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On the Krull Galois theory for
non-algebraic extension fields

T. Soundararajan and K. VYenkatachaliengar

The Krull Galois theory for infinite separable normal extensions
is generalized in this note to non-algebraic extensions. For
any extension field E of a field K it is shown that the
Galois group (G can be given a translation invariant topology
such that the closed subgroups are precisely the subgroups that
figure in a Galois correspondence. For extension fields E/K
such that E/K 1is of finite transcendence degree and such that
E 1is Galois over each intermediate field the topology turns out
to be compact and we have a Galois correspondence in the Krull
fashion. For infinite transcendence degree extensions the
Galois correspondence remains but compactness is lost. The
topology coincides with the Krull topology in the case of
algebraic extensions. Further properties of the topology are

also studied.

Classical Galois Theory asserts that if FZ is a finite separable
normal extension of a field K then there is a one-one Galois
correspondence between all intermediate fields of E/K and all subgroups
of the Galois group of E/K . Kruli [3] generalized this by showing that
if E 1is any separable normal extension of X , then a topology (Krull
topology) can be put on the Galois group G of E/K so that there is a
one-one Galois correspondence between all the intermediate fields of E/K

and all the topologically closed subgroups of G . With the Krull topology
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G Dbecomes a compact Hausdorff topological group. When E/K 1is finite the

Krull theory gives back the classical Galois theory.

The question arises whether we could consider a not necessarily
algebraic extension E/K , have a suitable topology on the Galois group and
still have a one-one Galois correspondence between all intermediate fields
and all topologically closed subgroups. The first necessary condition to
have all these is, we must restrict ourselves to Dedekind extensions, that
is, extensions E/K such that E 1is Galois over each intermediate field

of E/K (for example, the field of complex numbers over the rationals).

If E/K is a Dedekind extension and we try to have a one-one Galois
correspondence between all intermediate fields and all topologically closed
subgroups of G for some topology then [9] shows that unless the topology
is very weak we will be forced to consider algebraic separable normal
extensions only: while [10] shows that there are topologies, though very
weak, which permit a topological Galois correspondence. But these do not

coincide with Krull topology when we consider algebraic extensions.

In this note we generalize Krull Galols theory by proving the

following results:

(1) If E/K is any Dedekind extension of finite transcendence degree
then the Galois group G of E/K can be given a topology J such that

(a) J is compact:

(b) for (G, J) translations and inverse are homeomorphisms:

(c) there exists a one-one Galois correspondence between all

intermediate fields of E/K and all J-closed subgroups of G .
(Theorems 2.8 and 2.10.)

(2) If E/K is any Dedekind extension of infinite transcendence
degree then there need not exist a topology on the Galois group &
satisfying conditions (a) to (c) of (1), but there will always exist a
topology J satisfying the conditions (b) and (¢). (Theorems 2.8 and
2.11.)

(3) When E/K is algebraic the topology J coincides with the Krull
topology and conversely. (Theorem 2.9.)

() If E/K 1is any Galois extension with Galois group G then we
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know that there is a one-one Galois correspondence between some
intermediate fields (Galois closed intermediate fields) and some subgroups
of G (Galois closed subgroups) of G . [5] and [10] give topological
characterizations of these Galois closed fields and subgroups respectively.
In §3 we show that we can place a topology J on (G such that Galois
closed subgroups are precisely the J-closed subgroups and such that for

(G, J) translations and inverse are homeomorphisms. (Theorem 3.1.)

In 84 we consider properties of the topology J and especially try to

answer when it is compact.

1.

In this section, we prove a group theoretical lemma needed for §2 and

§3.

LEMMA 1.1*%., Let G be a group and G., G G be a finite

2% *rre YUy
number of subgroups of G . Let H be another subgroup of G . Further,
let H be contained in a set union of a finite number of (left) cosets of

these G; s with cosets of G, being needed for each i . Then H 1is

contained in a set union of a finite number of cosets of Gl~n .0 G

r
Proof. Let
Hc allGl U alzGl U ... U alrlGl v a2102 v a2262 U ... U a2P202 U ven
v ailGi U ai2Gi U ... U airici U oos U arlGr u areGr U ... U arrp »
If il, i2, cees is are elements from 1, 2, ..., r we let
G. . . =G, n... nG. . We can suppose that each coset contains an
Tylpeety Zq g

element of H not belonging to any other coset (otherwise that particular
coset can be dropped out of the picture). Since a coset can be

represented by any of its elements we can suppose that aij for each <
and j belongs to H and belongs only to the coset aijci . Consider

the cosets of Gl . Since H 1is not covered by these cosets of Gl .

there is an element o of H not belonging to any of the cosets of Gl .

% fThis can also be easily deduced from a theorem of B.H. Neumann [43].
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We can choose this o to belong to only one coset. Consider now

particularly the coset allal . Here all € H and ayq does not belong

to any other coset. o = pa;; » P € H as H 1is a group. Let us now

consider {pa;,g; I a9, € H , g, € G}

Let a,,9, €H, 9, € G1 . Then pa; 94 € H since p € H and H
is a subgroup. We claim that pa 19, does not belong to any coset of
: < 3 -
Gl . For if pa 19, € alel » 1 =g = ry then pa; 9, aljg2 s

pa,, € alel . This is a

contradiction since o does not belong to any of the cosets of Gl

= -1 =
g, € Gl . Hence pa;, = aljgzg1 so that o =

Hence for some 1 # 1 , pa,,94 € aijGi . Suppose also that

pall , € aijGi with allhl €H, hl € G, . Then we have
Pay gy = a;59; » 9p € G s

pallhl = aijhi , h. €G. ,

7 7
that )" = N ; “h, = gitn
so tha (pallgl (pall 1) = (aijgi) (aij i) that is, gy hy =9,
But gtlh. € G- and g_lh € G. . Hence g_lh € G . Hence
T 1 1 11 1 11 hEA
hl € 9,6y, Then allhl € allglGli . If no other 11h1 ijGi for

allhl € H and hl € Gl we easily see that a9, € allglGli .

Thus as far as elements of H are concerned the coset a1161 can be

replaced by finitely many cosets with 72 # 1 and one of them

21191614

i i . . Since pa
will have the form allGlJ with pa,, ina coset of GJ in pa;4

h

belongs to only one coset, it cannot happen here that for some a;q lGlt s

hl € Gt . For otherwise then hl € Glt . But by our choice

pall 1 atZGt . Then payy € atZGt . This would imply that ¢ =4 , so
that hl € Gj s allhlGIJ = allclj . This is a repeated coset which we

could suppose has been written only once. A similar thing can be done for
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the other cosets of Gl ,» and then we could do a similar thing for the

cosets of Gi for 1 =2,3, ..., . Then find Hc U bijZGij PR A

suitably varying, with each bijl being of the form aijgi where gi € Gi'

We now successively omit some of the cosets if they are superfluous
as far as H is concerned. We assert that when we have come to a minimal

covering, for each «.. there is some coset «..F., . For otherwise
1J 1J 1k

a;; €azg,6 s g9, €65 g ¢ G;, - This implies that a;; € azg,6;
since GZt c GZ and so aij € aZmGZ . This means that < = I and

J=m. Now a.

i3 € aijgicit This implies that g; € G., which is not

1t

possible by our choice of the g; -

If now we have G.. = G we can write both as G.. . If further
i k1l iJkl

GkZ = qu we can write all the three as and so on. Hence we

Ciixipg
have again a situation where H 1is contained in a finite set union of
cosets of subgroups of (¢ and here each subgroup involves at least two of
the indices 1, 2, ..., r . Now we can repeat the process done earlier
and proceed. We again get H contained in a finite set union of

sugroups, and each subgroup involves at least three distinct indices now.

Each time in the process if a coset involves a subgroup equal to 012 p
we need not apply the process to that coset.

Proceeding thus in a finite number of steps we get that H is

contained in a set union of a finite number of cosets of 612 . This

oo

proves the lemma.

2. Extension of the Krull Galois theory

DEFINITION 2.1. Let FE be a field and F a subfield. We say FE
is Galois over F or FE 1is a Galois extension of F if F 1is the fixed
field of the group of all automorphisms of E over F ; that is given
any element x € E , x ¢ F  there is an automorphism of £ which fixes
each element of F but which moves x . The group of all automorphisms

of E over F we call the Galois group of E over F .
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DEFINITION 2.2. Let E ©be an extension field of a field X . We
say E is a Dedekind extension of K if for each intermediate field F
of E/K , E 1is Galois over F ; that is if F is a field such that

KCFCFE then E 1is a Galois extension of F .

DEFINITION 2.3. Let E be a field and H a group of automorphisms
of EF . By the fixed field of X we mean the set

I(H) ={x ¢ E | s(x) =x for each s € H} .

DEFINITION 2.4. Let E be an extension field of a field X and let
E be Galois over X . Let (G Ybe the Galois group of E over X . Let
H be a subgroup of G . We say H 1is Galois closed if

H=1{c€ec¢ | olz) =x for every z € I(H)
where I{(H) is the fixed field of H} .

DEFINITION 2.5. Let E be an extension field of a field X and let
E be Galois over X . Let G be the Galois group of £ over X . If x
is an element of E we write G(z) = {0 ¢ ¢ | o(x) # 2} . If s and ¢t
are elements of G , we write sG(x)t = {sot | ¢ € G(zx)} . Let F be the
collection of all sets sG(x)t , & and t are elements of G and x an

element cf E . If G(x) = @ we let sG(x)t also be @ .

Then the collection F constitutes a sub-base of open sets for a
topology J on G . A base for this topology J consists of sets of the

form
slGﬂxl)tl N SEG(xZ)t2 N...n snG(sn)tn .
Through this paper J will refer to this topology only.

PROPOSITION 2.6. Let E be a Galois extension of a field K and
let G be the Galois group of E over K . Then for any x € E and
s € G we have

(1) folx)r?

Glx) <f c@) #9,

(2) sG(x)s_l = G(s(x)] .
Proof. (1) follows from the fact that if o ¢ G and x € E then

o(x) # * if and only if o He) #x .
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To prove (2), consider an element sts_l , t € G{x) . Then we have

(sts™!) (s(x)) = st(z) . Since # € Glx) , ¢(z) # 2 . Since s is an
automorphism & (£(z)) # s(z) . Hence we have (sts *)(s(x)) # s(z) . So
sts™t € G(s(x))

Conversely if o € G(s(x)) we have o(s(x)) # s(x) . So

s_lcs(x) # x , so that s tos ¢ G(x) . Now o = s[s_los)s-l € sG(x)s_l .

Hence (2) follows.

PROPOSITION 2.7. Let E be an extension field of a field K and
let E be Galoig over K with G as the Galois group of E over K .
Let the topology J be introduced in G as in Definition 2.5. Then

(1) for (G, J) translations are homeomorphisms,
(2) for (G, J) inverse is a homeomorphism,

(3) (G, J) has a sub-base of open sets consisting of sets of the
form oG(y) , o €G, y €E.

Proof (1). It is enough to show that translations are continuous
since the inverse of a translation is also a translation. To show that a
map is continuous it is enough to show that the pre-image of a sub-basic

open set is an open set. Consider for instance a translation p > Op .
Then the pre-image of sG{x)t is O_l[sG(x)t) = (O-IS}G(x)t . This is a
sub-basic open set. Hence the map p > Op 1is continuous. Similarly the
map p * p0 is continuous. Hence (1) follows.

(2). Here it is enough to show that the map p > p-l is continuous.
The pre-image of sG(x)t when G(x) # § under the map p ~ p_l is
t-l(G(x))-ls-l . But (G(x))_l = G(x) . Hence
t-l(G(x))_ls_l = £ 16(x)s”! which is a sub-basic open set.

(3). By Definition 2.5, J has a sub-base consisting of sets of the
form sC(z)t . Now sG(z)t = (st)t 1G(x)t = (st)G[t_l(x)) by
Proposition 2.6 and (st)G(t—l(x)) is of the form oG(y)} .

THEOREM 2.8. Let E be an extension field of a field K . Let
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further, for each intermediate field F of E/K , E be Galois over F .
Let G be the Galois group of E over K . Let the topology J be

introduced on G according to Definition 2.5. Then

(1) there exists a one-one Galois correspondence between all
intermediate fields of E/K and all J-closed subgroups of G ;
(a J-closed subgroup is a subgroup of G which is a closed set

for the topology J ;)
(2) for (G, J) translations and inverse are homeomorphisms.

Proof (1). If F 1is an intermediate field of E/K we let
g(F) = {0 € ¢ | o(z) ==z for each « € F} ; that is g(F) is the Galois
group of E over F . g(F) is a subgroup of G . By hypothesis, since
E 1is Galois over F , the fixed field of g(F) is F . Hence
I(g(F)) = F . Hence g(F) is a Galois closed subgroup of ¢ . If H is
a Galois closed subgroup of G then we have g(I(H)) = H . Hence it
follows that there exists a one-one Galois correspondence between all
intermediate fields of E/K and all Galois closed subgroups of (G . So it
is enough to show that a subgroup H of (¢ 1is Galois closed if and only
if H 1is J-closed. But this is asserted by the proof of Theorem 3.1 of
§3

(2) is part of the Proposition 2.7T.

THEOREM 2.9. Let E be a Dedekind extension of K and let G be
the Galois group of E over K . Let the topology J be introduced on G
according to Definition 2.5. If E is algebraic over K (that is if E
18 an algebraic separable normal extension of K) then J cotneides with
the Krull topology on G and comversely if J coincides with the Krull

topology on G them E must be algebraic separable normal over K .

Proof. Suppose E is algebraic over K . Then the Krull topology on
G makes (G into a tbpological group and has a basis at identity
consisting of subgroups G Vv G{x) , x € EVK . Now G~ G(x) is a
Galois closed subgroup and hence' is closed for the Krull topology. Hence
G(x) 1is open for the Krull topology. Hence also sG(x)t is open for the
Krull topology. Thus the Krull topology is finer than J . But for
(G, J) translations are homeomorphisms, and Galois closed subgroups are

J-closed. We have proved in [9] that Krull topology is the coarsest
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topology on ( such that translations are homeomorphisms and Galois closed
subgroups are topologically closed. Hence it follows that in this case J

coincides with the Krull topology.

Converse. Suppose J coincides with the Krull topology on G . We

show that E must be algebraic separable normal over K .

The Krull topology on G is given by the convergence of nets as

follows: a net O converges to an element ¢ in (G if given any

d
x € E , there is a stage do such that for all d = do , Od(x) = o(z) .

With this Krull topology ¢ becomes a topological group and then by
Theoren 2.8, we have (E, K; G, J) a topological Galois system in the
sense of [9] or [7]. Then Theorem 3 of [9] or the theorem of [7] shows

that £ must be algebraic separable normal over K .

THEOREM 2.10. Let E be a Dedekind extension of K and let G be
the Galois group of E over K . Let the topology J be introduced on G
according to Definition 2.5. If E 4is of finite transcendence degree over

K then (G, J) is a compact space.

Proof. Let F ©be any intermediate field of E/K and let F be the

relative algebraic closure of F in FE . Let ¢ be any automorphism of
F over F . Now E is of finite transcendence degree over F also. Let
Loy esesy & be a transcendence base of EF over F . Xi, ««+5 X are

1 r 1 r

algebraically independent over E also. Consider the sub-field

Fﬁxl, ey xr) . Then 0o can easily be extended to an automorphism E of
Fﬂxl, cees xr) over F(xl, ceay xPJ . By hypothesis £ 1is Galois over
F(xl, ey xr) and it is algebraic over F[xl, ey xr) . Hence F 1is an
algebraic separasble normal extension of F(xl, ey xr) . Now

F(xl, ey xr) c F(xl, ceny xr) C F and © 1s an automorphism of
F(xl, ey er over F(xl, ey xr} . Hence o0 can be extended to an

automorphism G of F over F(xl, ey xr) . Thus the automorphism o

1

of F over F has been extended to an automorphism cl of E over F .
Now the assertion follows from Theorem 4.3 of §4.

PROPOSITION 2.11. Let E be an algebraically closed extension field
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of a field K of characteristic zero with infinite transcendence degree
over K . Let G be the Galois group of E over K and let the topology

J be introduced in G according to Definition 2.5. Then
(a) E 1is a Dedekind extension of K , and
(b) the topology J 1is not compact.

Proof (a). Suppose F is any intermediate field of E/K and
x € F~VvF, If x is transcendental over F we can have a transcendence
base B of E/F such that x2 € B . Then E is algebraic separable
normal over F(B) and hence we can find an automorphism fixing each
element of F(B) and moving x . If =z is algebraic over F and B is
any transcendence base of E/F then x ¢ F(B) and hence by a similar
argument as above, there is an automorphism of F over F moving x .

Hence £ 1is Galois over F and hence FE 1is a Dedekind extension of X .

(b). Let B be a transcendence base of E over K . Write
B=2B) uB, , where By nB, =@ and B; = {x;, £, ...} a countably
infinite set. Let H be the Galois group of E over X(B,) and for each
, Hi be the Galois group of E over K(Bz, xi) . We note that Hi cH

and Hi and H are J-closed subgroups since they are Galois closed

subgroups. Since F 1is an algebraically closed extension field of

K(By) , to each 1 we can have an automorphism o; of E/X such that
opley) =2y s ople,,) =a s Oi(xj] =@, if j#i, i+1 and o
fixes each element of By . Since translations are homeomorphisms for J ,

OiHi is a closed set. Now we consider the collection of closed sets

{oiHi} , T=1,2, ... .

(1) This collection has the finite intersection property: for

consider GlHl N vee N oan . The mapping xg > x

2 b

Xy T X x X X > X X . > X . for

2 32 7 ntl ° “n+l 17 Tng n+gj

i=2,3, ..., y*y for every y € B, , yields an automorphism of K(B)
over K and since E is an algebraically closed extension of X(B) this
can be extended to an automorphism o of E over K . We assert that

ce€o H n... noH . Consider H. , 1<% =n ., Consider the
171 nn [
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automorphism 0;10 . Since Gi and 0O fix each element of 32 we have
-1 . -1 _ =1 _
0.0 also fixes each element of B, . Also o. o[x.) =0, (x. ] = Xx.

1 2 7 7 7 1+l 1

Hence we get that cflo € H. . Hence 0 € ¢.H.
7 7 11

o« -]

(i1) N 0., = ¢ . For suppose an automorphism s € N o,H, . Then
1 1

s € H since each GiHi CH . So s 1is an automorphism of E over

K(By) . Also for each 7 we have &g € GiHi . Hence 0;13 € Hi , that is

Oi(xi) = s(xi) . So s[xi] = xi+l for every < . Under the automorphism

s of E over K(By) let x; be the pre-image of =z, . Then %, is
algebraic over X{B) . So there is an algebraic relation connecting 51
and elements of B with coefficients in X . Now s(x;) = x; and

s(B) € B . Applying s we get an algebraic relation connecting elements
oo

of B . This is a contradiction. Hence 0 OiHi =9 .
1
Thus (i) and (ii) show that J is not compact since there is a family
of closed sets with finite intersection property but intersection of all

the members of the family is empty.

THEOREM 2.12. Let E be an algebraically closed extension field of
a field K with infinite transcendence degree. Let G be the Galois
group of E over K . Then there cannot exist a compact topology T on
G such that translations are homeomorphisms and such that there is a
one-one Galois correspondence between all the intermediate fields of E[K

and all the T-closed subgroups of G .

Proof. Suppose there is a topology T on G satisfying the
conditions of the theorem. It is easily shown that £ must be of
characteristic zero [9]. Then Theorem 4.1 of 84 shows that T is finer
than J . But T 1is compact. Hence we get that J 1is compact. But this

contradicts Theorem 2.11. Hence the theorem follows.

3.

In this section we prove the following theorem.
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THEOREM 3.1. Let E be any extension field of a field K and let
E be Galois over K . Let further G be the Galois group of E over
K . Then there exists a topology T on G such that:

(1) the Galois closed subgroups of G are precisely the subgroups

which are closed subsets under the topology T ;
(2) for (G, T) translations and inverse are homeomorphisms.

Proof. Let the topology J be introduced on G according to
Definition 2.5. Then by Proposition 2.7, the condition 2 of Theorem 3.1 is
satisfied by (G, J) . We have only to show that the Galois closed

subgroups of ( are precisely the J-closed subgroups of (G .

Let H be a Galois closed subgroup of G . Let s Dbe an element of

G not belonging to H . Since H 1is Galois closed
H={t €G | te =2 for every x ¢ I(H) , the fixed field of H} .

Hence there is an element x € I(H) such that s(x) # x . Consider now
G(x) . Then G(x) is an open set under J and s € G(x) . Since

x € I{H) , no element of H belongs to G(x) . Hence to each s € GV H
there is a J-open set containing x and completely contained in G~ H .

Hence G Vv H 1is open and so H 1is closed under J .

Conversely let now # be a subgroup of G which is a closed set
under the topology J . We show H 1is a Galois closed subgroup of G .
Let I(H) be the fixed field of H . Let o0 be an element of G leaving
each element of I(H) fixed. We have to show that o € # . We assert now
that every neighbourhood of O intersects H . It is enough to show that
every basic open set containing ¢ intersects H . By Proposition 2.7,

we can take a basic open set containing ¢ to be of the form

slG(xl) n SQG(xZ] N n snG(xn] .
Case 1. Fach of the ., ..., xz, is algebraic over I(H) . Then
each xi has only a finite number of distinct images xil’ xi2’ ey xiri

by H . If we consider the elementary symmetric functions on the
110ttt Lo s all these are left fixed by each element of H and hence

they belong to I(H) . Hence the polynomial ( -2 .

11] e (x-xir_) is an
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irreducible polynomial for x over I(H) . Thus it follows that xi is
separable algebraic over I(H) . Hence the sub-field I(H)Lrl, cevs xn)

is contained in a finite separable normal extension

e, X ey X

lrl, .7:21, ceey xgpz, [ nl® C X

F = I(H) [xll, m"n]

of I(H) and also F CE . Since any finite separable extension is simple
we have F = I(H)(8) . Now each automorphism of & over I(H) induces an
automorphism of F over I(H) since F is finite separable normal over

I(H) . As before, if Gl =86, © em is the complete set of

PEEERE

distinct images of © under H then [x—el) e @yem] is an irreducible

polynomial for O over I(H) and every automorphism of F over I(H)

has to take 6 to some ei . Hence © > Gi (z =1, 2, ..., n) give the

complete set of automorphisms of F over I(H) . Also each element of H
induces an automorphism of F over I(H) . Further, given < there is an

element of H taking 0 +to Gi . Now O also induces an automorphism of

F over I(H) since 0 1leaves each element of I(H) fixed. But H
induces the complete set of automorphisms of F over I(H) . We get that
there exists an element % € H such that O and % induce the same

automorphism of F over I(H) . Since z; € F we have O(xi) = h(xi) .
Hence also szl[c(xi)] = s;l[h(xi)J . So [s;lo}(xi] = {sglh](xi) . Since
o € SiG(xi) we have s;lo € G(xi) and hence (s;lo][xi] #x, . So

s;lh(xi) # x; and hence s;lh € G(xi) and so h € siG(xi) . Hence it

follows that # € slGﬁrlJ Nn...n SnG(xn) . Hence this open set

slG(xl) N ..o N snG(xn) intersects # .

Case 2. At least one of the xi is transcendental over I(A) . Let

if possible 6,G(z) n ... ns Cle) nH =9 . Wewill get a

contradiction. Let Hi ={s €@ | s(xi] = xi} , for 1 =1,2, ..., n .

Then Hi is a subgroup of &G . We also have G v SiG(xi) = siHi . We now

have Hc s H, u... us H . If for some < it happens that H n s.H.
171 nn 11
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is contained in the set union u sjﬁﬁ , then this implies that any
J#i

element belonging to H n [ n s.G(xj)] belongs to siG(xi) also. Hence
J#L

it is enough for us to show that # n [ n st(xj)} # @ ; that is we could

J
drop siG(xi) out of the picture. Proceeding successively thus we arrive

at a stage where no SiG(xiJ can be omitted further. If at that stage
all the ) that occur are algebraic over I(H) then Case 1 completes
the proof.

Hence we can assume 4 C s H U ... u s H vwhere no s.H. can be
11 nn 1

omitted and that at least one of the x; is transcendental over I(H) .

Let, for definiteness, ) Dbe transcendental over I(H) . Then the
number of distinct images of «; under H is infinite (since otherwise

x7 will be algebraic over I(H) wusing the trick of Case l). Now by

p

Lemma 1.1 we have that if we put Hl = Hl N ... N Hn then H U tkHl , a
1

set union of a finite number of cosets of H! . Now each element of H!

fixes x . If h € H then h =t;h , hy € e , for some < . Hence

h(xl) = tihlﬁrl) = ti(xl) - Hence the number of distinct images of x;

under H is at most p . This is a contradiction.

Hence we have that each basic open set containing o intersects H .
Hence o0 belongs to the closure of H . But H 1is closed. Hence
o € H. So every automorphism of E over I(H) belongs to H . Hence

H 1is Galois closed.
This establishes Theorem 3.1 with T =J .
Theorem 3.1 allows for an algebraic interpretation.

THEOREM 3.2. Let E be a Galois extension of a field K and let
G be the Galois group of E over K . Then a subgroup H of G is
Galois closed if and only if the following condition is satisfied:

Given any © ¢ H there exists a finite number of elements

815> 655 ++-s 8, Of G such that for each i si(xi) #0(x;) . but
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gtven any h € H there is an 1 such that h(xi) = Si(xi)

4,
Throughout this section:

Let E be an extension field of a field X and let £ be Galois
over K . Let G Dbe the Galois group of E over K . Let the topology

J be introduced in ( according to Definition 2.5.
PROPOSITION 4.1.

(a) J <s the coarsest topology on G such that Galois closed
subgroups are topologically closed and translations are

homeomorphisms;
() (G, J) is a T;-space.

Proof (a). By the proofs of Theorem 3.1 and Proposition 2.7 Galois
closed subgroups are J-closed and translations are homeomorphisms for
(G, J) .

Let now T be any topology on (G such that Galois closed subgroups
are T-closed and translations are homeomorphisms. We show 7T is finer
than J ; that is every J-open set is T-open. It is enough to show that
any gG(x)t 1is T—open whenever G(x) # ¢ . If we let

H = {0 € ¢ | o(z) = x} then Hx is a Galois closed subgroup and hence is
closed under T . Then G v Hx is T-open. But Glx) =G~ Hx .  Hence

G{x) is T-open. Since translations are homeomorphisms for (G, T) we
have first that sG(x) is T-open and then sG(x)t is T-open. This
establishes (a/.

(b). Since the identity {e} is a Galois closed subgroup we have
that the one-point set {e} is closed under J . Since translations are
homeomorphisms for (G, J) we get that for each 0 € G , the set

{0} = o{e} is J-closed and hence (G, J) is a Tj-space.

THEOREM 4.2. Let E be a Dedekind extension of K . Then the
topology J <is Hausdorff if and only if E +is algebraic separable normal

i over K .

Proof. Suppose F is algebraic separable normal over K . Then J
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coincides with the Krull topology on G by Theorem 2.9 and with the Krull
topology it is well known that G 1is a Hausdorff topological group [7,
Chapitres 4 et 5; 2].

Conversely, suppose now J 1s Hausdorff. Already by Proposition 2.7
translations are homeomorphisms for (G, J) and by Theorem 2.8,
(B, X, G, J) 1is a topological Galois system in the sense of [9]. Then
Theorem L4 of [9] completes the proof.

THEOREM 4.3. Let E be any extension of finite transcendence degree
over K . Then the topology J <g compact if and only if the following
condition is satisfied. Whenever F 1ig an intermediate field of E/K
such that E 1is Galois over F and F denotes the relative algebraic
closure of F in E (that is, F = {z € E | « is algebraic over F},
then any automorphism of F over F can be extended to an automorphism
of E over F .

Proof. Suppose J 1s compact. Let F Dbe an intermediate field
such that E 1is Galois over F and let F be the relative algebraic
closure of F in E and let O be an automorphism of F over F . We

show that 0 1is extendible to an automorphism of E over F .

Since F is Galois over F , F 1is the fixed field of the Galois
group of E over F and each automorphism of E over F leaves F
set-wise invariant so that it is easy to show that (using the trick of the

Proof of Theorem 3.1) that F is algebraic separable normal over F .

If x 1is any element of F , then using the trick of the Proof of
Theorem 3.1, we can find a 0 € F such that F(x) < P(8) and F(8) is
finite separable normal over F and the Galois group of E over F
induces the full group of automorphisms of F(6) over F . We note here
that if F, is any field such that FCF, CF and F, is finite
separable normal over F then the Galois group of E over F induces

the full group of automorphisms of F, over F .

Hence we can write F = F(B) where B C F is a generating set for
F over F such that for each x € B, F(x) is finite separable normal

over F . For x € B, let

H = {t € 6 | t 1leaves each element of F(x) fixed} .
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Then Hx is a Galois closed subgroup of ¢ and hence is a J-closed
subset. Now there exists an automorphism 8, of E over F such that
5, and O induce the same automorphisms of F(x) over F . (Note that

since F(x) is finite separable normal over F and o0 is an automorphism
of F over F , O induces an automorphism of F(x) over F .) Since

translations are homeomorphisms for (G, J) , s H . is a J-closed set.

Consider now the collection {stx} of closed subsets of G . We

xe€B
assert that this family has the finite intersection property. Consider
s H , ..., 8 H . Consider the subfield F(x sy cany X ) . This is a
x. X x 1 n
171 n'n
finite separable normal extension of F since each F(xi)/F is finite
separable normal. Then there exists an element % 1in the Galois group of
F over F such that % and ¢ induce the same automorphism of
FLx s vees X ) over F . We assert that h € s H N.... ns H . For
1 n x. X X

11 n'n

we have h[xi) = O(xi) = sx'(x.) and so [s;ih][xi] =z, . Already s,

7 ,
7 7
and h are automorphisms of E over F . Hence we get s;lh € Hx , that
Z 7
is h € sx Hx . Since J 1is compact there is an element 8 such that
7 1
s € stx for every x € B . Observe that for each Z; s

o(xi] = Sxi(xi) = s[xi) . Now this s 1is an automorphism of E over F

and we assert that this s extends o . For if y € F then
y € F(xl, e xn) for some Tys wovs Ty in B . Hence
Yy = p(xl, e xn) a polynomial in Ty eres X with coefficients in F
Then
s(y) = p(s(xl), cees s(xn)] = p[o(le, cens o[xn]] = o(y)
since s(xi) = O(xi) for each x, . Hence s(y) = o(y) . This completes

the necessity.

Suppose the condition is satisfied. We show that J 1is compact. By

Alexander's Theorem it is enough to show that any open cover U of G by
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non-empty sets of the form sG(x) , s € G, x € E has a finite subcover
since sets of the form sG(x) form a sub-base. Suppose there are two
members in the cover of the form s;G(x) and s,G(x) with

81G(x) # s,G(x) . Then we first have s,(x) # sy(x) . Otherwise if
s1{x) = s5(x) and o € 816(x) then o(x) # s;(x) and hence

o(x) # sa(x) and so © € g,G(z) . So 8,6(z) C 55G{(x) and similarly
8,G(x) © g1G(x) and hence s,G(x) = s,G(x), a contradiction. Now we

claim that G = 5,G(x) U g,G(x) . For if 0 € ¢ and O is not an element

of the right-hand side then 5,

15 ¢ G(x) ,and 3;10 ¢ G(x) and hence we
have s,(x) = o(x) = sp(x) a contradiction.
Hence we can suppose that our open cover U consists of non-empty

sets of the form sxG(x) , §,€G and x €F .

Suppose this cover has no finite sub-cover. We will get a

contradiction. Consider the family {stm} where

Hx = {0 €@ | olz) = =} . sme =G n SxG(x) . Hence we have a family of
closed sets stx . This family has now the finite intersection property.
We have only to show that n stx # ¢ . Consider the set of all
sxG(x)eu

elements x such that sxG(x) € U. Since E/X has finite transcendence
degree, we can find a finite number of elements Tys Tps wves Xy here
such that every other x here is algebraic over K(xl, ey xr) . There
exists an element o, € s H n...ns H . Since g -+ 0,8 1s a

1 xy Ty x, x, 1

homeomorphism of (G, J) it is enough to consider the family of closed

sets {{GElsx]Hx} with finite intersection property and show that

ﬂ[Ullsx]Hx # @ . In this case for each 7 =1, 2, ..., r , any element of

[O_ls ]H leaves x. fixed.
1l "x.) x. 7
7 7
Hence we can suppose that our family {stx} is such that for

xl, cers T Sx.(xi) =z . Let us put now F = K(xl, ey xr) . Let
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F1 be the smallest Galois closed field containing F , that is
Fy={x ¢ E| o(x) = 2 whenever ¢ fixes each element of F} .
Then each & such that sxG(m) € U has the property that x € F, , the

algebraic closure of F; in FE . Consider now the correspondence

x, >

17 T %

5 T Tps waey X, > x, and T ¥ sx(x) , whenever x is such that
sxG(x) € U . This correspondence yields an isomorphism of the field
Fl({x}sxG(x) € U) containing Fl into f& fixing each element of F

since for any finite number of elements «x

1

cee, X L, e, X

r ? a.

3
+ 1 n

there exists an automorphism of E/K belonging to

s H n sx H n...ns H n s H N... N8 H .
xl xl 2 %o r “r xa ) xa Zo
1 1 n n

Since £ 1is Galois over F; , we can easily show that F} is algebraic
separable normal over F; ; and now we have an isomorphism over F; of
an intermediate field of fl/Fl into FI . This, as is well known, can
be extended to an automorphism of EI/FI . Now E 1is Galois over F,
and so by hypothesis this can be extended to an automorphism 0o, of

E/F; . TFor each x we have 0.{(x) = s (x) . Hence o, € s H . Hence
1 2 x 'z

2
9, €nN SxHx .
The sufficiency now follows.

COROLLARY 4.4. Let E be a finitely generated extension of K .
Then J 1is compact.

Proof. ©Since F 1is finitely generated over X , E is of finite
transcendence degree over K . Also if F is an intermediate field over
which E is Galois then F is finite over F and hence it follows that
the Galois group of E over F induces the full group of automorphisms

of f over F . Now the result follows by Theorem 4.3.

COROLLARY 4.5. If E is a pure transcendental extension of finite

transcendence degree then J 1s compact.
Proof. Follows from Corollary L.k.

COROLLARY 4.6. Suppose K is algebraically closed in E and E
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has transcendence degree one over K . Then the topology J is compact.

Proof. For X , X = X and hence the condition of Theorem 4.3 is
satisfied easily. If F is an intermediate field and F # X then because
E/K 1is of transcendence degree one we get F = E itself and hence again
the condition of Theorem 4.3 is satisfied. Hence the corollary follows by

Theorem 4. 3.

PROPOSITION 4.7. If E = K(z) , a simple transcendental extension,
then J is the minimal T,-topology on G , and in this case J 1is

connected and compact.

Proof. For in this case for any y € Ev K , G~ G(y) is a finite
set since X(x) is a finite extension of K(y) and hence it follows that
for any basic open set its complement is finite. Hence J 1is coarser than
the minimal Tj;-topology. But J is already T; . Hence it follows that
J coincides with the minimal T ;~topology; and it is well known that the

minimal 7)-topology on an infinite set is both compact and connected.
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