
Highlights of Astronomy, Vol. 12 
International Astronomical Union, 2002 
H. Rickman, ed. 

M i x i n g and Transport in Stars 

Vittorio M. Canuto 

NASA, Goddard Institute for Space Studies, New York, NY 10025 & 
Dept. of Applied Physics and Mathematics, Columbia University, New 
York, NY 10027, U.S.A. 

Transport and mixing in stars is as important as it is difficult to quantify 
(Zahn 1992; Schatzman 1996; Maeder 1997; Pinsonneault 1997). A first difficulty 
is that both transport and mixing are dynamical processes which, given the low 
viscosities of stellar interiors, usually means that the flow is turbulent giving 
rise to technical difficulties for turbulence is still an incomplete chapter though 
recent studies have brought about considerable progress. A second difficulty is 
that turbulence is not self-sustaining and unless there is a source, dynamical 
mixing and transport will decay in time and eventually die out. Thus, the 
question: what is the source of turbulence, let alone how to describe it? In the 
convective zone, the source is the unstable stratification but the mixing there is 
so strong that one does not need a sophisticated theory to describe it. Strong 
turbulence is easier to describe than weak turbulence and yet the latter is when 
the problems become interesting and our descriptive power is less reliable. For 
example, below the solar CZ we don't even know for sure the source of stirring, 
let alone how to describe it and yet, it is the region where we would like to be 
confident about models. The transport of Li is the best example of a mixing 
and transport that cannot be too strong or too weak (Schlattl and Weiss 1999). 
A third difficulty is the unstated assumption that "transport" (advection) and 
"mixing" (diffusion) have different origin. This need not be so. Consider a scalar 
A described by the equation: 

9A d („ dA\ 

where D^ is a tensorial diffusivity. Separating the symmetric (s) and antisym­
metric (a) parts of Dij, Eq. (1) becomes: 

Equations (2) exhibit two important features: 1) only the symmetric part of the 
diffusivity tensor contributes to diffusion (mixing) while 2) the anti-symmetric 
part gives rise to transport via the advective velocity u*. Thus, turbulence 
gives rise to both mixing by diffusion and transport by advection. It is therefore 
unphysical to speak of diffusion and advection as separate phenomena since 
they may have the same origin. Thus, even in the absence of an average mean 
field u, there is an advective velocity u* since in all cases we have studied, 
the diffusivities have an antisymmetric part. A fourth difficulty is the lack 
of clear distinction between active and passive scalars. Active scalars (such 
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as T and p) couple to the density and ultimately to the velocity field, thus 
affecting turbulence. A passive scalar like Li does not couple to the density 
and it is passively transported by the existing turbulence without influencing it. 
Consider the following. In general, one needs five fields, Ui, T, p, p, c to represent 
velocity, temperature, mean molecular weight, mass (or density) and passive 
scalars. Each field <j> has a mean part <j) and_a fluctuating component </>". The 
dynamic equations for the mean variables ui, T, ~p, ~p and c require the knowledge 
of the fluxes , 

Tij = UiUj, J{ =UiT , J f = ^ ^ , J f = U{p , Ji=UiC (3) 

that represent momentum flux (Reynolds stresses), heat flux, ^-flux, mass flux 
and concentration flux. We have several diffusivity tensors. In a ID case, the 
diffusivities for the density and a passive scalar are given by (Canuto 1999): 

D^iDH-DpRJil-Rj-1, D^iDh + D^R^l + R^)-1 (4) 

where R^ = VM(V — Va^) - 1 . The minus sign in Dp is due to the fact that T and 
p act on the density p in opposite sense. On the other hand, a passive scalar 
cannot be sensitive to T and p individually but only to their total contribution. 
Thus, Dp and Dc must be different. A few examples may help. 

a) Overshooting, OV. Overshooting is a prototype example of mixing (Canu­
to 1999; 2000). The problem has both unsolved and unresolved aspects: the 
unsolved part is that we do not yet have an expression for practical calculations 
while the unresolved issue is that there is no agreement on which variable de­
termines the extent of the OV. Roxburgh (1978) used the convective flux Jh to 
gauge the extent of the OV. Even if one accepts J^ as the "indicator" of the OV, 
the cited criterion cannot be used unless one supplements it with several ingre­
dients that the model does not provide (Canuto 1997). A plume model (Schmitt 
et al. 1984) provides an expression for the OV of the form: OV/Hp ~ ui 3 / 2 / 1 / 2 . 
Here, w is the rms initial velocity, for example at the last point of the convective 
zone and / is the filling factor representing the topology of the plumes. Since 
space is not equally divided between ascending and descending plumes, / is a 
critical quantity quite difficult to compute. The above result cannot be used 
in practice since the model does not provide either w or / . Recently, 2D sim­
ulations were employed (Ludwig et al. 1999). Due to the inverse cascade, 2D 
turbulence piles up kinetic energy at the largest scales and since such scales are 
diffusive, they contribute the most to the OV. If one uses w as an indicator of 
the OV, one will naturally end up with large OV. This is, however, not a true 
physical feature but an artifact of having changed 3D with 2D, a change that 
alters the physics of the problem (Canuto 2000). Finally, using a 3D large eddy 

1/2 
simulation, Saikia et al. (2000) suggest the scaling OV/Hp = Fb where Ff, is 
the flux at the bottom. However since overshooting concerns an active scalar, 
the heat flux may bear little relevance to the OV that must be described by a 
mass flux with a diffusivity Dp that depends on both heat and p diffusivities. 

b) Li. The case of Li corresponds to that of a passive scalar with a diffusivity 
Dc and Eqs. (4) clearly show that Dc ^ Dp / Dh ^ D^, a conclusion also 
arrived at using heuristic arguments (Pinsonneault 1997). 

c) Semi-convection: V - Va(j > 0, Vp > 0, Rp > 1. 
Data show that Dh > D^, p(flux) < T(flux), D^R^ < Dh-
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d) Salt-fingers: V - V a d < 0, V„ < 0, R^ < 1. 
Data show that £>M > Dh, T(flux) < fi(flux), Dh < D^R^. 

e) Angular momentum. The transport of angular momentum depends on 
the Reynolds stresses TJJ which depend on shear and on the T and /J, gradients. 

The above discussion shows that one needs a unified approach capable of 
encompassing the large variety of processes a)-e) which influence one another. 
Progress has been recently achieved (Canuto 1999) and new numerical solutions 
have become available. In the case V^ = 0 and Vu = 0 (a CZ with radiative 
losses), the full model reduces to five differential equations which must be solved 
together with a stellar code. Kupka (2000) and Kupka and Montgomery (2000) 
have recently successfully found a mathematical algorithm that allows such a 
coupling to be computed for A stars. The model naturally predicts an over­
shooting region which is indeed quite well represented by a mass flux, as the 
discussion above indicates. To our knowledge, this is the first time that a tur­
bulence model coupled to a stellar envelope code has predicted an overshooting 
regime. The next step is the application of the same general model to the solar 
OV and subsequently, the inclusion of a /Li-gradient will clarify the effect of a 
/i-barrier on the OV. The extension of the above formalism to treat radiative, 
stable regions in the presence of shear instabilities is under way by the present 
author. The model leaves unspecified the nature of the source of turbulence in 
the stable region since we purposely want to separate the identification of the 
source of turbulence and its description. The strength of the source of turbulence 
is written in units of x^2 (where x 1S the radiative conductivity) and is treated 
as an "efficiency variable". If for example, available data on the Li problem will 
require an efficiency far larger than the known types of shear instabilities (e.g., 
in the Eddington-Sweet-Vogt currents, Zahn 1992), one would have to conclude 
that other mechanisms (Schatzman 1996) are to be invoked. However, given the 
crudeness of the treatments thus far, it is premature to write off shear instabil­
ities as done by some authors. The present formalism will, among other things, 
help answer this question on a firmer basis. 
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