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Abstract. The time series of geophysical data are chaotic and, on the other hand, extremely
noisy. Thus, though there are a number of advanced methods of chaotic time series prediction,
the improvement of geophysical data is crucial to succeed. Mainly, it is connected with low
determinism of such time series. The improvement procedure, we are about to represent, does not
directly enhance deterministic component, but regularity properties of a signal, and, therefore,
causes the increase of a deterministic portion in data. The main advantage consists in the fact
that the method preserves the initial structure (information) of a time series, while effectively
reduces noises, even knowing nothing about its actual nature.

Nowadays many noise reduction methods are known, see for example Kostelich & Yorke
(1998), Grassberger et al. (1993), Parlitz & Bröcker (2001). The most of them assume
that the observed signal Y can be presented in the form of composition Y = F (X,B) of
a clean signal X and a noise term B. As a rule, the noise term B is assumed to be some,
for example, gaussian stochastic process which does not depend on X and X in its turn
is considered as a piecewise-smooth function of class Cn, n � 0. Finally, F is a linear or
quasi-linear functional dependence. Unfortunately, all these assumptions are too strict
for many time series, and for geophysical data especially. Data of such kind are usually
the result of interference of large number of uncontrollable processes, for which correct
models do not exist at all. Neither the functional relation F (X,B) between the signal and
noise, nor the noise nature are known. In this work we apply a more general approach to
such data, which has been offered in Lévy Véhel & Lutton (2001). The method idea is
based on properties of time series smoothness (Hölder regularity). Measured regularity
is increased knowingly by a controllable constant value. After that a new signal with the
obtained (prescribed) regularity is constructed. A constructed signal is considered as a
clean one. Thus, the noise reduction problem comes to the procedure of reconstructing
new signal on the basis of enhanced (prescribed) regularity (Daoudi et al. (1998)).

Let us briefly remind definition of Hölder regularity exponent. A function f(x) is a
continuous one at x0, if |f(x) − f(x0)| → 0 as x → x0. A continuity corresponds to the
regularity index α = 0. Similarly, f(x) is differentiable if there exists a linear function (for
example, polynomial) P such that |f(x)−P (x− x0| → 0 faster than |x− x0| as x → x0.
This case corresponds to a regularity index α = 1. In general (Arneodo et al. (1997)), let
α be a positive real number and x0 ∈ R and a function f(x) : R → R. Then α is called
the regularity index of f at x0, if there are a constant C and a polynomial P (x) of order
smaller than α so that, for all x in a neighborhood of x0: |f(x)−P (x−x0| � C|x−x0|α.
Hölder exponent αf (x0) is a supremum of all α such that previous inequality holds. Since
αf is defined at each point x, we may associate to f(x) a function x → αf (x), which
measures evolution of its regularity. So, increasing or shifting αf by a positive constant
may be interpreted as a “smoothing” procedure.
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Figure 1. The example of enhancement of the oxygen isotope ratio time series (δ = 1.5)

The numerical estimation of the Hölder exponent is implemented through wavelet
decomposition of the original time series: X(t) =

∑
j,k xjkψjk(t), where xjk are wavelet

decomposition coefficients of time series X(t) and ψjk(t) are wavelet basis functions. So,
the Hölder exponent can be estimated using |xj,k| � C2−j(αX + 1

2 ), where C is a constant,
parameters j and k correspond to the values of shifting and scaling of a wavelet function.

Now, the task of signal enhancement can be accomplished in the following way. Let X
be an original (true) signal, while Y is an observational time series corrupted by noises. It
is necessary to find a signal X̃ of smoothed regularity structure so as to meet the following
conditions: 1) X̃ and Y must be close in L2 metric space, 2) the function of local regularity
αX̃ must be prescribed. If the function αX is known, then we suppose αX̃ = αX . If we do
not know αX , we estimate αY . Next we determine αX̃ = αY +δ, where a value of δ > 0 is
chosen according to practical expediency. Now, we need merely reconstruct X̃ basing on
its prescribed regularity. The latter is realized using an inverse wavelet decomposition,
i.e. we obtain enhanced signal X̃ =

∑
j,k x̃jkψjk(t) from estimation of wavelet coefficients

x̃jk, by solving some optimization problem that is a direct formalization of given above
conditions (Lévy Véhel & Lutton (2001)).

For numerical experiments, we have used the time series of abundance ratio of oxygen
isotope in ice cores of Greenland (figure 1), dated from 8065 BP to 1987 AD (Stuiver et al.
(1995)). Since this time series was not measured directly, represents complex behavior and
contains information distorted due to influences of a number of another natural processes,
we could evenly regard all these negative factors as an impact of some unknown noise
and then have applied the enhancement procedure. In general, we have observed the
improvement of dynamical properties of the time series and, hence, its predictability.
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