
49

Survey of QCD spectral sum rules

QCD spectral sum rules are different versions and/or improvments of the previous Hilbert
representation in Eq. (48.2). For the purposes of more general discussions, let us forget
QCD for the moment, namely the theoretical side Re �(q2), and we shall concentrate on
the RHS spectral integral.

In some channels such as e+e− → hadrons or τ → ντ+ hadrons data, the spectral func-
tion Im�(t) is known from the data, and the sum rules can be used for determining the
QCD parameters given in Tables 48.1 and 48.2. In other channels, the sum rules are used
for determining the properties of the hadrons for a guide to their experimental searches.
In this case, one has to introduce a model for parametrizing the spectral function. For this
purpose, the most common model used in the sum rule analysis is the so-called naı̈ve duality
ansatz, where the spectral function reads:

Im�(t) = f 2
H M2d

H δ
(
t − M2

H

) + θ (t − tc)Im�QCD(t) . (49.1)

fH is the coupling having the dimension of mass of the lowest hadron ground state H to the
hadronic current; d is the power of t in the asymptotic t-behaviour of the spectral function
(d = 0 for the vector two-point function, . . . ); tc is the ‘QCD continuum’ threshold above
which the spectral function is approximated by the discontinuity Im�QCD(t) of the QCD
diagram, which is expected to smear the contributions of the higher mass radial excitations.
We shall test later on in some examples the accuracy of this simple duality ansatz for
reproducing the measured spectral function.

An alternative parametrization can be provided by approximating the spectral function
with an infinite sum of narrow resonances:

Im�(t) =
∑

H

f 2
H M2

Hδ
(
t − M2

H

)
, (49.2)

where the model is supported by the large Nc-behaviour of QCD as discussed in the previous
part of this book.

49.1 Moment sum rules in QCD

In QCD the number of derivatives required to obtain a well-defined two-point function is
fixed by the asymptotic freedom property of the theory. For a gauge-invariant local operator
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500 X QCD spectral sum rules

JH (x), the asymptotic behaviour of the associated two-point function is of the type:

lim
t→∞

1

π
Im�(t) ∼ Atd

{
1 + a1

αs(t)

π
+ · · ·

}
, (49.3)

with A and a1 calculable coefficients, and d a known integer d = 0, 1, 2, . . . , depending
on the dimensions of the operator JH (x). It is then sufficient to take d + 1 derivatives with
respect to q2 to get rid of the arbitrary polynomial and obtain a convergent integral. The
functions defined by the moment integrals (Q2 ≡ −q2):

�(m)(Q2) = (−1)m

(m − d − 1)!
(Q2)m−d ∂m

(∂ Q2)m
�(q2)

=
∫ ∞

0
dt

m(m − 1) · · · (m − d)

(t + Q2)d+1

(
Q2

t + Q2

)m−d
1

π
Im�(t) , (49.4)

for m ≥ d + 1 are then well-defined functions calculable in perturbative QCD at sufficiently
large Q2-values. To our knowledge, these sum rules were first discussed by Yndurain [631]
in connection with the study of e+e− → hadrons data and used later on for heavy-quark
systems [632,1,434]. One can notice that for high-derivative moments, the rôle of the ground
state is enhanced in the sum rule. Therefore the sum rule in Eq. (49.4) is a good candidate
for studying the low-energy properties of hadrons as we shall see later on.

A classical example of moments sum rules is the D-function defined in Eq. (33.20),
which is superconvergent and therefore obeys an homogeneous RGE. From Eq. (33.25),
one can deduce for three massless flavours:

D(Q2) ≡ −Q2 d

d Q2
�em(Q2) =

∫ ∞

0

dt

(t + Q2)2

1

π
Im�em(t)

= 2

16π2

[
1 +

(
ᾱs

π

)
+ 1.64

(
ᾱs

π

)2

+ 6.37

(
ᾱs

π

)3

+ · · · + non − perturbative

]
.

(49.5)

However, when trying to confront this sum rule with experiment, there appears the prob-
lem that the integrand in the RHS is only known experimentally from the threshold up
to finite values of t . This brings in a question of matching whatever is known about the
low-energy hadronic spectral function with its asymptotic behaviour as predicted by pQCD.

49.2 Laplace sum rule (LSR)

This type of sum rule is derived from the previous dispersion relation in Eq. (48.2) by
applying to both sides the inverse Laplace operator [1]:1 (Q2 ≡ −q2 ≥ 0):

L̂ ≡ lim
n, Q2→∞

(−1)n (Q2)n

(n − 1)!

∂n

∂ Q2)n
, (49.6)

1 This sum rule was originally called the Borel sum rule by SVZ [1].
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where n/Q2 ≡ τ is fixed, which is the Laplace sum rule variable. It has been found in the
study of the radiative corrections that sum rule expression of these radiative terms naturally
have the properties of the Laplace transform [626], whilst later on [405], it has also been
noticed that the operator L̂ is an algebraic form of the Laplace inversion operator. These
observations led to simplifications in the derivation of the QCD expressions of the sum rules
once one knows the expression of the two-point correlator �(q2). Useful expressions are
collected in Appendix G. Therefore, one gets the exponential form of the sum rule:

L̂� = τ

∫ ∞

0
dt e−tτ 1

π
Im�(t) . (49.7)

As can be seen in the derivation of the Laplace sum rule, one has to assume that various
derivatives exist. For an approximate truncated series as in QCD improved by the renormal-
ization group equation, this existence is satisfied as in the case of the moment sum rules.
The advantages of L̂� are two-fold:

� First, the use of various derivatives helps to eliminate the subtraction terms in Eq. (48.2), which are
often polynomials in q2.

� Second, the exponential factor increases the role of the ground state into the spectral integral if the
QSSR variable τ is not too small, but still not too large for the perturbative calculation to make sense.
In practice τ is about the value of the hadronic scale. This fact is welcome for low-energy physics.

49.3 Ratio of moments

From Eq. (49.7), one can derive the ratio of moments [91–93]:

R(τ ) = − d

dτ
log

∫ ∞

0
dt e−tτ 1

π
Im�(t) , (49.8)

or the finite energy-like [1]:

Rc(τ ) =
∫ tc

0 dt t e−tτ 1
π

Im�(t)∫ tc
0 dt e−tτ 1

π
Im�(t)

. (49.9)

Its non-relativistic version is obtained by transforming the variable t into the non-
relativistic energy E and τN = 4mτ . In this way, the ratio becomes:

R(τN ) = − d

dτN
log

∫ ∞

0
d E e−EτN

1

π
Im�(t) , (49.10)

where τN can be interpreted as the imaginary time variable. The advantage of the ratio of
moments can be explicitly seen in the following way:

� If one uses the simple duality ansatz ‘one resonance’ plus ‘QCD continuum’ for parametrizing the
spectral function, one can see that the two sum rules in Eqs. (49.8) and (49.9) give an expression of
the mass squared of the ground state. More precisely, for large τ values, the RHS of the sum rule
tends to the mass squared of the lowest resonance.
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pQCD
Non--Perturbative

τ

R (  )τ

Fig. 49.1. Expected behaviour of R(τ ) at short and long distances.

� For small τ -values, the ratio of moments has the parton model behaviour:

R(τ ) = (d + 1)τ−1[1 + QCD corrections] , (49.11)

where d is the only reminiscence left from the number of subtractions needed in the dispersion
relation for the initial two-point function. For large τ values, the ratio of moments is dominated by
the non-perturbative corrections. In the sum rule window compromise region, where the moments
stabilize, these non-perturbative corrections are small though vital for stablizing the result. These
features lead to the expected behaviour of R given in Fig. 49.1.

� Because of the positivity property of a spectral function Im�(t) ≥ 0, the function − logM(τ ) is a
concave function of τ ; or in other words, the slope of the function R(τ ) must always be negative.
This of course implies severe restrictions on the way that the two asymptotic regimes illustrated in
Fig. 49.1 can be joined. The proof of this property is rather straightforward. It can be understood
very simply by making an analogy with statistical mechanics:R(τ ) can be viewed as the equilibrium
‘energy’ 〈t〉 of a system with variable ‘energy’ t in thermal equilibrium with a second system at
‘temperature’ 1/τ . In this analogy, Im�(t) represents the ‘density of states’ with ‘energy’ t . Then
the mean squared ‘energy fluctuation’ is given by:

− d

dτ
R(τ ) ≡ 〈(t − 〈t〉)2〉 = 〈t2〉 − 〈t〉2 ≥ 0 , (49.12)

which by definition is a positive quantity.
� In its non-relativistic version, the ratio of moments tends to the ground state energy E0 for large

imaginary time τN → ∞. In the corresponding theoretical perturbative expansion, the minimum of
R gives an approximation of this ground state energy:

minR(τN ) = E0 , (49.13)

and the mass of the ground state is given by:

M = 2m + R(τN ) . (49.14)
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Fig. 49.2. Contour integral in the complex q2-plane, with q2 = −Q2 exp(iθ ).

49.4 Finite energy sum rule (FESR)

Another version of QSSR is the FESR:

Mn(Q2) ≡
∫ Q2

0
dt tn 1

π
Im�QCD(t) �

∫ Q2

0
dt tn 1

π
Im�exp(t) : n = 0, 1, . . . ,

(49.15)

which was known a long time before QCD [627]. The previous FESR can be derived in
many ways. One way to derive the FESR is the use of the Cauchy theorem on a finite radius
contour in the complex q2 plane (Fig. 49.2) à la Shankar [628].

Avoiding the cut along the real axis, it leads to [628,28,31]:

1

2π i

∮
dzzn�(z) = 0 . (49.16)

If one neglects the contribution of the little circle around the origin which is safer if
�(0) = 0, one deduces the moments:

Mn(Q2) =
∫ Q2

0
dt tn 1

π
Im�(t) = (−1)n+1 (Q2)n−1

2π
.

∫ +π

−π

dθ ei(n+1)θ�(Q2eiθ ) ,

(49.17)

where the LHS can be measured from the data and comes from the paths above and below
the real axis which pick up the discontinuity of �(q2) and then its imaginary part. The RHS
comes from the big circle of radius Q2, which can be computed in QCD provided it is large
enough. The sum rule results from the matching of these two contributions. However, as

https://doi.org/10.1017/9781009290296.063 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.063


504 X QCD spectral sum rules

the FESR diverges for increasing n, the real axis is dominated by the high Q2 region. For
the RHS to reproduce this correctly, more information on the behaviour of the two-point
correlator in the region of the big circle near the cut is needed. This means that more and
more non-leading terms in the series expansion become important at large n and can destroy
the convergences of the series.

49.5 Features of FESR and an example

Now, let us return to the FESR in Eq. (49.15). Contrary to the LSR in Eq. (49.7), where the
role of the lowest ground state is enhanced by the exponential factor, the FESR is governed
by the effects of high-mass resonances; that is it needs a good control of the continuum
contributions to the sum rule. In some cases, where a stability in tc (continuum threshold)
does not occur, this is a great disadvantage.

Taking the example of the isovector part of the electromagnetic current (the ρ-meson
channel), one can show that FESR can provide a useful way for a correct matching between
the low-energy hadronic spectral function and the onset of QCD perturbative continuum.
In this sense, it complements the analysis from the LSR. Using the naı̈ve duality ansatz for
the hadronic spectral function, the spectral function reads:

1

π
Im�(t)I=1 = M2

ρ

4γ 2
ρ

δ
(
t − M2

ρ

) + Nc

16π2

2

3
θ (t − tc)[1 + · · · ] , (49.18)

where the ρ-meson coupling γρ � 2.55 is normalized in Eq. (2.52). Using the n = 0 FESR
moments, one can derive the constraint:

M2
ρ

4γ 2
ρ

� Nc

16π2

2

3
tc[1 + · · · ] . (49.19)

Using the experimental values of the ρ-meson parameters, and adding QCD corrections,
one obtains (see details in [405,3]):

tc � 1.7 GeV2 , (49.20)

which is reasonably high for pQCD calculation to make sense. It is worthwhile to notice
that the FESR fixes both the lowest ground state parameters and the correlated value of
the QCD continuum threshold tc, as contrary to the LSR, the FESR is weighted by the
high-energy region for positive values of the degree n of the moment. However in some
cases, this property become a great inconvenience of the method.

In general, this value of tc is slightly different from the phenomenological value of the
first radial excitation mass. This might be not so surprising as the QCD model, which gives
a smearing of the high-energy region, cannot take into account the complicated structure of
the resonances in this region.
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s+i∆

s-i∆Complex     Planeq 2 -

Fig. 49.3. Points in the complex q2-plane where the two-point function in Eq. (49.22) is evaluated.

49.6 The Gaussian sum rules

Another way of deriving the FESR which casts light upon the meaning of local duality is
the Gaussian sum rule which reads [405,406]:

G(s, σ ) = 1√
4πσ

∫ ∞

0
dt e− (t+s)2

4σ
1

π
Im�(t) , (49.21)

for a Gaussian centred at s with a finite width resolution
√

4πσ . Let us discuss how to get
the Gaussian transform from a generic two-point function like �(q2) in Eq. (48.1). First,
one evaluates �(q2) at a complex point q2 = s + i� (s and � are real positive variables)
and at its complex conjugate q2 = s − i� (see Fig. 49.3) and defines the combination,
(one assumes for simplicity that the dispersion relation for �(q2) requires at most one
subtraction, but the argument can be easily generalized as in the case discussed for the
Laplace transform):

�(s + i�)

i�
+ �(s − i�)

−i�
=

∫ ∞

0
dt

1

(t − s)2 + �2

1

π
Im�(t) . (49.22)

The integral in the RHS brings in the convolution with a Lorentz-like kernel which we
can write as a Laplace transform

1

(t − s)2 + �2
=

∫ ∞

0
dx e−x�2

e−x(t−s)2
. (49.23)

Applying the techniques developed in the previous Section 49.2 to this integral repre-
sentation allows us to construct the inverse Laplace transform operator which is needed to
obtain the Gaussian transform in Eq. (49.21) from the Lorentz transform in Eq. (48.2). It is
the operator:

L ≡ lim
N ,�2→∞

∣∣∣ 1
N �2=4τ

(−1)N

(N − 1)!

(
�2

)N ∂ N

(
∂�2

)N . (49.24)

We then have the desired relation:

1√
4πτ

2τL
[
�(s + i�)

i�
+ �(s − i�)

−i�

]
(49.25)
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=⇒ 1√
4πτ

∫ ∞

0
dt exp

(
− (s − t)2

4τ

)
1

π
Im�(t) . (49.26)

One can also note that Eq. (49.21) can be derived by applying the inverse Laplace operator:

L̂ ≡ lim
n,τ 2→∞

(−τ 2)n

(n − 1)!

dn

(dτ 2)n
, (49.27)

where n/τ 2 ≡ σ is fixed, to the already Laplace-transformed quantity:

F(τ ) = e−sτ τ−1
∫ ∞

0
dt e−tτ 1

π
Im�(t) . (49.28)

One can already note from Eq. (49.21) that in limit σ = 0, where the Gaussian kernel
becomes a delta function, one has the strict local duality:

G(s, 0) = 1

π
Im�(s) . (49.29)

Also, Eq. (49.21) obeys the heat-evolution equation:
(

∂2

∂s2
− ∂

∂σ

)
G(s, σ ) = 0 , (49.30)

with the initial condition in Eq. (49.29), where now s is the position, σ the time evolution
and 1

π
Im�(t) the temperature distribution in the region 0 ≤ s ≤ ∞. The two boundary

conditions for σ > 0:

G(s = 0, σ ) = 0 ,
∂G

∂s
(s, σ )

∣∣
s=0 = 0 , (49.31)

lead to two independent solutions U−(s, σ ) and U+(s, σ ) where G(s, σ ) = 1
2 (U+ + U−)

(s, σ ). These solutions can be expressed in terms of Hermite polynomials. The conservation
of the total heat implies the duality relation:∫ +∞

−∞
ds G(s, σ ) =

∫ ∞

0
ds

1

π
Im�(s) =

∫ ∞

0
ds U+(s, σ ) , (49.32)

where the last equality comes from the symmetry properties of U+(s, σ ). A relation in-
volving higher moments of the spectral function can also be deduced using the generating
function of Hermite polynomials and leads to the sum rules:

σ n
∫ ∞

0
ds H2n

(
s

2
√

σ

)
U+(s, σ ) =

∫ ∞

0
dt t2n 1

π
Im�(t) ,

σ n+1/2
∫ ∞

0
ds H2n+1

(
s

2
√

σ

)
U−(s, σ ) =

∫ ∞

0
dt t2n+1 1

π
Im�(t) , (49.33)

which only become useful once statements about the restriction to finite intervals can be
made. In this case, Eq. (49.33) leads to the FESR in Eq. (49.15).

In [405,361], the example of the ρ meson has been taken for illustrating the Gaussian
sum rules and summarized in the following figures. Figure 49.4 shows the evolution in
the pseudo-‘time’ variable σ of the Gaussian transform of the spectral function ansatz
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Fig. 49.4. The Gaussian transform of the spectral function in Eq. (49.18).
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Fig. 49.5. The Gaussian transform of the spectral function in Eq. (49.35).

in Eq. (49.18) with the onset of the continuum tc fixed by the finite energy sum rule in
Eq. (49.19).

In the ‘heat evolution’ analogy the spectral function in Eq. (49.18) corresponds to the
initial ‘heat distribution’ in the s–axis. The picture shows the evolution in ‘time’ of this
‘heat distribution’ in the interval 0.1 GeV4 ≤ σ ≤ 1 GeV4. We observe that asymptotically
in ‘time’, i.e. for σ large, the spectral function evolves very well to the asymptotic ‘heat
distribution’ predicted by pQCD i.e.:

lim
σ→∞ G(s, σ ) = 1

16π2

(
1 − erf

(
s

2
√

σ

))
[1 + · · ·] , (49.34)

where erf(x) denotes the error function erf(x) = 2√
π

∫ x
0 dy e−y2

. By contrast, Fig. 49.5 shows
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the same evolution in the limit case of only a delta-function ansatz for the spectral function:

1

π
Im�I=1(t) = f 2

ρ M2
ρδ

(
t − M2

ρ

)
, (49.35)

with no continuum.
Clearly the corresponding asymptotic ‘heat distribution’ fails to reproduce the shape

predicted by pQCD. Global duality of a given hadronic spectral function ansatz with QCD
is only obtained provided that the hadronic parameters are constrained to satisfy a system
of finite-energy sum rules equations.

49.7 FESR from the zeta prescription

Finally, the last (but not the least) way of deriving Eq. (49.15) is simply to take the coefficient
of the τ variable in the two sides of the LSR in Eq. (49.7) [629,667]. This latter method
can be formalized by using the zeta function prescription inspired from the non-relativistic
approach [406]. In fact, if H is a Hamilton operator, the associated zeta-function can be
written as:

ζ (n) = 1

�(n)

∫ ∞

0
dt τ n−1T r e−Ht , (49.36)

which is equivalent, in field theory, to:

ζ (n) = 1

�(n)

∫ ∞

0
dt e−tτ 1

π
Im�(t) , (49.37)

where the last integral is the familiar Laplace transform of Im�(t). If this Laplace-transform
and its successive derivatives are a series in τ , then, one can easily derive Eq. (49.15) by
comparing the exact expression of ζ (n = 0) with its approximate form.

49.8 Analytic continuation

Various versions of this method have been discussed in the literature [630]. In most cases,
the problem is formulated in terms of norm problems for the input errors and is quite similar
to the standard χ2–minimization used in numerical analysis. More explicity let us take a
simple example. A polynomial in t is used for approximating the 1/(t − q2) term of Eq.
(48.2) in the real axis [630]. Then, applying the Cauchy theorem to the finite Q2 contour in
the complex Q2 plane, one arrives at the sum rule:

�(q2) = 1

2iπ

∮
C

dt

(
1

t − q2
−

∑
an

tn

)
�(t)

+
[
�n ≡ 1

π

∫ Q2

0
dt

(
1

t − q2
−

∑
n

antn

)]
Im�(t) , (49.38)

where �n is the ‘fit error’ which should tend to zero, if the result is optimal. An important
difference with the previous sum rules is that in the RHS the data enters only in �n whilst
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the main part of �(q2) is given by its theoretical side. However, it is difficult to appreciate
the reliability of the results coming from the method due to:

� The ad hoc uses of the polynomial parametrization (or in general of the kernels in the integrals)
and to the strong dependence of the results on the values of the input errors.

� Its form in Eq. (49.38) where the dependence of the sum rule on the arbitrary subtraction scale is
unclear.

� The way of extrapolating the QCD information up to small q2 which is model dependent.

Due to these weak points, all the beautiful mathematical forms used to formulate the sum
rule might lose their efficiency in its physical applications. More refinements and more phe-
nomenological tests of this approach are needed before a definite claim about its superiority
can be made.

49.9 Summary

We have given a brief general survey of spectral function sum rule methods which we believe
can be applied for a general class of QCD-like theories. As one can see all the methods
presented here have their own advantages and disadvantages. For the particular case of QCD
where the theory has not yet been solved exactly, some questions, though important, such
as the existence of high derivatives at high Q2 as well as a correct and convincing way of
estimating the true theoretical systematic errors in the sum rules analysis remain academic.
We have checked in a QCD-like model such as the non-linear σ model in two dimensions,
as suggested by Gabriele Veneziano, that the high derivatives for a two-point correlator
exist unambiguously. Also, one can always test a posteriori whether the assumptions used
for the analysis make sense.

In this review, we shall mainly concentrate on the uses of the LSR in Eq. (49.7) to
Eq. (49.9) owing to their sensitivity with respect to the low-energy behaviour of the spectral
functions. However, in most cases, we shall also discuss for a comparison, the constraints
from FESR in Eq. (49.15) which complement the LSR results.

49.10 Optimization criteria

One can notice that the sum rule variables τ (LSR variable) or n (finite number of deriva-
tives) and the continuum threshold tc are, in general, free parameters in the sum rule
analysis.

� In the original work of SVZ [1], the optimal result from the sum rule is obtained inside a window in
τ or n, where one has a balance between the QCD continuum and the non-perturbative condensates
contributions in the sum rule. In QSSR1 [3], one has shown that this feature corresponds to the
existence of a minimum in τ or n, as can be illustrated by the example of three-dimensional harmonic
oscillator in quantum mechanics and of the charmonium sum rules [91–93].
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49.10.1 The harmonic oscillator

For this purpose, let consider the harmonic oscillator potential:

V (r ) = 1

2
mω2r2, (49.39)

and the ‘correlation function’ for the S-wave states:

F(τ ) =
∑

(Rn)2e−Enτ : n = 0, 2, 4, . . . , (49.40)

where Rn is the radial wave function for zero angular momentum and En the corresponding
eigenvalue. τ is the parameter which regulates the energy resolution of the sum rule and
plays the role of an ‘imaginary time’ variable. The exact solution of the LHS for the harmonic
oscillator potential V (r ) reads:

F(τ )exact = 2√
2π

( mω

sinh ωτ

)3/2
, (49.41)

where one can see that, in the limit τ → ∞, the exact expression:

R(τ )exact ≡ − d

dτ
log F(τ ) (49.42)

tends to the lowest eigenvalue:

E0 = 3

2
ω . (49.43)

At finite τ and for a truncated series in τ , one can write the approximate solution:

R(τ )approx ≡ E0

[
1

ωτ
+ ωτ

3
− (ωτ )3

45
+ 2(ωτ )5

945
+ · · ·

]
, (49.44)

where the first term is the free motion, and the next ones are higher-order corrections in
τ to this term. One can notice that in this approximate solution, one cannot take formally
the limit τ → ∞, as the asymptotic series will blow up. Therefore, a comparison of the
exact and approximate solution can only be done in a compromise region where the series
converge and where the S states contribution is dominant. This is exactly the situation which
we shall encounter in the QCD sum rule analysis. The τ behaviour of Rapprox(τ ) in shown
in the Fig. 49.6, which one can compare with the eigenvalue E0. One can notice that it
stays above E0 as a consequence of the positivity of R. The agreement between Rapprox

and Rexact increases if one adds more and more terms in the τ expansion. The minimum of
Rapprox provides an upper bound to the value of E0 while the distance between Rapprox and
E0 controls the strength of the continuum contribution to the sum rule. One can notice that
the optimal information from Rapprox is obtained at the minimum, where there is a balance
between the higher order terms in the expansion and the higher states contributions.

We shall see that this quantum mechanics example mimics quite well the case of QCD.
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Fig. 49.6. The ratio of moments normalized to the ground-state energy versus the imaginary time for
the case of the harmonic oscillator potential. (2) and (4): approximate series including the second and
fourth order terms;−−−−exact solution.

49.10.2 Non-relativistic charmonium sum rules

Retaining the correction due to the gluon condensate, the QCD expression of the non-
relativistic QCD moments is [91–93]:

M(τN ) ≡
∫

d Ee−EτN Im�(E)

= 3

8m2
4π

(
m

4πτN

)3/2 [
1 + 4

3
αs

√
πmτ

1/2
N − 4π

288m
〈αs G2〉τ 3

N

]
, (49.45)

where τN is the imaginary time variable, from which one can deduce the ratio of moments:

R(τN ) = 3

2τN
− 2

3
αs

√
πmτ

−1/2
N + 4π

96m
〈αs G2〉τ 2

N , (49.46)

where m is the charm quark (pole) mass. Using the QCD parameters given in Tables 48.1
and 48.2, one can show in Fig. 49.7 the τN behaviour of the ratio of moments. One can
notice a strict ressemblence with the case of the harmonic oscillator.
The moments have the following features:

� The exact ratio reaches its limit E0 very quickly as shown in Fig. 49.7.
� The theoretical curve which is a good approximation for small times stabilizes at medium time and

blows up at large time indicating a breaking of the approximation for τN ≥ τ c
N . At the minimum,

one has:

minR(
τ c

N

) = E exact
0 (49.47)

within about 10% accuracy, indicating a good description of the ground state energy. This slight
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Fig. 49.7. The ratio of moments normalized to the ground-state energy versus the imaginary time in
the case of the charmonium sum rules.

discrepancy can be reduced by including the contribution of the QCD continuum into the spectral
function.

� However, it is quite surprising that, for a clearly emerging level where one would expect a
dominance of the confinement force, while the moment shows that there exists a window where
perturbation theory still works but the individual energy levels clearly emerge. For this reason,
Bell–Bertlmann called it magic moments.

49.10.3 Implications for QCD

� However, by working with a truncated series as in QCD, we do not often have, in some other
channels, a nice minimum for Rapprox. This minimum is replaced in some cases by an inflexion
point where the optimal information on the resonance properties is obtained.

� Moreover, we need also a similar optimization for the value of the QCD contimuum threshold tc,
which, a priori, is also a free parameter. Optimal estimate can be obtained if the result presents
stability in tc. In various examples, this procedure can lead to an overestimate of the result, such
that one can safely consider the result obtained in this way as an upper bound. On the contrary, a
lower bound can be obtained at the value of tc where one starts to have a minimum or an infexion
point with respect to the changes of the sum rule variables τ or n. A further test of the tc value is its
comparison with the one obtained from FESR constraints.

� We conclude from the previous analysis that the optimal and most conservative results from the sum
rule discussed in this book will obey the τ or n optimization criterion (SVZ window), but in addition
the corresponding tc values are in the range where we start to have these τ or n minimum until
the one where we have a stability in tc. In many examples, the value of tc from a FESR constraint
belongs to this range. In some cases, tc can be higher than the value intuitively expected around the
mass of the radial excitation, which is not very surprising as the QCD continuum is an average of
all the higher-state contributions. Finally, one can also test that at the optimal region, the OPE still
makes sense as the QCD series converge quite well.
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49.11 Modelling the e+e− → I = 1 hadrons data using a QCD-duality ansatz

Due to the complexity and to the absence of the data in some channels, it appears necessary
to introduce a simple model for parametrizing the spectral function. In the example of the
ρ meson, we have used the parametrization:

1

π
Im�ρ(t) = M2

ρ

4γ 2
ρ

δ
(
t − M2

ρ

) + �(t − tc) ‘QCD continuum’ , (49.48)

where the first term is the lowest resonance contribution, whilst the second one takes into
account all discontinuities coming from the QCD diagrams. γρ is the ρ-meson coupling to
the vector current:

Vµ = 1

2
(ūγµu − d̄γµd) , (49.49)

and is normalized as in Eq. (2.52). We have also seen that the lowest FESR moment leads
to the constraint:

M2
ρ

4γ 2
ρ

� tc
8π2

[
1 +

(αs

π

)
+ O(

ᾱ2
s

)]
, (49.50)

which, given the experimental value γρ � 2.55, leads to:

tc � 1.7 GeV2 . (49.51)

As first noticed in [405], this FESR constraint shows that the properties of the lowest
ground state is correlated to the value of the QCD continuum threshold, and permits one
to check the (in)consistencies of various predictions done in the early literature on the sum
rules.

We compare the prediction of this model with the available complete e+e− → I = 1
hadrons data for the ratio of moments R(τ ) as shown in Fig. 49.8.2

We have used the e+e− total cross-section shown in Fig. 49.9.
One can notice that the deviation of this naı̈ve and simple model (dashed curve) from the

data (black points) is at most 15%,3 and that is very good. One can also notice that the QCD
duality ansatz prediction is below the complete data one, which can be understood because
the QCD continuum might give an underestimate of the radial excitation contributions as
it only gives a smearing of the higher-state effects and does not account for the complex
resonance structure between 1 and 2 GeV.

49.12 Test of the QCD-duality ansatz in the charmonium sum rules

Let us now test the validity of the QCD-duality ansatz in the heavy quark sector. In so doing,
we consider the charmonium family (J/ψ, ψ ′, . . . ), which couples to the charm current

2 More details discussions can be found in QSSR1 [3].
3 The continuous curve corresponds to another set: γρ = 2.2 and tc = 2.2 GeV2, which gives a worse prediction.
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Fig. 49.8. Ratio of moments R(τ ) as function of the sum rule variable τ in the ρ-meson channel for
two values of tc and γρ . The data points are e+e− → I = 1 hadrons.
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Fig. 49.10. Phenomenological side of the ratio of moments versus n.

via:

〈 0|c̄γ µc|ψ 〉 =
√

2
M2

ψ

2γψ

εµ , (49.52)

and the corresponding two-point correlator. The coupling γψ is normalized as in Eq. (1.51).
The QCD continuum is simply approximated by the step function:

1

π
Im�ψ (t)cont = 1

4π2

[
1 +

(αs

π

)
(t)

]
�(t − tc) , (49.53)

which one can improve by including the available quark mass and higher-order radiative
corrections. We show in Fig. 49.10 the ratio of the Q2 = 0 moments:4

rn ≡ Mn

Mn−1
, (49.54)

by using the data for the different leptonic widths of the J/ψ family and by including
the QCD continuum. One can notice that for larger value of n ≥ 6, the ratio of moments
is completely saturated by the lowest mass resonance, which shows that the QCD duality
ansatz parametrization is a good approximation in the sum rule analysis of the heavy quark
sector.

49.13 HQET sum rules

QCD spectral sum rules are often used in the Heavy Quark Effective Theory (HQET) for
the estimate of meson masses and decay constants [164]. One considers the correlation

4 More detaileds discussions can be found in QSSR1 [2].
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functions of quark currents, where the heavy quarks are represented by their effective fields
hv(x), v being the heavy quark four-velocity. For this purpose, let’s consider the two-point
correlation function:

�(ω) = i
∫

d4x eik·x 〈0|T {JH (x)J †
H (0)}|0〉 (49.55)

where ω = 2v · k and JH (x) = h̄v(x)iγ5q(x) is the interpolating current of the pseudoscalar
heavy-light mesons in HQET. In HQET, the corresponding decay constant fB can be ex-
pressed in terms of the parameter F̂ as:

fB = Ĉ(mb)F̂

[
1 − A

mb
+ O

(
1

m2
b

)]
, (49.56)

where the coefficient Ĉ(mb) can be computed in perturbation theory. One can notice that due
to the heavy quark spin symmetry, F̂ can also be computed from the two-point correlation
function of the vector currents JV (x) = h̄v(x)(γµ − vµ)q(x) interpolating heavy-light 1−

mesons. Isolating the ground state contribution from the integral over the excited states and
the continuum, one can write the dispersion relation:

�(ω) = F̂2

2�̄ − ω
+

∫ ∞

E0

d E
Im�(E)

E − ω
+ subtractions . (49.57)

The variable E is related to the usual t variable as:

t = (E + mb)2 . (49.58)

The parameter �̄ � MB − mb represents the binding energy of the light degrees of free-
dom in the heavy meson. Here mb represents the heavy quark pole mass. The dispersion
relation, Eq. (49.57), is then matched with the QCD expression, obtained for negative ω

using the SVZ expansion:

�(ω) = �pert(ω) +
∑

d

Cd
〈Od〉

(−ω)d
. (49.59)

It is also convenient in the Laplace sum rule analysis to introduce the non-relativistic
variable:

τN = 4mbτ . (49.60)

49.13.1 Decay constant, meson-quark mass gap, kinetic energy
and chromomagnetic operator

Different applications of this method to the two-point functions of heavy-light meson and
baryon currents have been focused on the estimate of the decay constant, the hadron-quark
mass gap �̄, the kinetic energy λ1 and the chromomagnetic interaction parameter λ2.
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The value of the B meson decay constant obtained from the analysis is [164,166]:

F̂ = (0.4 ± 0.06) GeV3/2 , A = (0.9 ± 0.2) GeV , (49.61)

which one can compare with the result obtained from the full theory discussed later on in
the chapter of quark masses and decay constants.

The meson-quark mass gap �̄ is in important input in HQET approach. Recall (see
previous chapter on HQET) that it can be defined as [164,166]:5

MHQ = m Q + �̄ + �m2

2m Q
, (49.62)

with:

�m2 = −λ1 + 2

[
J (J + 1) − 3

2

]
λ2 , (49.63)

J = j ± 1/2 being the total spin of the hadron states. Taking, for definiteness, the case of
the B meson, one has:

λ1 ≡ 1

2MB
〈B(v)|Okin|B(v)〉 and λ2 ≡ − 1

3MB
〈B(v)|Omag|B(v)〉 (49.64)

which correspond respectively to the matrix elements of the kinetic and of the chromomag-
netic operators:

Okin ≡ h̄(i D)2h and Omag ≡ 1

4
gs h̄σµνGµνh , (49.65)

where h is the heavy quark field and Gµν the gluon field strength tensor.
The estimate of �̄ from HQET-sum rules leads to [165]:

�̄ � (0.52 − 0.70) GeV , (49.66)

in good agreement with the previous results [164,633], although less accurate as we have
taken a larger range of variation for the continuum energy. An anologous sum rule in the
full QCD theory leads to [634]:

�̄ � (0.6 − 0.80) GeV , (49.67)

which combined together leads to the intersecting range of values [165]:

�̄ � (0.65 ± 0.05) GeV . (49.68)

The sum rule estimate of the kinetic energy gives [165]:

λ1 � −(0.5 ± 0.2) GeV2 (49.69)

where the large error, compared with the previous result of [166], is due to the absence
of the stability point with respect to the variation of the continuum energy threshold. By

5 We are aware of the fact that in the lattice calculations, �̄ defined in this way can be affected by renormalons [798].
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combining the previous estimates with the one of the chromomagnetic energy:

λ2 � 1

4

(
M2

B∗ − M2
B

) + O (1/mb) � 0.49 GeV2 , (49.70)

one deduces the value of the pole mass to two-loop accuracy:

Mb ≡ mb = (4.61 ± 0.05) GeV , (49.71)

in good agreement with the previous values from the sum rules in the full theory and (within
the errors) with the HQET results in [164,633].

49.13.2 Isgur–Wise function

This approach has been also extended to the three-point function for studying the Isgur–
Wise function for the B → D(∗) semi-leptonic transition [164]. Compared with the sum
rule in the full theory, the HQET sum rules have a much simpler QCD expression because
it is a series in 1/Mb. Therefore, the evaluation of radiative corrections like the one for the
three-point function becomes feasible. We shall come back to this point in the chapter on
B and D exclusive weak decays.

49.14 Vertex sum rules and form factors

The extension of QSSR two-point function sum rules into vertex or three-point function
sum rules has been discussed by many authors [635–641] and in many reviews on sum rules
[356–365], with the aim of estimating the three-hadron couplings and to study the q2-
dependence of the hadron form factors. In most of these applications, the vertex is saturated
by the lowest hadronic state plus a QCD continuum, while the QCD expressions are eval-
uated in the Euclidian region using a configuration that is best suited to the processes
considered. The mathematical validity of the spectral representation for the three-point
function is not well established in general,6 although one may expect that, in the case of
narrow resonances, it simplifies, due to the disappearance of some anomalous thresholds.7

Among other choices, the symmetric configuration:

p2 = q2 = (p + q)2 = −(Q2 � �2) , (49.72)

for the vertex depicted in Fig. 49.11 appears to be convenient for extracting the trilinear
boson couplings, as we are only left with one variable in the sum rule analysis, while its
QCD side is guaranteed to be safe from some eventual IR singularities. In this narrow-width
approximation, one can write the duality diagrams between the two sides of the vertex sum
rules (Fig. 49.12).

6 To our knowledge, the most serious attempts to study such a problem is in [640] within perturbation theory.
7 Related discussions will be done in the next chapter, taking the example of the Bc meson semi-leptonic decays.
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p+q

p q

Fig. 49.11. Hadronic vertex.

QCD

=

RESONANCES

Fig. 49.12. Duality between a QCD vertex and a hadronic vertex in a narrow width approximation.

The discussions on the theoretical validity of the symmetric configuration method and
its first phenomenological applications in QCD, for the case of trilinear mesons [637] and
meson-baryon-baryon couplings, can be found in [636]. Some other applications of this
method will be discussed later on in following chapters for the estimate of the decay widths
of scalar mesons, gluonia and hybrids. The case of the heavy meson exclusive decays will
be extensively discussed.

The uses of vertex sum rules for studying the q2-dependence of different light and heavy
hadron form factors have been also discussed extensively in the literature and will be
discussed in later chapters. In connection to this, we shall also discuss light-cone sum rules
that are an alternative to the vertex sum rules.

49.14.1 Spectral representation

The hadronic vertex in Fig. 49.11, can be represented by the spectral representation:

T (p2, q2, (p + q)2) = 1

π

∫
dt1 dt2 dt3

ImT (t1, t2, t3)

(t1 − p2)(t2 − q2)(t3 − (p + q)2)
. (49.73)
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In the symmetric representation given in Eq. (49.72), it takes the simple form:

T (Q2) = 2

π

∫ 1

0
xdx

∫ 1

0
dy

∫ ∞

0
dt1dt2dt3

ImT (t1, t2, t3)

[Q2 + (t1 − t2)xy + (t2 − t3)x + t3]3 ,

(49.74)

after a Feynmann parametrization of the propagators. In this form, it is trivial to apply the
Laplace sum rule operator for improving the duality relation. One obtains:

L̂[
T

] = τ 3

π

∫ 1

0
xdx

∫ 1

0
dy

∫ ∞

0
dt1dt2dt3 e−[(t1−t2)xy+(t2−t3)x+t3]τ ImT (t1, t2, t3) , (49.75)

where the rôle of the depressive factor is only manifest when the mass of the first ex-
cited state is much higher than any of the lowest ground states involved in the three
channels.

An alternative choice of configurations often used in the literature is to take one of the
three-moment fixed or small. In this case, one assumes the validity of the double-dispersion
relation:

T (q2, p2) =
∫ ∞

0
dt1

∫ ∞

0
dt2

ImT (t1, t2, (p + q)2)

(t1 − p2)(t2 − q2)
+ · · · . (49.76)

One can apply a double ‘Borel’ transformation for each variable p2 and q2 provided that
the subtraction terms are not of the form [641]:

(p2)n
∫ ∞

0

�(t)dt

(t − q2)
or (q2)n

∫ ∞

0

�(t)dt

(t − p2)
, (49.77)

which would induce non-controllable contributions to the sum rule. However, treating
(p2, q2) as independent variables may not be justified, as the spectral representation should
be done in a (q2, p2) plane along a straight-line which is a combination of the variables p2

and q2 [635].

49.14.2 Illustration from the evaluation of the gωρπ coupling

The relevant three-point function is:

Tµν(p, q) = i
∫

d4x e−i p·x ei(p+q)·y〈| T J ρ
µ (x)Jπ (y)Jω

ν (0) | 0〉
= εµναβ pαqβ T (Q2, (p − q)2) . (49.78)

where T is the invariant amplitude. The quark interpolating currents are normalized as:

J ρ
µ =: ūγµd : Jω

ν = 1

6
: ūγνu + d̄γνd : Jπ = (mu + md ) : d̄(iγ5)u : .

(49.79)

https://doi.org/10.1017/9781009290296.063 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.063


49 Survey of QCD spectral sum rules 521
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Fig. 49.13. Duality between the QCD and hadronic vertices for gωρπ : (a), (b) and (c) are respectively
the QCD perturbative, quark condensate and mixed quark condensate contributions; (d) is the gωρπ

coupling.

The QCD expression of the vertex at the symmetric point can be evaluated from the
diagrams depicted in Fig. 49.13 and gives [637]:

T (p, q) = 1

16π2

(mu + md )

Q2

{
(mu + md )Ix,y − 〈ūu〉

Q2

(
1 + 5

36

M2
0

Q2

) }
. (49.80)

We have parametrized the mixed quark condensate effects by introducing the scale M2
0 �

0.8 GeV2. Ix,y is a typical Feynman parameter integral:

Ix,y =
∫ 1

0
dx

∫ 1−x

0
dy

1

x(1 − x) + y(1 − y) − xy
= 2.34 . (49.81)

Using a narrow width approximation (NWA) and retaining the lowest mass resonances,
one obtains:

Texp =
√

2 fπm2
π

Q2 + m2
π

√
2M2

ρ

2γρ

√
2M2

ω

2γω

|gωρπ | . (49.82)

We have used the usual normalization:

〈0|Jπ |π〉 =
√

2m2
π fπ , 〈0|J ρ

µ |ρ〉 =
√

2
M2

ρ

2γρ

εµ , 〈0|Jω
ν |ω〉 = M2

ω

2γω

εν . (49.83)

The hadronic coupling is normalized as:

〈ω(p1, ε1)|ρ(p2, ε2)π (p3)〉 = |gωρπ |εµνρσ ε
µ

1 εν
2 pρ

1 pσ
2 . (49.84)

Invoking quark-hadron duality and taking the Laplace transform, one obtains in the chiral
limit and for γω � 3γρ, Mρ � Mω:

|gωρπ | � 6γ 2
ρ

M4
ρ

(mu + md )〈ūu〉
fπm2

π

τ−1eM2
ρτ

(
1 + 5

36
M2

0 τ

)
. (49.85)
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One can eliminate the quark condensate contribution using the GMOR relation:

(mu + md )〈ūu〉 = − f 2
π m2

π . (49.86)

However, one should not take literally the fπ dependence of the result as the fπ depen-
dence of τ is not known. Using γρ = 2, 55, it leads at the stability point τ � 1.4 GeV−2

to:

|gωρπ | ≈ 19 GeV−1 (49.87)

in satisfactory agreement with the phenomenological determination of about 17 GeV−1

from ω → 3π or ω → π0γ decay using the Gell–Sharp–Wagner model [642]. One should
notice that even at these large τ -values, the contribution of the mixed condensate is only
about 15% indicating the convergence of the OPE. The effect of radial excitations have also
been shown [637] to be negligible.

Similar approaches have been used in some other channels [636,3] (see also forthcoming
chapters).

49.15 Light-cone sum rules

49.15.1 Basics and illustration by the π0 → γ ∗γ ∗ process

The method of light-cone sum rules (LCSR) [643] is an alternative to the vertex sum rules
for studying hadronic form factors.8 It combines the SVZ technique and the theory of hard
exclusive processes [644]. The basic idea is to expand the products of currents near the light
cone. It can be illustrated by the analysis of the pion form factor in the process π0 → γ γ

for on-shell pion (p2 = m2
π = 0) in the chiral limit. The corresponding amplitude, is:

Tµν(p, q) = i
∫

d4x e−iq·x 〈π0(p) | T J em
µ (x)J em

ν (0) | 0〉
= εµναβ pαqβ F(Q2, (p − q)2) , (49.88)

where p is the pion momentum, q and (p − q) are the photon momenta, Q2 = −q2, J em
µ

is the quark electromagnetic current and F is the invariant amplitude. To derive the LCSR,
one has to calculate the correlation function of Eq. (49.88) in QCD, in the region of large
Q2 and |(p − q)2| and to use a dispersion relation to match the result of this calculation
with hadronic matrix elements:

Tµν(p, q) = 1

π

∫ ∞

sh
0

ds
I mTµν(Q2, s)

s − (p − q)2
. (49.89)

The spectral function cn be saturated by the lowest masses ρ and ω mesons via:

〈V |J em
ν (0) | 0〉 = εν

√
2

M2
V

2γV
: V ≡ ρ, ω . (49.90)

8 Various recent applications of this method are reviewed in [360].
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The correlation function in Eq. (49.88) can be calculated by expanding the T product of
quark currents near the light cone x2 = 0, which, for large Q2 and |(p − q)2|, is expected
to give the dominant contribution. This expansion is different from the local OPE as it
no longer involves QCD vacuum condensates, but a summation of infinite series of local
operators. It is convenient to introduce the DIS variables:

ν ≡ p · q , ξ = 2ν/Q2 . (49.91)

The leading contribution to the amplitude can be obtained by contracting the quark fields
ψ in Eq. (49.88), using the propagator of the free massless quark:

i S0(x, 0) = 〈0 | T {ψ(x)ψ̄(0)} | 0〉 = i � x
2π2x4

, (49.92)

and transforming γµγαγν → −iεµανργ
ργ5 + · · · . Then, one obtains:

Tµν(p, q) = −iεµναρ

∫
d4x

xα

π2x4
e−iq·x 〈π0(p) | ψ̄(x)γ ργ5ψ(0) |0〉 . (49.93)

Expanding the local operators around x = 0:

ψ̄(x)γργ5ψ(0) =
∑

n

1

n!
ψ̄(0)( D · x)nγργ5ψ(0) , (49.94)

the matrix elements of these operators have the following general decomposition:

〈π0(p)|ψ̄ Dα1 Dα2 · · · Dαr γργ5ψ |0〉 = (−i)n pα1 pα2 · · · pαr pρ Mn

+ (−i)ngα1α2 pα3 · · · pαr pρ M ′
n + · · · ,

(49.95)

where Mn, M ′
n are matrix elements coming respectively from twist-2 and twist-4 local

operators. Substituting the decomposition Eq. (49.94) in Eq. (49.93), integrating over x and
using the definitions Eq. (49.95) and Eq. (49.91) one obtains:

F(Q2, (p − q)2) = 1

Q2

∞∑
n=0

ξ n Mn + 4

Q4

∞∑
n=2

ξ n−2

n(n − 1)
M ′

n + · · · . (49.96)

Since the variable ξ ∼ 1 in a generic exclusive kinematics with p �= 0, all terms should
be kept in each series in this expression. The second term containing M ′

n and further similar
terms are suppressed by powers of a small parameter 1/Q2 as compared with the first term
containing Mn . Keeping the lowest twist contribution, at x2 = 0 (and p2 = 0), the matrix
element in Eq. (49.93) has the following parametrization ( fπ = 92.4 MeV):

〈π0(p)|ψ̄(x)γµγ5ψ(0)|0〉x2=0 = −i pµ fπ

∫ 1

0
du eiup·xϕπ (u, µ) , (49.97)

where the function ϕπ (u, µ) is the pion light-cone distribution amplitude of twist 2, nor-
malized to unity:

∫ 1
0 ϕπ (u, µ)du = 1. Furthermore, expanding both sides of Eq. (49.97)

and comparing the LHS with the expansions, Eqs. (49.94) and (49.95), we find that the
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moments of ϕπ (u) are related to the matrix elements of local twist-2 operators:

Mn = −i fπ

∫ 1

0
du unϕπ (u, µ) . (49.98)

The function ϕπ (u), multiplied by fπ , is a universal non-perturbative object encoding the
long-distance dynamics of the pion. Together with the corresponding higher-twist distribu-
tion amplitudes, ϕπ (u) plays a similar role as the vacuum condensates play in SVZ sum
rules. However, to our opinion, a connection between the distribution amplitude and the
vacuum condensates has not been yet clarified and needs further investigation. Substituting
the definition Eq. (49.97) in Eq. (49.93), integrating over x , restoring the electromagnetic
charge factor and summing the u and d quark contributions, one obtains the correlation
function in the twist 2 approximation:

F (2)(Q2, (p − q)2) = 2

3
fπ

∫ 1

0

du ϕπ (u, µ)

ūQ2 − u(p − q)2
, (49.99)

where ū = 1 − u. We are now in a position to obtain a sum rule from the dispersion relation,
Eq. (49.89), matching it with the result of the light-cone expansion. We define the matrix
element

〈π0(p)| j em
µ |ρ0(p − q)〉 = Fρπ (Q2)m−1

ρ εµναβε(ρ)νqα pβ , (49.100)

in terms of the transition form factor Fρπ (Q2). We parametrize the higher state contributions
by the QCD continuum ansatz from a threshold tc and write a dispersion relation for F (2).
It is easy to obtain, the duality relation, to leading twist-2 accuracy:

√
2Mρ

2γρ

Fρπ (Q2)

m2
ρ − (p − q)2

+ 1

π

∫ ∞

tc

ds
Im F(Q2, s)

s − (p − q)2
=

√
2 fπ
3

∫ 1

0

du ϕπ (u)

ūQ2 − u(p − q)2
,

(49.101)

where γρ is the coupling normalized as usual in this book:

〈0| 1√
2

(ūγµu − d̄γµd)|ρ〉 = εµ

√
2M2

ρ

2γρ

(49.102)

Introducing the continuum threshold:

uρ
c = Q2/(tc + Q2) (49.103)

and taking the Laplace transform, one obtains the LCSR for the form factor of the γ ∗ρ → π

transition to twist-2 accuracy [645,360]:

Fρπ (Q2) = 2

3

fπ
Mρ

γρ

∫ 1

uc

du

u
ϕπ (u, µ) exp

(
− ūQ2

uM2
+ m2

ρ

M2

)
. (49.104)
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ρ → ππ form factor

Another example of the application of LCSR is the calculation of the pion electromagnetic
form factor defined as:

〈π (p′)| j em
µ |π (p)〉 = Fπ (q2)(p + p′)µ , (49.105)

where q = p′ − p and j em
µ is the electromagnetic current:

j em
µ = euūγµu + ed d̄γµd . (49.106)

The resulting LCSR, at zeroth order in αs and in the twist 2 approximation, reads [649]:

Fπ (Q2) =
∫ 1

uπ
c

du ϕπ (u, µu) exp

(
− ūQ2

uM2

)
Q2→∞−→ ϕ′

π (0, M2)

Q4

∫ tπ
c

0
ds s e−s/M2

, (49.107)

where ϕ′
π (0) = −ϕ′

π (1), and uπ
c = Q2/(tπ

c + Q2), sπ
0 is the duality threshold in the pion

channel. The factorization scale µ2
u = ūQ2 + uM2 corresponds to the average quark vir-

tuality in the correlation function. At O(αs), one recovers the leading ∼ 1/Q2 asymptotic
behaviour corresponding to the hard scattering mechanism. Including this contribution in
the LCSR and retaining the first two terms of the sum rule expansion in powers of 1/Q2

one obtains [650]:

Fπ (Q2)= 2αs

3π Q2

∫ sπ
0

0
ds e−s/M2

∫ 1

0
du

ϕπ (u)

ū
+ ϕ′

π (0)
∫ s0

0

ds s e−s/M2

Q4
+ O

(
αs

Q4

)
.

(49.108)

The O(1/Q2) term in Eq. (49.108) coincides with the well-known expression for the asymp-
totics of the pion form factor [644]:

Fπ (Q2) = 8παs f 2
π

9Q2

∣∣∣∣
∫ 1

0
du

ϕπ (u)

ū

∣∣∣∣
2

, (49.109)

obtained by the convolution of two twist-2 distribution amplitudes ϕπ (u) of the initial and
final pion with the O(αs) quark hard-scattering kernel.

49.15.2 Distribution amplitudes

The model dependence and main uncertainties of the LCSR approach is in the parametriza-
tion of the distribution amplitude. It can be expanded using the conformal symmetry
of massless QCD [360,646]. The conformal spin (partial wave) decomposition allows to
represent each distribution amplitude as a sum of certain orthogonal polynomials in the
variable u. The coefficients of these polynomials are multiplicatively renormalizable, and
have growing anomalous dimensions, so that, at sufficiently large normalization scale µ,
only the first few terms in this expansion are relevant. The part of the distribution ampli-
tude, which does not receive logarithmic renormalization is called asymptotic. Within this
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expansion, one can write:

ϕπ (u, µ) = 6uū

[
1 +

∑
n=2,4, ...

an(µ)C3/2
n (u − ū)

]
, (49.110)

where C3/2
n are the Gegenbauer polynomials (for a derivation, see, e.g., [167]). The coeffi-

cients an are multiplicatively renormalizable:

an(µ) = an(µ0)

(
αs(µ)

αs(µ0)

)γn/β0

, (49.111)

and:

γn = CF

[
−3 − 2

(n + 1)(n + 2)
+ 4

(
n+1∑
k=1

1

k

)]
(49.112)

are the anomalous dimensions [647]. At µ → ∞, an(µ) vanish, and the limit an = 0 cor-
responds to the asymptotic distribution amplitude

ϕ(as)
π (u) = 6uū . (49.113)

The values of the non-asymptotic coefficients an at a certain intermediate scale µ0 can
be estimated from two-point sum rules [647,648,3] for the moments

∫
unϕπ (u, µ)du at

low n. This method is attractive because it employs non-perturbative information expressed
in terms of quark and gluon condensates. However, in practice the two-point sum rule
determination of an is not very accurate, such that one should consider conservatively the
large range spanned by an from different analysis.
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