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1. Introduction. In deriving the approximate functional equation for certain Dirichlet
series, one first establishes an identity for the function in terms of a partial sum of the series
(e.g. see [1] and [2]). It is the purpose of this note to give a short proof of this identity for
Hecke's Dirichlet series [1]. The proof is valid with only a few minor changes for the identity
given by Chandrasekharan and Narasimhan [2, Lemma 2] for a much larger class of Dirichlet
series. However, the brevity of the paper would be lost if we introduced the necessary ter-
minology and notation.

2. Notation and preliminary results. In the sequel, s = a+it with a and t both real.
QO

The summation sign £ appearing with no indices will always mean £ . If c is real, we denote
n = l

the integral
/•c + ioo /•

by .
Jc-ioo J(c)

We shall need the following well known estimates:

as | /1 -> oo; if Jv(x) denotes the usual Bessel function of order v,

'2\* » cjx+c'e~ix

as x -> oo, where cn and c'n (0 gj n < oo) are constants.
Also [4, p. 196], f o r x > 0 ,

(3)

LEMMA 1. Let a < \ and t be fixed. Then

as £-> oo.

Proof. By (2), it is sufficient to examine

I -
An integration by parts easily yields the result.

t The main result of this paper appeared in the author's Ph.D. thesis written at the University of Wisconsin
in 1966 under the direction of Professor J. R. Smart.
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LEMMA 2. Let q be a positive integer and suppose that 0 < c < a. Then

1 if 0 < x < 1,
i f r(s+q)r(w)xw"s ,

— w—; " w =

2ni J (c) r(s)r(w + q)(s — w)
,-J-s

r(s)
Proo/. Choose T so that | j | < R, q < R, where c2+T2 = J?2. Let L denote (c-iT,

c+iT), Ct that part of | w \ = R to the left of L, and C2 that part of | w | = J? to the right of L.
For x < 1 we have

- f T(s)T(w+q)(s-w)
dw= - 1 .

The integral over C2 clearly tends to 0 as R -> oo, since q^\. The result for x < 1 follows.
For x ^ 1 consider

aw.

has a simple pole at w = —y with residue ( - iy/{y! r(^—y)} for 0 gy g ^— 1.
The integral over Ct tends to 0 as R -»c», and the result follows.

3. THEOREM. Let § be a Dirichlet series of signature (A, r, y) with abscissa of absolute
convergence aa and residue p at s = r. Let q be a positive integer,

_r(s + g)#))x _
0 TV_YTV_\_ ' r ~

« d I; = 47t(«x)*/A. TAen, for x > 0, <r > \(r -q - $), and q>2aa-r-\,

Proo/. For ao < c < a,

1
r(s)r{w+q)(s-w) d» = l°W» +r^la{n)Z

upon an application of Lemma 2. Since q ̂  1, the change in order of summation and inte-
gration is justified by absolute convergence.

We now move the line of integration to r - aa—8 + it (e > 0, - oo < t < oo), by integrating
around a rectangle with vertices c+iT and r-aa-s±iT and then letting r->oo. By a
Phragmdn-Lindelof theorem, the integrals along the horizontal edges tend to 0 as T-* oo if
q>2att-r-\. Thus, since <f>(-k) = 0 (k = 0, 1,2,...),

2«iJ(c)

1 f r(5 + g)r(w)^(w)x
2«iJ r(s)r(w+«)(sw) + ° r"
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Denote the first term on the right-hand side of (6) by /($, x, q). In examining I(s, x, q) we
shall regard q as a complex variable. Replacing w by r—w, using the functional equation for
<p, and inverting the order of summation and integration by absolute convergence if
Re? > 2aa-r, we find that

Now, from (3),

22w~r~«+1r<Vhi~2

Multiply both sides by H 2 ' " 1 " 2 * and integrate over (<!;, oo). Using a standard theorem [3, p. 349]
to invert the order of integration we find that

> i f 22w~|i~9 rCw^2(r~5~M')

M
r-«-2vr +,_1(M)du = -^ ^ - ii^ wWt (g)

provided that a> r—c, Req > 2c—r, and a > ±(r—Req—|). Substituting (8) into (7), we
obtain

provided that a > r — cra, Req > 2aa — r, and CT > i(r — Req — •£). However, by Lemma 1,

/(s, x, q) = O(x*(r-Rc«-*>), (10)

if Re? > 2aa — r—\. Therefore, I(s, x,q) converges absolutely if Req > 2aa — r — \, and by
analytic continuation (9) is valid for Re<7 > 2oa—r—\. Once again restricting ourselves to
positive integral values for q and combining (5), (6) and (9), we have established (4) for
q>2oa-r-\. By analytic continuation (4) is valid for a > \{r-q-±), and the proof is
complete.

Suppose that <j) has signature (l,r, y) and is entire. Then it is well known that
oa ^ Kr+1). a nd so we may take q = 1 in (4). Hence, by (10), for a > \r-%,

= lim ( £ a(n)n-°-x-s £ «(»))•
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