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A gas bubble sitting at a liquid–gas interface can burst following the rupture of the
thin liquid film separating it from the ambient, owing to the large surface energy of
the resultant cavity. This bursting bubble forms capillary waves, a Worthington jet and
subsequent droplets for a Newtonian liquid medium. However, rheological properties of
the liquid medium like elastoviscoplasticity can greatly affect these dynamics. Using
direct numerical simulations, this study exemplifies how the complex interplay between
elasticity (in terms of elastic stress relaxation) and yield stress influences the transient
interfacial phenomenon of bursting bubbles. We investigate how bursting dynamics
depends on capillary, elastic and yield stresses by exploring the parameter space of
the Deborah number De (dimensionless relaxation time of elastic stresses) and the
plastocapillary number J (dimensionless yield-stress of the medium), delineating four
distinct characteristic behaviours. Overall, we observe a non-monotonic effect of elastic
stress relaxation on the jet development while plasticity of the elastoviscoplastic (EVP)
medium is shown to affect primarily the jet evolution only at faster relaxation times (low
De). The role of elastic stresses on jet development is elucidated with the support of
energy budgets identifying different modes of energy transfer within the EVP medium.
The effects of elasticity on the initial progression of capillary waves and droplet formation
are also studied. In passing, we study the effects of solvent–polymer viscosity ratio on
bursting dynamics and show that polymer viscosity can increase the jet thickness apart
from reducing the maximum height of the jet.
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1. Introduction

Bursting bubbles at a liquid–gas interface is a fundamental hydrodynamic process that
has piqued interest in various fields across multiple scales ranging from food processing
industry (Woodcock et al. 1953; MacIntyre 1972) to oceanic wave breaking (Veron 2015;
Blanco-Rodríguez & Gordillo 2020; Deike 2022). A typical daily realization of bubble
bursting occurs in a glass of champagne or other sparkling wine and is often credited for
enhancing the mouthfeel of the taster (Ghabache et al. 2014, 2016; Séon & Liger-Belair
2017). Bubble bursting also plays a wider role in liquid fragmentation (Villermaux 2020)
and serves as a significant mechanism in facilitating the mass transfer of substances
across the liquid–gas interface including transporting pathogens from contaminated water
(Blanchard & Syzdek 1970; Poulain & Bourouiba 2018; Bourouiba 2021a; Ji, Singh &
Feng 2022). The interactions of such bubbles with complex rheological fluids abound in
nature. For example, the elastic and plastic fluid properties govern and influence pathogen
transmission, and the pathogens might even adapt to or manipulate the chemical properties
of the carrier fluids to benefit their own transmission (Bourouiba 2021b). Additionally, the
presence of contaminants, surfactants and oils in the marine boundary layer alters the
bursting phenomenon and thereby affects the production of fine marine spray (Ji, Yang
& Feng 2021; Néel, Erinin & Deike 2022; Pierre, Poujol & Séon 2022; Ji et al. 2023).
The rheological response of food products (Ahmed & Basu 2016; Mathijssen et al. 2023)
exemplifies yet another instance of the importance of understanding the mechanisms of
bubble bursting in rheologically complex fluids. Such an understanding will also improve
our knowledge of other natural phenomena, such as volcanic eruptions and underwater gas
seep (Gonnermann & Manga 2007).

Unlike the rheologically simpler Newtonian fluids, elastic and plastic properties of the
complex fluid govern the bubble bursting in addition to other factors such as buoyancy,
surface tension and viscosity. As an air bubble rises within the surrounding medium
due to difference in density and approaches the liquid–air interface (figure 1a), the thin
liquid film gradually drains (Allan, Charles & Mason 1961) and subsequently ruptures,
resulting in the formation of an open cavity (as illustrated in figure 1b) (Mason 1954;
Zhang, Cui & Wang 2013). The open cavity is unstable due to large surface energy. It
thereby collapses, leading to a sequence of dynamic events, including the propagation of
capillary waves, which can potentially result in a Worthington jet (Gekle & Gordillo 2010;
Gordillo & Rodríguez-Rodríguez 2019). The Worthington jet may destabilize due to the
Rayleigh–Plateau instability, leading to the formation of small droplets (Gordillo & Gekle
2010; Ghabache et al. 2014).

Early studies of bubble bursting began with a combination of experimental
investigations and theoretical analyses, laying the foundation for identifying the underlying
physics of the bursting mechanism in Newtonian fluids. With the progress in direct
numerical simulation of multiphase flows (Popinet 2003, 2009), Deike et al. (2018)
provided quantitative cross-validation of numerical and experimental studies. Further
studies through a combination of experimental, numerical and theoretical predictions
(Duchemin et al. 2002; Walls, Henaux & Bird 2015; Berny et al. 2020) revealed that the
formation of droplets from the jet in the bubble-bursting process is primarily determined
by the viscous and gravitational effects.

On the other hand, the behaviour of bubble bursting in a different rheological
medium has received less attention. Very recently, researchers have focused on
studying the behaviour of such bubbles in non-Newtonian fluids (Sanjay, Lohse &
Jalaal 2021; Ji et al. 2023; Rodríguez-Díaz et al. 2023; Dixit et al. 2024), as they
exhibit unique flow characteristics that can significantly affect the bursting dynamics.
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Figure 1. Initial condition for bubble bursting: (a) gas bubble approaches the free interface forming a film of
thickness δ; (b) the thin film is removed, resulting in a bubble cavity which is considered as the initial condition
in our simulations.

Notably, Rodríguez-Díaz et al. (2023) explored the phenomenon of bubble bursting in the
presence of polymeric molecules, accounting for elastic effects induced by polymers. Their
study revealed that the droplet emission is hindered due to extensional thickening in the jet.
Another class of non-Newtonian fluids, called yield-stress fluids, exhibits a combination
of solid and fluid behaviours. A thorough description and review of yield-stress fluids can
be found in, for example, Balmforth, Frigaard & Ovarlez (2014). Within the category of
yield-stress fluids, a specific type known as viscoplastic fluid acts as a rigid solid below the
yield stress and flows like a viscous fluid when the shear stress exceeds the material’s yield
stress. The capillary flows of viscoplastic fluids have been studied for various droplets
(Jalaal, Stoeber & Balmforth 2021; van der Kolk, Tieman & Jalaal 2023) and bubble
problems (Jalaal & Balmforth 2016; Pourzahedi et al. 2022; Shemilt et al. 2022, 2023).
Sanjay et al. (2021) studied the bubble-bursting process in a viscoplastic fluid and revealed
how viscoplasticity influences the inertiocapillary waves that drive the bubble-bursting
mechanism. Unlike Newtonian liquids, the cavity can sustain shear stress (and a non-flat
final shape) if the driving stresses inside the pool fall below the yield stress.

Yield-stress liquids often exhibit elastic behaviour below the yield criterion and also
after yielding (Larson 1999). This characteristic gives rise to a distinct subset within
the category of yield-stress fluids, referred to as elastoviscoplastic (EVP) fluids, which
behaves akin to an elastic solid below the critical stress identified by the yield stress while
exhibiting a viscoelastic fluid behaviour above the yield stress. Different models have been
proposed to constitute the behaviour of EVP fluids based on various steady and unsteady
flow responses. In the present study, we utilize the EVP model proposed by Saramito
(2007). This model behaves as a Kelvin–Voigt viscoelastic solid prior to yielding and
transitions to a nonlinear viscoelastic liquid in the yielded region, exhibiting Oldroyd-B
viscoelastic behaviour far beyond the yield point. A detailed review of different EVP
models can be found in Fraggedakis, Dimakopoulos & Tsamopoulos (2016). The physics
of EVP fluids have been explored in a variety of problem sets, such as droplet deformation,
deformation in shear flow (Izbassarov & Tammisola 2020), particle migration (Chaparian
et al. 2020a), channel flow (Izbassarov et al. 2021), bubble migration (Feneuil et al. 2023),
porous media flow (Chaparian et al. 2020b), rising bubble (Moschopoulos et al. 2021) and
droplet spreading (França, Jalaal & Oishi 2024).

Given that a yield-stress fluid exhibits elastic behaviour, it becomes imperative to
understand the role of elastic-stress-relaxation in driving capillary wave propagation,
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which, in turn, influences the formation of jets and droplets, which are the critical
characteristics observed in the bubble-bursting process. This study expands the present
understanding of bubble bursting (and in general interfacial flows) of EVP fluids, towards
more realistic situations, which may exhibit additional phenomena such as shear thinning
and complex initial bubble shape.

The paper is organized as follows. The methodology and the description of the
problem are introduced in § 2. In § 3, the results obtained with different combinations of
dimensionless elastic stress relaxation time and dimensionless yield stress of the EVP fluid
are discussed. The §§ 3.1–3.6 delve into identifying the influence of the fluid properties on
key bursting characteristics. The different modes of energy transfer are presented in § 3.7.
The summary and conclusions of the present work are highlighted in § 4. Additional details
about the derivation of governing equations, the log-conformation technique to solve for
the extra stress in EVP, grid convergence of results, comparison between Bingham and
EVP model at the viscoplastic limit, derivation of energy budget terms, energy-based
analysis to understand the behaviour of maximum jet height can be, respectively, found
in Appendices A–F.

2. Numerical framework

2.1. Conservation laws and constitutive equations
A small axisymmetric bubble with an initial radius of R0 is placed on the surface of
an incompressible EVP fluid (see § 2.3). For the considered problem, the dimensionless
governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) = −∇p + ∇ · (τs + τp
)+ f , (2.2)

where the velocity field u and the time t are normalized using the inertiocapillary velocity

(Vγ = √
γ /ρlR0) and time (Tγ =

√
ρlR3

0/γ ) scales, respectively, (here, γ and ρl are
the surface tension and density of the liquid medium, respectively, see Appendix A for
details). The pressure p, the solvent stress τs and the elastic stress τp are normalized
using the capillary stress pγ = γ /R0. Lastly, f = f g + f γ contains the contributions
from gravity f g = −Boêz, where the Bond number

Bo = ρlgR2
0

γ
, (2.3)

with g as acceleration due to gravity, is the ratio between hydrostatic and capillary
pressures, and surface tension f γ = κδsn̂. Here, κ is the curvature of the liquid–gas
interface having a normal vector n̂, and δs is a Dirac delta function concentrated at the
interface.

In (2.2), the deviatoric viscous stress tensor is

τs = 2OhsD, (2.4)

where D = (∇u + (∇u)T)/2 is the deformation rate tensor and Ohs denotes the
solvent-Ohnesorge number which measures the inertial-capillary time scale compared
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with the inertial-viscous time scale as defined by

Ohs = μs√
ρlγ R0

. (2.5)

Here, μs identifies the solvent-viscosity of the fluid with the total viscosity of the
fluid (μl = μs + μp) including the contribution from polymeric-viscosity term (μp). We
can also define a polymeric-Ohnesorge number Ohp given by

Ohp = μp√
ρlγ R0

, (2.6)

based on polymeric viscosity. Consequently, the ratio of solvent to total viscosity is

β = μs

μs + μp
= Ohs

Ohs + Ohp
= Ohs

Oh
, (2.7)

where Oh = Ohs + Ohp corresponds to the Ohnesorge number based on the total viscosity
of the fluid.

The extra stress tensor τp embeds the elastic and plastic behaviour of the EVP fluid
and is modelled with the constitutive relationship proposed by Saramito (2007). Using an
order parameter A (conformation tensor) tracking the stretch of the EVP matrix (Snoeijer
et al. 2020; Stone, Shelley & Boyko 2023) with a base state A = I (here, I is the identity
tensor), this constitutive model can be summarized as

∇
A = − K

De
(A − I) , with K = max

(‖τd‖ − J
‖τd‖ , 0

)
, (2.8)

and

τ p = Ohp

De
(A − I) . (2.9)

Here, the Deborah number

De = λ

Tγ

(2.10)

is the dimensionless relaxation time λ of the EVP matrix to its base state A = I ,

normalized using the inertial-capillary time scale Tγ . In (2.8),
∇
A is the upper-convected

time derivative and ‖τd‖ is the second invariant of the deviatoric part of the elastic stress
tensor and are defined as

∇
A = ∂A

∂t
+ (u · ∇) A − A · (∇u) − (∇u)T · A (2.11)

and

‖τd‖ =
√
τd : τd

2
, (2.12)

respectively. Here, ∇u := ∂uj/xi in Einstein notation. The deviatoric part of the
elastic stress tensor is calculated as τd = τp − (tr(τp)/tr(I))I . Lastly, the plastocapillary
number (J ) accounts for the competition between the yield stress τy and the Laplace
pressure γ /R0 as

J = τyR0

γ
. (2.13)

In (2.8), K is a dimensionless function that acts as a stress-dependent switch, controlling
the transition from viscoelastic solid-like to viscoelastic fluid-like behaviour in the
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EVP fluid. Consequently, in the yielded state De/K can be interpreted as the effective

relaxation time. Consequently, below the yield stress (K = 0),
∇
A = 0 and the EVP matrix

deform according to the flow field (see (2.11) and Stone et al. (2023)) but do not relax.
Additionally, the stress τp = Ohp(A − I)/De depends only on the elastic (polymeric)
deformation and the elastocapillary number

Ec = GR0

γ
= Ohp

De
, (2.14)

where G = μp/λ is the elastic modulus. Above the yield stress (K > 0), the EVP fluid
behaves like a viscoelastic liquid following the constitutive relation given by combining
(2.8)–(2.9) to give

De
∇
τ p + Kτp = 2Ohp D. (2.15)

We also model the gas-phase with the corresponding conservation laws, which are
similar to (2.1) and (2.2) (see Appendix A). We keep the gas–liquid density ratio
ρr (= ρg/ρl) fixed at 10−3. Similarly, the viscosity ratio μr (= μg/μl) is set constant at
2 × 10−2 throughout the work.

2.2. Simulation set-up
The direct numerical simulations are performed with the open-source software language
Basilisk C (Popinet 2009; Popinet & Collaborators 2024), which offers adaptive mesh
refinement (AMR) based on wavelet estimated discretization errors, making it well-suited
for singular interfacial flows (Berny et al. 2020; Sanjay 2022; Yang et al. 2023). Basilisk C
uses a volume of fluid technique to track the interface with the help of a colour function
c (c = 1 in liquid and c = 0 in gas), which satisfies the scalar-advection equation. The
geometrical features of the interface such as its unit vector normal n̂ and the curvature
κ (= ∇ · n̂) are calculated using the height-function method (Popinet 2009, 2018). The
governing equations for the gas and the fluid are solved using a one-fluid approximation
(Prosperetti & Tryggvason 2009; Tryggvason, Scardovelli & Zaleski 2011), where the
singular surface tension is approximated as f γ = κδsn̂ ≈ κ∇c (Brackbill, Kothe &
Zemach 1992). Note that the time step in our simulations is restricted by the oscillation
period of the smallest wavelength of the capillary wave because the surface tension scheme
is explicit in time (Popinet 2009; Popinet & Collaborators 2024).

Utilizing the AMR feature of Basilisk C, the errors in the volume of fluid tracer and
interface curvature are minimized by applying a tolerance threshold of 10−3 and 10−4,
respectively. In addition, the refinement of the grid is also performed based on the velocity
(tolerance threshold, 10−2), conformation tensor A (tolerance threshold, 10−2) and yielded
region identified by K (tolerance threshold, 10−3) to accurately resolve the regions of low
strain rates and elastic deformation. These tolerance threshold values can be interpreted
as the maximum error associated with the subsequent application of volume-averaged
downsampling of fine-resolution-solution and bilinear upscaling of coarse-level-solution
(Popinet 2015; van Hooft et al. 2018). We highlight that these refinements offer the
advantage of an almost uniform grid in key regions of interest (see also van Hooft (2019))
and acknowledge that the efficacy of such refinement criteria as employed in this study
needs further investigation. For AMR, we employ a grid resolution ensuring a minimum
cell size of Δ = R0/1024, corresponding to 1024 cells across the initial bubble radius.
However, when De ≥ 1, we switch to Δ = R0/2048. Comprehensive grid-independence
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studies were conducted to confirm that the results remain unaffected by the chosen grid
size (see Appendix C). We consider a square domain measuring 8R0 on each side,
representing only one slice of the three-dimensional bursting bubble process leveraging
the axisymmetric flow assumption. For both liquid and gas, free-slip and no-penetration
boundary conditions are applied at the domain boundaries, while a zero-gradient condition
is used for pressure. To ensure that ejected droplets, which arise from the breakup of the
Worthington jet, can leave the domain, an outflow boundary condition is employed at
the top boundary. The chosen domain size ensures that the boundaries do not influence
the bubble-bursting process. Lastly, the solution of the constitutive relations ((2.8)–(2.9))
require the log-conformation approach proposed by Fattal & Kupferman (2004) (also see
López-Herrera, Popinet & Castrejón-Pita (2019), Dixit et al. (2024) and França et al.
(2024); and Appendix B). For details of our implementation in Basilisk C, we refer the
readers to Balasubramanian (2023).

2.3. Initial condition
The initial shape of the bubble is obtained by solving the Young–Laplace equations to
find the quasistatic equilibrium state for a specified Bond number, Bo (see Lhuissier &
Villermaux 2012; Deike et al. 2018; Sanjay et al. 2021). In this study, we focus more on
the capillary effects than gravitational effects, and hence the value of Bo is set to 10−3. At
low values of Bo, the initial shape of the bubble closely approximates a sphere within the
surrounding Newtonian medium. However, for the EVP medium considered in this study,
we make a significant assumption by retaining the spherical bubble shape. It is important to
note that this assumption is a crucial aspect of our investigation. Given the EVP behaviour
of the liquid medium in our work, the bubble shape close to the fluid–air interface would
exhibit a different interface profile than that in the Newtonian medium. The shapes of the
bubble rising in an EVP medium constitute an active area of research (see Izbassarov et al.
2018; Lopez, Naccache & de Souza Mendes 2018; Moschopoulos et al. 2021).

Further, the bubble’s shape at the fluid–air interface depends not only on the material
behaviour of the surrounding medium in which the bubble rises but also on the generation
and dynamics before reaching the free surface. The bubble rise depends on the buoyancy
forces, which should be strong enough to yield the EVP medium. Hence, one might expect
a non-trivial shape as suggested by Lopez et al. (2018) and Deoclecio, Soares & Popinet
(2023). However, in the present study, we consider the small spherical bubbles trapped
at the interface rather than rising bubbles reaching the free surface to be consistent with
the previous investigations. It should be pointed out that the bubble cap breakup is also
sensitive to the employed numerical method. For a comparative analysis to understand the
transient effects of elasticity on the bubble bursting in an EVP medium, we consider the
same initial condition as employed by Sanjay et al. (2021) for the case of bubble bursting
in a viscoplastic medium. Hence, an initial stress-free condition is employed in the present
computations, which would otherwise correspond to some presheared state if the bubble
rose close to the free surface and burst instantly.

The bubble-bursting problem could also be coupled with the bubble rise in an EVP
medium with a free surface to obtain a more realistic initial condition. However, such a
coupling is limited by the numerical methodology to treat the breakup of bubble cap δ (as
the thin initial film between the bubble and air drains). Moreover, the bubbles usually sit
on the free surface before the cap bursts (Bartlett et al. 2023), allowing enough time for the
elastic stresses to relax if the drainage time is much longer than the relaxation time. Hence,
as a simplification in this work, the open cavity is considered as the initial condition,
as shown in figure 1. In this figure, (R,Z) represent the radial and axial coordinate
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Figure 2. Validation of interface shapes obtained with EVP fluid at very low Deborah number of De = 10−4

against the results obtained by Sanjay et al. (2021) with viscoplastic fluid at (a) t = 1.0,J = 0.1 and
(b) t = 0.75,J = 1.0.

system, and Hi ≈ 2 denotes the initial bubble depth, while θi indicates the initial location
of the cavity-free surface intersection. We incorporate a finite curvature κ0 = 100 at the
intersection of bubble and free surface to regularize the curvature singularity, consistent
with Sanjay et al. (2021), which has been demonstrated to have no significant influence on
the bubble-bursting dynamics.

3. Results

3.1. Validation
This section compares our results with Sanjay et al. (2021), who used a regularized
Bingham model to study bubble bursting in a viscoplastic medium. In such a viscoplastic
model, the fluid features a rigid body motion (D = 0) below the yield stress and flows like
a viscous liquid above the yield stress. The EVP model used in this work ((2.4) and (2.15))
reduces to the Bingham model if De = 0 and Ohs = 0 (see also Appendix D), giving

τ = τp + τs = 2
(

Ohs + Ohp

K

)
D = 2

Ohp

K
D, (3.1)

where (Ohs + Ohp/K) = Ohp/K is the apparent viscosity. Figures 2 and 3 illustrate
the comparison between Sanjay et al. (2021) and our simulations with De = 10−4,
Ohp = 9.5 × 10−3 and Ohs = 5 × 10−4. For a low plastocapillary number (J = 0.1), the
capillary waves meet at the bottom of the bubble cavity, leading to an inertial flow-focusing
that forms a Worthington jet, which subsequently breaks into droplets (figure 2a).

On the other hand, at high J (i.e. at J = 1), at comparable time scales between the
two models, the bubble cavities are identical (figures 2b and 3a). Nonetheless, the two
cases show different ‖D‖. This apparent discrepancy can be attributed to the different
behaviours of the unyielded region in the Bingham viscoplastic and the Saramito (2007)
EVP models. Notably, in the case of the regularized Bingham model employed for
simulating bubble bursting in viscoplastic fluid by Sanjay et al. (2021), at the stoppage
time, the entire medium is unyielded (K ≈ 0 throughout the bulk) and the fluid flow
ceases due to stresses falling below the yield stress. Consequently, the deformation
tensor ‖D‖ is zero (rigid body rotation or no flow). For the EVP model, nearly the entire
liquid remains unyielded as regions with K /= 0 are predominantly situated close to the
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Figure 3. Comparison of the deformation-rate tensor obtained with (a i) viscoplastic fluid by Sanjay et al.
(2021) and (a ii) EVP fluid at J = 1.0, De = 10−4 at t = 1.0. Time evolution of deformation tensor in EVP
fluid at (b i) t = 1.0 and (b ii) t = 1.6 for J = 1.0, De = 10−4.

fluid interface. However, the bulk exhibits a Kelvin–Voigt viscoelastic solid behaviour

(
∇
A = 0 and τp = Ec(A − I), see Saramito 2007). Consequently, even below the yield

stress, the deformation tensor ‖D‖ can be non-zero. Note that, for the Kelvin–Voigt
viscoelastic rigid body motion (‖D‖ = 0) occurs in the limit of very large elastic modulus
(i.e. Ec = Ohp/De → ∞). The simulations are stopped at t = 2 and the final interface
shape of the bubble, where the extra stress balances the capillary stress, are not investigated
in this study.

3.2. Regime map
We investigate the dynamics of bubble bursting in an EVP medium by exploring the
influence of elastic stress relaxation and yield stress, quantified by the Deborah De and the
plastocapillary J numbers, respectively (see França et al. 2024). Our exploration spans
a parameter space with De ∈ [10−3, 20] and J ∈ [10−2, 1] while maintaining a fixed
Ohnesorge number of Oh = 10−2, β of 0.5 and Bond number of Bo = 10−3. The value
of Ohs = Ohp = 0.005 (which fixes β at 0.5) is applicable for all the discussions except
for § 3.6 (see § 3.6 to identify the variation of regime map with β). All the simulations
were carried out until t ≥ 1.2, as this time was seen to be sufficient to capture the key
dynamics of the bursting process. This investigation leads us to a regime map, presented
in figure 4. We identify four distinct regimes, namely (i) droplet formation from the tip of
the Worthington jet (Droplet–A), (ii) no Worthington jet formation, (iii) no pinch-off of
the Worthington jet and no droplet, (iv) pinch-off at the base of the Worthington jet to form
a droplet (Droplet–B). Note that in the context of this study, we characterize a jet formed
by inertial flow-focusing as the Worthington jet if it crosses the equilibrium surface Z = 0
at the axis (R = 0).

3.2.1. Droplet formation regime, Droplet–A (low elastic stress relaxation time and
yield-stress limit, J → 0, De → 0)

For small Deborah and plastocapillary numbers (De ≤ 0.05 and J ≤ 0.4), we
observe a Newtonian-like behaviour where the initial capillary waves collapse at the
bottom of the bubble cavity resulting in a Worthington jet formation (Gordillo &
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Figure 4. Regime map in terms of the plastocapillarity number J and the Deborah number De, distinguishing
the droplet formation (Droplet–I), no jet formation, jet pinch-off (Droplet–II) and no-pinch-off regimes. All
the cases correspond to Ohs = Ohp = 0.005. The four series of insets illustrate typical cases in these regimes,
namely (b) (J , De) = (0.1, 20), (c) (0.01, 0.01), (d) (0.8, 0.1) and (e) (1, 2). Different markers identify the
viscoelastic limit corresponding to J = 0.

Blanco-Rodríguez 2023; Dixit et al. 2024). Further, due to the higher capillary forces
compared with the viscous and elastic forces, the jet breaks up, resulting in droplets (Walls
et al. 2015). This regime often features multiple drops similar to the case of the Newtonian
bubble-bursting process (Berny et al. 2020).

For the viscoplastic fluid, Sanjay et al. (2021) had identified this regime to fall
below J ≈ 0.3 for small Oh and De = 0, beyond which the jet breakup is suppressed
owing to an increase in the apparent viscosity which critically dampens the capillary
waves. Figure 4 identifies this transition at J ≈ 0.5 for De → 0. This delayed
droplet–no-droplet transition is attributed to a reduction in the effective viscosity of the
EVP matrix in comparison with the purely Bingham fluid (refer to Appendix D). The
effective viscosity in the limit of vanishing De is Ohp/K contrary to Oh/K for a purely
Bingham fluid (Sanjay et al. 2021). This delay in stress relaxation delays the transition to
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Bursting bubble in an elastoviscoplastic medium

the plastic behaviour within the EVP matrix. Consequently, at finite De, a critical increase
in the apparent viscosity occurs at a higher value of J .

Furthermore, as De increases further, even for low J , jet breakup into droplets
is suppressed. This observation agrees with that of Rodríguez-Díaz et al. (2023)
and Dixit et al. (2024): adding polymers hinders droplet ejection even for the small
solvent-to-polymer viscosity ratio. We attribute this observation to a delay in elastic stress
relaxation at higher De, increasing the elastic stresses that counteract capillarity to prevent
both the end-pinching and Rayleigh–Plateau instabilities (Pandey et al. 2021).

3.2.2. No-jet regime (viscoplastic limit, J 
 0, De → 0)
In the case of a purely viscoplastic fluid, Sanjay et al. (2021) observed that for J ≥ 0.65,
the surface tension fails to yield the entire cavity, and the capillary wave freezes before
reaching the bottom of the cavity, leading to a non-flat final equilibrium shape. In this
work, the no jet regime commences at J ≈ 0.7 in the limit of De → 0, characterized
by the absence of a jet crossing the free surface (Z = 0). This finding aligns with the
increased plasticity effect at higher J .

However, our results diverge from the case of a purely viscoplastic fluid in one critical
aspect: we find that despite the increasing plasticity, the bubble cavity consistently yields,
albeit slowly. In the context of purely viscoplastic fluids, the yield surface is stationary
and aligns with the cavity boundary, resulting in a zero deformation rate (‖D‖ = 0),
independent of resultant stress fields that are below the yield stress. However, under EVP
conditions, the medium behaves akin to a Kelvin–Voigt solid below the yield stress,
leading to a slow deformation of the cavity over extended time scales depending on
the elastocapillary number Ec = Ohp/De = (1 − β)Oh/De, as indicated by a non-zero
deformation rate (‖D‖ /= 0, see § 3.1). For an infinite Ec, a rigid body motion of the
unyielded region is recovered.

3.2.3. No pinch-off regime (viscoelastocapillary limit, De ∼ O(1))
At large values of J , as we increase the Deborah number (De ∼ O(1)), we notice that
a Worthington jet forms irrespective of J . This J –independent behaviour is due to a
decrease in the elastocapillary number Ec = Ohp/De = (1 − β)Oh/De with an increase
in De at fixed Ohp. Consequently, for a considered deformation of the EVP matrix the
maximum elastic energy decreases with De at fixed Ohp (refer to figure 19c), leading to
the formation of the jet. This jet development is significantly influenced by the variations
in the ratio of polymer to total viscosity (β, see § 3.6), which modifies the elastocapillary
number at fixed Oh and De. Nonetheless, the elastic forces still dominate over capillary,
resulting in the prevention of droplet formation from the jet even at small J (see § 3.2.1).
The role of elastocapillary number in jet formation is further explained in 3.3.

3.2.4. Droplet formation regime, Droplet–B (Newtonian-like limit, De 
 1)
For very high values of Deborah numbers (De 
 1), the bursting bubble dynamics appear
to be independent of J . However, in contrast to the ‘no pinch-off of the Worthington jet
and no droplet regime’, the Worthington jet breaks up at the base to form one droplet.
In this regime, the yield surface is still very close to the liquid–gas interface (refer to
figure 5d and 7c), and most of the EVP fluid remains unyielded. At such high values
of De, the elastocapillary number becomes too small, and the elastic stresses fail to
prevent either the formation of the Worthington jet or its subsequent breakup at the base.
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Figure 5. Variation of the dynamics of bubble bursting in (a) a Newtonian medium compared with EVP
medium for J = 0.1, Oh = 10−2 at (b) De = 0.02, (c) De = 1, (d) De = 20. The left-hand part of each
subpanel shows the flow topology parameter Q and the right-hand part of the subpanel shows the trace of
elastic stress on a log10 scale. The yielded regions are marked by a grey line, which corresponds to J � ‖τd‖.
For the Newtonian medium, both subpanels show the flow topology parameter.

Such a Newtonian-like regime with vanishing elastic stresses was also found by França
et al. (2024).

3.3. Bubble-bursting dynamics
In the previous section, we identified different regimes as a function of De and J .
Here, we analyse the transient development of the bubble-bursting process. To demystify
the different stages of the bubble-bursting process, we will compare the dynamics of
bubble bursting in an EVP medium with that of a Newtonian fluid. The latter is well
documented in Duchemin et al. (2002), Ghabache & Séon (2016), Deike et al. (2018),
Gordillo & Rodríguez-Rodríguez (2019) and Berny et al. (2020). The bubble bursting in
a Newtonian liquid (J = 0, De = 0) is characterized by the retraction of the rim leading
to the formation of capillary waves. The capillary waves travel towards the bottom of the
bubble cavity resulting in the formation of a Worthington jet, which can then break into
multiple droplets owing to the end-pinching and Rayleigh–Plateau instabilities (Walls et al.
2015). Furthermore, owing to the conservation of momentum, a high-velocity jet is also
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Bursting bubble in an elastoviscoplastic medium

formed in an opposite direction to the Worthington jet, inside the liquid pool. Figure 5(a)
illustrates the process of bubble bursting in a Newtonian fluid medium and identifies the
state of flow inside the liquid medium using the flow topology parameter Q defined as

Q = ‖D‖2 − ‖S‖2

‖D‖2 + ‖S‖2 , (3.2)

where ‖D‖ = √
(D : D)/2 and ‖S‖ = √

(S : S)/2, with S denoting the rate of rotation
tensor defined as S = ((∇u)T − ∇u)/2. When Q = −1, the flow is purely rotational,
whereas regions with Q = 0 represent pure shear flow and Q = 1 corresponds to either
elongational flow or no flow (i.e. ‖D‖ → 0, ‖S‖ → 0).

Bursting bubble in an EVP fluid exhibits a non-monotonic behaviour in the jet
development process, as shown in figure 5(b–d). The figure illustrates three representative
cases, identifying the effects of elastic stress relaxation on the bubble bursting process
in an EVP fluid (supplementary movies are available at Balasubramanian (2023)) for
a given plastocapillary number of J = 0.1. The left-hand and right-hand subpanels of
figure 5(b–d) show the flow topology parameter Q and the trace of elastic stresses on
a log10 scale, respectively. Note that the early-time dynamics (t � 0.4) appear similar in
figure 5(b–d), but exhibit qualitatively different behaviour at later times. At low De, droplet
formation is observed which is eventually suppressed by elastic stresses for intermediate
values of De. For large relaxation time (i.e. at higher De), the elastic stresses persist
and are concentrated close to the jet. The jet is characterized by larger axial stress in
the elongational flow region of the jet (characterized by high shear Q ≈ 0), and extra
stress opposes the capillary stress, inhibiting the droplet formation from the jet. This
observation of droplet prevention due to the addition of polymers was also discussed by
Rodríguez-Díaz et al. (2023) and Dixit et al. (2024). At even higher values of De (i.e.
De = 20), we observe again a persistent Worthington jet that thins appreciatively over time
(see figure 5c). Due to low elastocapillary number, the bulk medium remains unyielded
and behaves as a Kelvin–Voigt viscoelastic solid with negligible tr(τp). In contrast, the
axial region of the jet experiences significant extra stress, and as the jet continues to thin,
it eventually pinches off when its thickness becomes smaller than the grid size.

It is essential to note that the appearance of the yielded region (K /= 0) is influenced
not only by the plasticity of the fluid but also by the elastic stress (τp), which affects
the yield criterion (refer to (2.8)). For J = 0.1, at low De, we observe a large yielded
region exhibiting significant elastic deformation from the base state (i.e. A /= I). Hence,
the resulting elastic stresses relax more rapidly due to shorter relaxation times. This fast
extra stress relaxation, especially at low De, causes the EVP medium to behave similarly
to a Newtonian fluid, as evidenced by the similar busting bubble dynamics. However, it
is worth noting that the resulting jet formation differs from the Newtonian case at Oh =
10−2 as the introduction of yield stress increases the apparent viscosity (see § 3.1) of the
fluid and alters the flow. Note that the maximum magnitude of elastic deformation occurs
mainly in the region of high shear around the time when capillary waves converge at
the bottom of the bubble cavity, resulting in jet formation. With increasing De at fixed
Ohp, the elastocapillary number decreases, indicating lower elastic energy in the EVP
fluid (refer to § 3.7) and thereby, the yielded region appears in the proximity of the jet. The
elastic stresses are lower in the majority of the bulk, which remains unyielded (K = 0)

and exhibits a Kelvin–Voigt viscoelastic solid behaviour (
∇
A = 0). (Note that the higher

elastic stresses can be found in the yielded region of the EVP fluid where tr(A) can be
larger.) At high De, a significant portion of the EVP fluid behaves as an elastic solid with

1001 A9-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
73

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1073


A.G. Balasubramanian, V. Sanjay, M. Jalaal, R. Vinuesa and O. Tammisola

–2 0 2

–2

0

2

Z

Q log10(tr(τp))

–2 0 2 –2 0 2 –2 0 2 –2 0 2

J 
=

 0
.8

–2

0

2

Z

J 
=

 0
.1

–2

0

2

Z

t = 0.4 t = 0.5 t = 0.75 t = 1.0

J 
=

 0
.0

1

t = 1.5

–1 0 1 –3 0 3

R R R R R

(a)

(b)

(c)

Figure 6. Variation of the dynamics of bubble bursting in an EVP medium with respect to J at De = 0.04:
(a) J = 0.01; (b) J = 0.1; (c) J = 0.8. The left-hand part of each subpanel shows the flow topology
parameter Q and the right-hand part of the subpanel shows the trace of elastic stress on a log10 scale. The
yielded regions are marked by a grey line, which corresponds to J � ‖τd‖.

very low elastic modulus, which allows the development of a high and thin jet, leading
to capillary-type instability and pearl or drop formation. At De = 20 (refer to figure 5c),
we observe jet formation reminiscent of the bead-on-a-string instability, which has been
suggested to be the elastic counterpart of the Rayleigh–Plateau instability, and is observed
in both viscoelastic fluids and elastic solids (Kibbelaar et al. 2020).

The effects of increasing plasticity (via plastocapillary number J ) are shown in figure 6,
at a small Deborah number (De = 0.04). We observe that with the addition of plasticity,
jet formation is monotonically suppressed. This is due to the increased apparent viscosity,
as discussed in § 3.1.

For a lower De, the elastic stresses relax quickly, and the material behaves as a viscous
fluid when the elastic stresses are negligible. Here, for the considered De ∼ O(0.01), the
elastocapillary number is higher, indicating that most of the EVP fluid region is yielded
and the magnitude of elastic energy is high as observed from figure 6(a–c). Then, for a
lower J , K /= 0 over a significant portion of the EVP fluid, indicating a larger yielded
region around the axis of cavity and jet. With an increase in the plasticity of the EVP fluid,
the yielded region decreases for a given De. However, as mentioned earlier, it is essential
to note that the elastic stress also plays a role in influencing the yield criterion K.

Finally, we examine the combination of moderate to considerable plasticity (J = 1)
and different relaxation time of elastic stresses (see figure 7). The behaviour is qualitatively
similar to that observed at J = 0.1. However, at low De (figure 7a), jet formation is wholly
suppressed, indicating that the EVP fluid takes on the characteristics of a viscoplastic
fluid. The deformation of the bubble cavity is significantly dampened by both the yielded
region (with increased apparent viscosity) and the unyielded region (with high elastic
modulus because of high Ec). For De ≥ 1, the jet is pronounced due to lower elastic energy
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Figure 7. Variation of the dynamics of bubble bursting in an EVP medium with respect to De at J = 1:
(a) De = 0.01; (b) De = 16; (c) De = 20. The left-hand part of each subpanel shows the flow topology
parameter Q and the right-hand part of the subpanel shows the trace of elastic stress on a log10 scale. The
yielded regions are marked by a grey line, which corresponds to J � ‖τd‖.

than capillary energy (low elastocapillary numbers). Further, for De = 20 at t = 0.95 the
growth of elastic instability compensated by the surface tension forces in the jet hints
at the appearance of bead-in-a-string characteristic. At medium De, however, the elastic
stresses and plasticity acts together to broaden and suppress the jet formation. In the
forthcoming subsections, we will scrutinize the effect of EVP rheology on each stage of
the bubble-bursting process.

3.4. Capillary waves in the presence of yield stress and elastic stress
Capillary waves are critical in the bubble-bursting process (Gordillo & Rodríguez-
Rodríguez 2019; Sanjay et al. 2021). Initially, as the film breaks and the rim retracts, they
create a series of capillary waves with varying strengths (Gekle et al. 2009). However, the
high-frequency capillary waves experience substantial viscous damping. Consequently,
the process of wave focusing and jet formation is controlled by the strongest wave, which
remains unimpeded by viscous damping. Here, we track the strongest wave by monitoring
the maximum curvature of the free-surface wave (‖κc‖, see inset of figure 8a for the
location (θc) of the strongest capillary wave), as in Sanjay et al. (2021), to understand
the combined role of elastic stress relaxation and plasticity in jet formation.

The location and amplitude of the strongest capillary wave as a function of the Deborah
number are shown in figure 8 (for J = 1). In the case of Newtonian fluid, the capillary
wave travels with a constant inertiocapillary velocity (∼ Vγ ) as shown in figure 8(a)
(dashed line). However, the viscous stress impedes these waves, resulting in the decrease
of the strength of the wave (‖κc‖), as observed in figure 8(b). For θc/π ≈ 0.5, the cavity
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Figure 8. Effects of dimensionless relaxation time on the travelling capillary waves at J = 1. (a) Time
variation of the location of strongest capillary wave (θc) for different De. (b) Corresponding time variation
of the strength of strongest capillary wave (‖κc‖).

geometry changes, leading to flow focusing where an increase in strength of the capillary
wave is observed.

From figure 8, we observe that the location of the strongest wave is not significantly
affected by elastic stresses in the EVP fluid. Consequently, the strongest elastocapillary
waves still travel with the inertiocapillary velocity Vγ , due to the high shear yielded
region close to the cavity interface, which behaves as a viscoelastic fluid. However, at
low De, as the material approaches the viscoplastic limit, the location of the strongest
wave tends to deviate from that of the Newtonian fluid, particularly in the flow-focusing
part around t ≈ 0.3 owing to enhanced apparent viscosity. At low De, the strength of
the capillary wave is also notably reduced, as evident in figure 8(b), due to both viscous
and polymer dissipation (see also § 3.7). The combined dissipation mitigates the jet
formation. The increased polymeric dissipation is due to the faster relaxation of the elastic
stresses close to the free surface where the fluid is yielded. Conversely, for high De, the
elastocapillary number decreases, and the corresponding deformation of the cavity results
in the presence of a stronger capillary wave than in the Newtonian case.

We now investigate the role of plasticity in the propagation of capillary waves at
low De. In figure 9(a), we observe that the elastocapillary waves travel with the same
inertiocapillary velocity Vγ and show no deviation from the Newtonian case for the range
of considered plastocapillary numbers in this study. At low De, J primarily influences the
yield-criterion (K). For the J range in this study, the region close to the cavity interface
is yielded and behaves as a viscoelastic fluid. Consequently, the propagation of capillary
waves is unaffected by an increase in J . However, an increase in J increases the apparent
viscosity leading to attenuation of the strongest capillary wave and mitigation of the
Worthington jet, following the mechanism proposed by Gordillo & Rodríguez-Rodríguez
(2019) and Sanjay et al. (2021) for Newtonian and purely Bingham fluids, respectively
(figures 9b and 6).

The EVP fluid studied here features a notable distinction from the purely Bingham
fluids. Sanjay et al. (2021) noted that the damping of capillary waves leads to the retention
of surface energy, culminating in non-flat final shapes. This phenomenon contrasts with
the behaviour of EVP fluids. In EVP fluids, the high elastic modulus imparts solid-like
characteristics, particularly in the context of elastic stress relaxation. During the cavity
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Figure 9. Effects of plasticity on the travelling capillary waves at De = 0.01. (a) Time variation of the location
of strongest capillary wave (θc) for different J . (b) Corresponding time variation of the strength of strongest
capillary wave (‖κc‖).
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Figure 10. Effects of non-dimensional elastic stress relaxation time on the formation of jet as a result of the
collapsing cavity. Variation of the depth H of the cavity at its axis with time for (a) high Deborah numbers and
(b) for low Deborah numbers at J = 0.1. The inset in (a) shows the definition of H and the inset in (b) depicts
the pinch-off process.

deformation process, these stresses accumulate and only dissipate gradually. This slow
relaxation is responsible for the eventual deformation of the cavity over time depending
on elastocapillary number, a stark difference from the Bingham fluid case where such
deformation is impeded by the stored surface energy.

3.5. Influence of elastic stress relaxation time and yield stress on jet formation
One of the key characteristics of the bubble-bursting process is the formation of the
Worthington jet (−H > 0 at R = 0) following the collapse of the bubble cavity. Figure 10
illustrates the temporal evolution of the jet for different De. From figure 10(a), an increase
in De of the EVP fluid pronounces the jet growth and the maximum height of the jet.
For De ∼ O(1), the elastic stresses in the jet do not relax and compensate the capillary
stresses resulting in the prevention of droplet breakup from the jet.
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Figure 11. Effects of plasticity on the formation of jet as a result of the collapsing cavity. Variation of the
depth H of the cavity at its axis with time at (a) De = 2 and (b) De = 0.02.

However, from figure 10(b), for De ≤ 0.04, we observe the droplet formation as the
elastic stresses (also relaxing faster) are overcome by the capillary forces. However, it is
intuitive to note that as Deborah number increases for De ∼ O(0.01), the maximum jet
height decreases. The same behaviour is also observed at J = 1 (not shown here due
to brevity) where the droplet pinch-off is not observed. The decrease in jet development
at low but increasing De (as shown in figure 10b) is due to relatively slower relaxation
of elastic stresses and thereby increased storage of elastic energy at the time when
capillary waves collapse at the bottom of the cavity, i.e. during jet initiation (refer to
Appendix F). Apart from this, combined effects of increasing viscous dissipation and
decreasing polymeric dissipation also contributes to the behaviour of jet development.
However, as De increases (for De ∼ O(1) as highlighted in figure 10a), the elastocapillary
number decreases indicating lower elastic energy, which pronounces the jet height (refer
to Appendix F).

Figure 11 reveals that for De ∼ O(1) (i.e. in the viscoelastocapillary regime), plasticity
does not appear to have a significant impact on jet development. However, as the relaxation
time of the elastic stress decreases in the EVP fluid, the influence of plasticity becomes
more pronounced, resulting in the reduction of jet growth.

Figure 12 illustrates the variation in the maximum jet height (−Hmax) with respect
to dimensionless relaxation time of the elastic stresses in the EVP fluid. In the
viscoelastocapillary regime, the trend with which the maximum height of the jet varies
is logarithmic with respect to De.

In figure 13, we present the variation of jet velocity in relation to De. In this context,
the jet velocity is defined as the vertical velocity of the interface at the axis. We
use ve to represent the velocity of the jet as it crosses the free-flat equilibrium surface,
specifically ve = v(Z = R = 0). Note that Ghabache et al. (2014) have utilized a similar
quantification of jet velocity in the experiments of bubble bursting in a Newtonian medium.
Additionally, we also sample vmax, which corresponds to the maximum vertical velocity
of the interface along the axis (Gordillo & Rodríguez-Rodríguez 2019; Sanjay et al.
2021; Gordillo & Blanco-Rodríguez 2023). Typically, this maximum velocity occurs
when capillary waves merge at the bottom of the bubble cavity. We hypothesize that the
maximum interface velocity vmax at the axis represents the initiation velocity of the jet.
This initiation velocity results from the conversion of capillary surface energy (due to
merging capillary waves) into the kinetic energy of the jet.
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Figure 12. Effects of elastic stress relaxation on the maximum height of Worthington jet formation. The
darker markers correspond to higher J and vice versa.
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Figure 13. Variation of the Worthington jet velocity with dimensionless elastic stress relaxation time.
(a) Velocity of the jet at the instant when the interface crosses the equilibrium surface (ve) is plotted against
De. (b) The effects of elastic stress relaxation on the maximum velocity (vmax) of the jet. The darker markers
correspond to higher J and vice versa.

From figure 13(a), we observe the jet velocity at the equilibrium surface almost
exhibits a logarithmic increase with De. Furthermore, from figure 13(b), we notice
that the initiation velocity of the jet remains relatively constant with De within the
viscoelastocapillary regime. Consequently, the maximum kinetic energy, which arises
from the energy balance at the moment of capillary wave merging at the bottom of
the cavity, is minimally affected due to a decrease in the elastocapillary number in the
viscoelastocapillary regime.

Jet formation can lead to droplet formation at low and high Deborah numbers. In
this study, we qualitatively discuss the impact of elastic stress relaxation time on the
droplet-formation time (td) in the jet using figure 14. However, a quantitative analysis
of droplet formation time is not accurate in this study due to the numerical artefact,
which is detailed in Appendix C. In the near-Newtonian limit characterized by a lower
relaxation time, we observe that the droplet formation time is delayed logarithmically with
increasing De. This delayed droplet-formation is attributed to a finite non-zero relaxation

1001 A9-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
73

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1073


A.G. Balasubramanian, V. Sanjay, M. Jalaal, R. Vinuesa and O. Tammisola

0.01 0.02 0.04

De

0.7

0.8

0.9

1.0

1.1

1.2

td J = 0.01

J = 0.02

J = 0.04

J = 0.1

J = 0.2

Figure 14. Variation of the droplet-formation time with respect to dimensionless relaxation time of
elastic stress.
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Figure 15. Effects of solvent–polymer viscosity ratio on jet evolution. Variation of the depth H of the cavity
at its axis with respect to time for (a) J = 1 and (b) J = 0.01.

time of elastic stresses, which increases with De and thereby delays the time at which the
capillary stresses overtake the elastic stresses in the jet.

3.6. Effects of solvent–polymer viscosity ratio on Worthington jet
In figure 15 we show the effects of varying the solvent–polymer viscosity ratio
in terms of β (= Ohs/(Ohs + Ohp)) on the jet development at different De in the
viscoelastocapillary regime (figure 15a) and at lower De (figure 15b). Overall, we observe
that the jet development is pronounced in the viscoelastocapillary regime at Ohs =
0.009, Ohp = 0.001 (β = 0.9) in comparison with Ohs = 0.0011, Ohp = 0.0088 (β =
0.11). Previously, we observed that relatively decreasing polymeric dissipation in the
jet accentuates the growth of the jet in the viscoelastocapillary regime (refer also to
Appendix F). Additionally, increasing Ohp (β → 0) increases the elastocapillary number,
which indicates a higher elastic stress in the jet, which on relaxation dissipates energy and
thereby reduces the kinetic energy of the jet.

We also observe a similar trend of pronounced jet development in the near-Newtonian
limit, characterized by low De and J , as shown in figure 16. It is important to note that a
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Figure 16. Variation of jet thickness with respect to solvent–polymer viscosity ratio quantified

by β (= Ohs/(Ohs + Ohp)) at (a) t = 0.6, (b) t = 0.7 for J = 0.01 and De = 0.08.

similar trend of decreasing jet growth with increasing Ohp was also observed for lower De
at higher J , although it is not presented here. In summary, we find that increasing Ohp
relative to Oh (where Oh = Ohs + Ohp) has a similar effect to an increased apparent
extensional viscosity in jet development. Additionally, when β decreases, the EVP fluid
exhibits significant extensional viscosity, resulting in a thicker jet as evident in figure 16.

With the above results, we probe into the modification of the regime map as plotted
in figure 4 with respect to β. In figure 15(b), note that we are in the droplet formation
regime when De = 0.01. At this specific parameter point (De, J ), different (β) exhibit
droplet formation behaviour. However, when we increase De from 0.01 to 0.08 (crossing
the green boundary along De from the droplet formation regime to the no-pinch-off regime
in figure 4), we observe that droplet formation is hindered for β = 0.5. It is important to
note that in figure 15(b), droplet formation is indicated by the discontinuity in H (refer to
the inset in figure 10b). For β = 0.9, however, droplet formation persists at a higher De,
suggesting that the (green) boundary separating the droplet formation and no-pinch-off
regimes shifts upwards to accommodate a higher De in the case of higher Ohs. Conversely,
as Ohp increases, the boundary would move closer to a lower De.

Considering figure 15(a), we can examine the transition boundary between the no-jet
and no-pinch-off regimes (orange boundary along De in figure 4). For De = 1, we observe
that the maximum jet height decreases with increasing β. This implies that the transition
boundary (orange boundary along De) shifts downward as β increases and upwards as β

decreases.
Finally, we turn our attention to the transition between the droplet formation regime and

the no-jet regime for De ∼ O(10−2) (which corresponds to the green boundary along J in
figure 4). From (3.1), the apparent viscosity increases with decreasing β, resulting in the
transition from droplet formation to no-pinch-off occurring at lower J for decreasing β.
Consequently, this shifts the (green) boundary (along J ) to lower J , as Ohp increases.

3.7. Energy analysis
The total energy in the computational domain at any time t is composed of kinetic
energy (Ek(t)), surface energy (Es(t), assuming flat free-surface to have zero surface
energy), elastic energy (Ee) and, as well as energy dissipation due to both solvent
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Figure 17. Energy budget for the bubble bursting in an EVP medium. The plots indicate the variation of
different modes of energy transfer with respect to time for (a) J = 0.1, De = 0.02, (b) J = 1, De = 0.01,
(c) J = 0.1, De = 1, (d) J = 1, De = 20.

viscosity (Es
d(t)) and polymer relaxation (Ep

d(t)). The miscellaneous energy due to the
motion of air, jet breakup, etc. is represented by Em(t). The time-evolution of the energy
in the system is expressed as

E = Ek(t) + Es(t) + Ee(t) + Es
d(t) + Ep

d(t) + Em(t). (3.3)

The system’s initial energy at t = 0 consists entirely of surface energy, Ei = Es(0). We
extend the energy analysis for Oldroyd-B viscoelastic fluids by Snoeijer et al. (2020)
to derive the energy budget for the EVP fluid governed by Saramito (2007)’s model.
Appendix E provides a detailed derivation of this budget.

Figure 17 illustrates the energy budgets for four representative cases, each normalized
by the initial energy Ei. These cases correspond to different regimes in the plastocapillary
number J and Deborah number De parameter space, as discussed in § 3.2. The figure
shows the temporal evolution of various energy transfer modes. As the EVP fluid deforms,
surface energy converts into kinetic energy. This deformation induces viscous dissipation
due to the solvent viscosity component. Additionally, relaxing elastic stresses contribute to
energy dissipation (Ep

d(t)). However, the EVP fluid can store some energy as elastic energy
(Ee(t)), potentially recoverable later in the bubble-bursting process.

3.7.1. Droplet formation regime, Droplet–A (low elastic stress relaxation time and
yield-stress limit, J → 0, De → 0)

Figure 17(a) depicts the temporal energy budget for low De and J values. The collapse
of the high-energy bubble cavity initiates a cascade of energy conversions characterizing
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the early stages of bubble bursting. As the cavity collapses and capillary waves propagate
(t � 0.5), the initial surface energy Es(0) is released, increasing the fluid’s kinetic energy
Ek(t). Significant velocity gradients lead to viscous dissipation Es

d(t) due to solvent viscous
stresses, while the short relaxation time of elastic stresses causes a progressive increase in
Ep

d(t). Initially, solvent viscous stresses dominate, resulting in higher viscous dissipation
compared with polymeric dissipation and elastic energy, despite Ohp = Ohs = 0.5Oh.

The Ek(t) reaches its maximum when capillary waves focus at the cavity bottom,
creating a high-velocity region. As these waves merge to form a jet, elastic energy Ee(t)
is briefly stored and rapidly released as Ep

d(t) due to small De. The EVP fluid consistently
stores more elastic energy as the jet develops, attributed to large axial elastic stresses
in the jet and extra stress in both yielded and unyielded regions (see figure 5b). The
jet-development process is characterized by substantial energy dissipation. Cumulative
solvent viscous and polymer dissipation critically regulate jet growth and maximum
height. The elastic energy at jet initiation is also crucial, as discussed in Appendix F.

To approach the final stoppage time of bubble bursting dynamics in an EVP fluid,
the rate of change of different energy transfer modes must be negligible. However, at
t = 1.2, the surface energy remains non-zero and decreasing. Capturing a steady final
state would require significantly longer simulation times, likely of the order of t ∼ O(10),
which is beyond the scope of this study. For low De, viscoelastic solid-like deformation
in the unyielded region will lead to elastic stress enervation, and the cavity is expected to
approach a flat free interface.

3.7.2. No-jet regime (viscoplastic limit, J 
 0, De → 0)
At extremely large J values, most of the domain remains unyielded. In this regime,
Sanjay et al. (2021) observed finite Es(t → ∞) as the cavity shape remained invariant,
accompanied by a decrease in kinetic energy and total viscous dissipation. In contrast,
our study reveals that at low De, the viscoelastic deformation of the unyielded EVP fluid
maintains cavity motion (see figure 7), resulting in a gradual decrease of surface energy
over time. Figure 17(b) exemplifies this behaviour with a consistent interplay between
Ee(t) and Ep

d(t). Figure 17(b) also shows that at higher J and lower De, the peak kinetic
energy during capillary wave convergence reaches only ∼ 30 % of the initial total energy,
compared with > 40 % in other regimes. Further reduction in De (at sufficiently high J
and fixed Oh) would lead to even lower kinetic energy and the formation of a non-flat
equilibrium shape characteristic of bubble bursting in viscoplastic fluids. This occurs due
to a large elastocapillary number Ec = Ohp/De, resulting in a balance between elastic and
surface stresses.

3.7.3. No pinch-off regime (viscoelastocapillary limit, De ∼ O(1))
In the viscoelastocapillary regime, elastic stresses play a minimal role (Ee(t) ≈ Ep

d(t) ≈ 0,
figure 17c) during the initial bubble bursting in EVP fluid exemplified with J = 0.1.
Nevertheless, the strength of the strongest capillary wave increases with Deborah number,
as detailed in § 3.4. At the moment of capillary wave convergence, significant elastic
energy storage and release occurs in the EVP fluid, facilitating jet formation. In this
regime, elastic energy storage primarily originates from the Kelvin–Voigt viscoelastic
solid region, sustaining elongational stress in the jet. As elastic stress in the jet’s axial
region intensifies and subsequently relaxes, figure 17(c) reveals a consistent increase in
polymeric dissipation beyond t ≈ 0.5.
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3.7.4. Droplet formation regime, Droplet–B (Newtonian-like limit, De 
 1)
The energy transfer modes in this limit (figure 17d) closely resemble those observed
in the viscoelastocapillary limit (figure 17c), with negligible elastic energy storage and
polymeric dissipation (Ee(t) ≈ Ep

d(t) ≈ 0) during the initial bubble bursting in EVP fluid.
Additionally, this regime exhibits minimal elastic energy and polymeric dissipation during
jet formation as well. These characteristics align with the Newtonian-like limit described
by França et al. (2024). Notably, for sufficiently large Deborah numbers (De), regardless
of the plastocapillary number (J ), elastic stresses become insignificant due to vanishing
elastocapillary number (Ec) at finite solvent and polymeric Ohnesorge numbers (Ohs, Ohp)
(also see § 3.2.4).

In summary, this section examines the energy budget during bubble bursting in an
EVP fluid across various regimes defined by the plastocapillary number J and Deborah
number De. The analysis reveals a complex interplay between surface energy, kinetic
energy, elastic energy storage and dissipation mechanisms. In the droplet formation regime
(low J and De), initial surface energy rapidly converts to kinetic energy and dissipation,
with solvent viscous stresses dominating early stages despite equal solvent and polymeric
Ohnesorge numbers. As J increases and De decreases, the no-jet regime emerges,
characterized by lower peak kinetic energy and persistent cavity motion due to viscoelastic
deformation. The viscoelastocapillary limit (De ∼ O(1)) exhibits minimal elastic effects
initially, but significant elastic energy storage during jet formation. In the Newtonian-like
limit (De 
 1), elastic effects become negligible throughout the process. Across all
regimes, the dynamics of an EVP fluid exemplify a strong De-dependent relationship
between viscous and polymeric dissipation. Viscous dissipation increases with De, while
polymeric dissipation becomes more significant at lower De values, proportional to De−2

(for fixed tr(A − I) and Ohp). The polymeric dissipation, given by

Ep
d =

∫
t

(∫
Ω

KOhp

De2 (tr (A − I)) dΩ

)
dt, (3.4)

is confined to the yielded region of the fluid (K /= 0). In contrast, elastic energy storage
occurs in both yielded and unyielded regions. Solvent viscous dissipation Es

d also manifests
in both regions; in the unyielded region, it arises from the Kelvin–Voigt solid behaviour
where ‖D‖ /= 0, resulting in dissipation.

4. Conclusions and outlook

In this study, we investigate the bubble-bursting phenomenon using direct numerical
simulations in an EVP medium to understand the interplay of elasticity (more particularly
the elastic stress relaxation time characterized by De) and plasticity (identified by J ) on
the bursting mechanism. We observed distinct behaviours in the development of the jet
depending on the control parameters De and J of an EVP fluid, resulting in four main
regimes.

(i) Droplet formation regime, Droplet–A (low elastic stress relaxation time
and yield-stress limit, J → 0, De → 0). This regime is characterized by a
Newtonian-like jet growth and droplet formation. In this regime, due to the faster
relaxation of elastic stresses, the resulting capillary stresses lead to the formation of
a jet despite a higher elastocapillary number. Further, the fast decay of elastic stresses
cannot suppress the droplet formation due to the Rayleigh–Plateau instability. In this
Newtonian-like limit, increasing De reduces the maximum jet height due to slower
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relaxation of elastic stresses and thereby an increase in the elastic energy at the time
of jet initiation (see Appendix F).

(ii) No-jet regime (viscoplastic limit, J 
 0, De → 0). In this regime, the EVP fluid
behaves similarly to a viscoplastic fluid. This regime is characterized by the
absence of jet formation due to the increased apparent viscosity, which dampens
capillary wave motion and suppresses jet initiation. Although the fluid remains
mostly unyielded, exhibiting Kelvin–Voigt viscoelastic solid behaviour, it can slowly
deform over time depending on the elastocapillary number. This behaviour contrasts
with purely viscoplastic fluids, where non-flat final equilibrium shapes are retained
due to the stored surface energy because of rigid behaviour in the unyielded region.

(iii) No pinch-off regime (viscoelastocapillary limit, De ∼ O(1)). In this regime, jet
formation occurs without subsequent droplet generation. This regime is marked by
a balance between elastic stresses and capillary forces, influenced by the slower
relaxation time of elastic stresses. As a result, the jet grows consistently but does
not break into droplets. Notably, plasticity has minimal impact on bubble bursting
dynamics due to the lower elastocapillary number. The elastic energy and polymer
dissipation decrease with increasing De, leading to higher maximum jet heights,
indicating that slower elastic stress relaxation contributes to more pronounced jet
formation.

(iv) Droplet formation regime, Droplet–B (Newtonian-like limit, De 
 1). In this
regime, the behaviour of the EVP fluid resembles a Newtonian-like fluid, with the
jet eventually thinning and pinching off from its base. In this regime, most of the
EVP fluid exhibits unyielded Kelvin–Voigt viscoelastic solid behaviour, due to low
elastocapillary number. The low elastic stresses are unable to prevent the formation
of the Worthington jet. The resulting jet experiences significant axial stress, which
causes it to yield, leading to progressive thinning and eventual breakup at its base.
Notably, the absence of substantial EVP stress relaxation in this regime makes
polymeric dissipation a negligible factor. The influence of solvent–polymer viscosity
ratio was also investigated in this study, where we showed increasing Ohp leads to a
reduction of the maximum jet height. Additionally, a thicker jet was observed due to
increased extensional viscosity in the EVP fluid.

In summary, this study investigates the bubble-bursting dynamics in an EVP fluid,
elucidating the nuanced effects of elastic stress relaxation and plasticity across varying
Deborah and plastocapillary numbers. This investigation is particularly pertinent to
industrial scenarios involving bubble interactions with complex fluids’ free surfaces. Our
findings, bridging numerical simulations with potential experimental validations (Ji et al.
2023; Rodríguez-Díaz et al. 2023), could further enhance the understanding of initial
shape variations and bubble buoyancy in different fluids (Deoclecio et al. 2023). While
this study primarily focuses on elastic stress relaxation and yield stress effects, future
work could incorporate additional complexities like the shear-dependent behaviour of
EVP fluids for a more exhaustive understanding (Brown & Jaeger 2014; Rosti et al. 2018).
Overall, this research sheds light on the critical interplay of surface tension, elasticity and
plasticity in shaping the bubble-bursting phenomenon in complex fluidic environments.
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Appendix A. Non-dimensionalization of governing equations

The governing equations for an incompressible fluid are

∇ · u = 0, (A1)

ρl

(
∂u
∂t

+ ∇ · (uu)

)
= −∇p + ∇ · (τs + τp

)+ ρlg. (A2)

where ρl is the density of the fluid, u is the velocity vector and t, p corresponds to the time
and pressure, respectively. The deviatoric viscous stress tensor and the polymeric stress
tensor are represented by τs and τp, respectively, and g corresponds to the acceleration
due to gravity. The deviatoric viscous stress tensor is expressed as

τs = 2μsD, (A3)

where μs is the solvent viscosity and D is the deformation-rate tensor.
According to the thermodynamically consistent constitutive relationship proposed by

Saramito (2007) for EVP fluid, the polymeric stress tensor evolves following the partial
differential equation given by

λ
∇
τ p + max

(‖τd‖ − τy

‖τd‖ , 0
)
τp = 2μp D, (A4)

where, λ indicates the relaxation time of the polymers and μp, τy corresponds to

the polymer viscosity and yield stress of the fluid, respectively. Here,
∇
τ p is the

upper-convected time derivative and ‖τd‖ is the second invariant of the deviatoric part
of the polymeric stress tensor τp.

For our simulations, we consider the inertia-capillary velocity (Vγ ), initial bubble radius
(R0), inertial-capillary time (Tγ ) and the capillary stress ( pγ ) to non-dimensionalize
the (A1)–(A4) resulting in non-dimensional equations (2.1), (2.2) and (2.15). The
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Bursting bubble in an elastoviscoplastic medium

above-described quantities are defined as

Vγ =
√

γ

ρlR0
, (A5)

Tγ = R0

Vγ

=
√

ρlR3
0

γ
, (A6)

pγ = γ

R0
. (A7)

The set of (A1)–(A3) are also solved for the gas phase with density ρg, viscosity μg and
no extra-stress tensor (τp = 0).

Appendix B. Log-conformation approach

In the present study, the effect of elasticity and plasticity embedded in an EVP fluid is
modelled with the constitutive equation proposed by Saramito (2007) as

De
[
∂τp

∂t
+ (u · ∇) τp − τp · ∇u − (∇u)T · τp

]
+ max

(‖τd‖ − J
‖τd‖ , 0

)
τp = 2Ohp D.

(B1)
In the above model, the unyielded fluid behaves as a Kelvin–Voigt solid whereas the

yielded fluid flows as an Oldroyd-B viscoelastic fluid. The polymeric stress can be written
in conformation tensor form as

τp = μp

λ
(A − I) , (B2)

where, A corresponds to the conformation tensor, an order parameter that keeps track of
the stretching of the polymers (Snoeijer et al. 2020; Stone et al. 2023). Filling in (B2),
(B1) can be rewritten as

∂A
∂t

+ (u · ∇) A − A · (∇u) − (∇u)T · A = − K
De

(A − I) , (B3)

with the switch-term K = max((‖τd‖ − J )/‖τd‖, 0).
In order to simulate high Deborah numbers, we use the log-conformation formulation

(Fattal & Kupferman 2004) to preserve positive-definiteness of A and alleviate the
high-Weissenberg-number problem.

In the log-conformation formulation, the components of A in (B3) are solved using the
split scheme approach similar to that of Hao & Pan (2007) in the basis of a logarithm of the
conformation tensor asψ = log A, since A is positive definite. The velocity gradient tensor
∇u is decomposed into two antisymmetric tensors Ω and N , and a symmetric tensor B
such that ∇u = Ω + NA−1 + B. Hence, (B3) in the log-conformation tensor formulation
reads

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ − ψΩ) − 2B = K

De
(exp (−ψ) − I) . (B4)
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Figure 18. Variation of the interface height at the axis for (a) J = 0.01, De = 0.01, (b) J = 1.0, De = 16 at
different grid resolutions. Inset shows the liquid interface at (a) the drop formation time and (b) at around the
maximum jet height.

The extra stress tensor τp evolution is solved explicitly in time, with its divergence
incorporated as a pressure-gradient-like source term in the momentum equation (A2). The
explicit time-stepping for both τp evolution and surface tension necessitates a sufficiently
small time step to maintain numerical stability. For the cases we have simulated, the
capillary time step restriction (discussed in § 2.2 and Popinet (2009)) proves limiting. The
readers are referred to López-Herrera et al. (2019) for the corresponding implementation
details in Basilisk C. Our implementation of the EVP model in Basilisk C can be found at
Balasubramanian (2023).

Appendix C. Grid-dependence study

Basilisk employs a quadtree grid system that enables resolutions in powers of 2, denoted
as 2n. Given our chosen square computational domain of size 8R0, the number of
uniform grid points across the initial bubble radius R0 is 2n−3 and thereby the minimum
cell size is Δ = 1/2n−3. In our study, we implement three different resolution levels:
Δ = 1/2n−3, 1/2n−4 and 1/2n−5, depending on the proximity to the bubble. Specifically,
we use a grid resolution of Δ = 1/2n−3 very close to the bubble (r < 1.28R0) and 1/2n−5

near the boundary. Figure 18 demonstrates the grid size independence of the bubble
bursting results in terms of jet development.

From figure 18, we see that the adaptive scheme yields similar results for n = 13, 14 at
low De. For high values of elasticity, similar jet development is observed for n = 14 and
15. It should be noted that the droplet breakup is mesh-size dependent (i.e. a droplet is
formed when the thickness of the jet is smaller than the grid size) and hence, we have
focused on a qualitative description of droplet breakup time rather than a quantitative
study. Furthermore, we have observed that the difference in droplet breakup time does not
significantly impact later jet development process, leading to grid-converged results. For
higher De, given that the Oldroyd-B model allows for the buildup of infinite stress, we find
that a sufficiently fine grid is necessary to accurately resolve the elastic stresses, which are
predominantly concentrated in the axial region of the jet.
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Bursting bubble in an elastoviscoplastic medium

Appendix D. Comparison of the Bingham model and EVP model at viscoplastic limit

The constitutive equation for a Bingham viscoplastic fluid (in non-dimensional form) is
given by

D = 0 ‖τ‖ < J ,

τ = 2
( J

2‖D‖ + Oh
)

D ‖τ‖ ≥ J .

⎫⎬
⎭ (D1)

With the introduction of a ‘large’ viscous regularization parameter Ohmax in (D1) for
the unyielded state, the regularized Bingham model reads

τ = 2 min
(

Ohmax,
J

2‖D‖ + Oh
)

D. (D2)

Nevertheless, the stress in the yielded region of viscoplastic liquid is

τ = 2
( J

2‖D‖ + Oh
)

D = J
‖D‖D + 2OhD. (D3)

However, for the EVP model in this study, towards the viscoplastic limit (De → 0) and
specifically De = 0 from (2.4) and (2.15), we obtain

τ = τp + τs = 2
(

Ohp

K
+ Ohs

)
D, (D4)

= 2(1 − β)OhD
(

1 − K
K

)
+ 2OhD, (D5)

= 2(1 − β)OhJ
‖τd‖ − J D + 2OhD, (D6)

where the definition of K from (2.8) for the yielded state of EVP fluid is used in (D6).
From (D3) and (D6), we observe that the regularized Bingham model and EVP model

can be equivalent if
1

‖D‖ = 2(1 − β)Oh
‖τd‖ − J . (D7)

The above equation holds for β = 0 and if the value of β = Ohs/Oh > 0, then the effective
yielded viscosity in the EVP fluid is lower than that in the Bingham viscoplastic model.

Appendix E. Energy-budget calculation

The formulation for different modes of energy transfer is presented here. Similar
energy-transfer mode calculations have been employed in prior works, such as
Ramírez-Soto et al. (2020) and Sanjay et al. (2021), for evaluating energy budgets in
scenarios involving colliding droplets and bubble bursting, respectively. In our study, we
extend this methodology to EVP liquids. Building upon the work by Snoeijer et al. (2020)
in energy analysis for Oldroyd-B viscoelastic fluids, we adapt the formulation to EVP
fluids.

From (2.2), the rate of change of kinetic energy can be written as

1
2

∂ρu2

∂t
+ ∇ ·

[(
ρu2

2
+ p

)
u − 2μD · u − τp · u

]
= −εs − ξp. (E1)

The terms in the square braces correspond to the energy flux terms and the last two terms
in the above equation corresponds to work done due to solvent viscosity and polymers,
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respectively, and is written as

εs = 2OhsD : D, (E2)

ξp = τp : D. (E3)

The work done due to polymers can be further split into

τp : D = dW
dt

+ εp, (E4)

where W is the elastic energy density and εp is the dissipation of energy due to polymers.
It should be noted that the elastic energy is associated with the polymer elongation and
thereby is a function of tr(A). Similarly, the relaxation of elastic stresses (thereby relaxation

of conformation tensor
∇
A) gives rise to polymer dissipation εp. Here,

∇
A corresponds to the

terms in the square braces of (B3).
For an Oldroyd-B model, starting from the elastic stress evolution (B3) we have

∇
A = − K

De
(A − I) , (E5)

with K = 1. Taking the trace of the constitutive equation, we arrive at the following
expressions:

W = Ohp

2De
(tr (A − I)) = Ec

2
(tr (A − I)) , (E6)

εp = W
De

= Ohp

De2 (tr (A − I)) , (E7)

for elastic energy and polymer dissipation, respectively.
The key distinction between the viscoelastic Oldroyd-B model and the Saramito (2007)

model lies in the presence of the switch term K (which mimics the effect of plasticity). It
is straightforward to demonstrate that this switch term does not affect the elastic energy of
the EVP fluid. The above conclusion is based on the definition that, before yielding of the
EVP fluid, it behaves as a Kelvin–Voigt viscoelastic solid, which inherently includes the
neo-Hookean spring. However, once the fluid has yielded, the polymer dissipation εp =
f (

∇
A) is identical to that in the Oldroyd-B model. The expressions for the elastic energy

and polymer dissipation in an EVP are, respectively, given by

W = Ohp

2De
(tr (A − I)) = Ec

2
(tr (A − I)) , (E8)

εp = KW
De

= KOhp

De2 (tr (A − I)) . (E9)

In § 3.7 we analyse the temporal evolution of energy within the computational domain,
following a similar approach as used in Sanjay et al. (2021). The kinetic and the surface
energy of the liquid are, respectively, given by

Ek = 1
2

∫
Ω

‖u‖2 dΩ, (E10)

Es =
∫

Γ

dΓ −
∫

ζ

dζ. (E11)

It should be noted that the energies are normalized by the surface energy γ R2
0. The

integrals for the energy in the fluid are evaluated over the volume (Ω) and the surface (Γ )
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of the largest liquid continuum in the computational domain and does not encompass the
drops (which are constituted under a separate term Em). Furthermore, the state of the
liquid pool, characterized by a flat free surface ζ (Z = 0), is considered as the reference
condition.

The dissipation due to the solvent part of the EVP fluid is given by

Es
d = 2Ohs

∫
t

(∫
Ω

‖D‖2 dΩ

)
dt. (E12)

The elastic energy and the polymer dissipation are quantified as

Ee =
∫

Ω

WdΩ, (E13)

Ep
d =

∫
t

(∫
Ω

εp dΩ

)
dt. (E14)

All other forms of energy is constituted as

Em = EDrops
k + EDrops

s + Es, Drops
d + EDrops

p +
∫

Ω+Ωd

BoZ d(Ω + Ωd) + Eg. (E15)

In (E15) the superscript ‘Drops’ corresponds to the ejected drops with the corresponding
volume denoted by Ωd. Further, the terms in (E15), respectively, correspond to the kinetic
energy, surface energy, viscous dissipation and polymer work in the drops. The volume
integrals are performed in the same way as in (E10)–(E14) except that the integrals are
performed over Ωd. The last two terms in (E15) correspond to the gravitational potential
for the fluid and the total energy stored in the gas phase, respectively.

The total energy in the gas phase occupying a volume Ωg, as outlined in Sanjay et al.
(2021), is written as

Eg = ρr

∫
Ωg

(‖u‖2

2
+ BoZ

)
dΩg + 2μrOh

∫
t

(∫
Ωg

‖D‖2 dΩg

)
dt. (E16)

Appendix F. Different jet growth at low De and high De

From figure 10(a), we observed that the jet height increases with De for De ∼ O(1)

in the viscoelastocapillary regime. In this section, we plot the temporal evolution of
corresponding polymeric dissipation, ratio of polymeric dissipation to the total dissipation
contribution from viscosity and polymers and elastic energy in figure 19(a–c), respectively.
From figure 19(a), we observe that the polymeric dissipation during the jet development
phase constitutes to only around 3 % of the total initial surface energy for De = 1 and
decreases with increase in De. Viscous dissipation increases with De such that, the ratio of
the polymeric dissipation to the total viscous and polymeric dissipation decreases with De,
as observed in figure 19(b). In the considered range of De, the polymeric dissipation is
less than 6 % in comparison with the total dissipation of energy in the system. Further,
the elastic energy in the EVP fluid is more pronounced closer to t ≈ 0.5–0.6 as shown in
figure 19(c), where the merged capillary waves result in jet formation. The corresponding
decrease of elastic energy with increase in De is due to lower elastocapillary number. The
elastic stresses are concentrated at a smaller region in the domain and hence, overall the
elastic energy in the EVP fluid (because of unyielded region also) is decreasing with De
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Figure 19. Temporal variation of (a) polymeric dissipation, (b) ratio of polymeric dissipation to viscous
and polymeric dissipation and (c) elastic energy, normalized with the initial energy for different De in the
viscoelastocapillary regime at J = 0.1.

at jet initiation. (Note that the unyielded region behaves as an elastic solid with low elastic
modulus.) The combined effects of increasing viscous dissipation and decreasing polymer
dissipation and elastic energy at jet initiation contributes to an increase in kinetic energy of
the jet and thereby results in higher jet growth with respect to De in the viscoelastocapillary
regime.

Whereas in figure 10(b), the jet height is shown to decrease with De of the fluid
for De ∼ O(0.01). In order to elucidate the different behaviour of jet growth, the
corresponding temporal evolution of polymeric dissipation is plotted in figure 20(a).
Here, De = 0.01, 0.02 is not considered as they result in drop formation. The polymeric
dissipation shows a decrease with increase in De, similar to the observation in figure 19(a).
However, the magnitude of polymeric dissipation is considerably higher in comparison
with that observed for De ∼ O(1). This is due to higher elastocapillary number and thereby
the elastic energy is larger with significant polymer dissipation (due to lower De). Further,
the ratio of polymeric dissipation to total dissipation is plotted in figure 20(b), which
indicates that the polymeric dissipation contributes to around 40 % of the total dissipation
of energy. This is because of the larger yielded region at De ∼ O(0.01), where polymeric
activity is pronounced. The variation of elastic energy with respect to De is shown in
figure 20(c). The increasing elastic energy at the time of jet initiation (t ≈ 0.5) is due to
the increased storage of elastic energy both in the yielded region (where elastic stress is
relaxing slower) and relatively larger unyielded region that exhibits solid behaviour (refer
to figures 5b and 6b). The increase in elastic energy results in strain-rate hardening and
thereby reduces the jet growth. Note that this variation in the elastic energy also affects the
initiation kinetic energy of the jet and thereby the maximum initiation velocity of the jet.
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Figure 20. Temporal variation of (a) polymeric dissipation, (b) ratio of polymeric dissipation to viscous and
polymeric dissipation and (c) elastic energy, normalized with the initial energy for low De and J = 0.1.

Further, the jet development is dictated by the capillary stresses and storage and relaxation
of elastic stresses in the jet. Overall, the observation of lower maximum jet height with
respect to De for De ∼ O(0.01) is related to the elastic energy component of the EVP
fluid.
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