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Abstract
In this paper, we provide a theoretical framework justifying the existence of a correlation risk premium
in a market with two traded assets. We prove that risk-neutral dependence can differ substantially from
real-world dependence by characterizing the set of risk-neutral martingale measures. This implies that
implied correlation can be significantly different with the realized correlation. Depending on the choice of
the market regarding the pricing measure, implied correlation can be high or low. We label the difference
between risk-neutral and real-world correlation the “correlation gap” and make the connection with cor-
relation risk premium. We show how dispersion trading can be used to exploit this correlation gap and
demonstrate how there can exist a negative correlation risk premium in the financial market.

Keywords: correlation risk premium; correlation trading; implied correlation; risk-neutral measure

1. Introduction
Correlation among assets plays an important role in the financial market. Empirical evidence
shows that market returns are lower when correlations among assets are increasing, since higher
correlations reduce the diversification effect and increase the market volatility. Roughly stated, the
correlation risk premium (CRP) is the difference between the realized and the option-implied, i.e.,
risk-neutral correlation.1 The CRP can be interpreted as an insurance premium paid for assets that
hedge against unanticipated rises in correlation. Academic research has provided more empirical
evidence to show that the CRP in equity markets is economically and statistically significant and
long-termmarket returns can be predicted using the option-implied correlation; see, e.g., Driessen
et al. (2009), Faria & Kosowski (2014), Buss et al. (2017), and Faria et al. (2022). In this paper, we
will provide a theoretical framework that allows to better understand the CRP.

Stocks and market indices are modeled as random variables on the probability space(
�, (Ft)t≥0 , P

)
. Under the assumption of no-arbitrage, the prices of traded derivatives can be

expressed as discounted expected payoffs under a risk-neutral probability measure Q. Implied
correlations (i.e., the correlation between assets under the risk neutral measure) can be deter-
mined from traded derivative prices, as was shown in Skintzi & Refenes (2004). Indeed, implied
correlation provides a measure of the relative cheapness/richness of index options in relation to
the index components, see, e.g., Chicago Board Options Exchange (2022). It reveals in the first
place information about the degree of the comovement under the probability measure Q, see
also Dhaene et al. (2012), Linders et al. (2015), and Madan & Schoutens (2013) for alternative

1we will provide an exact definition of the correlation risk premium later in this paper.
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2 Jan Dhaene et al.

implied dependence measures. The discrepancy between the realized correlation (i.e., the correla-
tion between assets under the real-world measure P) and the implied correlation gives rise to the
existence of the CRP.

The increasing complexity of insurance products has introduced the need to understand the
difference between implied and real-world correlation when dealing with insurance problems.
Indeed, modern insurance products combine actuarial and financial risks. Therefore, their valua-
tion and riskmanagement rely on real-world and risk-neutral probabilities. For example, Solvency
II requires that insurance companies value their liabilities in a “fair’” way, which implies that risk-
neutral valuation has to be used for financial risks and real-world valuation for the actuarial risks.
See, for example, Pelsser & Stadje (2014), Ghalehjooghi & Pelsser (2020), Dhaene et al. (2017),
Barigou et al. (2019), and Linders (2023) for various methodologies for pricing insurance products
based on combinations of real-world and risk-neutral information. Examples of complex insur-
ance products combining financial and actuarial risks are variable annuities. In Bauer et al. (2008)
and Bacinello et al. (2011), a valuation framework for a general class of variable annuities based on
risk-neutral and real-world expectations was introduced. Concrete examples are then provided in
Coleman et al. (2007), Feng & Jing (2017), and MacKay et al. (2023). Therefore, understanding
the difference between risk-neutral and real-world information is important when considering
variable annuities.

In this paper, we consider a discrete market setting. For stochastic finance in discrete time,
one can refer to Föllmer & Schied (2004). We investigate to what extent the implied correlation
reveals information about the degree of the comovement under the probability measure P. We
illustrate how statements which hold true in the risk-neutral world do not necessarily hold in
the real world. For example, stock prices can be strongly negative dependent in the risk-neutral
world (under Q) while being positive dependent in the real world (under P), this leads to a
large difference between the real-world and the risk-neutral correlation, which is quantified by
the correlation gap. Moreover, we introduce a new derivative called dispersion swap to trade the
correlation gap and demonstrate that the correlation gap does not converge to zero for market
equilibrium, i.e., the realized correlation can be different with the implied correlation in the case
of market equilibrium.

In Section 2, we introduce a simple discrete financial market with two traded stocks. We apply
the multivariate binomial tree model for the underlying stock prices. At time t, t = 0, 1, 2 . . . , the
price of the stock at the next valuation moment t + 1 can only take two possible outcomes. This
financial market is arbitrage-free and incomplete, we characterize the set of feasible risk-neutral
probability measures and demonstrate that it is feasible to determine a risk-neutral measure Q
by explicitly specifying the implied correlation. Note that we limit our analysis to two stocks in
the financial market. This choice is motivated by the fact that a market with two assets offers an
intuitive setting for both theoretical and numerical exploration of the correlation gap.2

In Section 3, we consider the situation where a pricing measure is chosen by the market from
the set of feasible risk-neutral probability measures, see Section 3.1. We show that the pricing
measure chosen by the market can differ substantially from the real-world probability measure
without introducing arbitrage opportunities. We give an example where the dependence structure
used to price multivariate derivatives is different from the real-world dependence structure. In
such a situation there can be a significantly large correlation gap in the financial market, i.e., the
difference between risk-neutral and real-world correlations is substantial.

In Section 4, we consider the sale of a unit-linked insurance product to a group of N policy-
holders. The payoff of this unit-linked contract is contingent upon the performance of a stock
market fund comprising two stocks within the financial market. We demonstrate how dispari-
ties between real-world dependence and risk-neutral dependence contribute to determining the
expected excess return above the risk-free return for each policyholder. To be more specific, an

2In a future research paper, we generalize this market situation to n assets, where n≥ 2.
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example is presented in Section 4.1 to illustrate that the expected excess return for the purchase of
the unit-linked insurance is determined by the correlation gap. A nonzero correlation gap leads
to a nonzero expected excess return for buying the unit-linked insurance product. Therefore,
policyholders of the unit-linked insurance product are also facing the correlation risk in the
financial market.

At first, a large correlation gapmay look like a dysfunction of the financial market. However, we
propose in Section 5 that, in our simplemarket model, one can use a new derivative, the dispersion
swap, to exploit the correlation gap. This strategy is not an arbitrage strategy, but as dependence
under Q is moving further and further away from its P counterpart, buying the dispersion swap
becomes more attractive in terms of larger expected profit. To be more precise, a large positive
correlation gap, corresponding to the situation that the realized correlation is expected to exceed
the implied correlation, results in a significant positive expected profit for longing the dispersion
swap. Furthermore, we show how one can combine the floating leg of individual variance swaps
and the floating leg of the index variance swap to approximate the floating leg of the dispersion
swap, which is called the realized dispersion. The expected profit for a buyer of the dispersion
swap is directly related to the correlation gap, the higher this gap, the higher the expected profit.
The idea of setting up trading strategies to exploit the difference between realized and implied
dependence was also discussed in Laurence (2008), Laurence & Wang (2008), Bossu (2014), and
Meissner (2015).

Apart from trading the dispersion swap to make a profit, investors can also long the disper-
sion swap to hedge against unanticipated correlation spikes in the financial market. Because the
investors may have a high degree of risk aversion towards the correlation risk, they are willing to
buy the dispersion swap, even with a negative expected profit. The expected profit of a dispersion
swap is also called the CRP, as it represents the price that market participants are willing to pay to
sell correlation risk. On the other hand, we show that the dispersion swap with a strictly negative
(or positive) expected return is not an arbitrage strategy. Therefore, we conclude in Section 6 that
a market in equilibrium can accommodate a negative CRP.

2. The financial market
2.1 A discrete financial market
We consider a discrete financial market with two nondividend paying stocks over a finite time
horizon. Today is time 0, the price of stock i (i= 1 or 2), at the future time t (t = 1, 2, . . . , n), is
denoted by Si(t).

3 Given the price of stock i at time t − 1, the future stock price at time t can only
increase to euiSi(t − 1) or decrease to ediSi(t − 1). The forward return of stock i at time t is denoted
by Ri(t) and defined as:

Ri(t)= log
Si(t)

Si(t − 1)
, i= 1 or 2 and t = 1, 2, . . . , n. (1)

The financial market is also home to a bank account, which allows borrowing and lending at a
constant, risk-free interest rate r. The time 0 value of the risk-free asset is B(0), and its time t value
is given by B(t)= ertB(0). We assume that eui and edi are symmetric with respect to the forward
rate er :

eui − er = −(edi − er), for i= 1, 2. (2)

3All random variables we encounter are assumed to be defined on the common probability space
(
�, (Ft)t=1,2,...,n, P

)
.

The filtration (Ft)t=1,2,...,n is the natural filtration generated by the stock price processes.
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Under the real-world probability measure P, we denote the joint probabilities of the random
vector (R1(t), R2(t)) as follows:

P
[
R1(t)= d1, R2(t)= d2

]= pdd(t),
P
[
R1(t)= u1, R2(t)= d2

]= pud(t),
P
[
R1(t)= d1, R2(t)= u2

]= pdu(t),
P [R1(t)= u1, R2(t)= u2]= puu(t). (3)

We assume that the joint probabilities under real-world measure P are strictly positive. The dis-
tribution of the random vector (R1(t), R2(t)) is determined by the marginal distributions of Ri(t),
and the dependence structure connecting R1(t) and R2(t). We assume that for i= 1, 2, the random
variables Ri(1), Ri(2), . . . , Ri (n) are independent of each other. The probability of stock 1 mov-
ing up and down from t − 1 to t is denoted by pu·(t) and pd·(t), respectively. For stock 2, these
probabilities are denoted by p·u(t) and p·d(t).

Assume the financial market is arbitrage free, hence, there exists at least one probability
measureQ, called a risk-neutral probability measure, satisfying the following conditions:

1. Q and P are equivalent probability measures;
2. For any traded asset, its future payoff discounted at the risk-free rate r is a martingale with

respect toQ:

e−rEQ [Si(t)|Ft−1]= Si (t − 1) , for i= 1, 2, and t = 1, 2, .., n. (4)

IfQ is a probability measure satisfying the above-stated conditions, we say that it is a feasible risk-
neutral probability measure. Under Q, the joint probabilities of the random vector (R1(t), R2(t))
are denoted by quu(t), qud(t), qdu(t), and qdd(t). Additionally, the risk-neutral marginal probabili-
ties in [t − 1, t] are denoted by qu· (t) , qd· (t) , q·u (t), and q·d (t) . We show in the next subsection
that this simple market model is incomplete by characterizing the set of feasible risk-neutral
probability measures.

2.2 The set of equivalent martingale measures
Let us now characterize the set of all feasible risk-neutral probability measures. This set is denoted
by M. Each Q ∈ M is characterized by the joint probabilities qdd(t), qud(t), qdu(t), quu(t),
t = 1, 2, . . . , n. In Theorem 1, we characterize the risk-neutral pricing measure Q by the corre-
lation coefficients ρQ(t)=CorrQ [R1(t), R2(t)], t = 1, 2, . . . , n. A proof of this Theorem can be
found in Appendix A.1.

Theorem 1. Consider the stock price model (3) satisfying the conditions (2). The set M of risk-
neutral probability measures can be characterized as follows:

Q ∈M⇔ ∃ ρQ(t) ∈ (−1, 1) , t = 1, 2, . . . , n,

such that
{
quu(t)= qdd(t)= 1

4 (1+ ρQ(t)),
qud(t)= qdu(t)= 1

4 (1− ρQ(t)).
(5)

The risk-neutral measure Q is not unique and the market is incomplete. It is clear to see from
Theorem 1 that the risk-neutral marginal probabilities are all equal to 1

2 . Note, however, that our
model can be generalized to situations where the marginal risk neutral probabilities are different
from 1

2 . Specifying a feasible risk-neutral measure Q under the stock price model (3), requires
specifying the correlation efficient ρQ(t), t = 1, 2, . . . , n. Each risk-neutral probability measureQ
inM has the same marginal distributions but different dependence structures. For instance, take
ρQ(t)≡ 0, then we find the risk-neutral measureQ⊥ ∈M where the marginals are independent.
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The situations characterized by theminimal correlation coefficient ρQmin(t)≡ −1 and themax-
imal correlation coefficient ρQmax(t)≡ 1 correspond with the probability measure Qmin and the
probability measure Qmax, respectively. The random vector (R1(t), R2(t)) under the probability
measureQmin is counter-monotonic. In this situation, the components of the random vectors are
maximum negative dependent. Inversely, the random vector (R1(t), R2(t)) under the probability
measure Qmax is comonotonic and the components of the random vector are maximum positive
dependent.

The real-world joint probabilities are assumed to be strictly positive, hence all the risk-neutral
probabilities specified by (5) are strictly positive. Using (5), we can directly find that for each
Q ∈M, ρQ(t) ∈ (−1, 1), which means that the comonotonic and the counter-monotonic cases
are not reachable inM. The larger ρQ(t), the “closer” the risk-neutral probability measureQ is to
the maximum measureQmax.

The set M contains a wide range of dependence structures. Each element Q in the set M of
risk-neutral probability measures can be expressed as a linear combination ofQmin andQmax:

Q ∈M⇔ ∃ ρQ(t) ∈ (−1, 1) such thatQ=
(
1−ρQ(t)

)
2

Qmin +
(
1+ρQ(t)

)
2

Qmax. (6)

By increasing the correlation coefficient ρQ(t), we can gradually increase the dependence of the
components R1(t) and R2 (t) .

It directly follows from (5) that the joint risk-neutral cdf FQt of the forward return vector
(R1(t), R2(t)) can be given by:

FQ

t (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if x1 < d1 or x2 < d2,
ρQ(t)+1

4 , if x1 ∈ [d1, u1) and x2 ∈ [d2, u2) ,
1
2 , if x1 ∈ [d1, u1) and x2 ≥ u2,
1
2 , if x1 ≥ u1 and x2 ∈ [d2, u2) ,
1, if x1 ≥ u1 and x2 ≥ u2.

(7)

It follows from (7) that the joint risk-neutral cdf of forward return FQt (x1, x2) can be unambigu-
ously determined by the correlation coefficient ρQ(t).

2.3 Comparing different risk-neutral measures
The setM contains different risk-neutral measures such that the marginals R1 and R2 are always
the same. Therefore, the difference between multivariate risk-neutral measures is in dependence
structure. To compare different probability measures in M and identify under which one the
dependence is stronger or weaker, we can use multivariate stochastic orders. The notion of
multivariate stochastic orders in actuarial science goes back to Yanagimoto & Okamoto (1969).

We first introduce the Positive Quadrant Dependence and the Negative Quadrant Dependence.
The notions of PQD and NQD were introduced in Lehmann (1966).

Definition 2 (Quadrant Dependence). The random vector (R1(t), R2(t)) is said to be Positive
Quadrant Dependent under the probability measure Q, notation (R1(t), R2(t))∼Q-PQD, in case
the vector (R1(t), R2(t)) satisfies:

Q [R1(t)≤ x1]Q [R2(t)≤ x2]≤ FQ

t (x1, x2) , for all (x1, x2) ∈R2.
The vector (R1(t), R2(t)) is said to beNegative Quadrant Dependent under the probability measure
Q, notationQ-NQD, in case the vector satisfies:

Q [R1(t)≤ x1]Q [R2(t)≤ x2]≥ FQ

t (x1, x2) , for all (x1, x2) ∈R2,

where FQ

t is the joint cdf of (R1(t), R2(t)) under the probability measureQ.
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Using Expression (7) for FQ

t results in the following implications:

ρQ(t)≥ 0⇐⇒ ρQ(t)≥ ρQ⊥(t)⇐⇒ (R1(t), R2(t)) isQ-PQD, (8)
ρQ(t)≤ 0⇐⇒ ρQ(t)≤ ρQ⊥(t)⇐⇒ (R1(t), R2(t)) isQ-NQD,

where ρQ⊥(t) is the correlation of the independent copy of the random vector (R1(t), R2(t)), it
is straightforward to show that ρQ⊥(t) equals 0. Using the notion of quadrant dependence, we
can measure the joint behavior of two random variables. If the risk-neutral correlation ρQ(t) is
larger than 0, then the random vector (R1(t), R2(t)) isQ-PQD, which means that the two random
variables R1(t) and R2(t) are likely to assume small or large values simultaneously. Conversely, if
ρQ(t) is less than 0, the random vector is Q-NQD, implying an inverse relationship where R1(t)
and R2(t) may move in different directions.

The concept of quadrant dependence measures the association between two random variables.
However, under different risk-neutral measuresQ(1) andQ(2), the marginals and quadrant depen-
dence of the random vector (R1(t), R2(t)) may be identical. To distinguish the difference under
such two different risk-neutral measures, we can use the correlation order introduced in Dhaene &
Goovaerts (1996), since the joint distribution of (R1(t), R2(t)) is different when using two different
risk-neutral measures.

Definition 3 (Correlation order). Consider the risk-neutral probability measures Q(1) and Q(2)

with correlation parameters ρQ(1) (t) and ρQ(2) (t), respectively. We say that the cdf’s FQ(1)
t and FQ(2)

t
are ordered in the correlation order, notation FQ(1)

t Corr FQ(2)
t if the following holds:

FQ(1)
t (x1, x2) ≤ FQ(2)

t (x1, x2) , for all (x1, x2) ∈R2. (9)

Intuitively, the inequality FQ(1)
t Corr FQ(2)

t implies that the two stock prices in [t − 1, t] move
stronger together under the probability measureQ(2) than under the probability measureQ(1), i.e.,
the probability of having simultaneously large/small realizations in [t − 1, t] is larger under Q(2),
compared to Q(1). Moreover, comparing the correlations ρQ(1) (t) and ρQ(2) (t) gives information
about the correlation order between the probability measures Q(1) and Q(2). Indeed, it follows
directly from Expression (7) that the following equivalence relation holds:

ρ
Q(1) (t)≤ ρ

Q(2) (t) ⇐⇒ FQ(1)
t Corr FQ(2)

t . (10)

There are infinitely many risk-neutral probability measures and each risk-neutral measure
models the stock prices using a different dependence structure. If a contingent claim has to be
priced, the market will pick a suitable pricing measure.

3. Real world vs risk-neutral measures
Section 2 shows that the market is incomplete and a whole set of risk-neutral measures exists.
Market prices are determined by supply and demand, and we assume they do not allow for arbi-
trage. We also assume that sufficiently many derivatives are traded and these prices are publicly
available. All market participants can observe these prices. Having these prices at our disposal
allows to back out the choice of the market concerning the risk-neutral measure.

If we can obtain the risk-neutral pricing measure used to price traded derivatives, we can back
out the view of the market about future dependencies between the stock prices. However, the
market can choose from a wide range of possibilities for ρQ(t) and our results show that there is,
mathematically, no reason why the market should takeQ such that ρQ(t) is close to the real-world
correlation ρP(t) for all t.
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3.1 Amarket with a combined asset
From Theorem 1, the spot price of stock i and its potential outcomes di and ui, fully specify the
distribution of Ri. However, individual derivatives written on each stock do not give additional
information about the joint distributions. To determine the multivariate distribution, a combined
asset and derivative prices on this combined asset are necessary.

Consider the market described above, but now also assume that a stock market index is traded.
Its price at time 0 is denoted by S(0) and its price at time t is denoted by S(t):

S(t)= S1(t)+ S2(t), for t = 0, 1, 2, . . . , n. (11)

We have that EQ [S(t)]=EQ [S1(t)+ S2(t)]= ertS (0) . The forward return of the stock market
index at time t is denoted by R(t) and defined as follows:

R(t)= log
S(t)

S(t − 1)
, for t = 1, 2, . . . , n. (12)

Call options on the index with maturity T = 1, 2, . . . , n are also traded. The payoff of an index call
option is given by (S (T) −K)+ where (x)+ =max {x, 0}. The price of an index call with maturity
T and strike K is then denoted by CQ [K, T] and can be expressed as follows:

CQ [K, T]= e−rTEQ

[
(S(T)−K)+

]
.

The cumulative distribution function of the random variable S (T) under the risk-neutral measure
Q is denoted by FQS(T)

. We introduce the stop-loss order between two risk-neutral probability
measures in terms of their call option curves.

Definition 4 (Stop-loss order). Consider the stock price model described in (3) satisfying the
conditions (2) and the stock market index defined in (11). Consider the risk-neutral probability
measures Q(1) and Q(2). We say that FQ

(1)

S(T)
and FQ

(2)

S(T)
are ordered in the stop-loss order, notation

FQ
(1)

S(T)
sl F

Q(2)

S(T)
if:

CQ(1) [K, T]≤ CQ(2) [K, T] for all K ≥ 0. (13)

Intuitively, the stop-loss order relation FQ
(1)

S(T)
sl FQ

(2)

S(T)
implies that the stock market index S (T) is

more volatile under the pricing measure Q(2) than under the pricing measure Q(1). Indeed, one
can prove the following implication:

FQ
(1)

S(T)
sl FQ

(2)

S(T)
=⇒VarQ(1) [S (T)]≤VarQ(2) [S (T)] .

Therefore, call options are more expensive under the measure Q(2) than under Q(1). The fol-
lowing theorem shows that the correlation ρQ (1) determines the variability of the stock market
index S (1) .

Theorem 5. Consider the stock price model described in (3) satisfying the conditions (2) and the
stock market index defined in (11). Then, the following equivalence relation holds:

ρ
Q(1) (1)≤ ρ

Q(2) (1) ⇐⇒ FQ
(1)

1 Corr FQ
(2)

1 ⇐⇒ FQ
(1)

S(1) sl F
Q(2)

S(1) .

Proof. From (10), we find that ρ
Q(1) (1)≤ ρ

Q(2) (1) ⇐⇒ FQ
(1)

1 Corr FQ
(2)

1 . The call option price
CQ [K, 1] can be expressed as follows:

CQ [K, 1]= e−r
(
1
4

(P1 + P2 + P3 + P4) + (P1 − P2 − P3 + P4)
ρQ (1)

4

)
, (14)
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where,

P1 = (
S1 (0) eu1 + S2 (0) eu2 −K

)
+ ; P2 =

(
S1 (0) eu1 + S2 (0) ed2 −K

)
+ ;

P3 =
(
S1 (0) ed1 + S2 (0) eu2 −K

)
+ ; P4 =

(
S1 (0) ed1 + S2 (0) ed2 −K

)
+ .

It follows from Expression (14) that CQ [K, 1] is an increasing linear function of ρQ(1), since
(P1 − P2 − P3 + P4)≥ 0. �

The time 0market price of a call option with strikeK andmaturity 1 year, denoted byCQ [K, 1],
can then be used to extract the correlation ρQ (1) associated with the risk-neutral measure Q, as
demonstrated in (14). Indeed, we have that:

ρQ (1) = 4erCQ [K, 1]− (P1 + P2 + P3 + P4)
(P1 − P2 − P3 + P4)

. (15)

From Theorem 1, the joint probabilities qdd(1), qdu(1), qud(1), quu(1) in this case are fully spec-
ified. For the single period case, Theorem 5 also indicates the equivalence relation between the
correlation of two stocks and the volatility of the stock index. Moreover, we provide the following
Theorem 6 to show that having available the option prices CQ [K, T] , for T = 1, 2, . . . , n, one can
back out the pricing measureQ.

Theorem 6. Assume the index call option prices CQ [K, T] , T = 1, 2, . . . , n are all available, then
the correlation coefficient ρQ(t), t = 1, 2, . . . , n can unambiguously be determined.

Proof. First, we already determined ρQ(1) from expression (15). Next, knowledge about the
price CQ[K, 2] enables us to back out the correlation ρQ(2). Indeed, we can write:

CQ [K, 2]= e−2rEQ

[
EQ

[
(S(2)−K)+ |F1

]]
= e−2r [quu(1)EQ

[
(S(2)−K)+ | S1(1)= S1 (0) eu1 , S2(1)= S2 (0) eu2

]
+ qud(1)EQ

[
(S(2)−K)+ | S1(1)= S1 (0) eu1 , S2(1)= S2 (0) ed2

]
+ qdu(1)EQ

[
(S(2)−K)+ | S1(1)= S1 (0) ed1 , S2(1)= S2 (0) eu2

]
+ qdd(1)EQ

[
(S(2)−K)+ | S1(1)= S1 (0) ed1 , S2(1)= S2 (0) ed2

]]
. (16)

From Expression (14), we find that the conditional expectations are given by:

EQ

[
(S(2)−K)+ | S1(1)= s1, S2(1)= s2

]= (P1 + P2 + P3 + P4)+ (P1 − P2 − P3 + P4) ρQ(2)
4

,

where the constants Pj, j= 1, 2, 3, 4, are now defined as follows:

P1 = (
s1eu1 + s2eu2 −K

)
+ ; P2 =

(
s1eu1 + s2ed2 −K

)
+ ;

P3 =
(
s1ed1 + s2eu2 −K

)
+ ; P4 =

(
s1ed1 + s2ed2 −K

)
+ .

The probabilities quu(1), qud(1), qdu(1), qdd(1) are already determined from the call option price
CQ[K, 1]. As a result, the only unknown parameter in the Expression (16) is ρQ(2) and observing
the option price CQ [K, 2] allows to solve for ρQ(2). Suppose we have derived the correlations
ρQ(t), t = 1, 2, . . . , i, where i< n, we can then apply the same approach to acquire the correlation
ρQ (i+ 1) from the correlations ρQ(1), ρQ(2), . . . , ρQ (i) and the index option priceCQ [K, i+ 1].
The probability distributions of S1(i) and S2(i) can be specified using ρQ (1), ρQ (2) , . . . , ρQ (i).
Hence, by using the option priceCQ [K, i+ 1], we can solve for ρQ (i+ 1). Therefore, we conclude
that having available the option prices CQ [K, T] , for T = 1, 2, . . . , n, one can back out the pricing
measureQ. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1748499524000228
Downloaded from https://www.cambridge.org/core. IP address: 18.189.193.21, on 26 Dec 2024 at 22:38:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1748499524000228
https://www.cambridge.org/core


Annals of Actuarial Science 9

Theorem 6 showed that adding index call options with maturities t = 1, 2, . . . , T, completes
the market described in (3). Indeed, one can back out the risk-neutral correlation using index
call options, and therefore the risk-neutral probability measure is unique in this market setting.
The idea of extracting the implied correlation from available multivariate option prices is widely
discussed in the literature. For example, Linders & Schoutens (2014) used basket option prices,
Ballotta et al. (2017) used quanto options, and Garcia et al. (2009) derived implied correlations
using CDO spreads.

Prices of traded stocks and options can be used to back out the corresponding risk-neutral
pricing measure, the correlation of the stock returns and the volatility of the stock market index.
We refer to these quantities as implied measures, implied correlation, implied volatility. Note that
market prices are expectations under the pricing measureQ and therefore the implied correlation
and the implied volatility have to be understood as correlation and volatility levels with respect
to the risk-neutral probability measure Q. Correlation and volatility under the probability P are
referred to as real-world correlation and volatility, respectively.

3.2 Example: A single periodmodel
We consider a one-period financial market as described in Section 2. The risk-free rate r is
assumed to be 0 and consider eu1 = 1.4, eu2 = 1.7. The time 0 spot prices of the traded assets are
given by S1 (0) = 100 and S2 (0) = 200. The dynamics of the financial market under the real-world
measure P are described by the following equations:

pdd(1)= 0.3, pud(1)= 0.2, (17)
pdu(1)= 0.2, puu(1)= 0.3.

Notice that we choose the marginals such that the P-marginals are the same as the Q-marginals,
this is to make the example simpler and is not required in general case.

Consider the stock market index S(t)= S1(t)+ S2(t), t = 0, 1. We find that the real-world cor-
relation ρP(1)=Corr[R1(1), R2(1)]= 0.2, and the real-world volatility σP(1)= √

VarP [R(1)]=
0.585. Since ρP(1)= 0.2> 0, the return vector (R1(1), R2(1)) is Positive Quadrant Dependent
under the real-world probability measure P:

(R1(1), R2(1)) is P− PQD. (18)

We conclude from (18) that stocks are positively dependent under the real-world measure P

specified by (17). However, the dependence structure under the risk-neutral measure Q can be
different, even opposite from the dependence under P. The following Proposition 1 is presented
to show that the stock prices can be negatively dependent under the risk-neutral measure.

Proposition 1. A call option written on the stock market index S(1), with strike K = 300, is traded
and its time 0 price ĈQ can be observed in the market. Then we have the following equivalence
relations:

ĈQ ≥ 70⇐⇒Q− PQD, (19)
ĈQ ≤ 70⇐⇒Q−NQD

Proof. From (14), we have ĈQ = 70+ 20ρQ(1). Hence, it follows from (8) directly to
derive (19). �

Proposition 1 shows that the market decides if the stocks are positive or negative dependent
under the risk-neutral measure. Indeed, different market situations result in different risk-neutral
measures, which can be different with the real-world measure P. Here we provide three different
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Table 1. Three different market situations given that ρP = 0.2 and σP = 0.585

Market ĈQ ρQ σQ Quadrant Dependence

Q(1) 52 −0.9 0.373 Q(1) − NQD
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(2) 73 0.15 0.578 Q(2) − PQD
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(3) 86 0.8 0.668 Q(2) − PQD

Table 2. Real-world and risk-neutral correlations

T ρP(T) Ĉ[300, T] ρQ̂(T)

1 0.84 71.72 0.086
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.76 98.03 0.258
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.68 109.89 0.348
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.60 127.91 0.428
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.52 144.79 0.496
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.44 154.04 0.553
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.36 162.56 0.600
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.28 174.16 0.634
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.20 182.13 0.651
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.12 187.13 0.663

market situations in Table 1.
From Table 1, we can also conclude that the risk-neutral pricing measuresQ(1),Q(2), and Q(3)

are ordered in the correlation order:

FQ
(1)

t CorrFQ
(2)

t CorrFQ
(3)

t .

This example shows that deriving the implied correlation and volatility to learn about the future
dynamics of the stock prices is only part of the story. Implied measures are giving information
about the risk-neutral dynamics and these statements cannot be directly translated to statements
under the real-world probability measure. If the risk-neutral measure Q(1) is chosen by the mar-
ket, then implied volatility and correlation are substantially different with the real-world volatility
and correlation. It might feel counter-intuitive to use a negative dependence structure to price
the index option while under the real-world probability measure, the stocks are positive depen-
dent. Notice that, however, the corresponding index option price does not lead to arbitrage and is
consistent with other derivative prices.

3.3 Example: A multiperiodmodel
Consider the financial market described above, but now we consider the future times
t = 1, 2, . . . , 10. Assume that the real-world correlation ρP(t) is given by ρP(t)= 0.92− 0.08t, for
t = 1, 2, . . . 10. Similar to the one-period case, we still assume the real-world marginals are the
same as the risk-neutral marginals, then the real-world dynamics can be expressed as:

pdd(t)= 1
4
(1+ ρP(t)), pud(t)= 1

4
(1− ρP(t)), (20)

pdu(t)= 1
4
(1− ρP(t)), puu(t)= 1

4
(1+ ρP(t)).

We show real-world correlations in the second column of Table 2.
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Figure 1. The correlation gap ρP(t)− ρQ̂(t) with respect to time t.

Assume at time 0, at-the-money call options with maturities T = 1, 2, . . . , 10 are traded. The
market prices are denoted by Ĉ [300, T] , where T = 1, 2, . . . , 10, and are given in the third col-
umn of Table 2. The market prices can be used to determine the unique risk-neutral measure Q̂.
Indeed, Theorem 6 shows that implied correlations ρQ̂(t) can be uniquely determined by index
call option prices Ĉ[300, t] for t = 1, 2, . . . , n. We present implied correlations ρQ̂(t) in the fourth
column of Table 2. We can find from Table 2 that there always exists a gap between real-world and
implied correlations. We call this gap the correlation gap. The following Fig. 1 shows the plot of
the correlation gap, ρP(t)− ρQ̂(t) for time t = 1, 2, . . . , 10.

Implied correlations capture the aggregate view of the market about future risk-neutral cor-
relations. Table 2 and Fig. 1 clearly show that these views cannot always be directly translated to
real-world statements. Indeed, in our example, the risk-neutral correlation is increasing: market
participants anticipate a increase in correlation. However, the real-world correlation is moving in
the opposite direction and decreases over time. Moreover, we can see from Fig. 1 that the corre-
lation gap ρP(t)− ρQ̂(t) is decreasing over time. The correlation gap is highly positive at time 1
and becoming strongly negative at time 10. Notably, a nonzero correlation gap may persist in the
financial market over time. In the next Section 4, we demonstrate that this nonzero correlation
gap not only manifests in the financial market but also carries implications for the purchase of
unit-linked insurance products.

4. The correlation gap: Market-consistent valuation for insurance products
Consider an insurer selling a unit-linked product to a group of N policyholders of the same age x.
For i= 1, 2, . . . ,N,, we denote by Ii the indicator random variable modeling the survival of the
policyholder i,

Ii =
{
0, if policyholder i dies before time T,
1, if policyholder i survives to time T.

(21)

The payoff of this unit-linked contract depends on the performance of a stock market fund. We
assume here, for simplicity, the fund consists of two stocks S1(t) and S2(t). However, if the fund
value drops below a threshold K at time T, the insurer will compensate such that the policy holder
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still receives the payoff K. To be more specific, policyholder i receives upon survival at time T the
payoff hi(T) given by:

hi(T)=max(S1(T)+ S2(T),K)× Ii, for i= 1, 2 . . . ,N. (22)

Then the per-policy payout of the insurer is denoted by h(T) and given by:

h(T)=max(S1(T)+ S2(T),K)× 1
N

N∑
i=1

Ii. (23)

We assume the survival random variables I1, I2, . . . , In are i.i.d. and each Ii is independent from
the stock prices S1(T) and S2(T). Moreover, we assume that P [Ii = 1]= Tpx.

Market-consistent valuations are considered extensively for the valuation of unit-linked insur-
ance products, see, e.g., Malamud et al. (2008), Artzner & Eisele (2010), Pelsser & Stadje (2014),
Dhaene et al. (2017), and Linders (2023). A market-consistent valuation can be interpreted in the
sense that the valuation of any hedgeable part within a claim aligns with the price of its hedge.
Now let us consider a market-consistent (MC) valuation for the unit-linked insurance product
with payout per policy given by (23). Denote this MC valuation by ρ[h(T)] and it is given by:

ρ[h(T)]= e−rTEQ[max(S1(T)+ S2(T),K)]Tpx. (24)

Assume that N is large and the insurance risk can be diversified. For simplicity, here, we use
the best-estimate for the valuation of the actuarial risk within h(T). Hence, we can regard the
valuation ρ(h(T)) as a MC valuation based on perfect actuarial diversification. By using the
fact that e−rTEQ[max(S1(T)+ S2(T),K)] is equal to CQ[K, T]+Ke−rT , the value ρ[h(T)] can be
rewritten as:

ρ[h(T)]= CQ[K, T]Tpx +Ke−rT
Tpx. (25)

In a broader context, market-consistent valuations can fulfill different purposes, which can be
employed not only in determining technical provisions but also in setting premiums. Assume that
ρ[h(T)] is the premium charged by the insurance company for each policyholder. The expected
payoff for policyholder i at time T is given by EP[hi(T)] and can be expressed as:

EP[hi(T)]=EP[max(S1(T)+ S2(T),K)]Tpx, for i= 1, 2, . . . ,N. (26)

It directly follows (24) and (26) that the time T expected excess return above the risk-free return
(Expected ER) for each policyholder to buy this unit-linked insurance product is given by:

Expected ER=EP[hi(T)]− erTρ[h(T)] (27)

= Tpx
(
EP[max(S1(T)+ S2(T),K)]−EQ[max(S1(T)+ S2(T),K)]

)
.

By recognizing that EP[max(S1(T)+ S2(T),K)] can also be written as K +EP[(S1(T)+ S2(T)−
K)+], the expected excess return for purchasing this unit-linked insurance contract can be
rewritten as:

Expected ER= Tpx
(
EP[(S1(T)+ S2(T)−K)+]− erTCQ[K, T]

)
. (28)

From (28), it is evident that the expected excess return for buying this unit-linked insurance con-
tract depends on the expected excess return for investing in the index call option with a strike K
and a maturity T. In Section 3.1, it is shown that implied correlations can be uniquely determined
from the index call option prices. Hence, the expected excess return for each policyholder is asso-
ciated with implied correlations. In the following subsection, we examine the same market setting
in Example 3.2 to illustrate that the expected excess return for the policyholder of this unit-linked
insurance can be determined by the correlation gap in the financial market.
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Table 3. Expected excess return for each policyholder in three different market situations

Market ĈQ ρQ ρP − ρQ ρ[h(1)] Expected ER

Q(1) 52 −0.9 1.1 352px 22px
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(2) 73 0.15 0.05 373px 3px
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(3) 86 0.8 −0.6 386px −12px

4.1 Illustration: A single periodmodel
Example 3.2 illustrates that there exists a correlation gap in the financial market. Consider the
same market setting as in Example 3.2, we show how the correlation gap determines the expected
excess return for buying the unit-linked insurance product.

In the single period market with r = 0, as in Example 3.2, let us consider a one-period
unit-linked insurance product with T = 1. The payout per policy for this unit-linked insurance
contract, given by (23), is denoted as h(1). Assume the threshold K = 300, from (24), a market-
consistent valuation of this one-period unit-linked insurance product is denoted as ρ[h(1)] and
given by:

ρ[h(1)]=EQ[max(S1(1)+ S2(1), 300)]px = (ĈQ + 300)px,

where ĈQ represents the time-0 index call option price with strike K = 300 and maturity
T = 1, and px stands for the probability that a policyholder aged exactly x survives to time 1.
Subsequently, the expected excess return for each policyholder at time-1 can be written as:

Expected ER= px
(
EP[(S(1)− 300)+]− ĈQ

)
, (29)

where S(1) is the market index defined in (11).
Using the real-world dynamics in (17), the expectation EP[(S(1)− 300)+] can be expressed as

follows:

EP[(S(1)− 300)+]= 180× 1
4
(1+ ρP(1))+ 100× 1

4
(1− ρP(1))= 70+ 20ρP(1).

Additionally, Proposition 1 implies that ĈQ = 70+ 20ρQ(1). Hence in this market scenario, we
can find that:

Expected ER= 20 · px(ρP(1)− ρQ(1)). (30)
From (30), we can clearly see that different correlation gaps give rise to different expected

excess returns. Indeed, a positive (negative) correlation gap implies a positive (negative) expected
excess return for buying the unit-linked insurance. Table 3 compares the expected excess return
of the unit-linked insurance policyholder across the three different market scenarios presented in
Example 3.2.

Table 3 clearly reveals that the presence of a nonzero correlation gap results in a nonzero
expected excess return for the purchase of the unit-linked insurance product. Therefore, a pol-
icyholder of the unit-linked insurance contract is also exposed to a correlation risk in the financial
market. In the following Section 5, we show how one can trade and hedge the correlation risk in
the financial market.

5. Trading the correlation gap
We demonstrated that volatility and correlation under P and Q can differ substantially. In this
section, we show that the existence of the correlation gap gives rise to trading strategies which
have a large expected profit. We will introduce a new financial derivative called dispersion swap,
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and show that the expected profit for longing the dispersion swap is related to the CRP in the
financial market.

5.1 Variance swaps
We first introduce a new derivative in our financial market: A variance swap on the stock market
index. At maturity T, the holder of the floating leg of a variance swap receives the difference
RV[T]− SR[T], where RV[T] is defined as:

RV[T]= 1
T

T∑
t=1

R(t)2. (31)

The quantity RV[T] is called the annualized realized variance and represents the floating leg of
the contract. The fixed leg of the contract is SR[T], also called the swap rate. The swap rate of the
contract is a constant which is determined at inception such that the contract is fair and nomoney
has to be exchanged at inception. Denote by Q the pricing measure used by the market to price
derivatives. The swap rate is then given by:

SR[T]=EQ [RV[T]] . (32)

The holder of a variance swap will pay the swap rate SR[T] at maturity and will receive the realized
variance RV[T]. At time 0, the swap rate is known but the realized variance is random.Meanwhile,
investors are willing to pay a premium to hedge against the variance risk in the financial market,
called the variance risk premium (VRP); see, e.g., Carr &Wu (2009), Bollerslev & Zhou (2007), and
Alibeiki & Lotfaliei (2021). Indeed, the VRP is the expected profit for the holder of the variance
swap, which is given by:

VRP = Expected Profit=EP [RV[T]]− SR[T].

The VRP can be expressed as follows:

VRP = 1
T

T∑
t=1

(
σ 2
P(t)− σ 2

Q(t)
)

+ 1
T

T∑
t=1

(
(EP [R(t)])2 − (

EQ [R(t)]
)2) , (33)

where σQ(t) is the t−year forward volatility. Expression (33) clearly shows that the holder of the
variance swap longs the real-world volatility and shorts the risk-neutral volatility. The summation
in the expression of the VRP arises because a variance swap is actually trading the secondmoment,
rather than the variance. Investing in a variance swap becomes attractive if the gap between real
and risk-neutral volatility is substantially large. If this gap is positive, it may lead to a positive
VRP, while in the other case, it may yield a negative risk premium. Investors who are exposed
to variance risk may be willing to buy the variance swap, even if the risk premium is negative,
since it can provide insurance against adverse variance risk scenarios. Indeed, investors who buy
the variance swap receive a hedge for their exposure to variance risk and are willing to accept a
negative expected profit in return.

5.2 Dispersion swaps
In Example 3.2, it is clear that there exists a correlation gap. However, variance swaps do not
allow us to directly trade the difference between the real-world correlation and the implied cor-
relation. Indeed, two prevalent approaches have been proposed for exploiting or hedging the
correlation risk within the financial market. First, investors can implement a dispersion trading
strategy, wherein they construct a portfolio by taking a position in an index option and the oppo-
site position in the options written on the constituents of the index. Such dispersion strategies
have been established using calls, puts, straddles, and variance swaps, see, e.g., Jacquier & Slaoui
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(2007), Bossu (2014), and Meissner (2015). In the second approach, one directly trades in cor-
relation derivatives such as correlation swaps or covariance swaps. Correlation swaps were first
introduced in the early 2000s as a derivative to hedge against the correlation risk exposure inher-
ent in exotic derivatives trading. However, unlike implied volatility, implied correlations are not
directly observable from option markets, making the pricing and hedging of correlation swaps a
challenging task. For literature on the pricing of the correlation swap, we refer to Bossu (2005,
2007). In addition to correlation swaps, covariance swaps are a generalization of the variance
swap, providing an alternative method to hedge correlation risk within a two-asset framework.
The floating leg of the covariance swap is the realized covariance between the log returns of two
underlying assets. Discussions on the pricing and hedging strategies of covariance swaps can be
explored in Carr & Corso (2001) and Salvi & Swishchuk (2014).

Instead of employing existing approaches to capitalize on the correlation risk between several
assets, we propose a new derivative called the dispersion swap. The floating leg of the contract
relies solely on the product of forward returns of the two underlying stocks, establishing an
intrinsic link to the correlation between the assets, and simplifying the determination of the fixed
leg. Theoretical analysis and numerical results will be presented to demonstrate that the disper-
sion swap provides an opportunity to trade the correlation gap. Moreover, we also show that the
existence of a CRP in the financial market is justified.

The holder of the floating leg of a dispersion swap receives at maturity the following payoff:

RD[T]− P[T],

where

RD[T]= 1
T

T∑
t=1

R1(t)R2(t). (34)

We call RD[T] the realized dispersion. P[T] is the fixed leg of the contract, determined at inception
such that the contract is fair and with zero initial payment. The following proposition is presented
to show the realized dispersion can be approximated by the realized variance of stock index and
the realized variances of individual stocks. A proof of this proposition can be found in Appendix
A.2.

Proposition 2. The realized dispersion can be approximated by the difference between the realized
variance of the stock market index and the sum of realized stock variances:

RD[T]≈ 1
2

(RV[T]− RV1[T]− RV2[T]) , (35)

where RVi[T] is the realized variance for stock i and is given by:

RVi[T]= 1
T

T∑
t=1

Ri(t)2, i= 1, 2.

From Proposition 2, the realized dispersion can be approximated by subtracting marginal vari-
ances from the basket variance. It implies that the realized dispersion is indeed linked to the
dependence. Additionally, there is a more refined approximation approach based on Taylor series
expansion, which can be found in Appendix A.5. This approximation allows to determine the
approximation error.

At time 0, the realized dispersion is unknown and random, while the strike is fixed and known.
The fixed leg P[T] is determined as follows:

P[T]=EQ [RD[T]] .
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In our market setting, the fixed leg P[T] can be expressed as follows:

P[T]= 1
4T

T∑
t=1

[
ρQ(t)(u1 − d1)(u2 − d2)+ (u1 + d1)(u2 + d2)

]
. (36)

A proof of Expression (36) is given in Appendix A.3.
The expected profit for the holder of the floating leg of a dispersion swap is given by:

Expected Profit=EP [RD[T]]− P[T].

Hence it is straightforward to show that the expected profit of the dispersion swap can be
expressed as:

Expected Profit= 1
T

T∑
t=1

(
σP[R1(t)]σP[R2(t)]ρP(t)− σQ[R1(t)]σQ[R2(t)]ρQ(t)

)
+ 1

T

T∑
t=1

(
EP [R1(t)]EP [R2(t)]−EQ [R1(t)]EQ [R2(t)]

)
. (37)

Expression (37) clearly indicates that the buyer of the dispersion swap longs the real-world corre-
lation and shorts the risk-neutral correlation. To be more specific, in Appendix A.4, it is proven
that the expected profit of the dispersion swap can also be written as follows:

Expected Profit= (u1 − d1)(u2 − d2)
T

T∑
t=1

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)− 1

4
ρQ(t)

)

+ 1
T

T∑
t=1

EP [R1(t)]EP [R2(t)]− 1
4
(
u1 + d1

) (
u2 + d2

)
. (38)

From Expressions (37) and (38), we can find that the expected profit of the dispersion swap is
closely associated with the correlation gap. The CRP is also defined using the correlation gap. In
our market model, the CRP is defined as follows:

CRP = 1
T

T∑
t=1

(ρP(t)− ρQ(t)). (39)

By assuming the real-world marginals are same as the risk-neutral marginals in this market
setting, i.e., pu· (t) = p·u (t) = 1

2 , the expected profit of the dispersion swap given by (38) can be
written as:

Expected Profit Dispersion Swap= (u1 − d1)(u2 − d2)
4T

T∑
t=1

(
ρP(t)− ρQ(t)

)
= (u1 − d1)(u2 − d2)

4
CRP. (40)

When the marginal distributions are the same under P andQ, the expected profit of buying the
dispersion swap is solely determined by the correlation gap. It is proportional to the CRP, which
allows us to directly trade the weighted difference of the correlation gap ρP(t)− ρQ(t). A larger
positive correlation gap results in a higher expected profit, increasing the contract’s appeal to
potential investors.
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Table 4. Variance risk premium (VRP) and correlation risk premium (CRP) in three differentmarket situations

Market ρQ σQ VRP EPVS CRP EPDS

Q(1) −0.9 0.373 0.224 0.224 1.1 0.404
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(2) 0.15 0.578 0.010 0.010 0.05 0.060
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q(3) 0.8 0.668 −0.122 −0.122 −0.6 −0.220

5.3 Illustration: One-period example
In this subsection, we still consider the same market setting as in Example 3.2, and will demon-
strate the potential use of dispersion swaps in exploiting the correlation gap. In this one-period
market with r = 0, it follows directly from the Expression (33) that the expected profit of the
variance swap (EPVS) is given by:

EPVS=VRP = σ 2
P(1)− σ 2

Q(1)+ (EP[R(1)])2 − (EQ[R(1)])2. (41)

Additionally, the expected profit of the dispersion swap (EPDS) given by Expression (40) can be
expressed as follows:

EPDS= (u1 − d1)(u2 − d2)
4

CRP = (u1 − d1)(u2 − d2)(ρP(1)− ρQ(1))
4

. (42)

We use Table 4 to compare the expected profits of the variance swap and the dispersion swap,
the VRPs and the CRPs, concerning three different market situations in Example 3.2.

In Example 3.2, the first market situation featured a significant gap between the real-world
and risk-neutral scenarios. Variance and dispersion swaps serve as tools to exploit this gap. As
shown in Table 4, both the VRP and the CRP are positive, suggesting potential benefits from
taking long positions in the variance swap and the dispersion swap. However, the gap between the
real-world and the risk-neutral volatility and correlation is much smaller in the second market
situation, which is reflected in the expected profit of the variance and the dispersion swap, as
shown in Table 4. Expected profits turn out to be limited in case. Since these are only expectations,
fluctuations can result in losses when stepping in a variance or dispersion trade, making these
products less investment-worthy in this market situation than the first market situation. In the
third market situation, both the volatility and correlation gaps are strongly negative, resulting in
significantly negative variance and CRPs. Rational investors are willing to short the variance swap
or the dispersion swap to gain a profit. But who is willing to long the dispersion swap or the
variance swap? Market participants who are afraid that the correlation and volatility risk will have
significant negative impact on their portfolios are willing to accept a negative expected profit to
long the dispersion swap or the variance swap. Indeed, they are more afraid of the correlation and
volatility risk than they are of the possible losses from the dispersion and volatility swap.

6. What are implied measures telling us?
We have shown that risk-neutral and real-world measures can be significantly different, see
Example 3.2. Derivative prices reflect the aggregate view of the market about the future dynamics
of the stocks involved. Example 3.3 shows that this view can be wrong: while stocks are becoming
less dependent over time under the real-world measure, the risk-neutral dependence structure is
evolving in the opposite direction; see Table 2 and Fig. 1. In Section 3.2, it seems irrational that
the market is pricing a index option with the pricing measure Q(1), since Q(1) has a strong nega-
tive dependence structure while the real-world dependence is positive. Is this difference between
real-world and risk-neutral dependence a dysfunctioning of the market? This seemingly irra-
tional behavior does not lead to an arbitrage opportunity since the market is incomplete and the
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(a) (b)

Figure 2. Comparison of payoff histograms for buying the dispersion swap in twomarket scenariosQ(1) andQ(2).

risk-neutral probability measure Q(1) belongs to the set M of feasible risk-neutral measures; see
Theorem 1. However, the discrepancy between real-world and risk-neutral correlation provides
a trading opportunity. Indeed, the dispersion swap becomes more attractive if the correlation
gap becomes larger; see Expression (37). A large correlation gap aligns with a large expected
profit.

We showed that a positive correlation gap corresponds to a positive expected return for long-
ing the dispersion swap, while a negative correlation gap yields a negative expected return. But a
positive expected profit does not mean that there is no opportunity for the buyer of the dispersion
swap to encounter a loss. Likewise, a negative correlation gap does not imply that investing in the
dispersion swap cannot realize any profit at maturity. Consider the one-period setting in Example
3.2, the probability of having a loss for the holder of the floating leg of the dispersion swap is
given by:

P[loss> 0]= P[RD[1]< P[1]]. (43)

Expression (43) shows that if the fixed strike P[1] exceeds the realized dispersion RD[1], the buyer
of the dispersion swap incurs a loss. In the one-period setting, realized dispersion R1(1)R2(1)
under the real-world measure P can take four possible values u1u2, u1d2, d1u2, or d1d2 with cor-
responding probabilities puu(1), pud(1), pdu(1), and pdd(1). The fixed leg P[1] is EQ[R1(1)R2(1)].
Since all joint probabilities are strictly positive under P, the probability of loss given by (43) is
always positive and cannot reach 1.

Similar to the single period case, the probability of loss when taking the floating leg of the
dispersion swap is always positive and less than 1 in the multiperiod market. To illustrate this
statement, consider T = 10. Assume the real-world joint probabilities are given by (20), and
ρP(t)≡ 0.2 for t = 1, 2, . . . , T. Two different market situations are specified by implied correla-
tions ρQ(1) (t)= 0.05t − 0.95 and ρQ(2) (t)= −0.05t + 0.95 for t = 1, 2, . . . , T. The following Fig. 2
is presented to show the frequency of different payoffs for the buyer of the dispersion swap in
these two different market situations. We can see that in the first market situation, the correlation
gap ρP(t)− ρQ(t) is always assumed to be positive for t = 1, 2, . . . , T, resulting in a positive CRP.
Conversely, under Q(2), the correlation gap remains negative, yielding a negative CRP. Compare
Fig. 2a with b, we can see that the probability of having a loss is larger in the second market sit-
uation, and it is because there exists a negative correlation gap in the second market situation.
Nevertheless, Fig. 2 shows that the probabilities of taking a loss in the first and the second market
situations are both larger than 0 and smaller than 1. Due to the possibility of experiencing a loss
being nonzero, trading the dispersion swap is not an arbitrage strategy.
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Throughout the paper, we assumed the probability measure P to be known. The knowledge of
the real-world dynamics of the stocks enables us to conclude in the example of Section 3.2 that
real-world and risk-neutral correlation differ substantially and that entering a dispersion swap
results in a positive expected profit. In reality, the probability measure P is unknown and subjec-
tive: different market participants may have different opinions about the real-world probability
measure. The risk-neutral probability measure Q chosen by the market can be extracted unam-
biguously if sufficient derivative instruments are available. Therefore, it is reasonable to assume
that the measure Q is objective in that all market participants agree on the choice of Q used for
pricing derivatives. Consider now the first market situation in the example described in Section
3.2. All market participants observe the same option prices and thus agree that ρQ(1) = −0.9. In
Section 5.3, we then showed that an investor using ρP = 0.2 may want to invest in the floating leg
of a dispersion swap since this gives the investor a positive expected profit. Consider now another
investor, who uses another real-world measure P′ and believes that ρP′ = −0.95. This investor
may want to take the fixed leg of a dispersion swap since this produces a positive expected profit.
Both investors are observing the same option prices, but have different opinions about the real-
world measure. They both observe a correlation gap and consider a dispersion swap to exploit
this gap. They do agree on the value of the fixed leg of the dispersion swap since the risk-neutral
measure is assumed to be objective. However, they have different opinions about the sign of the
correlation gap. As a result, they both agree to enter in a trade, where each one takes a side of the
same dispersion swap.

Note that if the real-world measure is also objective, all market participants would see the same
correlation gap. For example, consider market situation 1 in the example described in Section
3.2. All market participants agree that ρP = 0.2, so most investors want to enter the floating leg
of a dispersion swap, i.e. there is a larger number of individuals willing to receive the realized
dispersion and pay the fixed leg than there are market participants willing to take up the opposite
leg of the dispersion swap. Therefore, this imbalance between supply and demand will push the
implied correlation to increase toward the realized correlation.

However, will the correlation gap converge to 0 eventually? To answer this question, we shift
to the market situation 3 in Section 3.2. In this market situation, the implied correlation ρQ(3) (t)
equals 0.8, and the real-world correlation is still 0.2. It follows directly that the correlation gap
in this market is negative. Moreover, the probability of taking a loss for buying the dispersion
swap is equal to 0.7. Therefore, many investors are consequently willing to short the dispersion
swap. However, there are still investors willing to long the dispersion swap, since they dislike
the correlation risk in the financial market and would like to offset their correlation exposure.
Investing in the dispersion swap can offer a hedge against the correlation increases.

Ultimately, the market may attain a state of equilibrium with a negative CRP. To be more pre-
cise, if there are more investors selling the dispersion swap than buying the dispersion swap in this
market situation, the negative correlation gap will gradually tighten. It will reach an equilibrium
when the number of sellers in the dispersion swap contract aligns with the number of buyers.
Indeed, when the CRP comes closer to zero, a short position in the dispersion swap still has a
positive expected profit, but becomes less attractive due to an increase in the probability of a loss.
At the same time, hedging correlation risk through the dispersion swap becomes more attractive.
Therefore, with a tightening of the correlation gap, the number of people who would like to short
the dispersion swap decreases whereas the number of people who are inclined to hedge the cor-
relation risk increases. At some point, the number of sellers of the dispersion swap will match
the number of buyers to reach a market equilibrium. At this equilibrium, the CRP can still be
strictly negative. Indeed, in such a situation, market participants looking for hedging their corre-
lation risk are willing to pay a premium to offset this risk, whereas the increased probability of a
loss when shorting the dispersion swap limits the supply of correlation hedges through the dis-
persion swap. Consequently, this situation explains the negative CRP which is often observed in
the market.
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7. Conclusion
This paper showed that risk-neutral dependence can significantly diverge from real-world depen-
dence when working in an incomplete two-dimensional market model. We characterized the set
of equivalent martingale measures and illustrated the correlation gap between P and Q. A unit-
linked insurance product was considered to illustrate that this nonzero correlation gap also exerts
influence on the expected excess return for policyholders. We also introduced the dispersion swap
to exploit the correlation gap. Both theoretical and numerical results were provided to illustrate
that the dispersion swap serves not only as a tool to capitalize on the large correlation gap, but also
as a hedging strategy for the correlation risk in the financial market.

We also demonstrated that investors with strong fear of correlation risk are willing to take long
positions in the dispersion swap, even when the expected profit is negative. As a consequence, the
market will reach an equilibrium with a negative CRP.
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A. Proofs and calculations
A.1 Proof of Theorem 1
We first take into account the martingale condition. For any t, we find that the risk-neutral
marginal probabilities

(
qd· (t) , qu· (t) , q·u(t), q·d (t)

)
satisfy:⎧⎪⎪⎨⎪⎪⎩

e−rS1 (t − 1) (eu1qu· (t) + ed1qd· (t) )= S1 (t − 1) ,
e−rS2 (t − 1) (eu2q·u (t) + ed2q·d (t) )= S2 (t − 1) ,

qd· (t) + qu· (t) = 1,
q·d (t) + q·u (t) = 1.

(44)

From (44), we find that the marginal probabilities are independent of the time, hence the risk-
neutral marginal probabilities can be denoted as (qd·, qu·, q·d, q·u), and are given by:

qu· = qd· = q·u = q·d = 1
2
. (45)

Notice we can write quu(t)=Q [R2(t)= u2 | R1(t)= u1]×Q [R1(t)= u1] . We use αQ(t) to
denoteQ [R2(t)= u2 | R1(t)= u1], and taking into account Expressions (45), we find that quu(t)=
α(t)
2 . Similarly, expressions can be derived for qud(t), qdu(t) and qdd(t). Hence the setM of feasible

risk-neutral probability measure can be characterized as follows:
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Q ∈M⇔ ∃ α(t) ∈ (0, 1) , t = 1, 2, . . . , n,

such that
{

quu(t)= qdd(t)= 1
2α(t)

qud(t)= qdu(t)= 1
2 (1− α(t)) (46)

SinceQ has to be equivalent to P, we need that puu(t), pud(t), pdu(t), pdd(t)> 0. Hence we find that
α(t) ∈ (0, 1) .

The risk-neutral covariance CovQ [R1(t), R2(t)] can be determined as follows:

CovQ [R1(t), R2(t)]= 2α(t)− 1
4

(u1 − d1)(u2 − d2),

We then find:

ρQ(t)= CovQ [R1(t), R2(t)]√
VarQ [R1(t)] VarQ [R2(t)]

= 2α(t)− 1.

Following (46), we can directly get the expression (5).

A.2 Proof of Proposition 2
First, the forward return of the stock market index at time ti can be expressed as:

R(t)= log
S1(t − 1)S1(t)S2(t − 1)+ S1(t − 1)S2(t − 1)S2(t)

(S1(t − 1)+ S2(t − 1)) S1(t − 1)S2(t − 1)

By replacing S1(t − 1)S1(t)S2(t − 1) by S1(t − 1)S1(t)S2(t) and replacing S1(t − 1)S2(t − 1)S2(t) by
S1(t)S2(t − 1)S2(t), R(t) can be approximated by:

R(t)≈ log
S1(t − 1)S1(t)S2(t)+ S1(t)S2(t − 1)S2(t)
(S1(t − 1)+ S2(t − 1)) S1(t − 1)S2(t − 1)

= log
S1(t)S2(t)

S1(t − 1)S2(t − 1)

It follows directly the realized dispersion can be approximated by (35).

A.3 Proof of expression (36)
It follows from (5) directly that the fixed leg P[T] can be written as follows:

P[T]= 1
T

T∑
t=1

EQ [R1(t)R2(t)]= 1
4T

T∑
t=1

(
ρQ(t)(u1 − d1)(u2 − d2)+ (u1 + d1)(u2 + d2)

)
.

A.4 Proof of expression (37)
Note that EP [R1(t)R2(t)] can be expressed as:

EP [R1(t)R2(t)]= ρP(t)×
√
VarP [R1(t)] VarP [R2(t)]+EP [R1(t)]EP [R2(t)]

= (u1 − d1)(u2 − d2)
√
pu·(t)pd·(t)p·u(t)p·d(t)× ρP(t)+EP [R1(t)]EP [R2(t)] .
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Then we can derive the expected profit of the dispersion swap:

Expected Profit=EP

[
1
T

T∑
t=1

R1(t)R2(t)

]
− P[T]

= 1
T

T∑
t=1

(
(u1 − d1)(u2 − d2)

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)− 1

4
ρQ(t)

))

+ 1
T

T∑
t=1

EP [R1(t)]EP [R2(t)]− 1
T

T∑
t=1

(
u1 + d1

2

)(
u2 + d2

2

)

= (u1 − d1)(u2 − d2)
T

T∑
t=1

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)− 1

4
ρQ(t)

)

+ 1
T

T∑
t=1

EP [R1(t)]EP [R2(t)]− 1
4
(
u1 + d1

) (
u2 + d2

)
.

A.5 Approximation of the realized dispersion: Taylor series expansion

Proposition 3. The realized dispersion can be approximated by the difference between the realized
variance of the stock market index and a weighted sum of realized stock variances:

RD[T]= 1
T

T∑
t=1

R(t)2 −w1(t − 1)2R1(t)2 −w2(t − 1)2R2(t)2

2w1(t − 1)w2(t − 1)
+ ε, (47)

where

wi(t − 1)= Si(t − 1)
S1(t − 1)+ S2(t − 1)

, i= 1, 2, (48)

and ε represents the approximation error given by:

ε = 1
T

T∑
t=1

O (
SR(t)3

)−w1(t − 1)2O (
SR1(t)3

)−w2(t − 1)2O (
SR2(t)3

)
2ω1(t − 1)ω2(t − 1)

(49)

−O (
SR2(t)2SR1(t)

)−O (
SR2(t)SR1(t)2

)
,

and

SR(t)= S(t)− S(t − 1)
S(t − 1)

SRi(t)= Si(t)− Si(t − 1)
Si(t − 1)

, i= 1, 2.

Proof. First, the square of the index forward return at time t is given by:

R(t)2 =
(
log

S(t)
S(t − 1)

)2
=
(
log

(
1+ S(t)− S(t − 1)

S(t − 1)

))2
.

Consider a function f (x)= (
log (1+ x)

)2, we use the first two terms of the Taylor series expansion
to approximate f (x) centered at x= 0 which gives f (x)= x2 +O(x3), where O(x3) represents the
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approximation error. Hence the approximation of R(t)2 is given by:

R(t)2 = (S1(t)− S1(t − 1)+ S2(t)− S2(t − 1))2

(S1(t − 1)+ S2(t − 1))2
+O

((
S(t)− S(t − 1)

S(t − 1)

)3
)
. (50)

Similarly, we approximate the square of individual stock forward returns by the following
expressions:

Ri(t)2 = (Si(t)− Si(t − 1))2

Si(t − 1)2
+O

((
Si(t)− Si(t − 1)

Si(t − 1)

)3
)
, i= 1, 2. (51)

Meanwhile, the forward return of stock 1 at time t is given by:

R1(t)= log
S1(t)

S1(t − 1)
= log

(
1+ S1(t)− S1(t − 1)

S1(t − 1)

)
.

Consider another function g(x)= log (1+ x), we approximate g(x) by using the first term of the
Taylor series expansion of g(x) centered at x= 0 to obtain g(x)= x+O(x2). Then R1(t)R2(t) can
be approximated by:

R1(t)R2(t)=
2∏

i=1

(
Si(t)− Si(t − 1)

Si(t − 1)
+O

((
Si(t)− Si(t − 1)

Si(t − 1)

)2
))

. (52)

From Expressions (50), (51), and (52), we find that the realized dispersion can be approximated
by Expression (47).We can find thatw1(t − 1) andw2(t − 1) are the relative importance of stock 1
and stock 2 in the market index S(t − 1), respectively. �
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