Let S be a Bonk–Sierpiński carpet in C. Let C1, C2 be two distinct
peripheral circles of S and p ∈ S. If f is an orientation-preserving quasisymmetric
self-homeomorphism of S such that f (C1) = C1, f (C2) = C2, and f (p) = p, then f is
the identity.
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3. Carpet modulus
Let ds and m be the Euclidean line element and the Lebesgue measure on C. An
embedding γ : (0, 1) → U will be called an open path in U, where U is a subset of C.
Let � be a family of paths in C. A Borel density ρ : C → [0, ∞] is called admissible for
� if ∫

γ

ρ ds ≥ 1

for each γ ∈ �. The conformal modulus mod(�) of � is defined by

mod(�) = inf
ρ

∫
C

ρ2 dm,

where the infimum is taken over all admissible densities for �. We say that an admissible
density ρ is extremal for mod(�), if it satisfies

mod(�) =
∫
C

ρ2 dm.

The conformal modulus is invariant under conformal maps and quasi-invariant under
quasiconformal maps (cf. [14]). For its various variants and applications, we refer to [2,
8, 9, 12].

Next, we recall the carpet modulus. Let S be a carpet and C(S) be the family of its
peripheral circles. Let � be a path family in C. A function ρ : C(S) → [0, +∞] is called
admissible for (�, S) if there is a subfamily �0 ⊆ � with mod(�0) = 0 such that∑

C∈C(S),γ∩C �=∅
ρ(C) ≥ 1

for every path γ ∈ � \ �0. The carpet modulus modS� of � with respect to S is defined by

modS� = inf
ρ

∑
C∈C(S)

ρ(C)2,

where the infimum is taken over all admissible functions for (�, S). An admissible function
ρ is called extremal for modS(�) if

modS� =
∑

C∈C(S)
ρ(C)2.

By the definition, if mod(�) = 0, then modS� = 0.
The carpet modulus has been applied as a tool in the study of quasiconformal geometry

of carpets in [2, 4]. Among its properties, the following ones are useful in proving
Theorem 1.4.

LEMMA 3.1. Let S be a carpet and �1, �2 be two path families in C. If each path in �1

has a subpath belonging to �2, then

modS�1 ≤ modS�2.

The carpet modulus is invariant under quasiconformal maps.
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LEMMA 3.2. [4, Lemma 2.1] Let S, T be two carpets and � be a path family in C.
If f : Ĉ → Ĉ is a quasiconformal map such that f (S) = T , then

modT f (�) = modS�.

Let S be a carpet in C. Let C1, C2 be two distinct peripheral circles of S. Let 
1 and 
2

be respectively the components of C \ S bounded by C1 and C2. Let �(C1, C2; S) be the
family of paths γ : (0, 1) → C \ cl(
1 ∪
2) with

lim
t→0

γ (t) ∈ C1 and lim
t→1

γ (t) ∈ C2.

LEMMA 3.3. Let S be a quasi-round carpet in C. Let C1, C2 be two distinct peripheral
circles of S. If f ∈ QS(S), then

modS�(C1, C2; S) = modS�(f (C1), f (C2); S).

Proof. By Lemma 2.1, f has a quasiconformal extension F : Ĉ → Ĉ. Note that

f (C1), f (C2) ∈ C(S) and F(�(C1, C2; S)) = �(f (C1), f (C2); S).

We immediately get the desired equality by Lemma 3.2.

LEMMA 3.4. [4, Proposition 2.4] Let S be a quasi-round carpet and � be a path family in
C with modS� < +∞. Then, there is a unique extremal admissible function for modS�.

LEMMA 3.5. [4, Proposition 4.9] Let S be a Bonk–Sierpiński carpet in C and let C1, C2 be
two distinct peripheral circles of S. Then, the carpet modulus modS�(C1, C2; S) is finite
and positive. Moreover, if ρ is an extremal admissible function for modS�(C1, C2; S),
we have ρ(C1) = ρ(C2) = 0 and ρ(C) > 0 for each C ∈ C(S) \ {C1, C2}.

4. Comparing carpet moduli
Let S be a self-similar quasi-round carpet with IFS {φ1, φ1, . . . , φn}. To prove
Theorem 1.4, we are going to compare the carpet moduli modS�(O, M; S) and
modS�(C1, C2; S), where M ∈ C1(S) and C1, C2 ∈ C(S).

We use notation from words. Let A = {1, 2, . . . , n} be an alphabet. Let Ak be the set
of words of length k and A∗ the set of finite words over the alphabet A. By the convention,
denote by ε the empty word. For each finite word w = w1w2 · · · wk ∈ Ak , let

φw := φw1 ◦ φw2 ◦ · · · ◦ φwk
denote the composition of maps. If w = ε, φε is the identity on C. For simplicity, write
Ew for φw(E) if w ∈ A∗ and E ⊂ C. We say that Sw is a copy of S.

LEMMA 4.1. Every self-similar quasi-round D-carpet S with IFS {φ1, . . . , φn} is a
Bonk–Sierpiński carpet and its peripheral circles can be given by

C(S) = {O} ∪ {Mw : w ∈ A∗, M ∈ C1(S)}. (1)
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Proof. By the self-similarity of S,

S = D \
⋃
w∈A∗

⋃
M∈C1(S)

(G(M))w,

whereG(M) is the bounded Jordan domain of boundary M. Thus, the peripheral circles of
S are given by equation (1).

Let

δ1 = min
M∈C1(S)

dist(O, M)
diam(M)

and

δ2 = min
M ,M ′∈C1(S),M �=M ′

dist(M , M ′)
diam(M) ∧ diam(M ′)

.

Let δ = δ1 ∧ δ2. Then, δ > 0. Moreover, if C and C′ are two distinct peripheral circles of
S, we easily get by the self-similarity of S,

dist(C, C′)
diam(C) ∧ diam(C′)

≥ δ,

so C(S) is uniformly relatively separated.
Since S is of Lebesgue measure zero and its peripheral circles are uniform quasicircles,

it then follows that S is a Bonk–Sierpiński carpet. The proof is completed.

Let S be a self-similar quasi-round D-carpet with IFS � = {φ1, φ2, . . . , φn}.
LEMMA 4.2. Suppose M ∈ C1(S), w ∈ A∗, w �= ε. Then,

modS�(O, Mw; S) < modS�(O, M; S).

Proof. By Lemma 4.1, Sw is a Bonk–Sierpiński carpet. Thus, by Lemmas 3.4 and 3.5, the
carpet modulus modSw�(Ow, Mw; Sw) has an extremal admissible function ρ satisfying
ρ(Ow) = 0. Define ξ : C(S) → [0, +∞] by

ξ(C) =
{
ρ(C) if C ∈ C(Sw) \ {Ow},
0 if C ∈ C(S) \ C(Sw).

Note that every path in �(O, Mw; S) has a subpath belonging to �(Ow, Mw; Sw). The
admissibility of ρ implies that ξ is admissible for �(O, Mw; S). However, it is clear that ξ
takes zero on infinitely many peripheral circles of S. By Lemma 3.5, ξ cannot be extremal
for modS�(O, Mw; S). It then follows that

modS�(O, Mw; S) <
∑

C∈C(S)
ξ(C)2 =

∑
C∈C(Sw)

ρ(C)2 = modSw�(Ow, Mw; Sw),

which together with the scale invariance of the carpet modulus yields

modS�(O, Mw; S) < modS�(O, M; S).

This completes the proof.
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LEMMA 4.3. Let v, w ∈ A∗, v �= w. If int(Dv) ∩ int(Dw) = ∅ or Dv ⊃ Dw, then

modS�(Iv , Mw; S) < modS�(O, M; S)

for each pair I , M ∈ C1(S).

Proof. It follows by the same argument as that of Lemma 4.2.

LEMMA 4.4. Suppose in addition that S is balanced. If v, w ∈ A∗, v �= w, then

modS�(Iv , Mw; S) < modS�(O, M; S)

for each pair I , M ∈ C1(S).

Proof. Since int(Dw) ∩ int(Dv) = ∅ orDw ⊂ Dv orDv ⊂ Dw by the similarity of S, one
has by Lemma 4.3 and the balance of S,

modS�(Iv , Mw; S) < max{modS�(O, I ; S), modS�(O, M; S)}
= modS�(O, M; S),

as desired.

5. Proof of Theorem 1.4
Let S be a balanced self-similar quasi-round carpet with IFS � = {φ1, . . . , φn}. We are
going to prove Theorem 1.4. Let g ∈ QS(S).

CLAIM 5.1. g(O) ∈ {O} ∪ C1(S).

Proof of Claim 5.1. We argue by contradiction and assume that g(O) /∈ {O} ∪ C1(S).
Since g(O) is a peripheral circle of the carpet S, by Lemma 4.1, there is a peripheral
circle M ∈ C1(S) and a word w ∈ A∗, w �= ε, such that g(O) = Mw.

Let J ∈ C1(S) be fixed. If g(J ) = O, one has by Lemmas 3.3 and 4.2,

modS�(O, J ; S) = modS�(Mw, O; S) < modS�(M , O; S),

contradicting the balance of S. If g(J ) = Iv for some I ∈ C1(S) and some v �= w, one has
by Lemmas 3.3 and 4.4,

modS�(O, J ; S) = modS�(Mw, Iv; S) < modS�(O, I ; S),

which is also a contradiction. Thus, g(J ) = Iw for some I ∈ C1(S).
It then follows that

{g(O)} ∪ {g(J ) : J ∈ C1(S)} ⊂ {Iw : I ∈ C1(S)},
giving #C1(S)+ 1 ≤ C1(S), which is a contradiction. The proof of Claim 5.1 is completed.

CLAIM 5.2. g(M) ∈ {O} ∪ C1(S) for each M ∈ C1(S).

Proof of Claim 5.2. We argue by contradiction and assume that there exists a peripheral
circle M ∈ C1(S) such that g(M) /∈ {O} ∪ C1(S). Then, there is a peripheral circle
I ∈ C1(S) and a word w ∈ A∗, w �= ε such that g(M) = Iw.

https://doi.org/10.1017/etds.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.84


10 F. Rao and F. Wen

Since Claim 5.1 is proved, one has g(O) = O or g(O) ∈ C1(S). If g(O) = O, one has
by Lemmas 3.3 and 4.2,

modS�(O, M; S) = modS�(O, Iw; S) < modS�(O, I ; S),

which contradicts the balance of S. If g(O) ∈ C1(S), one has by Lemmas 3.3 and 4.4,

modS�(O, M; S) = modS�(g(O), Iw; S) < modS�(O, I ; S),

which is also a contradiction. This proves Claim 5.2.
By Claims 5.1 and 5.2, we get

{g(O)} ∪ {g(M) : M ∈ C1(S)} = {O} ∪ C1(S). (2)

Next, we show that the group QS(S) is finite. Let G be the group of all orientation-
preserving quasisymmetric self-homeomorphisms of S. It suffices to show that G is finite.

Case 1. #C1(S) = 1, say C1(S) = {M}. In this case, S has only one peripheral circle M
of first generation. Let

G0 = {g ∈ G : g(O) = O, g(M) = M}
and

P = {g ∈ G : g(O) = M , g(M) = O}.
Since equation (2) is proved, one has G = G0 ∪ P . By Lemma 2.3, G0 is a finite cyclic
group. However, if P �= ∅, one has P = gG0 for an arbitrarily given g ∈ P . Thus, either
#P = 0 or #P = #G0. It follows that G is finite.

Case 2. #C1(S) > 1. In this case, let M , M ′ ∈ C1(S), M �= M ′, be given. By
equation (2), each g ∈ G is a solution of an equation system of the form

g(O) = C1, g(M) = C2, g(M ′) = C3,

where C1, C2, C3 are three distinct peripheral circles in {O} ∪ C1(S). Since there are only
finitely many such equation systems and each of them has at most one solution in G by
Lemma 2.2 (three circle theorem), we get that G is finite. The proof of Theorem 1.4 is
completed.

By the proof of Theorem 1.4, we have the following result.

COROLLARY 5.3. Let S be a balanced self-similar quasi-round carpet and g ∈ QS(S).
Then,

{g(O)} ∪ {g(M) : M ∈ C1(S)} = {O} ∪ C1(S).

6. Proof of Theorem 1.6
Denote by γ0 and γ1 the diagonals of the unite square Q passing through the vertices
0 and 1, respectively. Denote by γh and γv the horizontal and vertical median lines of Q.
Denote by R0, R1, Rh, and Rv the reflections in γ0, γ1, γh, and γv . Denote by rπ/2, rπ , and
r3π/2 the rotations of angles π/2, π , and 3π/2 around the center of Q.
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Let S be a symmetric self-similar Q-carpet with IFS �. Suppose that S satisfies the
condition of Theorem 1.6. Let M ∈ C1(S) be a peripheral circle such that M ∩ γ0 �= ∅.
Since S is symmetric and C1(S) = 4, we may write

C1(S) = {M , C1, C2, C3},
where C1, C2, C3 satisfy

C1 = rπ/2(M), C2 = rπ (M), and C3 = r3π/2(M).

It is clear that

R0(M) = M , R0(C2) = C2, C1 = Rv(M), and C3 = Rv(C2).

By symmetry, M ∩ γ0 has exactly two points, so we may write

M ∩ γ0 = {u, v}.
By the condition of Theorem 1.6, we may assume without loss of generality that

�u := {φ ∈ � : u ∈ φ(Q)}
is homogeneous and of #�u = 3.

LEMMA 6.1. If f ∈ QS(S), then f (u) �= 0.

Proof. Let ψ be the contractive similarity in � with 0 ∈ ψ(Q) and let c be its ratio. By
the symmetry of S, if p is a vertex of Q and φ ∈ � satisfying p ∈ φ(Q), then the ratio of
φ is equal to c. Let

W(S, 0) := {∞} ∪
∞⋃
n=0

c−nS

be a weak tangent of S at 0.
Let

N(u) =
⋃
φ∈�u

φ(S).

Then,N(u) is a relative neighborhood of u in S. Noticing that�u is homogeneous and that
u is a vertex of φ(Q) for each φ ∈ �u, one has by the self-similarity and the symmetry of S,

c−n(N(u)− u) ⊂ c−n−1(N(u)− u).

Let

W(S, u) := {∞} ∪
∞⋃
n=0

c−n(N(u)− u)

be a weak tangent of S at u. By the homogeneity of �u, we see that W(S, u) is similar to

W(S, 0) ∪ e−iπ/2W(S, 0) ∪ eiπ/2W(S, 0).

Arguing as that of [4, Lemma 7.3], we see that there is no quasisymmetric homeomorphism
g : W(S, u) → W(S, 0) such that g(0) = 0 and g(∞) = ∞.
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Now, let f ∈ QS(S). If f (u) = 0, then, by the argument of [4, Lemma 7.2], there
is a quasisymmetric homeomorphism g : W(S, u) → W(S, 0) such that g(0) = 0 and
g(∞) = ∞, which is a contradiction. Thus, f (u) �= 0.

By Lemma 6.1 and the symmetry of S, if f ∈ QS(S), then f (u) cannot be any vertex
of Q.

LEMMA 6.2. If f ∈ QS(S) is orientation-preserving such that f (O)=O and f (M)=M ,
then f is the identity on S.

Proof. Suppose that f ∈ QS(S) satisfies the condition of Lemma 6.2. Then, by
Corollary 5.3, we have

f (C1) ∈ {C1, C2, C3}.
If f (C1) = C1, one has f = id by the three circle theorem.
If f (C1) = C2, one has

f (C2) ∈ {C1, C3}.
In the case f (C2) = C1, one has f (C3) = C3, so f = id by the three circle theorem,
which is a contradiction. In the case f (C2) = C3, the equalities f (O) = O, f (C1) = C2,
and f (C2) = C3 imply

f (O) = rπ/2(O), f (C1) = rπ/2(C1), and f (C2) = rπ/2(C2),

so f = rπ/2 by the three circle theorem, which contradicts f (M) = M . Thus, the case
f (C1) = C2 is impossible.

Similarly, the case f (C1) = C3 is impossible. This completes the proof.

By Lemma 6.2 and the symmetry of S, if f ∈ QS(S) is orientation-preserving such that
f (O) = O and f (C) = C for some C ∈ C1(S), then f = id.

LEMMA 6.3. There is no f ∈ QS(S) satisfying

f (O) = M and f (M) = O. (3)

Proof. We argue by contradiction and assume that there is a map f ∈ QS(S) satisfying
equation (3). Then, f−1 ◦ R0 ◦ f ◦ R0 ∈ QS(S) is orientation-preserving and satisfies

f−1 ◦ R0 ◦ f ◦ R0(O) = O and f−1 ◦ R0 ◦ f ◦ R0(M) = M .

By Lemma 6.2, we get f−1 ◦ R0 ◦ f ◦ R0 = id, so f ◦ R0 = R0 ◦ f , so f (u) =
R0(f (u)), so f (u) ∈ O ∩ γ0, and so f (u) = 0 or 1 + i, which contradicts Lemma 6.1.
The proof is completed.

LEMMA 6.4. There is no f ∈ QS(S) satisfying f (O) = M .

Proof. We argue by contradiction and assume that there is a map f ∈ QS(S) such that
f (O) = M . Since Corollary 5.3 and Lemma 6.3 are proved, we only need consider
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the case f (M) ∈ {C1, C2, C3}. By the symmetry of S, we may assume without loss of
generality that f (M) = C1. Then, by Corollary 5.3, there are three possible cases:

f (C1) = O, f (C2) = O, f (C3) = O.

Case 1. f (C1) = O. In this case, one has

f ◦ Rv(M) = f (C1) = O and f ◦ Rv(O) = f (O) = M ,

which contradicts Lemma 6.3.
Case 2. f (C2) = O. In this case, one has

f ◦ R1(M) = O and f ◦ R1(O) = M ,

which contradicts Lemma 6.3.
Case 3. f (C3) = O. In this case, one has

f ◦ Rh(M) = O and f ◦ Rh(O) = M ,

which contradicts Lemma 6.3.
Thus, f (O) = M is impossible. This completes the proof.

LEMMA 6.5. QS(S) = ISO(S).

Proof. It suffices to show QS(S) ⊆ ISO(S). Let f ∈ QS(S) be orientation-preserving. By
Lemma 6.4, f (O) �= M . Since S is symmetric, we further have

f (O) �∈ {M , C1, C2, C3}.
It then follows from Corollary 5.3 that f (O) = O.

If f (M) = M , one has f = id by Lemma 6.2, so f ∈ ISO(S).
If f (M) = C1, one has

f ◦ r3π/2(C1) = C1 and f ◦ r3π/2(O) = O,

so f ◦ r3π/2 = id by Lemma 6.2, so f ∈ ISO(S).
If f (M) = C2, one has

f ◦ rπ (C2) = C2 and f ◦ rπ (O) = O,

so f ◦ rπ = id by Lemma 6.2, so f ∈ ISO(S).
If f (M) = C3, one has

f ◦ rπ/2(C3) = C3 and f ◦ rπ/2(O) = O,

so f ◦ rπ/2 = id by Lemma 6.2, so f ∈ ISO(S).
Therefore, f ∈ ISO(S) if f ∈ QS(S) is orientation-preserving. Now, let f ∈ QS(S)

be orientation-reversing. Then, f ◦ R0 ∈ QS(S) is orientation-preserving, so f ◦ R0 ∈
ISO(S), and so f ∈ ISO(S).

Now the proof of Theorem 1.6 is completed.
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