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Quasi-Keplerian flow, a special regime of Taylor–Couette co-rotating flow, is of great
astrophysical interest for studying angular momentum transport in accretion disks. The
well-known magnetorotational instability (MRI) successfully explains the flow instability
and generation of turbulence in certain accretion disks, but fails to account for these
phenomena in protoplanetary disks where magnetic effects are negligible. Given the
intrinsic decrease of the temperature in these disks, we examine the effect of radial thermal
stratification on three-dimensional global disturbances in linearised quasi-Keplerian flows
under radial gravitational acceleration mimicking stellar gravity. Our results show a
thermo-hydrodynamic linear instability for both axisymmetric and non-axisymmetric
modes across a broad parameter space of the thermally stratified quasi-Keplerian flow.
Generally, a decreasing Richardson or Prandtl number stabilises the flow, while a reduced
radius ratio destabilises it. This work also provides a quantitative characterisation of the
instability. At low Prandtl numbers Pr, we observe a scaling relation of the linear critical
Taylor number Tac ∝ Pr−6/5. Extrapolating the observed scaling to high Ta and low Pr
may suggest the relevance of the instability to accretion disks. Moreover, even slight
thermal stratification, characterised by a low Richardson number, can trigger the flow
instability with a small axial wavelength. These findings are qualitatively consistent with
the results from a traditional local stability analysis based on short wave approximations.
Our study refines the thermally induced linearly unstable transition route in protoplanetary
disks to explain angular momentum transport in dead zones where MRI is ineffective.
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1. Introduction

Accretion disks are thin reservoirs of dispersed material (e.g. gas and dust) orbiting
massive central objects, such as growing galaxies, planets, stars and black holes
(Ji & Balbus 2013). Their dynamics has been traditionally modelled by a type of
Taylor–Couette (TC) flow, where the inner cylinder rotates faster than the outer one,
but the angular momentum increases radially outward, i.e. ω∗

i > ω∗
o and ω∗

i r∗2
i < ω∗

or∗2
o

(Dubrulle et al. 2005; Avila 2012; Ji & Balbus 2013). This type of TC flow is known as
quasi-Keplerian flow, as depicted in figure 1. Based on the TC flow model, the current
study aims to better elucidate the angular momentum transport mechanism in accretion
disks.

For the central object within a disk to continuously gain mass from the surrounding
material, the ‘fluid particles’ must lose angular momentum to fall inward under gravity.
Observed accretion rates cannot be fully explained by angular momentum transport
due to the molecular viscosity alone (Pringle 1981; Grossmann, Lohse & Sun 2016),
prompting researchers to explore alternative mechanisms. Shakura & Sunyaev (1973) first
proposed that turbulence could play a crucial role in this process. Since then, considerable
effort has been devoted to searching for flow instability mechanisms that could lead
to turbulence in quasi-Keplerian flows. Nevertheless, hydrodynamic considerations,
excluding other magnetic or thermal effects, indicate that quasi-Keplerian flows are
linearly stable to axisymmetric disturbances, according to Rayleigh’s criterion (Rayleigh
1917). Recent calculations for non-axisymmetric disturbances also suggest linear stability
in astrophysically interesting regimes (Deguchi 2017). This hydrodynamic linear stability
raises the question of how turbulence arises to facilitate the radial transport of angular
momentum in accretion disks.

1.1. Magnetorotational instability and hydrodynamic subcritical nonlinear instability
A significant milestone in addressing the angular momentum transport problem was
reached by Balbus & Hawley (1991), who introduced the magnetorotational instability
(MRI) concept, originally proposed by Velikhov (1959), into the astrophysics community.
They discovered that a quasi-Keplerian flow could be linearly unstable even in the presence
of very weak magnetic fields. Over 30 years later, MRI was successfully detected in
a laboratory TC flow experiment (Wang et al. 2022b,c). This success supports using
quasi-Keplerian flow at laboratory scales to study the physical processes in accretion
disks on astronomical scales. However, the MRI diagram struggles to explain the angular
momentum transport in protoplanetary or protostellar disks. This is because in these
large, cool and dusty disks, the ionisation level in certain zones (dubbed ‘dead zones’)
is so low that magnetising the fluid particles is difficult or impossible, rendering this
diagram inapplicable (Gammie 1996; Fleming & Stone 2003; Armitage 2011; Held &
Latter 2018).

With the magnetic field being inoperative, researchers have explored hydrodynamic
instabilities with other effects to account for radial angular momentum transport in dead
zones. One line of research has focused on subcritical nonlinear instability, as linear
stability does not necessarily ensure nonlinear stability (Grossmann 2000; Eckhardt et al.
2007). Unfortunately, numerical simulations and laboratory experiments have shown no
signs of subcritical transition in quasi-Keplerian flows, even at Reynolds numbers as
high as millions (Ji et al. 2006; Ji & Balbus 2013; Edlund & Ji 2014; Ostilla-Mónico
et al. 2014; Shi et al. 2017). Given that typical Reynolds numbers in accretion disks can
reach 1012 ∼ 1014 (Ji et al. 2006; Fromang & Lesur 2019), much higher than currently
explored values, we cannot entirely dismiss the possibility of subcritical transition therein.
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Figure 1. (a) Sketch of the coaxial co-rotating TC flow system investigated in the present work. The
gravitational acceleration points radially inwards. (b) Flow regimes in the parameter space. The shaded area
corresponds to quasi-Keplerian flows that include the Keplerian case satisfying ω∗

i r∗3/2
i = ω∗

or∗3/2
o . It should

be noted that the Keplerian flow profile can only be approximated but not exactly satisfied by the radial structure
of a TC flow even in the Keplerian case. Thus, the flow at ω∗

i r∗3/2
i = ω∗

or∗3/2
o is also quasi-Keplerian.

Another line of research has examined the thermal effects on flow stability/instability
in accretion disks, which is the direction the present work follows, to be reviewed
below.

1.2. Hydrodynamic instability driven by thermal effects
The thermal structure of accretion disks is complex and non-uniform, leading
to intricate thermodynamics that shapes the disks’ structure (Lesur et al. 2022).
For instance, in protoplanetary disks, numerical modelling and calculations based
on astrophysical observations (Chiang & Goldreich 1997; Fromang & Lesur
2019) showed that the mid-plane is relatively cool (due to radiation to space)
and sandwiched between two hot surface layers (due to irradiation by the
central star). These studies also demonstrated that the mid-plane temperature
decreases with increasing distance from the central star, indicating radial thermal
stratification.

Considering the non-uniform thermal structure, various instabilities due to the thermal
effect have been identified in the modelling and analyses of accretion disks. These
include the two-dimensional (2-D) subcritical baroclinic instability in the r–θ plane
due to non-axisymmetric disturbances (Lesur & Papaloizou 2010), the three-dimensional
(3-D) linear convective overstability due to axisymmetric disturbances (Klahr & Hubbard
2014) and the axisymmetric 2-D linear vertical shear instability in the r–z plane (Nelson,
Gressel & Umurhan 2013). For a comprehensive review of thermally related instability
mechanisms and others, including gravitational instability, zombie vortex instability
and stratorotational instability, the reader is referred to Fromang & Lesur (2019). The
richness of these instabilities demonstrates that many physical effects, additional to
the magnetic effects, can destabilise the canonical Keplerian flow. Nevertheless, their
effectiveness depends on the disk structures and the thermal time scales of the gases
(Lesur et al. 2022). Among these instabilities, the baroclinic instability, caused by radial
buoyancy forces, is a nonlinear mechanism. The linear convective overstability has been
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analysed for inviscid flows within a local planar shearing box. Following the shearing
box approximation adopted by Klahr & Hubbard (2014), Lyra (2014) confirmed the linear
convective overstability and highlighted the need to investigate its operation in ‘global
models’. To our knowledge, 3-D ‘global’ linear instability concerning the thermodynamics
of accretion disks, especially in the radial direction, has rarely been reported, which is the
focus of the present work. By ‘global’, we specifically mean that the boundary conditions
at the two rotating cylinders are directly incorporated in the problem formulation based
on the quasi-Keplerian flow model in a TC geometry. It should be mentioned that the
abovementioned stratorotational instability (Yavneh, Mcwilliams & Molemaker 2001) is
a linear instability identified in TC flow, but it requires stable vertical stratification and
the separation between cylinder walls must be sufficiently close for the instability to be
effective.

1.3. The position and structure of the current work
In light of the efforts to uncover possible hydrodynamic instabilities without magnetic
fields, this study incorporates radial thermal stratification along with stellar gravity
in the modelling of accretion disks using TC flow with hot inner and cold outer
walls in the quasi-Keplerian regime. The objective is to identify possible 3-D
thermo-hydrodynamic linear instability mechanisms that may operate in the thermal
TC flow. In our flow system, the thermal gradient aligns with the direction of stellar
gravity.

While it is well known that thermal buoyancy is destabilising and quasi-Keplerian
shear is strongly stabilising (Ji et al. 2006), to the best of our knowledge, the quantitative
aspects of their interplay in the considered flow have not been thoroughly detailed in the
literature. Similar flow configurations exist but differ from our system, such as rotating
Rayleigh–Bénard convection in a closed cylindrical container (Ecke & Shishkina 2023)
and centrifugal TC flows with hot outer and cold inner cylinders (Becker & Kaye 1962;
Ali & Weidman 1990; Meyer, Yoshikawa & Mutabazi 2015; Kang et al. 2017; Jiang et al.
2020; Meyer, Mutabazi & Yoshikawa 2021; Jiang et al. 2022; Wang et al. 2022a), where
gravitational effects are ignored. To illustrate these differences, we compare our flow
configuration with a representative work (Meyer et al. 2021) in table 2 in Appendix A.
Additionally, our 3-D ‘global’ thermally driven linear instability also contrasts with the
local shearing box approximations and short wave approximations used in prior works
such as Klahr & Hubbard (2014), Lyra (2014), Latter (2016) and Held & Latter (2018).
A comparison of our problem setting with Klahr & Hubbard (2014) is provided in table 3
in Appendix A.

The rest of the paper is organised as follows. Section 2 describes the flow configuration,
governing equations and linear stability analysis as an eigenvalue problem. The
numerical method is introduced in § 3. Section 4 presents and discusses the results,
characterising the linear instability at moderate values of the parameters (including
Taylor number, Richardson number, Prandtl number and radius ratio) to examine their
effects on the linear instability and the scaling relation. We also demonstrate that
the linear instability persists within extreme parameter ranges relevant to accretion
disks, even with weak thermal buoyancy effects, highlighting the effectiveness of
this thermal instability. Comparisons to previous works are made where possible.
Section 5 concludes the paper. Appendices summarise the comparison to previous
works and the influence of the gravitational acceleration profile on the linear
instability.
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2. Problem formulation

2.1. Flow configuration and governing equations
The flow investigated is an incompressible TC flow confined between two coaxial
co-rotating cylinders, differentially heated at the walls, as depicted in figure 1(a). The fluid
is characterised by density ρ∗, dynamic viscosity coefficient μ∗ (or kinematic viscosity
ν∗ = μ∗/ρ∗) and thermal diffusivity coefficient κ∗. Throughout this paper, dimensional
quantities are indicated with the superscript ∗. For the mathematical modelling of the TC
structure, a cylindrical coordinate system (r, θ, z) is adopted, where r, θ and z represent the
radial, azimuthal and axial directions, respectively. The radius of the inner cylinder is r∗

i
and that of the outer cylinder is r∗

o . The cylinders are rotating about the z axis in the same
direction with angular frequencies ω∗

i and ω∗
o , respectively. The flow in the z direction is

assumed to be homogeneous and infinitely long, allowing the use of periodic boundary
conditions in our linear stability analysis.

The wall temperature of the two cylinders is maintained at fixed values: T∗
i on the inner

wall and T∗
o on the outer wall, with T∗

i > T∗
o , to mimic the temperature distribution in

accretion disks (Chiang & Goldreich 1997). To account for the thermally driven buoyancy
effect due to thermal stratification, stellar gravity in the radial direction is incorporated
into the modelling process. Following Balbus & Hawley (1991) and Latter (2016), we
adopt the Boussinesq approximation, assuming that the fluid density varies linearly with
temperature as ρ∗ = ρ∗

o − ρ∗
oα∗(T∗ − T∗

o ) and this variation is significant only in the
gravitational buoyancy term. Here, α∗ is the coefficient of thermal expansion and ρ∗

o is
the reference density at temperature T∗

o . In contrast to Meyer et al. (2021), centrifugal
buoyancy is ignored in our work; the effect would be stabilising in our temperature setting.

The governing equations consist of the Navier–Stokes equation under the Boussinesq
approximation, the continuity equation and the energy equation expressed in terms of
temperature. For non-dimensionalisation, the gap between the two cylinders d∗ = r∗

o − r∗
i

is chosen as the characteristic length scale, the characteristic velocity scale is the tangential
speed of the inner wall U∗ = |ω∗

i − ω∗
o|r∗

i observed in the rotating frame of reference, the
time scale is d∗/U∗, and the reference density, pressure and gravitational acceleration
magnitude are ρ∗

o , ρ∗
o U∗2 and g∗

o, respectively.
The resultant non-dimensional equations, expressed in a reference frame rotating with

the outer cylinder, are given as

∂u
∂t

+ u · ∇u = −∇p + f (η)

Ta1/2 ∇2u + Raf 2(η)

PrTa
Tg(r)er − 1

Ro
ez × u, (2.1a)

∇ · u = 0, (2.1b)

∂T
∂t

+ u · ∇T = f (η)

PrTa1/2 ∇2T, (2.1c)

where f (η) = (1 + η)3/8η2. The form of f (η) and the introduction of Ta and Ro (defined
below) follow the derivations for isothermal flows in TC geometry in Grossmann et al.
(2016). Here, u = (ur, uθ , uz) is the non-dimensional velocity vector, p is pressure and T =
(T∗ − T∗

o )/(T∗
i − T∗

o ) is the temperature difference. The associated boundary conditions
include the no-slip and no-penetration boundary conditions for the velocity and the
Dirichlet boundary conditions for the temperature, i.e.

u(ri) = eθ when ω∗
i > ω∗

o, u(ri) = −eθ when ω∗
i < ω∗

o, u(ro) = 0, (2.2a)
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T(ri) = 1, T(ro) = 0 with ri = η

1 − η
, ro = ri + 1. (2.2b)

Here, er, eθ , ez are the unit vectors in the cylindrical coordinate.
Regarding the gravitational acceleration profile in (2.1a), it should be noted that from

Newton’s Law of universal gravitation, for uniform mass distribution along the z axis in
cylindrical coordinates, the gravitational acceleration magnitude is g∗(r∗) = 2G∗λ∗/r∗,
where G∗ is the universal gravitational constant and λ∗ is the mass per unit length of the
z axis. After non-dimensionalisation with g∗(r∗

o), it gives the following expression in the
non-dimensional form

g(r) = ro

r
. (2.3)

To compare, the gravitational potential due to a point mass at the centre of the
central object in an accretion disk is φ∗(r∗) = −G∗M∗/r∗, with the corresponding
gravitational acceleration magnitude being g∗(r∗) = G∗M∗/r∗2 when described in
spherical coordinates. Non-dimensionalisation of this g∗(r∗) with g∗(r∗

o) results in a profile
of the form g(r) = r2

o/r2. The third profile that can be considered is an artificial constant
profile g(r) = 1, which has been shown to be experimentally realisable on thermo-electric
convection in a cylindrical annulus during a sounding rocket flight (Antoine et al. 2023).
In § 4, the profile given in (2.3) is studied. As suggested by one of the reviewers, a
brief comparison of the effects of the other two profiles with (2.3) is conducted; see
Appendix B.

In this equation system, there are five governing parameters defined as

η = r∗
i

r∗
o
, Ta = (1 + η)4

64η2

d∗2(r∗
i + r∗

o)2(ω∗
i − ω∗

o)
2

ν∗2 , Pr = ν∗

κ∗ ,

Ra = α∗g∗
o(T

∗
i − T∗

o )d∗3

ν∗κ∗ ,

Ro = |ω∗
i − ω∗

o|r∗
i

2ω∗
od∗ = η|1 − a|

2(1 − η)a
with the rotation ratio a = ω∗

o

ω∗
i

= ηq,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where the rotation exponent parameter q is real valued for co-rotating cylinders (a > 0),
the case considered in the present study. Specifically, when ω∗

i > ω∗
o > 0, we have 0 <

a < 1 and, thus, q > 0. The physical significance of these governing parameters is as
follows:

(i) The radius ratio η determines the cylinders’ gap width as well as inner
and outer radii ri and ro since we require ro − ri = 1 according to the
non-dimensionalisation step. Small values of η correspond to large accretion disks
with small central stars.

(ii) The Taylor number Ta defines the relative importance of fluid inertia relative to
viscosity. For highly rarefied gases in fast rotating motions, Ta can be extremely
high, which will be considered in our work.

(iii) The Prandtl number Pr for most gases is of order one, meaning that momentum
and heat diffuse at comparable rates. For rarefied gases, Pr would be smaller.

(iv) The Rayleigh number Ra characterises the importance of natural thermal
convection relative to thermal diffusion in the quasi-Keplerian flow. Weak thermal
stratification dictates small values of Ra. In addition to Ra, we will also adopt
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the Richardson number Ri ≡ Ra/(PrTa) that characterises the relative importance
between the convection due to thermal buoyancy and the flow shearing.

(v) Finally, the Rossby number Ro quantifies the relative rotation rate of the two
cylinders. It should be emphasised that, for a given η, Ro depends only on q. The
Keplerian regime corresponds to a specific rotation scenario as discussed below.

The rotation exponent q is important in delimiting the various flow regimes
illustrated in figure 1(b): q = 0 indicates solid-body rotation; q > 2 corresponds to
the conventional Rayleigh unstable regime of isothermal flows; 0 < q < 2, resulting in
ω∗

i r∗2
i < ω∗

or∗2
o , represents the Rayleigh stable regime where the angular momentum

increases monotonically with r. The special case at q = 3/2, where the rotation rates
of the two cylinders obey Kepler’s third law, is referred to as the Keplerian regime.
Conventionally, the entire range of 0 < q < 2 is referred to as the quasi-Keplerian regime.
The present study focuses on the case at q = 3/2.

2.2. Linear stability analysis: inhomogeneous in the radial direction
The equation system (2.1)–(2.4) described above admits the following one-dimensional
laminar steady solution, which can be theoretically derived by noting that the only
non-zero velocity component is the azimuthal velocity and the solution is a function of
r. For the investigated case of ω∗

i > ω∗
o > 0, the laminar solution reads

Ub,r = 0, Ub,θ (r) = 1
η(1 + η)

(
r2

i
r

− η2r

)
, Ub,z = 0, Tb(r) = 1

ln η
ln r − ln ro

ln η
.

(2.5)

Here the pressure profile of the laminar solution Pb(r) is not provided since it is not needed
in the linear stability analysis.

To probe the stability or instability of the above laminar base flow subject to
disturbances, we decompose the total flow variables in (2.1) into their base states plus
perturbations:

u = Ub + u′, p = Pb + p′, T = Tb + T ′. (2.6a–c)

Then linearisation around the base flow leads to the linear perturbation equation

∂u′

∂t
+ u′ · ∇Ub + Ub · ∇u′ = −∇p′ + f (η)

Ta1/2 ∇2u′ + Raf 2(η)

PrTa
T ′g(r)er − 1

Ro
ez × u′,

(2.7a)

∇ · u′ = 0, (2.7b)

∂T ′

∂t
+ Ub · ∇T ′ + u′ · ∇Tb = f (η)

PrTa1/2 ∇2T ′, (2.7c)

along with homogeneous Dirichlet boundary conditions for both the perturbed velocity
and temperature. The solution to (2.7) can be assumed to take the normal-mode form, i.e.

(u′, p′, T ′) =
[
ũ′(r), p̃′(r), T̃ ′(r)

]
exp(−iωt + imθ + ikz) + c.c., (2.8)

where integer valued m and real valued k are the azimuthal and axial wavenumbers,
respectively. Variables with the symbol tilde ˜ are shape functions in the radial
direction and c.c. represents the complex conjugate of the preceding term. Additionally,
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ω = ωr + iωi includes ωr as the frequency and ωi as the linear growth rate. At a given
parameter setting, the flow is said to be linearly unstable if ωi > 0, linearly stable if ωi < 0
and neutral if ωi = 0.

Inserting (2.8) into the perturbation equations (2.7) results in the linearised equations in
the spectral space, which are given as

−iωũ′
r =

[
− imUb,θ

r
+ f (η)

Ta1/2

(
∇̃2 − 1

r2

)]
ũ′

r

+
[

2Ub,θ

r
+ f (η)

Ta1/2

(
−2im

r2

)
+ 1

Ro

]
ũ′
θ − dp̃′

dr
+ Raf 2(η)

PrTa
T̃ ′g(r), (2.9a)

−iωũ′
θ =

[
−dUb,θ

dr
− Ub,θ

r
+ f (η)

Ta1/2

(
2im
r2

)
− 1

Ro

]
ũ′

r

+
[
− imUb,θ

r
+ f (η)

Ta1/2

(
∇̃2 − 1

r2

)]
ũ′
θ − imp̃′

r
, (2.9b)

−iωũ′
z =

(
− imUb,θ

r
+ f (η)

Ta1/2 ∇̃2
)

ũ′
z − ikp̃′, (2.9c)

0 =
(

d
dr

+ 1
r

)
ũ′

r + im
r

ũ′
θ + ikũ′

z, (2.9d)

−iωT̃ ′ = −dTb

dr
ũ′

r +
(

− imUb,θ

r
+ f (η)

PrTa1/2 ∇̃2
)

T̃ ′, (2.9e)

where the Laplacian ∇̃2 = d2/dr2 + 1/r(d/dr) − m2/r2 − k2. The above equation system
can be written in a generalised eigenvalue problem in the form of

− iωM̃ γ̃ = L̃ γ̃ , (2.10)

or, more specifically,

− iω

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ũ′
r

ũ′
θ

ũ′
z

p̃′
T̃ ′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Lr,r Lr,θ 0 Lr,p Lr,T
Lθ,r Lθ,θ 0 Lθ,p 0

0 0 Lz,z Lz,p 0
Lp,r Lp,θ Lp,z 0 0
LT,r 0 0 0 LT,T

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ũ′
r

ũ′
θ

ũ′
z

p̃′
T̃ ′

⎞
⎟⎟⎟⎠ . (2.11)

Here the linear operators L∗,∗ can be derived by matching the equations term by term. The
perturbation variable vector γ̃ = (ũ′

r, ũ′
θ , ũ′

z, p̃′, T̃ ′)T is identified as the eigenvector. Since
the eigenvector can be arbitrarily scaled in the linear analysis, to eliminate ambiguity, it
is normalised to have a unit amplitude and zero phase angle in the azimuthal velocity
component at the middle point of the gap ũ′

θ (r = (ri + ro)/2), unless specified otherwise.

2.3. Linear stability analysis: local (or homogeneous) in the radial direction
Local stability analysis is a widely used method for investigating flow instability in
modelled accretion-disk problems (Klahr & Hubbard 2014; Lyra 2014; Latter 2016; Held
& Latter 2018). Among these studies, Klahr & Hubbard (2014) and Lyra (2014) employed
a short wave approximation in their local analysis to explore the convective overstability
in radially stratified disks under thermal relaxation. In contrast, Latter (2016) and Held &
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Latter (2018) utilised the shearing box approximation to analyse vertically stratified disk
models. Following the suggestion from one of the reviewers, we conduct a local stability
analysis of the problem formulated in § 2.1 and compare the results with those from our
global analysis (global in the radial direction, yet local in the axial direction).

Given that the flow under investigation is radially stratified, the shearing box
approximation in a local rotating Cartesian coordinate system is unsuitable for formulating
an eigenvalue problem. The main challenge is implementing the shearing periodic
boundary condition in the radial direction along which thermal stratification and
gravitational acceleration exist. While the implementation is feasible for numerical
simulations, it is not appropriate for the present analysis. Therefore, we adopt the short
wave approximation, following the approach of Klahr & Hubbard (2014) and Lyra (2014).
In this approximation, perturbations are expressed in the Fourier mode form as follows:

(u′, p′, T ′) = [û′, p̂′, T̂ ′] exp(−iωt + ikrr + imθ + ikzz) + c.c. (2.12)
Note the distinction from (2.8): wavelike solutions are also assumed in the radial direction
here, rendering this analysis fully local in all three directions. In this context, kr and kz
represent the radial wavenumber and axial wavenumber, respectively. Noting that the linear
instability to be reported in § 4 below is predominantly axisymmetric (m = 0), in this
local analysis we focus on the case where m = 0, meeting the assumptions m � krr and
m � kzz for the short wave approximation.

Inserting (2.12) into the perturbation equation (2.7) leads to the following equation
system for the local quasi-Keplerian flow at a radial location r0:

−iωû′
r = f (η)

Ta1/2 ∇̂2û′
r +

(
2Ub,θ (r0)

r0
+ 1

Ro

)
û′
θ − ikrp̂′ + Raf 2(η)

PrTa
T̂ ′g(r0), (2.13a)

−iωû′
θ =

[
−
(

dUb,θ

dr

)
r0

− Ub,θ (r0)

r0
− 1

Ro

]
û′

r + f (η)

Ta1/2 ∇̂2û′
θ , (2.13b)

−iωû′
z = f (η)

Ta1/2 ∇̂2û′
z − ikzp̂′, (2.13c)

0 = ikrû′
r + ikzû′

z, (2.13d)

−iωT̂ ′ = −
(

dTb

dr

)
r0

û′
r + f (η)

PrTa1/2 ∇̂2T̂ ′. (2.13e)

Here the Laplacian ∇̂2 = −k2
r − k2

z . In this analysis, some less significant terms have been
omitted, following Lyra (2014). For instance, for an infinitesimal disturbance to the local
flow at r0, it is assumed that u′

r/r � ∂ru′
r. Consequently, the term u′

r/r in the continuity
equation is neglected. Similarly, we neglect the term 1/r∂ru′

r compared with ∂rru′
r in

the Laplacian. The resulting equations (2.13) form a 5 × 5 eigenvalue problem, which
is computationally much more efficient to solve than (2.11). Note that no discretisation is
needed for solving (2.13) in the local analysis. In contrast, (2.11), after discretisation based
on the spectral collocation method, results in a 5N × 5N eigenvalue problem for the global
analysis presented in § 4, where the node number N ranges from 51 for normal parameters
to 601 for extreme parameters in our calculations.

3. Numerical method and validation

To solve the generalised linear eigenvalue problem expressed in (2.10), we developed
an in-house MATLAB code using the spectral collocation method (Trefethen 2000).
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This approach employs Chebyshev–Lobatto nodes, clustered near both the inner and
outer cylinders while being sparse at the gap centre. For Chebyshev polynomials of
(N − 2)th order, there are in total N Chebyshev–Lobatto nodes. In our calculations, a
resolution of N = 51 typically proves sufficient, although for extreme parameter regimes,
we extend up to N = 601. Central to our methodology is the construction and utilisation
of Chebyshev differentiation matrices, facilitating the formation of M̃ and L̃, as described
in Trefethen (2000). Implementing homogeneous boundary conditions for ũ′ and T̃ ′ at
the inner cylinder r = ri and outer cylinder r = ro is straightforward, accomplished by
removing the corresponding rows and columns from M̃ and L̃. Subsequently, we employ
MATLAB’s built-in functions ‘eig()’ and ‘eigs()’ to solve the generalised linear eigenvalue
problem (2.10), yielding the eigenvalue ω and the eigenvector γ̃ . A validation against the
data in Deguchi (2017) and a convergence test of our code can be found in § 1 of the
supplementary material; favourable agreement and good convergence have been achieved.
For the local analysis, the small eigenvalue problem (2.13) is also solved using the two
built-in functions.

4. Results and discussion

To clearly present the numerical results below, a summary of the following subsections is
provided at the outset.

(i) Section 4.1 characterises the thermo-hydrodynamic linear instability at a moderate
Taylor number of Ta = 106 in the TC flow. While this value may not reach the
extreme parameters relevant to accretion-disk dynamics, its selection facilitates
a clear elucidation of the primary destabilising mechanism. We demonstrate the
robustness of the flow pattern in the corresponding unstable mode, noting that
even at significantly higher Ta, the eigenvector pattern bears resemblance to that
observed at Ta = 106.

(ii) Section 4.2 delves into an exploration of the effects of the principal governing
parameters, including Ta, Ri, Pr and η. In a linear stability analysis, a key point of
interest is to determine the lowest Taylor number, referred to as the critical Taylor
number Tac, beyond which the linear instability sets in. Notably, we illustrate that
the instability exhibits resilience even at very low yet finite Richardson numbers
Ri ∼ 0.01, indicative of weak thermal effects. The critical Tac appears to scale with
the deviation of Ri from the limiting Ri corresponding to infinite Tac. Additionally,
another scaling law emerges at asymptotically small Prandtl numbers Pr ∼ 10−4.
By extrapolating these findings to high-Ta regimes, we infer the pertinence of our
observations to the dynamics of accretion disks. Particularly, § 4.2.5 is the only
part dedicated to the local stability analysis for comparison with the global one.
Qualitatively consistent results are obtained; differences are underscored.

(iii) The final section, § 4.3, is dedicated to an examination of an extreme case scenario
characterised by η = 0.05, Pr = 10−3, Ri = 10−3 and 109 � Ta � 1016. Within
the linear framework, this scenario mimics the hydrodynamics in accretion disks
based on the TC flow geometry.

4.1. Characteristics of the thermo-hydrodynamic linear instability
Within the Keplerian regime, characterised by q = 1.5, we observe a linear instability
within the thermal TC flow. The dynamics of this instability exhibit a remarkably rich
complexity. To illustrate this, we maintain fixed values for the governing parameters:
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Figure 2. Eigenspectra of the flow in the Keplerian regime at η = 0.3, Pr = 0.7, Ri = 0.1 and Ta = 106

for (a) (k, m) = (5, 0), (b) (k, m) = (0, 1), (c) (k, m) = (5, 1). The modes above the dashed line are linearly
unstable. (d) The corresponding linear growth rate ωi in the (k, m) plane where the black curve traces ωi = 0.
Note that m is a non-negative integer; at each combination of (k, m), ωi of the most unstable/least stable mode
in an eigenspectrum is recorded for the plot. The red and blue stars in panel (d) respectively mark the locations
of the most unstable mode for all (k, m) and the most unstable non-axisymmetric mode for all k and m /= 0.
The corresponding mode patterns are visualised in figure 3.

η = 0.3, Pr = 0.7, Ri = 0.1 and Ta = 106. The selection of these parameters is guided
by several considerations. Firstly, the chosen radius ratio, though relatively small, remains
achievable in both experimental set-ups and numerical simulations. This paves the way
for investigating flow instability in future works, particularly those exploring its nonlinear
evolution and potential turbulence simulations. Secondly, the specific Pr chosen reflects
a typical value for most gases under atmospheric conditions. However, it is important to
note that while hydrogen and helium primarily constitute the gas components in accretion
disks (Pringle 1981; Mineshige 1993; Ikoma & Hori 2012; Klahr & Hubbard 2014), the
corresponding Pr therein can be significantly smaller (Latter 2016). We investigate such
extreme cases in §§ 4.2 and 4.3. Lastly, the selected Ri aligns with commonly used values
in the literature (Lesur & Ogilvie 2010; Held & Latter 2018). The variation of these
parameters will be explored in the next subsection.

Figure 2(a) displays the converged results with N = (51, 151) for the eigenspectra of
the axisymmetric (m = 0) modes, where the two modes above ωi = 0 (the dashed line)
are linearly unstable. These are stationary eigenmodes with zero real parts, meaning
that they grow over time but do not travel in space. Non-axisymmetric modes (m /= 0)
can also become linearly unstable, further classified into two types. One type is axial
independent (k = 0) with a single unstable mode, as shown in panel 2(b), and the other is
axial dependent (k /= 0) with two unstable modes, also called helical modes, as displayed
in panel 2(c). The frequencies of these unstable non-axisymmetric modes are non-zero,
meaning they oscillate in time and travel in the azimuthal direction and also in the axial
direction if k /= 0.

In the above, we have reported two categories of unstable modes: stationary
axisymmetric modes and oscillatory non-axisymmetric modes. However, axisymmetric
modes can also become oscillatory at specific parameters, as will be shown in figure 15(b).
In a different TC flow system with a geophysical application background, Jenny & Nsom
(2007) reported the coexistence of these three kinds of mode. The difference between
their study and ours is that they fixed the outer cylinder and examined the radial buoyancy
effects due to temperature and/or salinity stratification in the Earth’s equatorial region. The
difference between the two settings, along with the similarity in the results, demonstrates
the robustness of the instability in thermal TC flows with different configurations.
Distinguishing these different unstable modes is not only of interest within the linear
framework but also crucial from a (weakly) nonlinear perspective when examining flow
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Figure 3. Contours of disturbance temperature in the quasi-Keplerian flow at η = 0.3, Pr = 0.7, Ri = 0.1
and Ta = 106. Panel (a) is for the most unstable mode attained at k ≈ 5.685 and m = 0, corresponding to the
red star marked in figure 2(d). Panel (b) is for the leading non-axisymmetric mode at k ≈ 5.049 and m = 1,
corresponding to the blue star marked in figure 2(d). In panel (a) one wavelength 2π/k ≈ 1.11, comparable
to the cylinder gap d = 1, is shown in the z direction. The green circle in panel (b) marks the location of the
critical layer.

bifurcations. For example, Kang et al. (2017) studied the effect of centrifugal buoyancy on
circular Couette flow and found that the flow bifurcation to stationary axisymmetric modes
was always supercritical, while that to oscillatory axisymmetric modes was subcritical.
Therefore, it would also be interesting to examine the weak nonlinearity of the present
thermally stratified quasi-Keplerian flow in future studies.

To gain a comprehensive view of the most unstable/least stable modes in the axial- and
azimuthal-wavenumber space, we plot the linear growth rate ωi in the k–m plane in panel
2(d). The largest growth rate ωi ≈ 0.5332736016 is observed at m = 0 and k ≈ 5.685 (red
star in panel d). This indicates that the most unstable mode in the quasi-Keplerian flow
at (q, η, Pr, Ri, Ta) = (1.5, 0.3, 0.7, 0.1, 106) is axisymmetric. To examine the pattern of
this mode, we visualise its temperature contours superposed with the velocity field in the
r–z plane in figure 3(a). From this figure, we observe that the axial scale of the mode is
comparable to the gap width, with the velocity field representing a pair of counter-rotating
vortices aligned in the periodic z direction. This convection feature is reminiscent of
the canonical Rayleigh–Bénard convection (Bodenschatz, Pesch & Ahlers 2000) where
gravitational buoyancy drives fluid from the hot wall to the cold wall, resulting in two
counter-rotating vortices per wavelength. This suggests that the thermal effects dominate
in rendering the instability in quasi-Keplerian flows, as the Keplerian shearing is known
to be strongly stabilising.

In addition to the above most unstable axisymmetric mode, the helical mode with the
largest linear growth rate ωi = 0.3658437831, attained at m = 1 and k ≈ 5.049 (blue star
in figure 2d), is visualised in figure 3(b) in the r–θ plane at z = 0. This mode manifests a
spiral structure rotating counterclockwise along with the laminar base flow. The two ends
of the two spiral arms are located where hot fluids decelerate upon encountering the outer
wall and then turn back towards the inner wall. Scrutinising the velocity vector field reveals
that the mode structure actually consists of two counter-rotating vortices severely distorted
by the Keplerian shearing in the bulk flow. The frequency of the above most unstable
helical mode is ωr = 0.5662622568, corresponding to a phase speed cr = ωr/m ≈ 0.566.
This indicates that the disturbance travels in the same direction as the bulk flow, with a
speed about 24 % of the maximum angular frequency 2.333 at the inner cylinder wall.
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Since the angular frequency profile of the laminar base flow can be calculated as Ω =
Ub,θ /r, with η = 0.3, ro = 1/(1 − η) ≈ 1.429 and ri = ro − 1 ≈ 0.429, the above phase
speed cr is equal to the local value of Ω at a location r ≈ 0.769. This position, where
the azimuthal phase speed of a mode is locally equal to the angular velocity of the base
flow, is identified as the critical layer in curvilinear shear flows, a concept that has been
employed by Leclercq et al. (2016) in their study on stratified TC flow. In the present study,
this position, marked by a green circle in figure 3(b), is located 0.66 length scale from the
outer wall and 0.34 from the inner wall. From the perspective of the critical-layer concept
developed in the context of parallel shear flows, this location is identified as the most
receptive position for energy amplification (Maslowe 1986; McKeon 2017). It can be seen
that the critical layer in figure 3(b) approximately coincides with the radial location where
the disturbance magnitude is the largest, suggesting its relevance in the present curvilinear
context. Nevertheless, its importance remains to be examined in the future.

Although the above results pertain to a moderate Taylor number (Ta = 106), which
is not high enough to be directly linked to accretion disks, the mode patterns and
underlying instability mechanisms can be applied to high-Ta regimes. Numerical evidence
at Ta = (108, 1010) is provided in § 3 of the supplementary material. We have checked
that the patterns persist even at Ta = 1016, but the axial length scale is too small
and, thus, not shown. As Ta increases, both the most unstable axisymmetric mode
and the helical mode become increasingly localised around the inner rotating cylinder,
suggesting that instability space is diminished by the enhanced Keplerian shearing from
fast rotation. This localisation can be relevant for the accretion-disk dynamics for two
reasons. First, accretion disks are typically flat and thin structures (Abramowicz & Straub
2014), making it difficult for disturbances with large axial wavelengths to survive, leaving
short-wavelength disturbances as primary candidates for triggering flow transitions. For
example, Klahr & Hubbard (2014) adopted a quasi-hydrostatic approximation in their study
of convective overstability in radially stratified accretion disks, requiring perturbations
to be vertically thin. Additionally, Latter (2016) estimated that the dominant vertical
wavelength of flow structures in a protoplanetary disk is about 1 % of the disk thickness
at 1 AU. Second, Latter (2016) found that the convective overstability discovered by Klahr
& Hubbard (2014) was not prevalent in the outer disk regions but seemed only possible
in the inner regions, which may be corresponding to the narrow region around the inner
rotating cylinder at high Ta in our study. Comparatively, it is interesting to note that, for
vertical thermal stratification under vertical stellar gravity, Held & Latter (2018) found that
the fastest growing mode was at the shortest radial length scales, manifesting as radially
thin elongated structures.

From these perspectives, our findings are generally consistent with previous research
on thermally driven linear instability in accretion disks. However, previous studies often
used 2-D local shearing rectangles (Klahr & Hubbard 2014; Latter 2016) or 3-D local
shearing boxes (Lyra 2014; Held & Latter 2018), assuming homogeneity in all directions of
a cylindrical coordinate system. These studies bear local significance, whereas the linear
instability in our work is of a 3-D global nature in the TC configuration. Clearly, the
mode structures observed in our study cannot be fully contained within their local shearing
boxes. As suggested by one of the reviewers, to evaluate the similarities and differences
between the present global analysis and the local analysis of the same quasi-Keplerian flow,
we have also conducted a local analysis based on the short wave approximations employed
in Klahr & Hubbard (2014) and Lyra (2014). The results, as will be presented in § 4.2.5,
are generally consistent with those from the global analysis. However, quantitatively, some
scaling laws (to be discussed in the next subsection) differ. In addition, none of the unstable
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Figure 4. (a) Variations of the largest linear growth rate ωi,max with the azimuthal wavenumber m for various
Taylor numbers Ta for the quasi-Keplerian flow at η = 0.3, Pr = 0.7 and Ri = 0.1. (b) Variations of the
corresponding axial wavenumber k at which ωi,max is attained. The discontinuity in the variation of k(ωi,max)

is due to a mode shift from one branch to another branch in the corresponding eigenspectrum.

mode structures observed in the global analysis can be captured in the local analysis.
Besides, Meyer et al. (2021) did not arrive at the same conclusion presented above as
they focused on small Ta in their stability analysis.

To sum up, the analysis in this subsection indicates that the destabilising thermally
driven buoyancy can overcome the stabilising Keplerian shear to render the linear
instability in the quasi-Keplerian flow. As will be further demonstrated in § 4.3, this linear
instability persists even when the thermal buoyancy effect is very weak but finite, despite
the strong Keplerian shear. It can arise at exceptionally large axial wavenumbers (small
axial wavelengths), which are especially relevant to the flat geometry of accretion disks.
This demonstrates the potential prevalence of thermo-hydrodynamic linear instability in
accretion disks, particularly in the inner radii regions, which is one of the most significant
findings of this study.

4.2. Effects of governing parameters on the flow instability

4.2.1. Effects of Taylor number Ta
In the previous subsection the Taylor number is primarily fixed at Ta = 106. Next, we
explore the effect of varying Ta while keeping other control parameters fixed in the
Keplerian regime at (q, η, Pr, Ri) = (1.5, 0.3, 0.7, 0.1). First, figure 4(a) shows that the
linear growth rate ωi,max of the most unstable disturbance, optimised over all axial
wavenumbers k, increases monotonically with Ta for any azimuthal wavenumber m. This
indicates that faster rotation (corresponding to larger Ta) enhances the linear instability.
Second, the associated axial wavenumber k, plotted in figure 4(b), also increases with
Ta. This trend features an increasingly thinner mode structure (see figure 1 of the
supplementary material), which aligns more closely with the thin nature of the accretion
disks. Third, the most unstable mode is almost always axisymmetric (except Ta = 105), as
shown in panel 4(a).

Figure 4 also shows that as Ta increases, more non-axisymmetric modes become linearly
unstable, although they do not dominate. Specifically, for high m, the most unstable mode
is always axial independent (k = 0). Typical non-axisymmetric modes, which exhibit an
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Figure 5. (a) Contours of the linear growth rate ωi in the Ta–k plane at m = 2 for the quasi-Keplerian flow at
(η, Pr, Ri) = (0.3, 0.7, 0.1). The black curve is the neutral curve for m = 2. The flow is linearly unstable on
the right-hand side of the curves. (b) Neutral curves at various m. Note that, for m = (1, 3), each of the neutral
curves consists of two segments, the area confined by which is linearly unstable; the small area at the bottom
right corner is linearly stable for m = (1, 3) and unstable for m = (4, 5, 6). Note the log scale for the horizontal
axis in panel (b). The red star marks the linear critical condition (Tac ≈ 3.7 × 104, kc ≈ 0.96, mc = 2).

increasingly localised structure around the outer rotating cylinder, are briefly discussed
in § 4 of the supplementary material; see figure 3 therein for the visualisation. Here,
we discuss a potential connection between the observed complex thermal instability
diagram and MRI. In this study, the magnetic field is omitted to isolate and focus on
thermal effects. However, in real accretion disks, both magnetic and thermal fields are
typically present, even if one or both are relatively weak (see § 4.2.3 of Lesur et al.
(2022) for a discussion on the coupling of magnetohydrodynamics and thermodynamics
in protoplanetary disks). The coexistence of these fields suggests that the thermally driven
linear instability observed in this study may interact – either linearly or nonlinearly – with
various manifestations of the MRI, e.g. those in Hollerbach & Rüdiger (2005). Recently,
a synergy between thermal effects and magnetic effects on fluid convection has indeed
been observed in a TC flow experiment by Seilmayer, Ogbonna & Stefani (2020) and
theoretically confirmed in a linear stability analysis by Mishra et al. (2024). Note that
the gravity considered in their analysis is along the axial direction, unlike our study that
models gravity in the radial direction, specifically for accretion disks.

To determine the critical Tac, neutral curves along which ωi = 0 are depicted in figure 5
for the linearised flow at (q, η, Pr, Ri) = (1.5, 0.3, 0.7, 0.1). Panel (a) illustrates contours
of the linear growth rate in a Ta–k plane, zoomed in around the linear critical condition
(Tac ≈ 3.7 × 104, kc ≈ 0.96, mc = 2) marked by the red star and the black neutral curve.
For other m values, the Taylor number is always higher than the identified Tac, as evident
in panel (b). Furthermore, it is notable that at Ta significantly above its critical value,
there exists a broad spectrum of axial wavelengths of disturbances capable of triggering
both axisymmetric and non-axisymmetric linear instabilities. The wider this range and the
higher the axial wavenumber, the more relevant the instability becomes to accretion disks.
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Figure 6. Neutral curves for various Richardson numbers for the quasi-Keplerian flow at η = 0.3 and Pr =
0.7: (a) azimuthal wavenumber m = 0, (b) m = 1, (c) m = 2, (d) m = 3. In all the calculations, only the neutral
curve segments close to the left noses are shown and the stars mark the linear critical conditions at each Ri
minimised over all m and k values.

4.2.2. Effects of Richardson number Ri
The Ri characterises the thermal effect relative to the shearing in our thermally driven
quasi-Keplerian flow. We find that increasing Ri promotes the linear instability. This can
be seen from figure 6(a), where neutral curves in the Ta–k plane for various Ri are plotted,
with parameters (η, Pr) = (0.3, 0.7) fixed for axisymmetric flows. As our focus is on
the linear critical Tac, only the nose segments of the neutral curves are shown. With
increasing Ri from 0.045 to 1, the neutral curve shifts from right to left, with the onset
Ta decreasing from 107 to 103, four orders of magnitude smaller. This suggests that when
the destabilising thermal buoyancy effect is strong, the flow is more prone to instability
and, thus, requires a weaker inertial effect, corresponding to a slower rotation, to overcome
the stabilising Keplerian shear to trigger the instability.

In addition to the axisymmetric mode, similar destabilising effects of increasing Ri are
observed for non-axisymmetric modes; see the neutral curves for m = (1, 2, 3) in panels
(b, c, d), respectively. Certain non-axisymmetric modes become linearly stable, resulting
in the absence of neutral curves in the investigated range of Ta. Some neutral curves consist
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Figure 7. Variations of the linear critical parameters with Richardson number Ri for the quasi-Keplerian flow
at η = 0.3 and Pr = 0.7: (a) linear critical Taylor number Tac (see also the stars in figure 6), (b) linear critical
axial wavenumber kc, (c) linear critical azimuthal wavenumber mc. These data are extracted from the critical
points of the neutral curves in figure 6(a–c); see the eight stars therein.

of disconnected parts or exhibit kinks, such as (m, Ri) = (1, 0.06) (blue dashed lines in
panel b) and (m, Ri) = (2, 0.1) (black curve in panel c). Our result that Tac increases with
smaller Ri is consistent with the numerical observations in Held & Latter (2018), where a
simulation study of thermally stratified quasi-Keplerian flows in a shearing box revealed
that weakening the thermal buoyancy results in a linear instability at a larger Rayleigh
number. Again, we would like to emphasise that our ‘global’ flow configuration is different
than their shearing box.

The linear critical Tac can be determined by minimising Ta along a neutral curve
for all combinations of (m, k) at a given parameter setting. To achieve this, we extract
the eight leftmost data points, marked by stars in figure 6, and display (Tac, kc, mc)
as functions of Ri in figure 7. Here, we observe that Tac increases monotonically with
reducing Ri, with the variation being more pronounced at small Ri. Regarding the linear
critical wavenumbers, for relatively high Ri ≥ 0.1, Tac are obtained for helical modes
with mc = 2 and kc ≈ 2. In contrast, for relatively small Ri = (0.045, 0.05), the linear
instability only exists for m = 0 within the investigated range of Taylor numbers, and kc
dramatically increases upon decreasing Ri. These results suggest that when the thermally
driven buoyancy effect is strong, as manifested at relatively large Ri, both the axisymmetric
and non-axisymmetric disturbances can trigger instabilities, with the non-axisymmetric
mode being more dominant at the instability onset. Conversely, for a weak buoyancy effect
exhibited at relatively small Ri, the instability of non-axisymmetric modes seems to be
severely suppressed, while the axisymmetric mode instability can still be operative.

The rapid increase of (Tac, kc) at small Ri implies that by further reducing thermal
buoyancy through decreasing Ri, both the Taylor number and axial wavenumber would
increase asymptotically. To explore how these results vary with Ri, we look for scaling
results in (Tac, kc) with Ri decreasing from 0.05, as shown in figure 8. Our computational
results indicate that when Ri → Rilimit = 0.034945, the Tac approaches infinity under the
current numerical resolution at η = 0.3, Pr = 0.7. Theoretically, an infinitely large Tac
means linear stability. As shown in figure 8(a), a clear scaling of Tac is present with the
deviation of Ri from the Rilimit, as well as the scaling in kc as a function of Ri − Rilimit in
panel (b). To further corroborate the scaling result, the case of Pr = 0.01 is additionally
calculated, at which Rilimit ≈ 0.00087, showing the same scaling exponents. These scaling
results may serve as a guide for future high-fidelity numerical investigations of the studied
flow. It is noted that similar scalings in the critical parameters have also been observed in
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Figure 8. Scaling laws of (a) linear critical Taylor number Tac ∝ (Ri − Rilimit)
−5 and (b) linear critical

axial wavenumber kc ∝ (Ri − Rilimit)
−6/5 at the low-Richardson-number Ri limit for axisymmetric (m = 0)

quasi-Keplerian flow at η = 0.3. The limit values of Rilimit are computationally estimated to be Rilimit ≈
0.034945 for Pr = 0.7 and Rilimit ≈ 0.00087 for Pr = 0.01.

other complex fluids as a function of governing parameters, such as viscoelastic fluids; see
Garg et al. (2018).

4.2.3. Effects of Prandtl number Pr
To explore the effects of the Prandtl number Pr, the linear critical Taylor number Tac is
calculated for various Pr covering five orders of magnitude, with other parameters fixed at
(q, η, Ri) = (1.5, 0.3, 0.1). Several observations emerge from this analysis.

Firstly, the results in figure 9(a) reveal that, at Ri = 0.1, high momentum diffusivity
or low thermal diffusivity (meaning greater Pr) has destabilising effects on the
linear instability in the quasi-Keplerian flow because Tac monotonically decreases with
increasing Pr from 0.0001 to 7. However, at Ri = 0.01, the effect of Pr is initially
destabilising as it increases from 0.0001 to 0.02, but it becomes strongly stabilising with
further increases. The rapid increase of Tac suggests a maximal Pr beyond which the
viscous dissipation is sufficiently strong to render the flow linearly stable, where the
Tac → ∞. In both cases of Ri = 0.1 and 0.01, the asymptotic slopes of the function
curves approach −6

5 in the low-Pr limit, indicating a scaling law of Tac ∝ Pr−6/5. As
pointed out by one of the reviewers, caution should be taken when one attempts to make
any link between this trend to the typical scaling of the linear critical Reynolds number
Rec ∝ Pm−1, where Pm is the magnetic Prandtl number, for the onset of MRI with a pure
axial magnetic field in a TC geometry (Rüdiger, Schultz & Shalybkov 2003; Hollerbach
& Rüdiger 2005). Note that Ta is a parameter corresponding to the square of the typical
definition of Re.

Secondly, figure 9(b) shows that the linear critical axial wavenumber kc mostly remains
of O(1) for all Pr values at Ri = 0.1. This result is consistent with that in figure 8(b), where
kc can be extrapolated to O(1) at Ri = 0.1. Specifically, for intermediate Prandtl numbers
0.5 � Pr � 1, figure 9(b) indicates kc ∼ 1, meaning that the typical length scale of the
these critical modes is comparable to the cylinder gap width. However, for relatively small
or large values of Pr � 0.1 or Pr � 5, kc is approximately equal to 3. At Ri = 0.01, the
variation of kc as a function of Pr presents a radically different behaviour. At the low-Pr
limit, kc still remains at about 3, but when the maximal Pr is approached, kc increases

999 A75-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.976


Linear instability in quasi-Keplerian flows

10–4 10–2 100

1010

105

Tac kc mc

Pr
10–4 10–2

10–2 10–1

100

Pr
10–4 10–2 100

Pr

4 2

1

0

3
60

40

20

0

2

1

0

Ri = 0.1
Ri = 0.01

Ri = 0.1

Ri = 0.01

Ri = 0.1

Ri = 0.01

Slope = –6/5

(b) (c)(a)

Figure 9. Variations of the linear critical parameters as functions of Prandtl number Pr for the quasi-Keplerian
flow at η = 0.3: (a) linear critical Taylor number Tac, (b) linear critical axial wavenumber kc, (c) linear critical
azimuthal wavenumber mc. Here, Tac ∝ Pr−6/5 when Pr is asymptotically small, but no scaling law in kc is
observed. The inset of panel (b) shows the large variation of kc when Ri = 0.01.

dramatically; see the red crosses in the inset of panel (b). Accompanying the scaling law
of Tac at the low-Pr limit, the variation of kc is small, increasing by less than 10 % when Pr
is reduced by two orders of magnitude. No observable scaling law of kc is evident within
the investigated range of Prandtl number.

Note that in both Ri cases, kc ∼ 3 at the small-Pr limit. A similar value of kc ≈ 3.13
has been reported by Jenny & Nsom (2007) in a geophysical study based on the TC
flow modelling. Likewise, Meyer et al. (2021) documented an asymptotic wavenumber
of about kc ≈ 3.1 at large Pr or Ra for a TC flow with centrifugal buoyancy effects.
The close value of kc in these different TC configurations suggests the generic features
shared by the various flow instabilities in TC flows subjected to radial buoyancy due to
stratification. It should be emphasised that the above (relatively) long-wavelength feature
pertains to the linear critical conditions, whereas the short-wavelength modes, which are
more astrophysically relevant, will dominate in the quasi-Keplerian flow for Ta  Tac, as
illustrated in figure 4.

Lastly, it is found that axisymmetric modes dominate in the linear instability at high
and low Pr. As illustrated in figure 9(c), for the Pr values studied at Ri = 0.1, Tac
is consistently attained at m = 0, except for the cases Pr = (0.5, 0.7), for which Tac
is obtained for helical modes with m = 2. Thus, non-axisymmetric modes are only
significant at the instability onset in a narrow range of Pr. At Ri = 0.01, the axisymmetric
mode dominates the instability onset at all the Pr investigated.

4.2.4. Effects of radius ratio η

In the preceding analysis the radius ratio of the co-rotating cylinders is held fixed at η =
0.3. However, the relevant radius ratio in the TC flow to model the actual accretion disks
may be much smaller than 0.3 due to their inherently flat and thin structures around small
central objects (Abramowicz & Straub 2014). In this section we investigate how varying η

affects the linear instability in the thermal TC flow.
Figure 10(a) reveals that reducing the radius ratio destabilises the quasi-Keplerian

flow for the four selected combinations of (Pr, Ri). Specifically, for the case
at (Pr, Ri) = (0.7, 0.01), no linear instability can be found when η � 0.2. This
demonstrates the significant influence of the curvature effect on the quasi-Keplerian flow
stability/instability. In contrast, Meyer et al. (2021) observed that reducing the radius ratio
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Figure 10. Variations of the linear critical parameters as functions of radius ratio η for the quasi-Keplerian
flow at different (Pr, Ri) settings: (a) linear critical Taylor number Tac, (b) linear critical axial wavenumber kc,
(c) linear critical azimuthal wavenumber mc.

stabilised quasi-Keplerian flows subjected to centrifugal buoyancy in the TC geometry
with a higher temperature at the outer cylinder – a configuration distinct from ours.

Panel 10(b) depicts the variation of the corresponding linear critical kc, showing that the
onset of instability is consistently triggered by disturbances with finite axial wavelength.
This axial dependence suggests that the linear instability sets in with axial variation, at
least when Ta is slightly beyond Tac. Regarding the linear critical mc, panel 10(c) illustrates
that at small η � 0.1 the instability onset is consistently dominated by the first helical
mode at m = 1, except for the case at (Pr, Ri) = (0.01, 0.01), which is dominated by the
axisymmetric mode. At relatively large η, the case (Pr, Ri) = (0.7, 0.1) favours mc = 2,
whereas all the other cases pick the axisymmetric mode.

4.2.5. A comparison to the local stability analysis of the flow
As suggested by one of the reviewers, we next compare the results of our stability analysis
to those of a local analysis (Klahr & Hubbard 2014; Lyra 2014). In a local analysis, flow
homogeneity has been assumed in all the directions. To distinguish, we refer to our above
analysis as a global analysis, as the flow in the radial direction is inhomogeneous due to
the presence of cylinder walls.

In the following, we select control parameters in the local analysis as close as possible
to those used in §§ 4.2.1–4.2.4. The obtained local results also reveal a linear instability in
the thermally stratified quasi-Keplerian flow. The observed effects of various governing
parameters on this instability are also qualitatively consistent to those in the global
analysis. Differences lie in two aspects. First, the local analysis based on the short wave
approximation only provides limited information on the instability growth rate due to
spatially periodic disturbances of short wavelength; it gives no information on the unstable
mode pattern. In contrast, the global analysis uncovers rich mode patterns of the instability,
exhibiting various length scales in all three directions; see figure 3, figure 14 and more
in the supplementary material. Second, the instability onset Taylor number and axial
wavenumber from the two analyses show notable differences; and so do the corresponding
scaling laws. All the comparisons, either qualitative or quantitative, are summarised in
table 1. Below, we describe them in detail.

In all the calculations for the local analysis, solving the 5 × 5 eigenvalue problem
(2.13) results in five eigenvalues, from which the leading eigenvalue is always selected for
extracting the linear growth rate. Figure 11(a) displays contours of the linear growth rate
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No. Quantities compared Global results Local results Parameters

1 The highest linear growth rate
ωi and the corresponding axial
wavenumber

ωi ≈ 1.35,
k ≈ 47.62

ωi ≈ 1.05, kz ≈ 67
at r0 = 0.5

(η, Pr, Ri, Ta) =
(0.3, 0.7, 0.1, 1010)

2 Linear critical Taylor number Tac ≈ 6 × 104 Tac ≈ 5 × 105 (η, Pr, Ri) =
(0.3, 0.7, 0.1)

3 Effect of increasing Ri Destabilising Destabilising (η, Pr) = (0.3, 0.7)

4 The scaling law of the linear
critical parameters

Tac ∝ (Ri −
Rilimit)

−5, Rilimit ≈
0.034945; kc ∝
(Ri − Rilimit)

−6/5

Tac ∝ (Ri −
Rilimit)

−1,
Rilimit ≈ 0.0453873;
kz,c ≈ 4.44

(η, Pr)=(0.3, 0.7)

5 Effect of increasing Pr Destabilising Destabilising (η, Ri) = (0.3, 0.1)

6 The scaling law of the linear
critical parameters

Tac ∝ Pr−6/5; kc ≈
3

Tac ∝ Pr−1; kz,c ≈
4.44

(η, Ri) = (0.3, 0.1)

7 Effect of reducing η Generally
destabilising

Generally
destabilising

(Pr, Ri) =
(0.01, 0.01)

8 The scaling law of the linear
critical parameters

No scaling law of
Tac; kc ≈ 3

No scaling law of
Tac; kz,c ≈ 4.44

(Pr, Ri) =
(0.01, 0.01)

Table 1. Comparisons of the results from the global analysis and the local stability analysis of the same
quasi-Keplerian flow in the TC geometry. For all the comparisons, m = 0. For numbers 2 to 8 in the
comparisons, the local results are obtained at a fixed radial location of r0 = (ri + ro)/2.

ωi in the wavenumber plane at three different radial locations for the quasi-Keplerian flow
at (η, Pr, Ri, Ta, m) = (0.3, 0.7, 0.1, 1010, 0). The area below the neutral curve indicates
linear instability obtained from the local analysis. The corresponding instability in the
global analysis is reported in figure 4, where the largest growth rate is ωi ≈ 1.35 at
(k, m) = (47.62, 0). In figure 11(a) the largest growth rate of ωi ≈ 1.05 is attained
at (kr, kz) ≈ (44, 67) for r0 = 0.5. Quantitatively, both the growth rate and the axial
wavelength are of the same order of magnitude. The radial location r0 = 0.5 also aligns
with the localised mode pattern depicted in figure 1(b) of the supplementary material.
Another important observation is that for a given kz, the growth rate increases as kr
decreases, indicating that the local instability favours relatively large radial structures.
Comparatively, the global analysis is better suited for resolving large-scale unstable modes.

Figure 11(b) shows how the neutral curve varies with Ta in the wavenumber plane for the
local flow at the centre of the cylinder gap r0 = (ri + ro)/2. The expansion of the neutral
curve with increasing Ta indicates a destabilising effect, consistent with the global analysis
reported in § 4.2.1. However, this variation is specific to the radial location r0 = (ri +
ro)/2. To determine the critical Ta that depends on r0, we plot neutral curves in the Ta–kz
plane for various values of r0 in figure 11(c). In this plot, the radial wavenumber kr is set to
its lowest allowed value at each radial location r0, i.e. kr = max[π/(r0 − ri), π/(ro − r0)]
(note that for a given radial wavenumber kr, the disturbance wavelength is Lr = 2π/kr and
the whole wave must be confined within the radial domain, requiring that r0 − Lr/2 ≥ ri
and r0 + Lr/2 ≤ ro). This choice of kr ensures the highest linear growth rate maximised
over kr. Figure 11(c) shows that r0 = (ri + ro)/2 corresponds to the smallest critical Ta
above which the local instability occurs, with an approximate value of Tac ≈ 5 × 105.
This value is of a similar order of magnitude to that observed in figure 5(b) from the
global analysis.

In light of the above effect of r0 on the local instability, we fix r0 = (ri + ro)/2 to
study the influence of various governing parameters on the instability onset. Figure 11(d)
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Figure 11. Linear instability observed in the local analysis of the quasi-Keplerian flow at (η, Pr, Ri, m) =
(0.3, 0.7, 0.1, 0). (a) Contours of the linear growth rate in the wavenumber plane for the flow at three different
radial locations r0 and Ta = 1010. The solid black curve represents the neutral curve. (b) Variation of the neutral
curve in the wavenumber plane with Ta for the local flow at the centre of the cylinder gap r0 = (ri + ro)/2.
(c) Variation of the neutral curve in the Ta–kz plane with varying radial locations r0. (d) Variation of the neutral
curve with Richardson number Ri for the local flow at the centre of the cylinder gap r0 = (ri + ro)/2.

illustrates the destabilising effect of increasing the Richardson number Ri on the neutral
curve, consistent with the global analysis results presented in figure 6(a). However, a
notable difference is that the linear critical axial wavenumber kz,c remains constant
across varying Ri; see also figure 12(d,e, f ), where it maintains a value of approximately
4.44 despite changes in (η, Pr, Ri). The reason for this constant value remains unclear.
Figure 12(a) shows Tac as a function of Ri. It can be seen that the scaling law of Tac has
significantly changed, with an exponent of −1 compared with −5 in the global analysis.
Increasing the Prandtl number Pr is also destabilising, as evidenced by figure 12(b), where
the scaling law is Tac ∝ Pr−1. This is in close agreement with the scaling Tac ∝ Pr−6/5

from the global analysis shown in figure 9(a). Additionally, figure 12(c) demonstrates that
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Figure 12. Variations of the linear critical Taylor number Tac and the linear critical axial wavenumber kz,c
with the control parameters (Ri, Pr, η) for the axisymmetric (m = 0) quasi-Keplerian local flow at the cylinder
gap centre r0 = (ri + ro)/2. (a,d) At the low-Richardson-number Ri limit and (η, Pr) = (0.3, 0.7). The limit
values of Rilimit are computationally estimated to be Rilimit ≈ 0.0453873. (b,e) At the small-Prandtl-number Pr
limit and (η, Ri) = (0.3, 0.1). (c, f ) At varying viscosity ratio η and (Pr, Ri) = (0.01, 0.01). In panels (d–f ),
kc ≈ 4.44.

reducing the radius ratio η generally has a destabilising effect, consistent with the trend
observed in figure 10(a) from the global analysis.

In a nutshell, the results from the local stability analysis of the quasi-Keplerian flow
are qualitatively consistent with those from the global analysis, indicating that similar
underlying physics is at play. However, quantitatively, the scaling laws of the linear critical
conditions differ between the local and global analyses, highlighting the distinctiveness of
these two approaches. Comparatively, the global analysis provides more solid results than
the local analysis. The local analysis involves numerous assumptions and the large-scale
mode structures resolved in the global analysis can never be reproduced in the local
analysis, underscoring the limitations of the local approach.

4.3. Linear instability at extreme parameters
The preceding subsection demonstrates that, generally, decreasing Pr or Ri has stabilising
effects, while decreasing η is destabilising. To discuss the values of these parameters
relevant to accretion disks in the literature, we mention that Held & Latter (2018) used
Pr = 2.5 and Ri = 0.05 in their numerical simulations of thermal quasi-Keplerian flows
in a 3-D local shearing box. Latter (2016) noted that Pr could be as low as 10−7 in
the inner radii and the author adopted a small Ri value of 0.01. For a TC geometry,
appropriate values of η are not directly extractable from the literature due to the absence
of an ‘outer rotating cylinder’ in real accretion disks. For modelling purposes, one
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Figure 13. Contours of the linear growth rate ωi in the Ta–k plane for the quasi-Keplerian flow at (η, Pr, Ri) =
(0.05, 10−3, 10−3). The black curves are the neutral curves (ωi = 0) and the red star marks the linear critical
condition at about (Tac, kc, mc) = (2.28 × 109, 2.46, 1).

may consider small values since disks are typically thin and flat with relatively small
central objects (Abramowicz & Straub 2014). This subsection illustrates that the above
reported thermally driven linear instability persists with the control parameters becoming
as small as (η, Pr, Ri) = (0.05, 10−3, 10−3), which are more astrophysically relevant. The
linear instability at much more severe parameters is further demonstrated in § 5 of the
supplementary material. In addition, the influence of the gravitational acceleration profile
is examined at the parameter setting of (η, Pr, Ri) = (0.05, 10−3, 10−3) and discussed in
Appendix B, showing that a stronger gravity field enhances the linear instability and vice
versa.

4.3.1. The critical condition for the flow at (η, Pr, Ri) = (0.05, 10−3, 10−3)

The neutral curves in the case (η, Pr, Ri) = (0.05, 10−3, 10−3) for different values of
m are shown in figure 13, from which one can see that the linear instability sets in at
approximately (Tac, kc, mc) = (2.28 × 109, 2.46, 1); see the red star in panel (b). The
eigenvalue of this neutral mode at the critical condition is ω ≈ −0.15607945375 −
0.00000000002i. The frequency corresponds to a negative phase speed of cr = ωr/m ≈
−0.156, indicating that this mode rotates in the opposite direction of the base flow when
viewed in the rotating frame of reference. After transforming back to the fixed frame of
reference (see § 2 of the supplementary material for a description of the transformation
method), its phase speed becomes cr = [ωr + m/(2Ro)]/m = ωr/m + 1/(2Ro) ≈ 0.0587,
much smaller than the lowest angular frequency ωo = 1/(2Ro) ≈ 0.214 of the base flow,
which is attained at the outer rotating cylinder. The pattern of this mode at m = 1 is
visualised in figure 14(a iii,b iii), showing that the disturbance fills the entire cylinder gap,
with the largest variations occurring in the thin vicinity near the inner rotating cylinder. In
the r–z plane the vortices attached to the inner cylinder are strongly tilted, indicating that
the mode travels in the negative z direction when viewed in the rotating frame of reference.
This is consistent with its phase speed in the z direction cr = ωr/kc ≈ −0.0634.

In addition to the helical mode at m = 1, the axisymmetric mode (m = 0) warrants
examination due to the proximity of its neutral curve’s lowest Ta value (2.41 × 109) to
Tac ≈ 2.28 × 109. This closeness suggests potential interaction between these modes in
nonlinear simulations of flow transition at the instability onset. The neutral mode has a pair
of complex conjugate eigenvalues ω ≈ ±0.307448512 + 0.000000003i. The structures of
this pair of modes are visualised in figure 14(a i,a ii,b i,b ii). In the r–z plane, localised
vortices are seen tilting up and down near the inner rotating cylinder, indicating that
these two modes propagate at the same speed but in opposite directions. In the r–θ
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Figure 14. Contours of the perturbation velocity magnitude at the four critical points identified in figure 13.
Panel (a) shows the cross-sections in the r–z plane where only one wavelength is plotted at the azimuthal
angle θ = 0; panel (b) shows the cross-sections in the r–θ plane at the axial position z = 0. From left to right,
(a i,a ii) and (b i,b ii) correspond to a pair of complex conjugate modes at m = 0, (a iii–a v) and (b iii–b v) are
for m = 1, 2, 3, respectively.

plane the structure is identical when visualised at the axial location z = 0, as shown
in figure 14(b i,b ii). In addition, figure 14(a iv,a v,b iv,b v) depicts the flow structures of
the non-axisymmetric modes m = (2, 3) at the identified critical points. As m increases,
the disturbance becomes more localised and moves closer to the outer rotating cylinder.
Similar behaviour can be observed in figure 3 of the supplementary material. It should be
noted that the parameters used here and those for figure 3 therein are significantly different,
suggesting that the shifted localisation of the mode with increasing m may be a generic
feature across the parameter space.

4.3.2. Beyond the critical condition: linear instability at Ta = 1016

With the instability onset identified at (Tac, kc, mc) = (2.28 × 109, 2.46, 1), the following
question arises: Is this critical condition relevant to accretion disks? A key factor in this
consideration may be the axial wavelength of the mode. In this case, the axial wavelength
is on the order of the cylinder gap, making it incompatible with accretion disks because
the characteristic axial length scale in real disks is usually much smaller than the radial
length scale, such as the disk radius (Latter 2016). To obtain more relevant results, we
have searched for linear instabilities with very small axial wavelengths. Indeed, figure 4
demonstrates that linear instability persists at Taylor numbers significantly higher than the
onset value (Ta  Tac). At such high Ta, the linear instability spans a wide range of high
axial wavenumbers, corresponding to small axial length scales, which are more similar to
the accretion-disk conditions.

For the case at (η, Pr, Ri) = (0.05, 10−3, 10−3), we investigate the unstable mode
at Ta = 1016, seven orders of magnitude larger than the critical value of about 109.
The highest Ta previously investigated in TC flows is about 1013 (Grossmann et al.
2016). Although Ta = 1016 may be challenging to achieve in numerical simulations and
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Figure 15. (a) Linear growth rate ωi as function of k for the quasi-Keplerian flow at Ta = 1016, η = 0.05,
Pr = 10−3 and Ri = 10−3. (b) Frequency ωr as function of k for the same flow.

physical experiments, it is feasible in our linear stability analysis provided sufficient
spatial resolution in the spectral method. For the following calculations, we use 401
Chebyshev–Lobatto nodes. Figure 15(a) shows the dispersion relation ωi(k) for the case
abovementioned. At this Ta, the most unstable mode becomes the axisymmetric mode
(m = 0), rather than the helical mode at m = 1 that dominates at the linear critical
condition, as discussed in figure 13(b). Notably, the flow is linearly unstable over a wide
spectrum of axial wavenumbers k. For m = 0, the instability range is 0 < k < 800; for m =
1, the range narrows but remains broad at 0 ≤ k < 300. Higher azimuthal wavenumbers
m > 2 also exhibit linear instability, but with much smaller linear growth rates, so they
are not shown. The non-smoothness of the blue curve for m = 0 in figure 15(a) at around
k ≈ 250 is due to the transition of the most unstable mode from stationary to oscillatory,
as seen in the frequency variations ωr(k) in panel (b). Lastly, it should be mentioned
that in addition to the above most unstable mode at m = 0 and the leading unstable
mode at m = 1, there are a magnitude of axisymmetric and non-axisymmetric unstable
modes in the corresponding eigenspectra for this case, signifying the high complexity of
the instability diagram. As these modes are less unstable, we will not characterise them
further.

5. Conclusions

Motivated by research efforts searching for hydrodynamic instabilities without magnetic
effects that may be operative in protoplanetary disks, we conducted a 3-D ‘global’ analysis
of thermally stratified quasi-Keplerian flows between a hot inner rotating cylinder and a
cold outer rotating cylinder.

Unlike previous work by Meyer et al. (2021), our model incorporates stellar gravity
in the radial direction and considers the temperature distribution within accretion disks,
which decreases with increasing distance from the central star. The flow instability in
the TC geometry should also be distinguished from that found based on short wave
approximations (Klahr & Hubbard 2014; Lyra 2014), as the latter bears only local
significance.

We identified a robust flow instability in the quasi-Keplerian flow regime driven purely
by radial thermal stratification along with radial gravity, without the need for a magnetic
field as required by MRI. This instability manifests in both infinitesimal axisymmetric
and non-axisymmetric modes across two or three dimensions, exhibiting typical unstable
eigenmode structures resembling those in canonical Rayleigh–Bénard convection but
distorted by the laminar circular Couette flow, especially in non-axisymmetric cases.
Our calculation of the linear critical conditions (Tac, kc, mc) revealed that decreasing the
Prandtl number Pr or Richardson number Ri generally stabilises the quasi-Keplerian flow.

999 A75-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.976


Linear instability in quasi-Keplerian flows

Conversely, reducing the radius ratio η is destabilising. At small values of Pr = 0.001
and Ri = 0.001, the linear instability persists at sufficiently large Ta � 109 with a small
axial wavelength in the weakly thermally stratified quasi-Keplerian flow. This suggests that
even very weak thermal buoyancy is sufficient to trigger the linear instabilities. Likewise,
Balbus & Hawley (1991) showed that even a weak magnetic field suffices to cause MRI.
Additionally, we revealed two scaling laws. The first one shows that Tac ∝ Pr−6/5 at
the small-Pr limit, implying again the relevance to accretion disks where Pr can be as
low as 10−7 (Latter 2016). The second one reveals that Tac ∝ (Ri − Rilimit)

−5, indicating
the stabilising effect of decreasing Ri. These scaling laws may help to guide future
high-fidelity numerical investigations or experiments of the studied flow.

This thermally driven hydrodynamic linear instability and subsequent nonlinear
dynamics may provide a mechanism for explaining radially outward angular momentum
transport in unmagnetised accretion disks or dead zones where MRI is inoperative. We
note that Lyra (2014) has successfully produced self-sustained 3-D vortex flows from the
saturation of a linear overstability in the modelling of protoplanetary disks; however, their
linear instability is localised since they assumed homogenisation in three directions and the
evolution may need to be further investigated in a global sense. In addition, Held & Latter
(2018) have demonstrated a series of accretion-disk dynamics from the linear instability (of
the axisymmetric mode only) to turbulence based on a shearing box approximation of the
quasi-Keplerian flow also with thermal stratification but in the axial direction. Unlike these
previous localised linear instability assumptions, our 3-D global analysis complements
existing discussions, furthering our understanding of accretion-disk dynamics by showing
that even very weak radial thermal stratification can cause sufficiently strong gravitational
buoyancy to drive the quasi-Keplerian flow linearly unstable. Meanwhile, we point out
that the TC flow is a limited model for the accretion disk. One of the drawbacks is
the configuration of two no-slip no-penetration cylinder walls that do not exist in real
accretion disks. This work focuses on the momentum transport mechanism in accretion
disks. Nevertheless, we hope that the present work on the radial thermal stratification could
inspire more studies along this vein of research and contribute to a deeper understanding of
the complex accretion-disk dynamics. Future research avenues may include investigating
flow bifurcation beyond the linear instability, conducting direct numerical simulations
of nonlinear development, exploring turbulent flows in thermally driven TC flow and
assessing the effects of fluid compressibility on linear instability.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.976.
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Items compared Meyer et al. (2021) The present study

Thermally stratified TC flow Yes Yes
Stratification direction Radially Radially
Boussinesq approximation Yes Yes
Incompressible Yes Yes
Inner cylinder temperature Cold Hot
Outer cylinder temperature Hot Cold
Gravitational force Ignored Incorporated
Centrifugal force Incorporated Ignored
Destabilising mechanism Centrifugal buoyancy Gravitational buoyancy
Prandtl number regime focused High Pr: [1, 103] Low Pr: [10−4, 10]
Rayleigh number regime focused Ra: [103, 105] Equivalent to Ra: [103, 1010]
Richardson number regime focused N.A. Low Ri: [10−3, 10−1]
Taylor number regime focused Low Ta: Ta � 103 High Ta: [106, 1016]

Table 2. Differences and similarities between the present study and Meyer et al. (2021).

Appendix A. Illustration of key differences between the current work and two
previous studies on the same topic

In the introduction section we briefly mentioned the links of our study to some relevant
prior works. Below, we describe in detail the differences between our study and Meyer
et al. (2021) and Klahr & Hubbard (2014) to demonstrate the position and novelty of our
research.

Meyer et al. (2021) similarly conducted the linear stability analysis of the
quasi-Keplerian flow in a TC geometry. However, their flow configuration, with a cold
inner cylinder and a hot outer cylinder, does not align with the temperature distribution of
accretion disks, where the temperature decreases in the radial direction (Fromang & Lesur
2019). Additionally, their focus was on the effects of centrifugal buoyancy, neglecting
gravitational acceleration, which may not be directly applicable for modelling accretion
disks under stellar gravity. Moreover, the parameters most relevant to disk dynamics
comprise low Pr (Latter 2016) and high Ta (Ji et al. 2006; Grossmann et al. 2016), which is
at variance with the high Prandtl number and low Taylor number considered in Meyer et al.
(2021). The present study, however, takes these perspectives into account. More detailed
comparisons are shown in table 2. Despite the differences mentioned, we acknowledge
that the general destabilising mechanism in our study and that in Meyer et al. (2021) are
similar: density stratification due to a thermal gradient can be unstable under acceleration
from external forces when the acceleration is in the opposite direction to the density
stratification. Nevertheless, we believe that our study adds value to the explanation of
angular momentum transport in accretion disks with more detailed results.

Regarding the comparison with Klahr & Hubbard (2014), there are three main
differences. First, they modelled the thermal relaxation process, where the heating and
cooling time scales play a crucial role, in their discovery of the convective overstability.
This is more realistic concerning the thermodynamics in accretion disks than our thermal
equilibrium assumption, which was adopted for simplicity. Second, their analysis was
local, performed in a small volume around a given spatial location (r, θ) (note that they
ignored the axial velocity uz equation). This local assumption excludes the possibility
of any linear instability triggered by large-scale structures. In contrast, our model is
‘global’, with flow boundaries in the radial direction and the entire 2π radian in the
azimuthal direction. Third, they made various assumptions and simplifications in deriving
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Items compared Klahr & Hubbard (2014) The present study

Thermally stratified TC flow Yes Yes
Stratification direction Radially Radially
Thermal relaxation process Modelled Assuming thermal equilibrium
Model type Local shearing box Global 3-D model
Incompressible Yes Yes
Inviscid Yes No
Gravitational force Ignored Incorporated
Centrifugal force Ignored Ignored
Continuity equation Neglected Solved
Axial velocity Ignored Solved
WKB approximation Yes No
Destabilising mechanism Thermal relaxation driven Gravitational buoyancy

Table 3. Differences and similarities between this study and Klahr & Hubbard (2014).

the dispersion relation due to the local model selection. In contrast, we numerically solve a
generalised eigenvalue problem for the complete dispersion relation. Table 3 shows more
detailed comparisons.

In summary, both of the two abovementioned works are relevant to accretion disks,
though the modelling levels differ. Subsequent works on the convective overstability by
Lyra (2014), Latter (2016) and Held & Latter (2018) followed the same local approximation
in a shearing box, so comparisons will not be repeated here.

Appendix B. Influence of the gravitational acceleration profile on the linear
instability

In the present study the gravitational acceleration profile g(r) = ro/r is suited for the
TC flow geometry described in cylindrical coordinates. However, for realistic accretion
disks described in spherical coordinates, the profile due to the central object should follow
g(r) = r2

o/r2. To the best of our knowledge, neither of these profiles has been realisable
in laboratory experiments to date. This implies that numerical simulations are likely
the most viable approach to further investigate the complex nonlinear dynamics of the
observed linear instability. Fortunately, a constant profile g(r) = 1 (non-dimensional) has
been realised in experiments on thermo-electric flow convection in a cylindrical annulus
(Antoine et al. 2023). This ‘electric gravity’ can be generated due to dielectrophoretic
forces when an electric field is applied radially. To minimise the impact of Earth’s gravity
on the experimental set-up, these experiments can be conducted during sounding rocket
flights, which provide a microgravity environment (Antoine et al. 2023). Although the
‘electric gravity’ technique is expensive and challenging, it offers a potential avenue
for investigating the present thermally driven linear instability in quasi-Keplerian flows.
Future work in this direction could benefit from linear stability analysis using the constant
profile g(r) = 1. As suggested by one of the reviewers, in this appendix we compare
the effects of the above three different gravitational acceleration profiles on the linear
instability.

These profiles can be expressed collectively as

g(r; p) = rp
o

rp with p = 0, 1, 2. (B1)
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Figure 16. Eigenspectra for different gravitational acceleration profiles (g(r) = rp
o/rp with p = 0, 1, 2,

respectively) for the quasi-Keplerian flow at (η, Pr, Ri, Ta) = (0.05, 10−3, 10−3, 1016). Panel (a) is for the
case at (k, m) = (75.3178, 0); panel (b) is for the case at (k, m) = (80.4170, 1); these two panels correspond to
the two maxima respectively in figure 15(a). Labels point to the leading modes for each p.

2

2

4

6

2

0

4

6

8

8

10
p = 0 p = 1 p = 2

4 6

Ta

k

8 10

(×109)

5

Ta
10 15

(×109)

(b)(a)

Figure 17. Neutral curves for different gravitational acceleration profiles (g(r) = rp
o/rp with p = 0, 1, 2,

respectively) for the quasi-Keplerian flow at (η, Pr, Ri) = (0.05, 10−3, 10−3) and (a) m = 0, (b) m = 1. The
neutral curves for p = 1 are exactly those in figure 13(a,b).

At the outer rotating cylinder ro, the non-dimensional gravitational acceleration is always
equal to one, as g∗

o is chosen as the reference value for non-dimensionalisation. For the
flow field at r < ro, the gravitational acceleration g(r) ≥ 1. Its maximum value is attained
at the inner rotating cylinder ri, with g(ri; p = 2) > g(ri; p = 1) > g(ri; p = 0) = 1.

Our calculations indicate that, with all the other parameters fixed, compared with
the case with p = 1, a stronger gravity field (p = 2) is destabilising, while a weaker
gravity field (p = 0) is stabilising. This behaviour is illustrated by the eigenspectra shown
in figure 16. Panel 16(a) displays the axisymmetric linear instability for the flow at
(η, Pr, Ri, Ta) = (0.05, 10−3, 10−3, 1016). The leading unstable modes for p = 0, 1, 2 are
labelled as ‘LMp0a’, ‘LMp1a’ and ‘LMp2a’, respectively. Compared with mode ‘LMp1a’,
mode ‘LMp2a’ exhibits a higher linear growth rate ωi, while mode ‘LMp0a’ shows a
lower growth rate. A similar trend is observed for non-axisymmetric modes in panel 16(b).
Neutral curves provide another perspective on the destabilising or stabilising effects. As

999 A75-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.976


Linear instability in quasi-Keplerian flows

shown in figure 17(a,b), the neutral curve for p = 2 shifts to the left, indicating a smaller
critical Taylor number and, thus, a destabilising effect due to the stronger gravity field.
Conversely, for the constant profile (p = 0), the neutral curve shifts to the right and
results in a larger critical Taylor number, demonstrating the stabilising effect of a weaker
gravity field. It is worth noting that the linear critical Taylor numbers Tac for the three
gravitational acceleration profiles are of the same order of magnitude. This suggests that
the constant gravitational acceleration profile with p = 0, which is the only realisable
profile in experiments to date, could be used to predict approximately the instability onset
of the flow with p = 1 in future experiments.

In the end, we mention in passing that the influence of the gravitational acceleration
profile on the linear instability can be understood in terms of buoyancy. Increased gravity
enhances the buoyancy force, which promotes flow instability, as evidenced by the
gravitational buoyancy term in the governing equation (2.1a).
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