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Modern machine-learning techniques are generally considered data-hungry. However,
this may not be the case for turbulence as each of its snapshots can hold more
information than a single data file in general machine-learning settings. This study asks
the question of whether nonlinear machine-learning techniques can effectively extract
physical insights even from as little as a single snapshot of turbulent flow. As an
example, we consider machine-learning-based super-resolution analysis that reconstructs
a high-resolution field from low-resolution data for two examples of two-dimensional
isotropic turbulence and three-dimensional turbulent channel flow. First, we reveal that
a carefully designed machine-learning model trained with flow tiles sampled from only
a single snapshot can reconstruct vortical structures across a range of Reynolds numbers
for two-dimensional decaying turbulence. Successful flow reconstruction indicates that
nonlinear machine-learning techniques can leverage scale-invariance properties to learn
turbulent flows. We also show that training data of turbulent flows can be cleverly collected
from a single snapshot by considering characteristics of rotation and shear tensors.
Second, we perform the single-snapshot super-resolution analysis for turbulent channel
flow, showing that it is possible to extract physical insights from a single flow snapshot
even with inhomogeneity. The present findings suggest that embedding prior knowledge
in designing a model and collecting data is important for a range of data-driven analyses
for turbulent flows. More broadly, this work hopes to stop machine-learning practitioners
from being wasteful with turbulent flow data.
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1. Introduction

By gazing at a turbulent flow acquired from numerical simulation or experiment, we
can admire the rich physics that involves swirling, stretching and diffusion. Turbulence
also presents multi-scale characteristics over broad length scales (Davidson 2015).
In high-Reynolds-number turbulent flows, the rich phenomena and characteristics are
exhibited at any instance in time. We argue that even a single snapshot of turbulent flow can
hold sufficient information to train machine-learning models. This paper poses a question
of whether a commonly used big data set is required for training machine-learning models
in studying turbulence.

There have been increased usages of modern machine-learning techniques to analyse,
model, estimate and control turbulent flows (Brunton, Noack & Koumoutsakos 2020).
These applications include subgrid-scale modelling (Duraisamy, Iaccarino & Xiao
2019), reduced-order modelling (Racca, Doan & Magri 2023), super resolution/flow
reconstruction (Fukami, Fukagata & Taira 2021; Guastoni et al. 2021; Cuéllar et al.
2024) and flow control (Duriez, Brunton & Noack 2017; Park & Choi 2020). These
machine-learning models require enormous amounts of training data, which are generally
significantly larger than those necessitated by traditional analysis techniques.

However, it may be possible to extract important flow features without such large
data sets since even a single turbulent flow snapshot contains multi-scale, scale-invariant
structures. To achieve meaningful learning from a single snapshot, we consider
training machine-learning models through subsampling and leveraging turbulent statistics.
We further note that it is important that machine-learning models have appropriate
architectures and learning formulation that fold in physics (Brunton & Kutz 2019; Lee
& You 2019; Raissi, Perdikaris & Karniadakis 2019; Fukami, Fukagata & Taira 2023).

This study considers data-driven analysis using only a single training snapshot of
turbulent flow. As examples, we perform machine-learning-based super-resolution analysis
for two-dimensional decaying turbulence and three-dimensional turbulent channel flow.
We show that flow reconstruction over a range of Reynolds numbers is possible with
nonlinear machine learning by cleverly sampling data from a single snapshot. The present
results show that a large data set is not necessarily needed for machine learning of turbulent
flows.

This paper is organized as follows. The approach is described in § 2. Results from the
single-snapshot super-resolution analysis are presented in § 3. Conclusions are offered
in § 4.

2. Approach

The objective of this study is to show that it is possible to perform data-driven analysis
of turbulent flows with a very limited amount of training data – even from a single
snapshot. For the present analysis, we consider machine-learning-based super-resolution
reconstruction of fluid flows (Fukami, Fukagata & Taira 2019). A machine-learning model
F is trained to reconstruct a high-resolution flow field qHR from low-resolution data qLR:

qHR = F(qLR; w), (2.1)

where w denotes the weights inside the model. In this study, the model F is trained
with a collection of subdomains sampled from only a single snapshot of two-dimensional
isotropic turbulence and three-dimensional turbulent channel flow. The model is then
tested with independent snapshots. If the model F successfully learns the relationship
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…

MS model

………

Low resolution flow field data High resolution flow field dataDSC model

Figure 1. Interconnected DSC/MS model (Fukami et al. 2023) for super-resolution reconstruction of
turbulent flows.

between low- and high-resolution flow fields from a single training snapshot, we expect
that the reconstruction would be possible even for independent testing conditions.

For machine-learning-based super resolution of turbulent flows, the model F needs to be
carefully designed to accommodate a range of length scales while accounting for rotational
and translational invariance of vortical structures (Fukami et al. 2021). This study uses
the interconnected hybrid downsampled skip-connection/multi-scale (DSC/MS) model
(Fukami et al. 2023) based on convolutional neural networks (CNN; LeCun et al. 1998),
as illustrated in figure 1. Between the layers (l − 1) and (l), the CNN learns the nonlinear
relationship between input and output data by extracting spatial features of given data
through filtering operations,

c(l)
ijn = ϕ

⎛
⎝

M∑
m=1

H−1∑
p=0

H−1∑
q=0

h(l)
pqmnc(l−1)

i+p−G,j+q−G,m + b(l)
n

⎞
⎠ , (2.2)

where G = �H/2�, H is the width and height of the filter h, M is the number of input
channels, n is the number of output channels, b is the bias, and ϕ is the activation
function. By using a nonlinear function for ϕ, the convolutional networks can account
for nonlinearlities in learning features from training data.

The DSC model (boxed in red) includes up/downsampling operations and skip
connections, capturing rotational and translational invariance (Fukami, Goto & Taira
2024). The MS model (boxed in blue) consists of three different sizes of filter operations,
enabling the model to learn a range of length scales in turbulent flows. Furthermore, these
two networks are internally connected via skip connections (He et al. 2016) to enhance
the correlation of the intermediate input and output from both subnetworks in the training
process. We refer to Fukami et al. (2023) and a sample code (http://www.seas.ucla.edu/
fluidflow/codes.html) for further details on the present machine-learning model. In this
study, model F is trained such that weights w are optimized through

w∗ = argmin
w

‖qHR − F(qLR; w)‖2. (2.3)

While this study uses an L2 norm for optimization, one can consider incorporating the
knowledge from the governing equations into the cost function to better constrain the
solution space (Raissi et al. 2019; Fukami et al. 2023).
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3. Results

3.1. Example 1: two-dimensional decaying homogeneous isotropic turbulence
Two-dimensional decaying isotropic turbulence is first considered in the present
single-snapshot super-resolution analysis. The present machine-learning model is trained
with subdomains collected from a single snapshot and then assessed with test
snapshots obtained by independent simulations. The flow field data are generated with
direct numerical simulation (Taira, Nair & Brunton 2016) that numerically solves the
two-dimensional vorticity transport equation,

∂ω

∂t
+ u · ∇ω = 1

Re0
∇2ω, (3.1)

where u = (u, v) represents the velocity field and Re0 = u∗l∗0/ν is the initial Reynolds
number. Here, u∗ is the characteristic velocity defined as the square root of the spatially
averaged initial kinetic energy, l∗0 = [2u2(t0)/ω2(t0)]1/2 is the initial integral length and
ν is the kinematic viscosity. The overline denotes the spatial average. The computational
domain is a biperiodic square with length L = 1. We use the vorticity field ω as a data
attribute in the present super-resolution analysis.

The baseline super-resolution analysis is performed with the model trained with a
single snapshot shown in figure 2 with Re0 = 1580. Various vortical structures, including
counter-rotating and co-rotating vortices and shear layers, of different length scales are
contained in this single snapshot. The number of computational grid points N2 is set
to 10242, satisfying kmaxη ≥ 1, where kmax is the maximum wavenumber and η is the
Kolmogorov length scale, to ensure that the direct numerical simulation (DNS) resolves all
flow scales. The simulation for training data preparation is initialized with a distribution
composed of randomly placed Taylor vortices (Taylor 1918) with random strengths and
sizes. The snapshot is collected after the flow reaches the decaying regime.

The present training data comprise square-sized subdomain samples randomly collected
from the single snapshot with four different sizes of Lsub = {0.03125, 0.0625, 0.125, 0.25},
as illustrated in figure 2. The subdomain data are then resized to be N2

ML = 1282 for the
present data-driven analysis. The dependence of super-resolution reconstruction on the
choice of a single snapshot is examined later.

Test snapshots in this study are prepared from three different simulations. The initial
Reynolds numbers and the number of grid points are respectively Re0 = {80.4, 177, 442}
and N = {128, 256, 512}, satisfying kmaxη ≥ 1. These settings are intended to generate
test snapshots that include a similar size of vortical structures to that in the subdomains
of the single snapshot. Once the test snapshots are collected from the simulations, they
are resized to be NML = 128. The present machine-learning model F reconstructs the
high-resolution vorticity flow field of size 1282 from the corresponding low-resolution
data of size 82 generated by average pooling (Fukami et al. 2019). The input and output
data are normalized by the instantaneous maximum value of absolute vorticity, max(|ω|)
to account for the magnitude difference of vorticity fields across the Reynolds number.

We apply the super-resolution model trained with a single snapshot to decaying
turbulence at three different test Re. The reconstruction by the DSC/MS model is compared
with bicubic interpolation, as shown in figure 3. Let us first use 2000 local tiles in total
for training the baseline model. The value listed underneath each figure reports the L2
error norm ε = ‖ωHR − F(ωLR)‖2/‖ωHR‖2. As the bicubic interpolation simply smooths
the given low-resolution data, the reconstructed fields do not provide any fine-scale
information, resulting in a high L2 error.
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ω/max(|ω|)
1.0–1.0 –0.5 0.50

Figure 2. Two-dimensional isotropic vorticity field. Red boxes are example flow tiles used for training.

To improve the reconstruction of fine-scale structures, let us consider the DSC/MS
model-based super resolution. The reconstructed fields by the DSC/MS model show
improved agreement with the reference data. In addition to large-scale structures, rotational
and shear-layer structures are also well represented compared with bicubic interpolation,
reporting only 10–20 % L2 error across the range of Reynolds numbers. Note that this level
of error suggests accurate reconstruction that captures turbulent coherent structures since
the spatial L2 norm is a strict comparative measure (Anantharaman et al. 2023).

The reconstruction performance is also examined with the probability density function
(p.d.f.) of the vorticity field, as presented in figure 3. For the case of Re0 = 80.4, the curves
obtained from both the bicubic interpolation and the DSC/MS model are in agreement
with the reference data. However, the curve for the bicubic interpolation (coloured in
orange) deviates for the tail of the distribution, implying the failure in reconstructing strong
rotation structures with low probability.

As the test Re increases, the bicubic interpolation starts struggling to reconstruct the
vorticity across its distribution. This is because the smallest and largest scales spread
wider by increasing the test Reynolds number. In contrast, the distributions obtained by
the present DSC/MS model are almost indistinguishable compared with those with the
reference DNS, supporting statistically accurate reconstruction. These results imply that
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Figure 3. Single snapshot super-resolution of two-dimensional decaying turbulence. Its accuracy is assessed
with test snapshots from three different simulations. The instantaneous Taylor length scale λ(t) for a
representative test snapshot is reported along with each Re0. The value underneath each contour is the L2
error norm. The probability density function (p.d.f.) for test snapshots at each Reynolds number is also shown.

even just a single turbulent flow snapshot contains a variety of vortical structures across
different length scales, which can be extracted by the present machine-learning approach.

To further examine the reconstruction performance across spatial length scales, let us
present in figure 4 the kinetic energy spectrum E(k), where k is the wavenumber. While
the bicubic interpolation significantly underestimates the energy across the wavenumbers,
the machine-learning model provides reasonable agreement up to k ≈ 200 for Re0 = 80.4
and 177, and k ≈ 100 for Re0 = 442. The difference in the high-wavenumber regime is
due to the low correlation between the low- and high-wavenumber components, which is
often observed in supervised learning-based super-resolution of turbulent flows (Fukami
et al. 2023). A remedy for improved matching over the high wavenumber range could be
attained by using algorithms such as generative learning (Kim et al. 2021; Yousif et al.
2023). The results here indicate that the current model can learn the energy distribution
over the spatial length scales and Reynolds numbers from only a single snapshot.

The successful reconstruction above is supported by the richness of vortical information
contained in the training snapshot depicted in figure 2. In other words, the single snapshot
to be used for training must be rich with information. To examine this point, we further
consider 150 different flow fields generated by 20 different initial conditions with N ∈
[128, 2048] and Re0 ∈ [40, 2050]. We perform the single-snapshot training with these
snapshots covering a variety of flow realizations regarding the size and shape of vortices,
as shown in figure 5.

To quantify the effect of the single-snapshot choice in training on the reconstruction
performance for test data, we use the ratio of the Taylor length scale between training
and test snapshots, λtest/λsingle, where λ represents the Taylor length scale and subscripts
‘test’ and ‘single’ denote test and training (single) snapshots, respectively. The relationship
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Figure 4. Kinetic energy spectrum E(k) of the reconstructed vorticity fields.

λ = 0.0425 λ = 0.0223 λ = 0.0681λ = 0.0698

λ = 0.115 λ = 0.207 λ = 0.302 λ = 0.491

(e)

(b)(a) (c)

(g) (h)

(d )

( f )

Figure 5. Example snapshots used for single-snapshot training. The value underneath each snapshot is the
instantaneous Taylor length scale λ(t).

between this ratio and the reconstruction error across the different numbers of local tiles ns
generated from a vorticity snapshot is presented in figure 6(a). For each case, a threefold
cross-validation is performed and the averaged error is reported. The reconstruction
improves for large λtest/λsingle. In other words, large λtest (low test Re snapshots) or small
λsingle (high training Re snapshots) provides low reconstruction error.

The error decreases by increasing the number of local tiles ns across the length-scale
ratio. While this error reduction for large ns is expected, it is worth pointing out that lower
ns is needed as the ratio λtest/λsingle increases to achieve the same level of reconstruction.
In other words, quantitative reconstruction can be achieved with a smaller number of local
tiles in the single-snapshot training with a small λsingle that generally corresponds to a
high-Re field including many vortical structures. These observations imply that in addition
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Figure 6. (a) Relationship between the reconstruction error ε and the ratio of the Taylor length scale between
training and test snapshots λtest/λsingle across the number of training samples ns. (b) Dependence of the
reconstruction performance on the number of training samples ns and (c) reconstructed vorticity fields for each
test Reynolds number in using a single snapshot with λsingle = 0.0425 shown in figure 2. The value underneath
each contour in panel (c) is the L2 error norm.

to the number of local samples or snapshots, the amount of information contained in the
training data should also be considered when analysing turbulent flows.

Let us focus on the baseline case of λsingle = 0.0425, depicted in figure 2, to further
discuss the effect of the number of local tiles ns across the test Reynolds number, as shown
in figure 6(b). The averaged error over cross-validation is reported while the maximum
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and minimum errors at each ns are shown with shading. Across ns, the reconstruction
error at a higher Re is larger compared with lower Re flows, likely because of larger
differences in the vortical length scales appearing in the flow. As ns increases, the
reconstruction performance is improved across the Reynolds number. Notably, the present
model achieves qualitative reconstruction for large-scale structures even with merely 250
training samples, as presented in figure 6(c). Even in such a modest number of local tiles,
there exist physical insights (relations) that can be extracted by the present super-resolution
model.

Once ns exceeds 2000, the error curves across the Reynolds number plateau, implying
that extracted data of vortical flows become redundant from the perspective of learning.
While the above model is trained with randomly sampled local tiles from a single snapshot,
the present nonlinear machine-learning model can achieve quantitative reconstruction even
with a much smaller number of local subdomains by sampling them in a smart manner
based on some knowledge of the vortical flows.

The idea here is to avoid sampling local tiles that are not informative. To preferentially
sample informative local subdomains that include insightful rotational motions and
shear layers, we consider the moments of rotation and strain tensors, W and D. The
two-dimensional p.d.f.s based on the mean (first moment), standard deviation (second
moment, σ ), skewness (third moment, S), and flatness (fourth moment, F) of W and D with
Lsub = 0.0625 are presented in figure 7(a). The 97 % confidence interval is also depicted
on each p.d.f. map. Compared with the first and second moment-based p.d.f.s, the third
and fourth moment-based p.d.f.s provide a sharper distribution of snapshots, as observed
from the difference in the size of 97 % confidence interval area. Furthermore, we observe
that local tiles containing various structures such as flow fields (i) and (ii) appear in the
region with high probability while less informative tiles such as flow fields (iii) and (iv)
are seen in the area with lower probability when using the skewness.

Based on the findings above, data sampling informed by the moment probability
for single-snapshot training with ns = 250 is performed, as shown in figure 7(b). For
comparison, the first and second moment-based samplings are also considered. While
the lower-order moment-based training presents similar reconstruction performance to the
case in which the location of subdomains is randomly determined, the third and fourth
moment-based sampling models provide enhanced reconstruction with the same number
of local tiles, revealing vortices and shear-layer structures with finer details. Note that the
error level of the higher-order moment-based sampling with ns = 250 becomes the same
as that of random sampling with ns = 2000, achieving significant reduction in the required
number of training subsamples for accurate reconstruction. These observations suggest
that machine-learning-based analyses traditionally recognized as expensive, data-hungry
approaches can take advantage of the scale-invariant property in analysing turbulent
vortical flows from much smaller data sets.

3.2. Example 2: turbulent channel flow
Next, we perform the single-snapshot-based super-resolution analysis for turbulent channel
flow as a test case that holds spatial inhomogeneity. For the present analysis, we consider
the DNS data set made available from the Johns Hopkins Turbulence Database (Perlman
et al. 2007). Similar to the case of two-dimensional homogeneous turbulence, the present
model is trained with a collection of subdomains sampled from a single high-Re snapshot
and then evaluated with test snapshots obtained by an independent simulation. The current
setting enables assessing whether the present model learns flow features of turbulent
channel flow across the Reynolds number from a single snapshot.
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Figure 7. P.d.f.-based sampling for single-snapshot training. (a) Two-dimensional p.d.f. of first to fourth
moments of rotation and strain tensors with Lsub = 0.0625. For each p.d.f. map, 97 % confidence interval
is shown. (b) Example local tiles corresponding to flow fields (i–iv) on each p.d.f. map. (c) Reconstruction
with different data sampling with ns = 250. The value underneath each contour reports the L2 error norm.

The single snapshot used for training is produced at a very high friction Reynolds
number Reτ = uτ δ/ν of 5200, holding a range of length scales (Lee & Moser 2015).
The variables are normalized by the half-channel height δ and the friction velocity at
the wall y = 0, uτ = (ν dU/dy|y=0)

1/2, where U is the mean velocity. The size of the
computational domain and the number of grid points are (Lx, Ly, Lz) = (8πδ, 2δ, 3πδ)

and (Nx, Ny, Nz) = (10 240, 1536, 7680), respectively. Details of the numerical simulation
set-up are provided by Lee & Moser (2015).

We consider an x–y sectional streamwise velocity field u as the variable of interest.
The subdomains used for training are randomly sampled from the x–y sectional fields at
random spanwise locations, as illustrated in figure 8. Four different sizes of subdomains
are considered in the streamwise direction, L+

x,sub = {814, 1628, 3257, 6514}, where the
variables with superscript + denote quantities in the wall unit. The subdomain size
in the wall-normal direction varies as the data are collected from a non-uniform grid.
The minimum and maximum heights of the subdomains are (min(L+

y,sub), max(L+
y,sub)) =

(66.3, 2646), respectively. These collected data are resized to be N2
ML = 1282 for the

present data-driven analysis.
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Figure 8. Streamwise velocity field of turbulent channel flow at Reτ = 5200. Blue boxes are example flow
tiles used for training.

Test snapshots are prepared from a different DNS at Reτ = 1000 (Graham et al. 2016),
also available from the Johns Hopkins Turbulence Database. The size of the computational
domain and the number of grid points for Reτ = 1000 are (Lx, Ly, Lz) = (8πδ, 2δ, 3πδ)

and (Nx, Ny, Nz) = (2048, 512, 1536), respectively. Details on the numerical simulation
set-up for this test data are available from Graham et al. (2016). The present test data are
randomly subsampled from the x–y sectional streamwise velocity field at random spanwise
locations. The super-resolution model is trained to reconstruct the high-resolution velocity
field of size 1282 from the corresponding low-resolution data of size 82 generated by
average pooling (Fukami et al. 2021). The input and output data of streamwise velocity
fields are normalized by the friction velocity uτ to learn a universal relation between the
low- and high-resolution data of turbulent channel flow across the Reynolds number (Kim
et al. 2021).

Let us apply the present machine-learning model trained with a single snapshot at
Reτ = 5200 to test datasets. The baseline super-resolution model of the case of turbulent
channel flow is trained with 2000 local tiles. The reconstructed turbulent flow fields for
two representative flow tiles of test data with (L+

x,test, L+
y,test) = (1570, 300) are presented

in figure 9. Here, the first grid point in the wall-normal direction of the test snapshots y0,test
is set to zero to examine the reconstruction performance near the wall. To assess whether
the fluctuation component of the velocity field is captured, the L2 error norm in the case
of turbulent channel flow reported hereafter is normalized by the velocity fluctuation such
that ε′ = ‖uHR − F(uLR)‖2/‖u′

HR‖2.
The reconstructed turbulent flow fields by the present machine-learning model are in

agreement with the reference DNS data with as little as 5 to 8 % error. For comparison,
we also show reconstruction from bicubic interpolation, which can only smooth the given
low-resolution velocity fields. In contrast, the DSC/MS model accurately reproduces the
fine-scale structures in the flow fields.

Accurate reconstruction by the present machine-learning model is also evident from
statistics of the streamwise velocity field. The DSC/MS model is superior to the bicubic
method especially in reconstructing the low-speed component, as seen in the p.d.f. of
u+ shown in figure 10(a). The difference in the reconstruction performance between
the DSC/MS model and the bicubic interpolation is further reflected in the high-order
moments depicted in figure 10(b–d). Note that the skewness S(u+) of the bicubic method
almost matches the reference value as the low-resolution input does not hold any negative
values thereby producing a distribution skewed towards positive values. The flatness F(u+)

particularly captures the difference in the produced distributions, supporting successful
reconstruction by the present machine-learning model.
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Figure 9. Single-snapshot super-resolution analysis of turbulent channel flow. Its accuracy is assessed with
test snapshots collected from a different simulation at Reτ = 1000. The value underneath each contour plot is
the L2 error norm normalized by streamwise velocity fluctuation.
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Figure 10. Statistics of the streamwise velocity. (a) Probability density function (p.d.f.), (b) second, (c) third
and (d) fourth moments of the streamwise velocity u+. The negative value of the third moment S(u+) is
presented in panel (c).

Turbulence statistics of the reconstructed velocity fields are also evaluated. The
root-mean-square of streamwise velocity fluctuation urms and the mean velocity profile
across the wall-normal direction are presented in figures 11(a) and 11(b), respectively. The
statistics obtained by the DSC/MS model accurately match the reference DNS across the
y direction while the bicubic interpolation produces overestimation of the velocity field at
the viscous sublayer and part of the buffer layer of y+ � 10.

To further examine the reconstruction performance near the wall, we assess the
streamwise kinetic energy spectrum E+

uu(k
+
x ), where k+

x represents the streamwise
wavenumber, and the spatial two-point correlation coefficient R+

uu(x
+) at y+ = 10.4,

depicted in figures 11(c) and 11(d), respectively. The energy distribution across the
wavenumber is well represented with the DSC/MS model. In addition, the decaying profile
of the spatial two-point correlation coefficient over x+ is accurately reproduced by the
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Figure 11. Turbulence statistics of the streamwise velocity. (a) Root-mean-square of streamwise velocity
fluctuation urms. (b) Mean velocity profile across the wall-normal direction. The coefficients κ and B for the
logarithmic law of the wall are set to 0.41 and 5, respectively. (c) Streamwise kinetic energy spectrum E+

uu(k
+
x )

and (d) spatial two-point correlation coefficient R+
uu(x

+) at y+ = 10.4.

present machine-learning model, suggesting that the streamwise flow pattern in a flow
field is super-resolved well with the DSC/MS model. These results imply that features
of turbulent channel flow across Reτ (Reynolds & Tiederman 1967; Yamamoto & Tsuji
2018) can be successfully extracted by nonlinear machine learning from only a given single
snapshot.

Here, let us assess the effect of input noise on single-snapshot super-resolution
reconstruction. For the present assessment, the Gaussian noise n is given to a
low-resolution input such that qLR,noise = qLR + n, where the magnitude of noisy input
γ is given as γ = ‖n‖/‖q‖. The relationship between the noise magnitude and the L2
error norm normalized by streamwise velocity fluctuation ε′ is depicted with representative
reconstructed fields in figure 12. The error increases with the magnitude of noise γ . While
the present model accurately reconstructs fine structures in a flow field up to γ ≈ 0.2,
large-scale structures can be reconstructed even with 50 % noise, exhibiting reasonable
robustness for the given noise levels.

At last, the dependence of super-resolution reconstruction on the number of local tiles
ns for the turbulent channel flow is examined, as shown in figure 13. The averaged
fluctuation-based error over three-fold cross-validation is shown with the maximum and
minimum errors at each ns indicated by the shading. The reconstruction performance
improves monotonically with increasing ns. While the region far away from the wall is
reasonably reconstructed with ns = 500, more subdomains with the order of O(103) are
required for accurate reconstruction near the wall, likely because of the difference in flow
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Figure 12. Robustness of the machine-learning model trained with 2000 subsamples against noisy
low-resolution flow field input. The magnitude of noise γ and the L2 error norm normalized by streamwise
velocity fluctuation are shown underneath each contour.

103102

ns

0.2

0.4

0.6

0

Reference

ε′

(ns, ε
′) = (2000, 0.0754) (ns, ε

′) = (5000, 0.0702)

(ns, ε
′) = (500, 0.285)

(b)(a)

Figure 13. Dependence of the reconstruction performance on the number of training subsamples ns for
turbulent channel flow. The ns and the L2 error norm normalized by streamwise velocity fluctuation are shown
underneath each contour.

complexities across the wall-normal direction of turbulent channel flow. In turn, these
results suggest that nonlinear machine learning can extract physical insights of turbulent
flows even with spatial inhomogeneity by sufficiently collecting training subsamples from
a single turbulent flow snapshot.

4. Concluding remarks

This study discussed how we can efficiently extract physical insights from a
very limited amount of turbulent flow data with machine learning. We considered
machine-learning-based super-resolution reconstruction with training data of a single
turbulent flow snapshot, enabling the evaluation of whether a physical relationship
between high- and low-resolution flow fields can be learned from limited available
flow data. A convolutional network-based super-resolution model, the DSC/MS model,
is trained with local flow subdomains collected from only a single turbulent flow
snapshot and then assessed for test data generated from different simulations. With an
example of two-dimensional decaying isotropic turbulence, we showed that training data
for super-resolution analysis can be efficiently prepared from a single flow snapshot
based on their statistical characteristics. We also performed the single snapshot-based
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super-resolution for turbulent channel flow, showing that it is possible to learn physical
relations between low- and high-resolution flow fields from a single snapshot even with
spatial inhomogeneity.

Although machine-learning-based analysis is often described as data-intensive, our
findings indicate that it is possible to extract physical insights without over-relying on
massive amounts of training data for studying turbulent flows. Capturing universal flow
features across the Reynolds number such as scale-invariant characteristics is the key
to successful turbulent flow reconstruction with data-driven techniques. The use of an
appropriate model architecture with physics embedding depending on flows of interest is
important. The current results also imply that redundancy of turbulent flows in not only
space but also time can also be considered in sampling training data. By incorporating
prior knowledge for developing a machine-learning model and collecting training data, we
should be able to use smaller data sets to learn physics in a much smarter manner. We
should stop being wasteful of turbulent flow data.
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