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Abstract

The graph product of a family of groups lies somewhere between their direct and free products, with
the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice
ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies
Nica's amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal
property, and their representations are faithful if the generating isometries satisfy a joint properness
condition. When applied to right-angled Artin groups this yields a uniqueness theorem for the C*-algebra
generated by a collection of isometries such that any two of them either *-commute or else have orthogonal
ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by
Brieskorn and Saito, and Deligne.
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Keywords and phrases: graph product, quasi-lattice order, covariant isometric representation, Toeplitz
algebra, Artin group.

1. Introduction

Several celebrated results in C* -algebra theory assert that the C* -algebra generated
by a semigroup of isometries does not depend on the specific isometries, provided
they satisfy a properness condition. The situations described by these results are of
considerable interest, stemming from the fact that the algebraic structure given by the
semigroup operation determines a unique C*-norm on the *-algebra generated by the
isometries. As examples we have Coburn's theorem on the C*-algebra generated by a
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single isometry [4], Douglas' theorem on the C*-algebra of a one parameter semigroup
of isometries [11], and the generalization by Murphy to the Toeplitz C*-algebra of a
totally ordered group [17]; in all these cases the properness condition simply says that
the isometries are not unitary.

Moving away from total orders on abelian groups, Nica [18] considered a class
of partially ordered groups (G, P) he called quasi-lattice ordered. Inspired by what
happens with the left regular (Toeplitz) representation of the positive cone P, he
isolated a key covariance condition, which is automatic for total orders, and defined
a universal C*-algebra C*(G, P) whose representations are given by the covariant
isometric representations of P. He proved that the uniqueness of the C*-algebra
generated by a covariant isometric representation depends on an amenability property
of the quasi-lattice order that is strictly weaker than amenability of the underlying
group. Indeed, he showed that Cuntz's result [7] on the uniqueness of the C*-algebra
8?' On generated by n isometries with orthogonal ranges can be seen as an amenability
result for the canonical quasi-lattice order on the free group on n generators. In this
case the covariance condition requires that the generating isometries have orthogonal
ranges, and the properness condition says that the sum of these ranges is not the whole
Hilbert space.

In [16] Laca and Raeburn associated a semigroup dynamical system to each quasi-
lattice order and showed that the corresponding crossed product is canonically isomor-
phic to the universal C*-algebra C*(G, P). This approach led to two main advances.
The first one was the generalisation to all quasi-lattice orders of some key estimates of
Cuntz [6], which provides a convenient framework in which to study faithfulness of
representations and uniqueness properties. The second one was a direct proof of the
amenability of the quasi-lattice orders on a large class of (nonamenable) free product
groups, which widened the range of application of the uniqueness results.

Direct products and free products of groups are both special cases of the more
general construction of a graph product of groups (see Section 2 below), and in this
paper we address the natural questions of whether graph products support quasi-
lattice orders, and under which conditions these quasi-lattice orders are amenable in
the sense of Nica [18]. Our main technical results are Theorem 10, which shows that
graph products of quasi-lattice ordered groups are indeed quasi-lattice ordered, and
Theorem 20, which gives a sufficient condition for their amenability. Combining this
with the results of [16] in Theorem 21, we characterize faithful representations and
give a uniqueness result for the Toeplitz algebras of graph products.

An interesting class of examples is that of graph products of copies of (2, N),
otherwise known as graph groups or right-angled Artin groups. It follows from our
main results that, in the language of Nica [18], they are all amenable quasi-lattice
orders, giving a unified statement of the amenability of the canonical quasi-lattice
orders on all free groups and all free abelian groups, as well as providing many new
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examples of amenable quasi-lattice orders. The corresponding Toeplitz C*-algebras
are thus universal and unique. We state this main result in terms of generators and
relations in Theorem 24, which contains, as extreme cases, Cuntz's theorem (in which
the generating isometries have mutually orthogonal ranges) and a multivariable version
of Coburn's theorem, (in which the generating isometries *-commute, that is, they
commute with each other and with each other's adjoints). See [20] for results related
to this last situation.

Other interesting quasi-lattice orders are provided by the family of Artin groups of
finite type, with the embedded Artin monoid as positive cone [1,10]. These examples,
which include the braid groups, are lattice groups, because every pair of elements has
a least common upper bound. In Section 6 we prove, using an argument essentially
due to Nica, that if a group is lattice ordered and amenable as a quasi-lattice order,
then the group itself has to be amenable. Thus, in contrast to what happens with graph
products, only the Artin groups of finite type that are amenable (and hence abelian)
give rise to amenable quasi-lattice orders. The nonabelian Artin groups of finite type
appear then as an important class of groups having canonical non-amenable quasi-
lattice orders. As a consequence, the C*-algebra generated by a covariant isometric
representation depends, in general, on the specific representation, Theorem 30.

2. Graph products of groups

Graph products were defined in the thesis of Green [13], and have been subsequently
studied by various other authors. We refer the reader to [14] and the references therein
for further background.

Let T denote a graph with vertex set A, and edge set £(F) c { { / , / } : / , / 6
A and / ^ / } ; the edges of F have no orientation and there is no edge joining a
point to itself. We say that vertices / and J are adjacent in F if there is an edge
{/, J) e E(T). Note that a vertex is never adjacent to itself. Given a family {G/}/eA

of groups, we define the graph product F/eA G/ to be the quotient of the free product
*AG; by the smallest normal subgroup containing the elements xlx2x^lX21 for all
pairs x\ € G/, x2 e Gj where / and J are adjacent in F. When the G/ are all copies
of Z, the graph product is called a graph group, or right-angled Artin group. We shall
not need to assume that F is finite.

Suppose, for the rest of this section, that we are given a graph F, as above, and
groups {G/}/eA» and let G = F/eAG/ denote the graph product. We may take as a
generating set for G the set

G = J JG / \ {1 ) .
/eA

Given x e G w e write I(x) for the unique vertex / such that x e G/. We say that x
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belongs to I(x).
By an expression X for an element x e G we mean a word in the generators

G representing x. Given an expression X = x\x2 • • •*;, the elements x, are called
syllables of X and the number / is called the length of X, written / = l(X). We say
that / e A is a vertex of X if / = / (*,) for JC, a syllable of X.

Given an expression X = X\X2- • xiforx e G, the graph product relations allow
one to modify X to obtain a different expression for x by replacing a subexpression
XiXi+i with JC.+IX, if /(*,) is adjacent to /(;c,+i). In the terminology of [14], such
a substitution is called a shuffle, and we shall say that two expressions are shuffle
equivalent if one may be obtained from the other via a finite sequence of shuffles. If
the expression X contains a subexpression of the form JC,-JC,-+I, with /(*,) = I(xi+i),
then we may give a shorter expression for JC by an amalgamation, that is by deleting
XjXi+l in the case that xi+i = x~l or otherwise by replacing the two syllables Jt,x1+1

with the single syllable JC,- 6 C such that JC,- = JC,-JC,-+I.

We say that an expression is reduced if it is not shuffle equivalent to any expression
which admits an amalgamation.

LEMMA 1. Given an expression X = x\X2 •••*/, the following are equivalent:

(i) X is reduced;

(ii) for all i < j such that /(JC,) = /(JC,-) there exists k such that i < k < j and
I (xk) is not adjacent to I (*,)•

PROOF. That (ii) is a consequence of (i) is obvious. We note that the truth
of condition (ii) is invariant under shuffles, while an amalgamation can never be
performed on an expression satisfying (ii). Thus (ii) implies (i). •

Given an expression X = xxx2 • • • xt for x € G, one may easily produce a reduced
expression for* via a finite process of shuffling and amalgamating. If X fails condition
(ii) of Lemma 1, that is, there exists i < j such that / (JC,) = I (*,) and / (JC,) commutes
with / (xk) for all i < k < j , then an obvious sequence of shuffles will allow the
syllables *, and Xj to be amalgamated, reducing the length of X. One may continue
reducing the length in this manner until condition (ii) is satisfied. The following
theorem, due to Green [13], reduces the solution of the word problem in a graph
product of groups to the solution of the word problem in each of the component
groups (see [14] for an equivalent formulation).

THEOREM 2 (Green [13]). Any two reduced expressions for the same element of G
are shuffle equivalent.

As a simple consequence of Theorem 2 we may define the length i(x) of an element
x € G to be the length of any reduced expression X for x, note that l(x) is also the
minimal length of any expression for x. If X is a reduced expression for x, we are
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also justified in referring to a syllable or a vertex of X as a syllable ofx or a vertex
ofx, respectively.

Let X = x\x2 • • • xi be a reduced expression, and x, any syllable of X. If /(x;) is
adjacent to /(*,•) for all _/ < i then we say that x, is an miria/ syllable of X, and that
/(*,-) is an initial vertex of X. We write A(X) for the set of all initial vertices of X.
The following facts are easily checked.

LEMMA 3. Let X = X\X2- • -xibea reduced expression.

(i) Ifxi is an initial syllable ofX, then X is shuffle equivalent to the expression

XtX\ • • -X,_ iX, + i • • • Xi.

(ii) The initial vertices ofX are pairwise adjacent.
(iii) For each I 6 A(X) there exists a unique initial syllable ofX belonging to I.

We define the Junction Sx : A(X) —>• G such that SX(I) is equal to the initial syllable
ofX belonging to I.

(iv) If X' is another expression which is shuffle equivalent to X, then A(X') =
A(X)andSx. = Sx.

By virtue of Lemma 3 (iv) and Theorem 2 we may make the following definitions.

DEFINITION 4. Let JC € G. We define the set of initial vertices of x to be the set
A(x) = A(X) where X is any reduced expression for x. We also define, for each
/ € A, the element X/ to be the initial syllable of x that belongs to / if / is an initial
vertex ofx, and 1 if not; that is,

\SX(I) i f / e A ( x ) ;

Given an expression X = X\X2 • • -xt let rev(X) denote the expression
This allows us to define the set of final vertices ofx € G to be the set Ar(x) =
A(rev(X)), where X is any reduced expression for x. Similarly also, for each / e A,
we define the element

i f / € A r ( x ) ;

where X is any reduced expression for x.

Observe that, by using Lemma 3 (i) and (ii), one may always find, for any given
element x e G, a reduced expression which begins with the product, in any order, of
the x, for I € A(x). Equally, one may always find a reduced expression for x which
ends with the product, in any order, of the x] for / € Ar(x).
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LEMMA 5. Given x,y € G, let D = Ar(x) D A(y), and suppose that Zi = xr,yt is
nontrivialfor each I € D. We define an expression Z = \\I(.Dzi (in any order). Then,
ifX(Y\uD xi) and ( YlieD yi) Y are reduced expressions for x and y respectively, we
have that XZY is a reduced expression for xy.

PROOF. Since each element n is nontrivial, it is clear that both expressions XZ and
Zy are reduced since they are formally equivalent to the given reduced expressions
for x and y respectively. (Two expressions Xix2 • • • x\ and yty2 • • • yk are formally
equivalent if k = / and /(*,•) = I (yd for all 1 < i < /.)

Suppose that XZY = w\\v2- • -wi is not reduced. Then, by Lemma 1, one may
find i < j such that /(u>;) = I(wj) and /(tw,) is adjacent to I(wk) for all k with
i < k < j . But wt and u>j are not both in XZ nor both in Z Y, since these are reduced
expressions. Thus wt must be from the subexpression X and Wj from Y. But now
it follows that to, is a final syllable of XZ and Wj an initial syllable of ZK. That is,
l(wt) = I(WJ) = J for some J e D. But this contradicts the fact that there is a
syllable wk = zj lying between u\ and Wj. •

3. Quasi-lattice orders and their graph products

Let G be a group and let P be a submonoid (subsemigroup containing the identity)
of G such that P n P~l = {1}. Then we may define a left-invariant partial order on
G by x < y whenever x~ly € P. Note that x € P if and only if 1 < x. We observe,
indeed, that every left-invariant partial order on G arises in this fashion. We say that
(G, P) is a partially ordered group with positive cone P.

DEFINITION 6. A partially ordered group (G, P) is quasi-lattice ordered if every
finite set in G with an upper bound in G has a (necessarily unique) least upper bound
in G. Equivalently, every pair x, y of elements of G with a common upper bound in
G has a least upper bound, which we denote by x v y. If x and y have no common
upper bound in G, then we write x v y = oo for convenience.

Given the group G with positive cone P we may equally define a right-invariant
partial order on G by x <r y whenever yx~l e P. If x and y have a greatest lower
bound for <r, we denote it by x Ar y. Clearly one has

(1) x <r y if and only if y'1 < x~l, and x Ar y = (JC~' V y'1) .

LEMMA 7. For a partially ordered group (G, P) the following statements are equiv-
alent.

(i) (G, P) is a quasi-lattice order.
(ii) Every finite set in G with a common upper bound in P has a least upper bound

in P.
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(iii) Every element x of G having an upper bound in P has a least upper bound
in P.

(iv) Ifx 6 PP~X, then there exist a pair of elements a,b € P with x = ab~i and
such that for every u, v € P with ab~l = uv~l, one has a < u and b < v. (The pair
a,b is clearly unique.)

(v) Every pair u, v of elements in P has a greatest lower bound uArv with respect
to the right-invariant partial order on G.

(vi) Ifx 6 PP~l, then there exist a pair of elements a, b e P with x — ab~x and
such that a Ar b = 1.

Assuming that (i)—(vi) hold, and given x € PP~l, there is in fact a unique pair
a,b € P satisfying statement (vi), being precisely the pair a, b of statement (iv).

PROOF. We prove (i) implies (ii) implies (iii) implies (i) first. Clearly (ii) follows
from (i) by observing that a (least) upper bound in P for a finite set F is the same
thing as a (least) upper bound for F U {1}. Statement (iii) is obviously a special case
of (ii). Finally, (iii) states that the condition of Definition 6 holds for all pairs x,\,
and (i) may be recovered from this by left invariance of the partial order.

(iii) implies (iv): Suppose x € PP~l. Then x has an upper bound in P, and by
(iii) we can take a to be the least upper bound in P, and write x = ab~l for b e P. If
x = uv~x for u,v € P, then u is an upper bound for x so we have a < u, and hence
also b < v (since b~lv — a~lu € P).

(iv) implies (v): Given u,veP, let x = uv~l. Then the pair a, b e P of (iv)
determines an element w0 := a~xu = b~lv which one checks to be the greatest right
lower bound u Ar v. For if w is a common right lower bound then u = cw and
v = dw, for some c, d € P, and one has cd'1 = uv~l = ab~l. But, by (iv), both
a < c and b < d, so that w <r w0-

(v) implies (vi): Given x e PP'1, choose u,v e P such that x = uv~l. Using
(v) we may write u = a(u Ar v) and v = b(u Ar v) for some a,b e P. Clearly
uv~l = ab~l and a Ar b = 1.

(vi) implies (iii): Let x € G have an upper bound urn P. Then x € PP~l, and by
(vi) we can write x = ab~l for a,b e P with a Ar b = 1, or rather a'1 v b~l = 1,
using (1). Now, for any u e P that is an upper bound for x, we have 1 < u and
ab~l < u. Thus a = a(a~l v b~x) = 1 v ab~x < u. Therefore a is the least upper
bound of x in P.

Finally suppose that (i)—(vi) hold and let x = uv~l for u,v € P. Then, as in the
proof of (iv) implies (v), we have uArv = a~lu = b~xv where a, b € P is the unique
pair of statement (iv). Thus the pair u, v satisfies the condition of statement (vi),
namely u v , v = 1, if and only if u = a and v — b. •

REMARK 8. We make the following remarks concerning Lemma 7.

(1) Our definition of quasi-lattice order differs slightly from the one originally given
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in [18, Section 2.1], which appears here as statement (ii). Nica had also given an
equivalent form of (ii) consisting of two conditions: QL1, which is statement (iii),
and QL2, which is the statement of Definition 6 for all pairs x, y e P . By Lemma 7
the various definitions are equivalent; in particular QL2 is not needed as it follows
fromQLl.
(2) In [18] and [16] least upper bounds are always assumed to be in P, but no such

assumption is made here. This causes a slight discrepancy in notation: in this paper,
the least upper bound in P of x and y would be written x v y v I.

(3) While statements (v) and (vi) may appear to be conditions only on the monoid P,
in fact they are not, because one must have that w <r uArv not only for every common
right lower bound w in P but also for every common right lower bound w in G.

Suppose, now, that G = r / e A G / is a graph product in which each group G/, for
/ € A, is partially ordered with positive cone Pr. We say that a reduced expression
X = xtx2 • • • xi is positive if x( 6 P/(JC|.) for all / = 1, 2 , . . . , / . Note that this property
is invariant under shuffle equivalence. We say that an element x € G is positive if
it has a positive reduced expression. It follows, by Theorem 2, that every reduced
expression for a positive element is positive. Let P denote the submonoid of G
consisting of all positive elements. This is just the submonoid generated by the union
of the Pt f or / e A. Moreover, two positive elements are equal in P if and only if then-
reduced expressions are shuffle equivalent. Thus P may be presented as the monoid
graph product r / e A P / , that is the monoid obtained from the free product * , € A P ( by
introducing the relations xy = yx for all x e P/ and y e Pj with / adjacent to J
in A.

It is easily seen that P D P~l = {1} and hence that (G, P) is a partially ordered
group. We refer to (G, P) as the graph product over f of the partially ordered
groups {(G,, P/)}/ e A, and write (G, P) = r / £ A ( G / , P,). Note that each (G/, P/) is a
partially ordered subgroup of (G, P) . That is, the inclusion map is order preserving.

LEMMA 9. Suppose that (G, P) = r / e A (G/ , P'/) is a graph product ofquasi-lattice
ordered groups and denote by Ar(;c, y) the intersection Ar(x) D Ar(y) of the final
vertex sets of elements x and y in G. For any pair u,v € P, there exist a,b € P
satisfying the following conditions.

(i) ab~x = uv~\ with a < u, b <v, and a] Ar b] = I for all 1 € Ar(a, b).
(Note that by Lemma 7 (v) Ar is defined in each quasi-lattice order (G/, Pi).)

(ii) Writing reduced expressions A • {\\^iab) a]) and (W^^ b){br,Yx)B for a and
b~x respectively, one has that

(2) •[n «w B

is a reduced expression for ab '.
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PROOF, (i): We proceed by induction on £(M) + l{v), the case where u — v — 1
being trivially true. Given u, v € P we have

u = u • Y\ («/ Ar u / ) a n d v = v-

where u,v e P and wu"1 = MI;"1. NOW if both «J(MJ Ar vr
t)~

l and V/(«J Ar vr,)~l

are nontrivial for each / e Ar(a, &), then these are precisely the final syllables of
u and v respectively (in particular, Ar(«, v) — Ar(u, v)). Putting a = u,b = v
satisfies the claim in this case. Otherwise, some u] Ar v\ equals either u\ or v\ for
some / € Ar(a, b). In this case £(u) + t(v) < t(u) + £(t>), and the result follows by
induction.

(ii): This is a straightforward application of Lemma 5, the condition a] Ar b] = 1
ensuring that the syllables (ar,(br,)~1) are nontrivial. •

THEOREM 10. A graph product (G, P) = r / e A ( G / , Pt) of quasi-lattice ordered
groups is a quasi-lattice ordered group.

PROOF. We prove that (G, P) satisfies condition (iv) of Lemma 7.
Given* e PP~l, Lemma 9 implies that* has a reduced expression X = x\x2 • • -xm

in which each syllable *, lies in Pi^^Pf^y (More specifically, X may take the form
of (2), with the strictly positive syllables appearing first and strictly negative syllables
appearing last). Since each (Gi, P^ is quasi-lattice ordered we may, in view of
Lemma 7 (vi), write each xt uniquely as a,i>~' with a, Ar &, = 1. Define elements
a, b e P by a = aia2---am and b = bmbm-\ •••b\. Since any shuffle of the
syllables xx,x2,... ,xm induces a legal shuffle of the nontrivial a,'s (respectively the
nontrivial Z>,'s) it follows by Theorem 2 that the pair of elements a, b is uniquely
determined by x (independently of the choice of reduced expression).

Given any pair u,v e P with uv~l = x, let a, b e P be any pair as in Lemma 9.
The unique pair a, b which we have just defined may be computed from any reduced
expression for x, in particular from expression (2) of Lemma 9 (ii). It follows that
a = a and b = b. This shows that x = ab"1 and that a < u and b < v for every
u,v e P such that x = uv~l, as required by Lemma 7 (iv). •

LEMMA 11. Suppose that (G, P) is a graph product of partially ordered groups
(G,, Pi) for I e A. Letx, z € P be such that 1 < x < z. Then, for each I € A,

(i) x, < zi, and
(ii) writing x = X/x', either x/ = Zi or I is adjacent to every vertex ofx'.

PROOF. Wehavez =xw, where*, z and w are all positive. LetD = Ar(x)r\A(w)
and take reduced expressions X(]~[y€D*j) for* and (fl/eD uij)W for w. Note that
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XJWJ is nontrivial, for each J e D, since it is a product of nontrivial positive elements.
Thus, by Lemma 5, we have the following (necessarily positive) reduced expression
for z:

If zi = 1 then the lemma is trivially true. Thus we suppose zi ^ 1 and ask where
the initial syllable zi might appear in the above expression.
Case 1. If the initial syllable zi falls in the subexpression X, then it is also an initial
syllable of the reduced expression given for x. Thus x, = zi, satisfying (i) and (ii).
Case 2. If / e D and the initial syllable zi happens to be the syllable (x^w,), then
every vertex of X and every J e D other than / itself is adjacent to / . It follows that
x\ is also an initial syllable of*. That is X/ = xr

n and x' has a reduced expression

So zi = x/W, giving part (i), and / is adjacent to every vertex of x' giving part (ii).
Case 3. If the initial syllable zi falls in the subexpression W, then every vertex of
x is adjacent to / and, in particular, x, — I. Both parts of the lemma are again
satisfied. •

DEFINITION 12. We consider a graph product (G, P) = ryeA(Gy, Pj) of quasi-
lattice orders, and choose / e A. Given elements x, y e P, write x — X/x' and
y = y,y'. We say that the elements x, y € P are I-adjacent if the following three
conditions hold:

(a) xi and y/ have a common upper bound;
(b) either xt — x, v y/ or / is adjacent to every vertex of x';
(c) either y, = x/ V yt or / is adjacent to every vertex of y'.

This definition allows us to give an inductive algorithm for deciding whether two
elements x,y € P have a common upper bound, and for computing x v y when it
exists. Notice first that if x € G/ and y € Gj, then the least common upper bound of
x and y in (G, P) is given by

x V y = •

* V / y i f / = 7;

xy I and / are adjacent;

oo if / and J are not adjacent.
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PROPOSITION 13. Suppose that (G, P) = r y € A ( G y , Pj) is a graph product of

quasi-lattice ordered groups. Let x,y € P and, for an arbitrary choice of I £ A,

write x = x/x' and y = y/v ' . Then we have the following.

(i) The elements x,y € P have a common upper bound if and only if they are

I-adjacent andx' v y ' ^ oo.

(ii) Suppose that the elements x,y 6 P do have a common upper bound. Then

X V y = (xi V y,) • (x' V y ' ) .

Note that conditions (b) and (c) of Definition 12 apply to this expression.

PROOF. Suppose initially that the elements x and y are /-adjacent and, by condi-
tion (a) of Definition 12, write Xj v yt = xtu = y/V for some u, v e Pi. Then, by
condition (b), either u = 1 or / is adjacent to every vertex of x', in which case x'
has no / component. In either case one has that ux' = x'u = u v x'. Similarly, by
condition (c), we have vy' = y'v = v v y'. Therefore, supposing in addition that
x ' v / ^ o o w e have:

(3) (x,Vy,)(x'vy')=x,ux'vy,vy'

= (*/ v yi) V x V y = x V y.

It follows that x and y have a common upper bound and x v y is given by the above
equation.

On the other hand, suppose that z = x v y ^ oo. We first observe that x and y
are /-adjacent. Clearly */ v y, < z, justifying (a), and conditions (b) and (c) follow
directly from Lemma 11 (ii). Finally, since x v y ^ oo, the equalities of (3) may be
read in reverse order to show that x' v y' ^ oo. D

REMARK 14. To see that Proposition 13 leads to an effective algorithm, we note
that by always choosing / € A(x) U A(y) we ensure that l{x') + t(y') is always
strictly less than I(x) + l(y).

4. Amenability for graph products of quasi-lattice orders

Let (G, P) be a quasi-lattice ordered group. Recall from [18] that an isometric rep-
resentation V : P —*• IsomCJ?7) on a Hilbert space Jff is covariant if it is compatible
with the quasi-lattice structure in the sense that

V V* V V* = V V* for x v e P
yx yx y y — yxvy rxvy l u l •*••< J c • •
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The notation is meant to include the convention V^ = 0, so in particular covariance
implies V̂  V̂* Vy V* — 0 when x and y have no common upper bound.

The main example of such a representation is the Toeplitz representation T :
P -*• Isom(£2(P)), defined by Txey := sxy, where ex denotes the typical orthonormal
basis vector of 12{P). The C*-algebra generated by the Tx is called the Toeplitz C-
algebra of the quasi-lattice ordered group (G, P) and is denoted «fT(G, P). Nica also
considered the C*-algebra C*(G, P), universal for covariant isometric representations
of P and made the following definition.

DEFINITION 15. When the canonical homomorphism of C*(G, P) to <!7(G, P) is
injective we say that (G, P) is an amenable quasi-lattice order.

There is a semigroup C-dynamical system (BP, P, a) canonically associated to P,
in which BP is the C*-subalgebra of l°°(P) generated by the characteristic functions 1,,
of the semi-infinite intervals [y, oo) for y € P; the endomorphism ax corresponding
to x € P is defined by (^(1,,) = \xy. Covariant isometric representations of P are in
one to one correspondence with covariant representations of the semigroup dynamical
system (BP, P, a) and this leads to the realisation of C*(G, P) as a semigroup crossed
product, see [ 16, Section 2] for the details. There is a canonical conditional expectation
from BP xo P onto BP, which is faithful if and only if (G, P) is amenable [18,
Section 4.3]. This property, taken as the definition of amenability of (G, P) in [16], is
instrumental in the direct proof of amenability for free product orders, which we aim
to generalise in this section.

We will need the following reformulation of Proposition 6.6 of [16].

PROPOSITION 16 (Laca, Raeburn [16]). Suppose <j> : (G, P) -> (&, &) is an or-
der preserving homomorphism of quasi-lattice ordered groups such that, whenever
x,y € P have a common upper bound in P,

(a) <t>(x) = 0(y) only ifx = y, and
(b) </>(*) V0(y) = 0 ( x v y ) .

is an amenable group, then (G, P) is an amenable quasi-lattice order.

REMARK 17. Proposition 6.6 of [16] should have been stated like this. The reason
is that the proof indicated there, modelled on that of [16, Proposition 4.2], requires
that the conditional expectation for the coaction of $ on C*(G, P) be faithful, which
is true if <£ is amenable by [19]. We do not know whether Proposition 6.6 of [16] is
correct as originally stated; however all that is required for the other results in [16] is
the version stated above.

Suppose now that (G, P) = r / e A(G/, P/) is a graph product of quasi-lattice
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ordered groups. We define the group homomorphism

<t> : (G, P) —* 0 ( G , , P,)
l€A

such that each factor (G/, P,) of (G, P) is mapped to the corresponding factor in
the direct sum 0 / 6 A ( G / , Pi) via the identity on G/. In what follows we shall, for
simplicity, write <f>(u) as u whenever u € G/ for some I € A.

We view the direct product © / G A (G/ , P/) as a graph product (over the full graph
on A). Let x e G and let X be any reduced expression for x. Then, choosing a
vertex / 6 A, we observe that <£(•*)/ is simply the product of all those syllables of X
which belong to the vertex / , taken in the order in which they appear. In particular, if
x = x,x' then <f>(x), = xrfix'),. On the other hand, <p(x)j = (f>(x')j for all J # / .

LEMMA 18. Let <f> be the map defined above. Suppose that x, y € P satisfy
x Vy 7̂  oo and, for an arbitrary choice of I € A, write x = Xix' andy = V/y'. Then

(4) <j>(x), V 0(y) , = (x, V y,) • (0(*')/ V 0 (y ' ) / ) .

PROOF. We refer to the final claim of Proposition 13, which states that either
yi < xi = x, v y/ or / is adjacent to every vertex of x'. The latter condition implies,
in particular, that <p(x)i = xt and </>(*')/ = 1- A similar statement also holds with
respect to y'. Thus we have the following four cases to consider:
Case 1. <j)(x)i = x/ and 4>(y)i = yi'. Since in this case #(x ') / and 4>(y')i are both
trivial, (4) is self-evident.

Case 2. <f>(x)i = x/ and X/ < y/ = X/ v y,: In this case <f>(x)i < yi < <t>{y)i- Also
</>(*')/ = 1 and JC/ v y/ = y/. Thus (4) reduces to 4>(y)i = y/0(y')/-
Case 3. y/ < x/ = x/ v y/ and </>(y)/ = y/: This case is similar to Case 2.
Case 4. */ = y/ = x/ v y,\ (4) follows in this case by left invariance of the
quasi-lattice order. •

PROPOSITION 19. Let (G, P) = r / e A ( G / , Pt) be a graph product of quasi-lattice
ordered groups. Then the map <p : (G, P) —> © ; € A ( ^ ' ' ^ ' ) {defined by the identity
on each factor) is an order preserving homomorphism such that, whenever x, y € P
have a common upper bound in P, the following hold:

(a) <p(x) = <p(y) only ifx = y, and
(b)

PROOF. The induced map is clearly an order preserving homomorphism. Suppose
throughout that x, y e P have a common upper bound.
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We first prove condition (a) assuming that (b) holds: Observe first of all that if
u € P then ut < </>(")/ for every / . So 0(M) = 1 implies that u = 1. Suppose that
</>(•*) = 4>(y)- Then, by condition (b), we have

<f>(x V y ) = <f>(x) V <j>(y) = <p(x) = (j>(y).

Writing x v y = xu = yv for u, v € P, it follows that <£(«) = <f>(v) = 1. But by the
preceding observation we must then have u = v = I and hence x = y.

We now prove condition (b): Choose / e A such that either x, / 1 or y, ^ 1, and
write* = Xfx'andy = y,y'. By Proposition 13 we may write xvy = Oc/Vy/)(jc'Vy'),
and hence

<*>(* V y) = (x, v y,)(j>(x' V y ' ) .

By induction on £(*)-M(y)we have that#(jt'vy') = <f>(x') v<£(y'). Thus it remains
to show that

(5) 4>(x) V 0(y) = (x, V y,) • (<£(*') V 0(y')).

Note that in the direct product ®JeA(Gj, Pj) every element £ may be written
f = FLeA £/• Combining this with Proposition 13 we have:

(6)

Let (6') denote the equation similarly obtained for the pair x' and y'. We recall that
<t>(x)j = 4>(x')j and <p(y)j = 0(y')y for all J ^ / . Thus, (5) follows from (6)
and (6') via Lemma 18. •

We can now extend Theorem 6.7 of [16] to graph products of amenable groups.

THEOREM 20. Any graph product of a family of quasi-lattice orders in which the
underlying groups are amenable is an amenable quasi-lattice order (that is, the
Toeplitz representation is faithful).

PROOF. Let (G, P) denote a graph product of the family (G/, P/)/eA of quasi-
lattice orders, and let (if, &) denote their direct product. By Proposition 19, the map
(j> : (G, P) -+ (&, &) induced by the identity on each factor satisfies the hypothesis
of Proposition 16. If each G/ is amenable as a group, then so is &. It then follows, by
Proposition 16, that (G, P) is an amenable quasi-lattice order. •
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As an application of Theorem 20, we obtain the following characterisation of faith-
fulness of representations of C*(G, P), and the consequent result about uniqueness
of the C*-algebra generated by a covariant isometric representation of P. Monoid
representations V : P —• I s o m ( ^ ) and W : Q -*• lsom(Jf?) are said to *-commute
if every Vx or V* for * € P commutes with every Wy or W* for y € Q, and to be
orthogonal to one another if V* Wy = 0 for all x e P and y € Q.

THEOREM 21. Let (G, P) be the graph product of a family (G,, P / ) / e A of quasi-
lattice ordered groups.

(i) If{Vi : Pi -*• lsom(Jf?)}/eA is a family of covariant isometric representations
such that V/ ^-commutes with Vj when I and J are adjacent in T and V, is orthog-
onal to Vj when I and J are not adjacent in T, then there is a (unique) isometric
covariant representation V : P -*• I s o m ( ^ ) such that V\P, — V/. All covariant
representations of P arise this way.

Suppose that each G/, for I € A, is an amenable group. Then we also have the
following:

(ii) The representation of the universal algebra C*(G, P) associated to V is
faithful if and only if

(7) ]~[(1 - Vx V*) jL 0 for every finite subset F C ( J ( P , \ {1}).

(iii) If {V/} and {Wt} are two families of covariant isometric representations as
in part (i) satisfying (7), then the canonical map Vj(x) !->• W/(x) extends to an
isomorphism ofC*(Vx : x € P) onto C*(WX :x e P).

PROOF. The isometries satisfy the commuting relations which define P as a graph
product of monoids. Therefore the maps s e Pr \-+ V/(s) extend to an isometric
representation V of the monoid P = r / € A Pi •

We need to show that this representation is covariant, that is, we need to show that
v*v, v*vy = Vx V* Vy V; for all x and y in P.

We proceed by induction on £(x) + £(y). Choose / e A(x) U A(y) and write
x = Xix' and y = yiy'. Since Xj and yt cannot both be trivial, this ensures that

Suppose first that* v y < oo. By Proposition 13 and the induction hypothesis, we
have

(8) vxvyv;vy = vzvx,v;,vy,v;,v;,

where z = xt vy / € P/. Moreover, x and y are /-adjacent, and from Definition 12 (b)
and (c) we have four cases to consider:
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Case 1. The vertex / is adjacent to all the vertices of x' and of y'. Then V, *-commutes
with Vx> and with Vy>, so that (8) becomes

V V* — V V*V V*V V*
'xvy 'xvy ' x' x' z z y' y'

= Vx- K vx, K, v
yi K Vr K' b v covariance of V,

= V V, V* V* V V, V* V* = V V* V V*
vx, vx' 'x' rx, yy, ry' vy' ry, rx vx vy ry •

Case 2. z = x/ and / is adjacent to all vertices of y'. Write z = y/U, with v € Pt;
then Vy, V* Vz* = V* Vy, V* V; = V* Vy Vy*. Thus (8) becomes

V V* = V V V* V* V V* = V V* V V*
'xvy 'xvy 'z x' 'x' rz y y — x yx 'y y •

Case 3. z = yi and / is adjacent to all vertices of x'. (This is analogous to Case 2.)
Case 4. z = Xi = y/. Inserting V* Vz in the middle of the right-hand side of (8) we
get V V* — V V* V V*
6 C l Yxvy Vxvy — Vx Vx Vy Vy •

Suppose now that x v y = oo. Then by convention VxVy V*vy = 0 and it suffices
to show that V̂* Vy = 0. Clearly if xt v y, = oo then, by covariance of Vt, we have
V*t Vyi = 0, so V* Vy = 0. Thus, we may suppose that xi v y, ^ oo and hence that

K, vyi = vuK w h e r e x , v y , =x,u = yjv.
Thus

v*v = v*v v*v,
x y x' ' u 'v 'y

Let A = ata2 • • • ak be a reduced expression for y'. Either condition (c) of Definition 12
holds or v ^ 1 and A has a syllable with vertex not adjacent to / . Suppose the latter,
and let a, be the first syllable of A for which /(a,) is not adjacent to / . Note that
lifli) •£ I because y' cannot have initial vertex / . Write a = axa2•••a,_i and
P = ai+iai+2 •••£*• We now have

Kvy = v;vavavp = vav:vayfi = o

using the fact that V* Va, = 0 by orthogonality.
We may thus suppose that condition (c) of Definition 12 holds, in which case

V*Vy, = VyV*. By a similar argument we may suppose also that condition (b)
holds and that V*, Vu = Vu V*,. We have already assumed that xi v y, ^ oo (part (a)
of Definition 12). All these conditions together imply that x and y are /-adjacent
(Definition 12) and that

V*V = V V*,V,V*
x y u 'x' y' v "

By Proposition 13 (i) we now have x' v y' = oo (since x v y = oo and x is /-adjacent
to y), and applying the induction hypothesis to x' and y' completes the proof that V is
covariant.
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To prove (ii) observe first that from Theorem 20 and [16, Theorem 3.7], it follows
that a representation is faithful if and only if

J~[(l - Vx V*) £ 0 for every finite subset F cP.

It is equivalent to consider only products of the form stated in (7) because replacing
each x € F by one of its initial syllables has the effect of replacing each factor
i\- Vx V*) by a smaller one. Part (iii) follows from Theorem 20 and Corollary 3.8
and Corollary 3.9 of [16]. D

REMARK 22. In some cases condition (7) is automatically satisfied by all covariant
representations, in which case the Toeplitz C*-algebra is simple, and purely infinite by
[15, Theorem 5.4]. The best known example of this is ^ [6]. See [16, Corollary 5.2
and Corollary 5.3] and [8, Theorem 2.4] for more examples involving free products.

5. The C* -algebra of a right-angled Artin semigroup of isometries

Let A be a set (usually taken to be finite, although we shall not make this restriction
here). A matrix M = (ms,)Si,eA is a Coxeter matrix if m,,, = mliS € {2, 3 , . . . , oo]
for s ^ t and mw = 1. Denote by {st)m the word sts • • •, beginning with s and
having length m, in which the letters s and t alternate.

The Artin group AM associated to M is the group with presentation

(A | {st)m'-' = (ts)m>l for each s, t e A),

in which a relation of the form (st)°° = (ts}°° is to be interpreted as vacuous. The Artin
monoid A^ is defined via the same presentation, taken in the category of monoids
(semigroups with unit), see [1]. We may view AM as a partially ordered group with
positive cone PM generated by A. The cone PM is in general a quotient of A^ via
the obvious map, although in many cases of interest this map is known to be injective
(see [2] for the most recent results).

Adding the relations s2 = 1 for s e A to the above ones yields a somewhat unusual
presentation of the more familiar Coxeter group WM associated with M, which is
usually presented via the relations (st)1"11 = 1.

DEFINITION 23. If the Coxeter group Wu is finite, the associated Artin group AM

is said to be offinite type, [1].
A Coxeter group and its associated Artin group AM are said to be right-angled if

every nondiagonal entry of the Coxeter matrix M is either 2 or oo; see for example [3].
(By abuse we also refer to the matrix as right-angled.)
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The terminology is motivated by noting that the right-angled Coxeter groups are
those linear reflection groups whose reflecting hyperplanes are mutually orthogonal
or parallel.

Every right-angled Coxeter matrix M over A determines a graph V with vertex set
A having an edge joining s and / when ms,, = 2. The only relations in the presentation
of AM say that two generators commute if they are joined by an edge, hence Au is
precisely the graph product r / e A 2 of copies of 1. In this connection, right-angled
Artin groups are also referred to as graph groups, see [14].

By virtue of Theorem 2 the right-angled Artin monoid AM may be identified with
the positive cone of the corresponding Artin group AM, and (AM, AM) is a quasi-lattice
order by Theorem 10. Applying Theorem 20 we see that this quasi-lattice order is
amenable, and hence the Toeplitz representation of C*(AM, AM) is faithful. As with
Coburn's and Cuntz's theorems, it is more appealing to formulate the result in terms
of the generators themselves; indeed, notice that assertion (iii) below does not contain
any explicit reference to quasi-lattice orders or Artin groups.

THEOREM 24. Let F be a graph with set of vertices A and suppose {Vs : s € A} is
a collection ofisometries on Hilbert space such that for every pair of distinct vertices
s and t one has

Vs V, = V, Vs and Vs* V, = V, V* ifs and t are adjacent in T, and

V* Vt = 0 ifs and t are not adjacent in T.

Let AM = TseAI.{s) be the right-angled Artin group associated to V. Then

(i) the maps s -> Vs, for s € A, extend to a covariant isometric representation
V of the right-angled Artin semigroup AM,

(ii) the corresponding representation ofC*(AM,AM) is faithful if and only if

(9) J^[(/ - Vs Vs*) ^ 0 for every finite F C A, and
se.F

(iii) if{ Ws : s e A) is another collection ofisometries satisfying the same relations
and condition (9), then the map Vs *-*• Ws extends to a C*-algebra isomorphism of
C*(VS : s € A) to C*(WS : s € A).

PROOF. Since the generators Vs satisfy the stated relations, the collection of iso-
metric representations {n € N H* Vs"]seA satisfies the hypothesis of Theorem 21 (i)
and so extends to an isometric representation of the semigroup AM, giving (i). The
amenability hypothesis is satisfied because in this case each factor in the graph product
is isomorphic to 1, so (ii) and (iii) follow directly from Theorem 21. Notice that the
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necessary and sufficient condition for faithfulness in (ii) is equivalent to the one ob-
tained in Theorem 21 because every projection of the form (7) majorates a projection
of the form

] " [ ( / - Vs V*) for some finite F C A,
seF

to see this it suffices to replace each syllable x = s" e N(s) by the corresponding
generator s. •

REMARK 25. If the set A of generators is finite, the projection FLeA^ ~ T
S
T*)

belongs to the Toeplitz algebra &(AM, A^). Since every nontrivial element in A^ is
bounded below by a generator, it follows from [18, Proposition 6.3] that the compact
operators on 12(P) are contained in 2?(AU, A^) as the ideal generated by this pro-
jection. It is easy to see that (9) holds if and only if it holds for F = A, so this ideal
is minimal.

6. Non-amenability of lattice ordered groups

Next we concentrate on partially ordered groups in which least common upper
bounds always exist.

DEFINITION 26. A partially ordered group (G, P) is lattice ordered if every pair of
elements has a least common upper bound. By left invariance, an equivalent condition
is that every element x e G have a least upper bound in P.

Lattice orders are special cases of quasi-lattice orders; in fact we have the following
characterisation, see for example [18].

LEMMA 27. The following are equivalent for a partially ordered group (G, P):

(i) (G, P) is lattice ordered.
(ii) (G, P) is quasi-lattice ordered and G = PP~l.

(iii) (G, P) is quasi-lattice ordered, P generates G (in which case we say (G, P)
is connected), andaP HbP ^ 0for all a,b € P.

PROOF, (i) implies (ii): Suppose (G, P) is lattice ordered and let x € G; then
x < x v 1 so that both a := x V I and b := x~la are in P. Clearly x = ab~x.

(ii) implies (iii): If G = PP~l then obviously P generates G. Given a pair
a,beP, write a~xb as xy~x with x, y € P. Then ax = by € aP D bP.

(iii) implies (i): Suppose (iii) holds. Take any x e G and (using the connectedness)
write x = a\a-i • • • ak with each a, € P or P~l. Since any element a~lb for a,b e P
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may be rewritten cd~l for c,d e P (by finding ac = bd e aP D 6P), any such
expression for * may ultimately be simplified to the form x = uv~l with u,veP.
Thus * has an upper bound u e P and, since (G, P) is a quasi-lattice order, it must
have a least upper bound in P. So (i) holds. •

For a quasi-lattice order (G, P), we know that if G is amenable then (G, P) is
amenable, by [18, Section 4.5], see also [16, Lemma 6.5]. It turns out that for lattice
ordered groups the converse is also true; the proof follows the argument outlined in
Remark 2 of [18, Section 5.1].

PROPOSITION 28. If (G, P) is lattice ordered and amenable (in the sense ofNica,
Definition 15) then G is an amenable group.

PROOF. Suppose (G, P) is an amenable lattice order, and denote the left regular
representation of P on 12(P) by W. As observed by Nica, the map xePh+leCis
a (one-dimensional) covariant isometric representation, so the map Wx H-> 1 extends
to give a one-dimensional representation of J7(G, P), and an easy argument shows
that

for every finitely (or countably) supported nonnegative function kinll(P).
Notice that the sum £ 5 ks Ws is the operator of left-convolution by X e ll(P) on

12(P), and that (10) implies that || £J€/>A.JWt| = 1 for every probability density
A.. Since the support of A. can be chosen to contain an arbitrary finite subset of P
including the identity, we have that condition (e) of [9, Theorem 1] holds, with p = 2,
U = 1 € P, and <f> a probability density whose support contains £ U {1}. By [9,
Theorem 1], the semigroup P has a left-invariant mean. (Day's Theorem is about
right-amenability and right-convolutions, but there is no difficulty in transforming it
into a theorem for left-amenability and left-convolutions.)

Finally, the group G = PP'1 is amenable, by Corollary 3.6 of [21]. •

By Proposition 5.5 and Theorem 5.6 of [1], if AM is of finite type then the Artin
semigroup A£ embeds as a subsemigroup of AM and the pair (AM, A~^) is a lattice
ordered group (see also [10]). We wish to apply Proposition 28 to characterize
amenability of these lattice orders; the first observation is that most Artin groups are
not amenable.

PROPOSITION 29. Let M be a Coxeter matrix over a finite set A. The Artin group
AM is amenable (as a group) if and only if it is the free abelian group on A, that is,
mJi( = 2 for all s, t 6 A, s ^ t.
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PROOF. In [5] it is shown that the set of elements i2 = {Qs = s2 : s e A] generates
a subgroup HM of AM with presentation

(11) (.2 I Q, G, = G , & if «,. , = 2).

That is, HM is a right-angled Artin group. In particular, HM contains at least one
free subgroup of rank 2, and hence is not amenable, unless of course m,,, = 2 for all
5 ^ t € A. In the latter case Au is free abelian and therefore amenable. •

As a consequence of Proposition 29, the analog of Theorem 21 (ii) fails for non-
abelian Artin groups of finite type, instead we have the following non-uniqueness
result.

THEOREM 30. Let AM be a nonabelian Artin group of finite type. Suppose {Vs :
s € A} is a collection of isometries satisfying the Artin relations relative to M:

(12) (V,V,)m» = (V,V,)m-' 5, r e A.

Then the map s i-»- Vs extends to an isometric representation, denoted also by V, of
the Artin semigroup A^. The representation V is covariant provided that

(13) VsV;vX=VsvXv, s,teA.

The Toeplitz representation T on i2(A^) satisfies (12) and (13) and, moreover, the
projection J~[A(1 — TST*) does not vanish. However, the Toeplitz representation of
C*(AM, A^) is not faithful; in particular, the C*-algebra generated by a collection
{Vs : s e A} as above is not canonically unique, even if we assume f ] A (1 — Vs V*) ^ 0.

PROOF. The map can be extended to an isometric representation because the given
isometries satisfy the relations (12), which constitute a presentation of A%,.

Suppose that (13) holds. We need to show that the covariance condition holds for
every pair x, y e A^. We use the length homomorphism / : A J —• N such that
l(s) = 1 for each generator s € A. Choose x, y such that the covariance condition is
not satisfied and such that l(x v y) is minimised. Amongst the possible pairs, choose
one so that l{x) is the smallest possible.

Case 1. Suppose l(x) = 1, so that x is actually a generator s. Write v = tz for t a
generator, so that Vy V; = Vt(V,* Vt) Vz Vy* = V, V,* Vy Vy*. Then, by (13),

V V* V V* = V V* V V* V V* = V V* V V*
rs 's 'y 'y rs rs 'l vl ry vy rsvr 'svt vy 'y •

Now svt and y have a common left factor t; writing sv t = tu and y = tz we have

V V* V V* = V V V* V V* V*
vsvi vsvt 'y ry 'l ru vu vz z t •
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Since s V y = i V t V ) i = / ( u V z ) , w e have that l(u V z) < l(s V y) and covariance

follows by applying the induction hypothesis to Vu V* Vz V* in this expression.
Case 2. Suppose now l(x) > 1, and write x = su for s a generator. Put s v y = sz,
so that xvy =xv svy = s(uv z). Since l(s V y) < /(* V y) and /(*) < /(*), the
induction hypothesis implies that Vs V* Vy V* = Vs Vz V* V*. Applying V* on the left
and using the fact that V* Vs = 1 this equation becomes V* Vy V* = Vz V* Vs*. We then
h a v e : Vx Vx* Vy Vy* = V, Vu V; V; Vy Vy* = Vs Vu V; Vz Vz* Vs\ S i n c e J t v y = j ( « v z ) w e
have l(u v z) < l(x V y), and covariance follows in this case, as before, by applying
the induction hypothesis to Vu V* Vz V*.

It is clear that the Toeplitz representation satisfies the stated relations, and the
projection Y\\(l - T

S
TD d o e s n o t vanish at Si e 12(A%). The quasi-lattice ordered

group (AM,AM) is not amenable by Proposition 28 and Proposition 29 and the last
assertion follows, see [16, Corollary 3.9]. •

REMARK 31. Since Theorem 30 shows that the Toeplitz algebra ^(AM, AjJ,) of
a nonamenable finite type Artin group AM is not universal for covariant isometric
representations, it is generally hard to decide whether a given collection of isometries
satisfying the Artin relations and the covariance condition actually generates a repre-
sentation of «^(AM, A£). In any case, it follows from Theorem 6.7 and Corollary 6.8
of [12] that a given a representation of ^(AM,A^) is faithful if and only if the
generating family of isometries is proper, in the sense that I~JA 0 ~ Vi VT) ^ 0-

Our results about Toeplitz algebras cover the Artin groups (AM,A^) that are
presently known to be quasi-lattice ordered, namely the finite type Artin groups from
[1, 10] and the right-angled Artin groups dealt with by Theorem 10. It would be
interesting to formulate and decide questions of amenability and uniqueness in the
remaining cases. It is known that, for A finite, the monoid A+

M always has a quasi-
lattice structure (see [1, 10]), but even when it is known that A^ embeds canonically
in AM this is not enough to show that (AM,AM) is quasi-lattice ordered, which is
essential for our techniques.

Note added in proof. At the time this paper was written the best known results on
the 'injectivity of the Artin monoid' were contained in [2]. Since then, the proof that
A^ embeds canonically in AM for any Coxeter matrix M has been announced by Luis
Paris in a preprint entitled 'Artin monoids inject in their groups'.
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