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Abstract
In the present work, the asymptotic-numerical method is applied in conjunction with the Ritz method as a powerful
mean for analysing the post-buckling response of panels with variable stiffness skin and curvilinear stringers. Main
advantage of the proposed approach is the reduced computational time. The Ritz method guarantees an excellent
ratio between accuracy and required degrees of freedom; the asymptotic-numerical method requires just one matrix
inversion throughout the solution process. Moreover, the complete analytical representation of the non-linear equi-
librium path is obtained, as opposed to the point-by-point representation of predictor-corrector algorithms. Several
test cases are presented and compared with standard Newton-Raphson computations and commercial finite ele-
ment simulations. The results show noticeable saving of computational time. For the test cases investigated, the
asymptotic-numerical method requires about one third of the time required by a standard Newton-Raphson routine.
These results demonstrate that the combination between Ritz and the asymptotic-numerical method is an excellent
strategy for investigating the post-buckling response of innovative curvilinearly stiffened panels.

Nomenclature
a, b plate planar dimensions
ANM Asymptotic-Numerical Method
c vector of unknown amplitudes
e stiffener eccentricity
E elastic modulus
F external load
FSDT First-order Shear Deformation Theory
G shear modulus
h plate thickness
hs stiffener height
J rotation conventions
Js Jacobian of the transformation
k Lagrange multiplier
K stiffness matrix
L, Q, C, linear, quadratic and cubic operators
N order of the expansion
Ns number of stringers
NR Newton-Raphson
Pi stiffener control points coordinates
R rotation matrix
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R, S number of trial functions
s, n, b stiffener reference system
ts stiffener thickness
u, v, w plate generalised displacements
ut, vn, wb stiffener generalised displacements
VS Variable Stiffness
x, y, z plate reference system

Greek symbol
α arc-length parameter
ε, γ plate generalised strain
εs stiffener generalised strain
δεs virtual variation of the stiffener generalised strain
ε heuristic parameter to estimate the radius of convergence
θ fiber orientation angle
θt, θn, θb stiffener generalised rotations
λ load parameter
λcr buckling parameter
ν Poisson ratio
ξ , η plate dimensionless coordinates
ϕx, ϕy, ϕz plate generalised rotations

1.0 Introduction
Over the past years, the development of new manufacturing techniques – automated fiber placement,
automated tape laying and addictive manufacturing are among the most important – allowed new and
innovative load-carrying aeronautical structures to be explored. Two meaningful examples are variable
stiffness (VS) and curvilinearly stiffened panels. Variable Stiffness (VS) configurations are a promis-
ing solution. These structures are developed with a variable stiffened skin, in which the fibers are
allowed to vary their orientation as a function of the planar position. In addition, extra tailoring capa-
bilities can be reached by introducing stiffeners with curvilinear, rather than conventional straight,
paths. The design of panels with non-uniform elastic properties, such as in the cases outlined above,
allows structural efficiency to be improved, with a drastic potential on structural weight saving. Previous
works in the literature compared the efficiency of VS laminates configurations in terms of mechanical
buckling [1–7, 53], thermal buckling [8, 9], fundamental frequencies [10, 11] and failure loads [12].
Ritz-based approaches are particularly suitable for the analysis of VS configurations due to the rela-
tively low number of degrees of freedom to obtain accurate results. A Ritz-like approach is employed in
Refs. [5, 6], where a mixed formulation and thin-plate theory are applied to buckling and post-buckling
problems; instead, a Galerkin formulation is introduced in the work [13] to solve plane stress problem
of VS plates. The current interest for using VS configurations in real-life applications is corroborated by
ongoing experimental campaigns, such as the one presented in Ref. [14]. In the referenced work, a VS
unitised integrated-stiffener out-of-autoclave thermoplastic composite wingbox is tested for studying the
buckling response due to combined shear-bending-torsion.

The literature on curvilinearly stiffened panels is more scarce with respect to the one on VS com-
posites. Indeed challenges exist both from technological and modeling perspectives. Recent advances
on additive manufacturing opened the door to easier fabrication of these structures, in most cases with
isotropic materials. Regarding the modeling aspects, difficulties arise due to the inherent complexity of
the geometrical pattern. This aspect, in turn, requires careful handling of the computational grid and
effective strategies for the enforcement of the compatibility between the skin and the stringer. Within
a finite element framework, the definition of these compatibility requirements can be relatively cum-
bersome. Indeed, node sharing between skin and stiffener requires careful meshing to prevent element
distortion. Locatelli et al. [15] developed a tool that automatically generates the geometry and performs
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the re-meshing for every variation in the structure configuration. An alternative approach relies on con-
tact algorithms or ad-hoc finite element formulations, as the ones outlined by Refs. [16–18]. In these
works, finite element shape functions are employed to express stiffeners displacements as a function of
the skin ones. So, the skin and the stiffener elements are independent from one another and node sharing
between them is not needed. Another strategy involves the use of mesh-free methods, as the element-
free Galerkin and the Ritz method, see Refs. [19–21, 52], in which free-vibration, bending and buckling
problems are considered.

The individual advantages offered by VS skins and curvilinear stringers suggest the opportunity to
consider both these features combined together. Recently, Singh and Kapania [22] showed how the
buckling load can be increased if curvilinear stiffeners are employed. An optimisation framework is
discussed in Ref. [23] to design tow-steered composite laminates with metallic curvilinear stiffeners.
Goal of the optimisation is maximising the buckling load, while minimising the mass of the panels. In
the works by Zhao and Kapania [24–26] ad-hoc finite element models are developed for the analysis
of curvilinearly stiffened panels in terms of free-vibration, thermal buckling and thermo-mechanical
buckling behaviour, respectively.

Even though numerical studies on curvilinearly stiffened VS panels are available, experimental cam-
paigns, to the best of the authors’ knowledge, are still lacking. Nevertheless, the study of these structures
is of interest for future applications. Aside from the current technological capabilities, the investigation
of any potential advantage could stimulate new manufacturing techniques to be developed. A first step
to conduct the mentioned assessments involves the development of appropriate analysis tools.

The investigation on curvilinearly stiffened VS skins is extended to a Ritz-based approach in recent
works of the authors [27, 28], and excellent computational efficiency was demonstrated for free-
vibration, buckling and thermal buckling problems. In a recent work [29], the Ritz framework is extended
to account for post-buckling analysis capabilities. For this purpose, an iterative-incremental procedure
is developed based on the Newton-Raphson method. To keep the computational burden at minimum,
special care is given to the implementation of the non-linear terms, which are expressed in a suitable
way to minimise the number of operations to be conducted. The so-obtained computational tool guaran-
tees satisfactory computational time, although the advantage over finite elements is not as drastic as it is
for linear analyses. Indeed, spectral approaches, such as the Ritz method, are inherently associated with
computationally expensive operations when non-linear terms are of concern. One possibility to speed-
up the time for the solution involves the adoption of an effective solution method, capable of providing
improved performance with respect to Newton-Raphson. For this purpose, the Asymptotic-Numerical
Method (ANM) is proposed here as an excellent mean to improve the Ritz-based tool for the non-linear
post-buckling analysis presented in the previous effort [29]. The ANM was proposed several years ago
by Potier-Ferry and co-workers. In Ref. [30], the ANM was developed to compute perturbed bifurca-
tions. In subsequent works [31–34], the method was applied for the post-buckling solution of elastic
plates and in a finite element environment. An extensive review on the ANM algorithm can be found in
the work of Potier-Ferry and Cadou [35].

1.1 Aims and objectives
Due to the large number of design variables offered by innovative VS configurations, the development
of fast analysis tools is of paramount importance, especially when the non-linear response is of con-
cern. With this consideration in mind, this work aims at presenting an advanced Ritz-based formulation
that exploits the ANM for the analysis of curvilinearly stiffened panels. The result is an effective com-
putational tool to analyse the post-buckling response of relatively complex configurations with reduced
modeling and computational effort. The proposed tool will serve in the future as a mean to investigate any
potential gain offered by curvilinearly stiffened panels including post-buckling design considerations.

The paper is organised as follows: Section 2 offers a general framework of the non-linear problem for-
mulation; starting from the structural configuration, the skin and the stiffener models are presented, along
with the perturbation technique and the numerical approximation; Section 3 illustrates the comparison
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Figure 1. Sketch of the curvilinearly stiffened panel: (a) dimensions; (b) fiber paths; (c) conventions
for the generalised displacements and rotations.

against Abaqus finite element results and a Ritz-based approach based on the Newton-Raphson method;
limitations of the current work, conclusions and future developments are summarised in Sections 4
and 5.

2.0 Formulation
The semi-analytical formulation for the post-buckling analysis of curvilinearly stiffened panels is pre-
sented in this section. Firstly, the structure under investigation is described: the plate and stiffener models
are illustrated with special care on the parameterisation technique for the stiffeners path. Then, the
perturbation technique and the numerical solution procedure are presented in detail.

2.1 Structural configuration
The structure is the assembly of two different components: a VS skin and an arbitrary number Ns of
curvilinear stringers. A sketch of the structure is available in Fig. 1(a). A two-dimensional plate model
is considered for the skin and a one-dimensional beam model for the stiffeners. The reference systems
and the relevant dimensions are available in Fig. 1. A Cartesian reference system xyz is considered
with the origin located in the middle of the plate midsurface, in which x and y are the longitudinal and
transverse axes, respectively, whereas z is taken in the thickness direction. The plate has dimensions
equal to a and b and thickness h. The second structural components are the stiffeners. They are assumed
to be blade-shaped and obtained by the stacking of plies with constant orientation. The height and width
are equal to hs and ts, respectively. A local reference system snb is taken at the origin of the reference
system on the plate midsurface. This choice simplifies the enforcement of the compatibility conditions
between plate and stiffener. The skin is obtained by the stacking of plies with curvilinear fibers. For the
stringers, straight-fiber plies with orthotropic sequence are stacked along the width direction. Hence,
fiber orientation is constant along the stiffener axis. The panel can be constrained at the outer edges with
any boundary condition, including free, simply supported and clamped ones.

The kinematic assumptions adopted for the skin are suitable for thin up to moderately thick panels,
which are commonly used in aeronautical applications. Concerning the stiffeners, the beam-like model
is neither able to account for local instabilities and section deformability effects, nor to provide refined
modeling of the coupling with the skin. Nonetheless, such behaviours are usually crucial in the deep
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post-buckling field, therefore the present model is believed adequate for assessments on the initial post-
buckling [36–40].

The section properties can be determined for different shapes, including blade, T or J stringers.
Irrespective of the shape, the beam model is fully determined by the axial, bending, shear and torsional
stiffnesses. Without loss of generality, blade stringers are considered in this work. Other shapes can be
easily modeled by evaluating the section properties following analytical approaches, such as the one
outlined in Ref. [41]. More advanced semi-analytical strategies can be considered too [42].

2.1.1 Skin model
Lagrange polynomials interpolation is employed to take into account the VS properties of the skin.
A grid of M × N points is considered, where the orientation angles θmn are specified over one quar-
ter of the plate, as depicted in Fig. 1(b). The orientation angle in a generic point is evaluated
as [43]:

θ (x, y) =
M−1∑
m=0

N−1∑
n=0

θmn

∏
m �=i

( |x| − xi

xm − xi

)∏
n�=j

( |y| − yj

yn − yj

)
(1)

where the angle θ is allowed to vary with non-linear law in the coordinates x and y. A linear fiber
variation is achieved by considering two points only, one at the centre and the other at the edge of the
plate.

The plate kinematics is modelled according to the First-order Shear Deformation Theory (FSDT).
Despite more refined results can be obtained if higher-order theories are employed [44–46], this approach
is believed adequate for preliminary calculations for thin aeronautical panels. Based on FSDT, the
displacement of a generic point of the surface can be written as [47]:

u(x, y, z) =

⎧⎪⎨
⎪⎩

u(x, y, z)

v(x, y, z)

w(x, y, z)

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

u0(x, y)

v0(x, y)

w0(x, y)

⎫⎪⎬
⎪⎭+ z

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦
⎧⎪⎨
⎪⎩

ϕx(x, y)

ϕy(x, y)

ϕz(x, y)

⎫⎪⎬
⎪⎭

= u0(x, y) + zL ϕ(x, y)

= [
I z L

] {u0(x, y)

ϕ(x, y)

}
= [

I z L
]

d0 (2)

where u0 and ϕ are the linear displacements and rotations of the midsurface and d0 is the vector collecting
them. The conventions for the generalised displacements and rotations are shown in Fig. 1(c). The non-
linear strain components are computed from the expression of the Green-Lagrange strain tensor under
the von Kármán approximation:

ε =

⎧⎪⎨
⎪⎩

ε0
xx

ε0
yy

γ 0
xy

⎫⎪⎬
⎪⎭+ z

⎧⎪⎨
⎪⎩

kxx

kyy

kxy

⎫⎪⎬
⎪⎭= ε0 + z k (3)

γ =
{

γyz

γxz

}
(4)
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where:

ε0 =

⎧⎪⎪⎨
⎪⎪⎩

u0
/x + 1

2

(
w0

/x

)2 + w0
/x w∗

/x

v0
/y + 1

2

(
w0

/y

)2 + w0
/y w∗

/y

u0
/y + v0

/x + w0
/xw

0
/y + w0

/xw
∗
/y + w0

/y w∗
/x

⎫⎪⎪⎬
⎪⎪⎭ (5)

k =

⎧⎪⎨
⎪⎩

ϕx/x

ϕy/y

ϕx/y + ϕy/x

⎫⎪⎬
⎪⎭ , γ =

{
ϕx + w0

/x

ϕy + w0
/y

}
(6)

Previous studies in the literature [48, 49] have shown the inadequacy of the von Kármán non-linear
approach when large displacements and rotations are of concern, such as in the case of cantilever beams.
However, typical conditions for wing and fuselage panels involve the panel’s edges to be assumed as
simply supported or clamped. In these cases, von Kármán theory proved to be adequate. In Equations
(3) and (5), w∗ is the initial imperfections and (·)/x and (·)/y express the derivatives with respect to the
in-plane coordinates.

The strain virtual variations are written as a function of the displacement field as:

δε0 = G1 (d0) G2δd0 (7)

δk = Gk δd0 (8)

δγ = Gγ δd0 (9)

where the matrices G1 (d0), G2, Gk and Gγ are defined as:

G1(d0)G2 =
⎡
⎢⎣

1 0 0 0 w0
/x + w∗

/x 0

0 0 0 1 0 w0
/y + w∗

/y

0 1 1 0 w0
/y + w∗

/y w0
/x + w∗

/x

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(·)/x 0 0 0 0 0

(·)/y 0 0 0 0 0

0 (·)/x 0 0 0 0

0 (·)/y 0 0 0 0

0 0 (·)/x 0 0 0

0 0 (·)/y 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Gk =

⎡
⎢⎢⎣

0 0 0 (·)/x 0 0

0 0 0 0 (·)/y 0

0 0 0 (·)/y (·)/x 0

⎤
⎥⎥⎦ (11)

Gγ =
⎡
⎣0 0 (·)/x 1 0 0

0 0 (·)/y 0 1 0

⎤
⎦ (12)

2.1.2 Stiffener model
The stiffener path is parameterised using Bézier curves [50]. This choice originates from the popularity
of this curve representation. Their definition is straightforward and is briefly outlined below. One poten-
tial disadvantage is given by the position of the control points, which generally do not belong to the
curve. Strategies other than Bézier curves are equally possible, such as NURBS or Hobby splines (see
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Refs. [17, 25]). They are not investigated here, but the method could be easily modified to incorporate
them. Therefore, the stiffener coordinates are expressed through the relation x = r (p), with:

r(p) =
n∑

i=0

(
n

i

)
Pi

(
1 − p + 1

2

)n−i (p + 1

2

)i

(13)

where n is the order of the polynomial, Pi are the coordinates of the control points and p ∈ [−1 1]. In
the present work, 2nd and 3rd order curves are employed, whose expression reads:

r(p) = 1

4
(1 − p)2P0 + 1

2
(1 − p2)P1 + 1

4
(1 + p)2P2 (14)

r (p) = 1

8
(1 − p)3P0 + 3

8
(1 + p) (1 − p)2P1 + 3

8
(1 + p)2 (1 − p) P2 + 1

8
(1 + p)3P3 (15)

Given the stiffener path, the unit tangent vector can be evaluated as:

t (s) = x/s (s) = x/p (s)∣∣x/p (s)
∣∣ (16)

where s is the arc-length coordinate. From Equation (16), the relation between their differentials can be
derived:

ds = ∣∣xp

∣∣ dp = Js dp (17)

(·)/s = 1

Js

(·)/p (18)

where Js is the Jacobian of the transformation. The normal vector n is obtained by rotating the tangent
vector of Equation (16) in counterclockwise direction by π/2; the binormal vector b is directed as the
plate normal positive direction. The variation of the unit vectors along the curve is evaluated via Frenet
formulas [51]:

t/s (s) = κ (s) n (s)

n/s (s) = −κ (s) t (s) + τ (s) b (s)

b/s (s) = −τ (s) n (s)

(19)

The stiffeners are modelled as Timoshenko beam elements, hence the generalised displacement
components are expressed as:

us (s, n, b) = u0
s (s) + (d × )Tθs (s) (20)

with:

u0
s (s) = u0

t (s) t + v0
n (s) n + w0

b (s) b (21)

θ s(s) = θt(s) t + θn(s) n + θb(s) b (22)

d = n n + b b (23)

where snb is a local reference frame with origin on the plate midsurface. Note, displacements and rota-
tions are expressed as a function of the plate kinematics, so no independent degrees of freedom are
associated with the stringers, with clear advantages of the final size of the problem. The second order
tensor d× in Equation (20) is defined such that (d×) a = d × a, for any vector a. The conventions for
the stiffener kinematics are depicted in Fig. 1(c).
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The strains are readily derived from the kinematic assumptions of Equation (20) as:

εs =

⎧⎪⎨
⎪⎩

εt

γn

γt

⎫⎪⎬
⎪⎭= ε0

s + (d × )T ks =

⎧⎪⎨
⎪⎩

ε0
t + b kn − n kb

γ 0
n − b kt

γ 0
b + n kt

⎫⎪⎬
⎪⎭ (24)

with:

ε0
s =

⎧⎪⎨
⎪⎩

ε0
t

γ 0
n

γ 0
b

⎫⎪⎬
⎪⎭=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u0
t

∂s
− κ(s) v0

n + 1
2

(
∂w0

b
∂s

)2

∂v0
n

∂s
+ κ(s) u0

t − θb

∂w0
b

∂s
+ θn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ks =

⎧⎪⎨
⎪⎩

kt

kn

kb

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

∂θt
∂s

− κ(s) θn

∂θn
∂s

+ κ(s) θt

∂θb
∂s

⎫⎪⎬
⎪⎭ (25)

Note that von Kármán assumptions are introduced in Equation (25), so the only non-linear contribu-
tion involves the quadratic term in the unknown wb.

After introducing the vector ds
0 = {u0

s θs}T , the strain virtual variations can be expressed as:

δεs =D1

(
ds

0

)
δds

0 (26)

where the matrix D1

(
ds

0

)
is defined as:

D1(ds
0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(·)/s −κ(s) w0
b/s (·)/s 0 0 0

κ(s) (·)/s 0 0 0 −1

0 0 (·)/s 0 1 0

0 0 0 (·)/s −κ(s) 0

0 0 0 κ(s) (·)/s 0

0 0 0 0 0 (·)/s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

The compatibility between the stringers and the skin is enforced in a strong-form manner. The pro-
cedure follows the approach outlined in Ref. [28] and consists in expressing the beam kinematics as a
function of the plate generalised displacements as:

u0
s (s) = R u0(x, y) θ s(s) = RJ T ϕ(x, y) (28)

with:

R = [
t n b

]T J =
⎡
⎢⎣

0 1 0

−1 0 0

0 0 1

⎤
⎥⎦ (29)

where the matrix R is the rotation matrix from the global reference system to the stiffener local one,
while J takes into account the different conventions for the rotations of the plate and the stiffener.
The stiffener and plate displacement fields are expressed in the same reference frame, the global one.
Therefore, the stiffener strains can be expressed as a function of the plate generalised displacements
only.

2.2 Asymptotic-Numerical Method (ANM)
The time for generating the Ritz-based governing equations is kept at minimum following the formalism
outlined in Ref. [29]. Aiming at further improving the time for the non-linear analysis process, the ANM
is introduced here.

As opposed to classical predictor-corrector algorithms, the ANM employs an asymptotic expansion
of the unknowns to determine the non-linear solution. Specifically, the displacement u and the load
parameter λ are expanded through a power series with respect to the arc-length parameter α [33]. These
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expansions are then substituted into the non-linear equilibrium equations. A sequence of linear problems
is then obtained in the unknowns ui and λi. These problems share the same stiffness matrix, so just one
matrix factorisation is required during the solution process.

Following Ref. [32], the steps above can be carried out following two different approaches, hereinafter
defined as pure displacement and pseudo-mixed formulations. The former is developed starting from
the Principle of Virtual Displacement and leads to non-linear equations that are cubic in the displace-
ment unknowns. The latter relies on the Hellinger-Reissner variational principle, hence the unknowns
are displacements and stresses, leading to quadratic non-linearities in the mixed unknowns. The mixed
formulation is employed only for the perturbation procedure, afterwards the constitutive law is intro-
duced in order to use the classical Ritz method in a displacement-based framework, hence the name
pseudo-mixed approach. Main advantage of the pseudo-mixed approach is the degree of non-linearity
of the resulting equations, which are quadratic rather than cubic, as in the purely displacement-based
approach. This aspect has clear advantages from a computational perspective. However, the presence of
stress unknowns renders more involved the enforcement of the compatibility conditions between the skin
and the stringers. For this reason, the strategy considered here relies on the pure displacement formula-
tion. For completeness, the comparison of computational time is presented between the two formulations
in the case of unstiffened plates, when no compatibility conditions need to be imposed with the stringers.
In all the cases involving stiffened panels, the pure displacement formulation is considered. The method
is developed in the context of a continuation approach, so the validity of the asymptotic solution is not
restricted to the neighbourhood of the starting point.

2.2.1 Governing equations
By employing a pure displacement formulation, the non-linear equilibrium equations include quadratic
and cubic non-linearities, in the form [32]:

L (u) + Q (u, u) + C (u, u, u) = λF (30)

where u is the vector of unknown displacements, L, Q and C are the linear, quadratic and cubic oper-
ators, respectively, and F is the external load. When the problem is formulated with a pseudo-mixed
formulation, the non-linear terms are quadratic and not cubic. Details are not reported here for the sake
of brevity.

2.2.2 Perturbation technique
By assuming the existence of a critical point on the equilibrium path, (u1, λ1), the unknown u and the
load parameter λ are expanded, in the neighbourhood of a pre-buckling solution (u0, λ0), as:

u (α) = u0 + αu1 + α2u2 + . . . (31)

λ (α) = λ0 + αλ1 + α2λ2 + . . . (32)

where α is the linearised arc-length parameter, which is the projection of u on the bifurcation mode
(u1, λ1) [33]. The consistency of Equations (31) and (32) is guaranteed by imposing the following
orthogonality conditions for p � 2: 〈

up, u1

〉= 0 (33)

where the operator 〈·, ·〉 represents the scalar product. By substituting Equations (31) and (32) in
Equation (30), a set of linear problems is obtained. The linear problems of order 1 and p are:

Lt (u1) = 0 (34)
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Lt

(
up

)= −
p−1∑
r=1

λrG
(
up−r

)−
p−1∑
r=1

Q
(
ur, up−r

)−
p−1∑
r=1

r−1∑
q=1

C
(
uq, up−r, ur−q

)− 3
p−1∑
r=1

C
(
u0, ur, up−r

)
(35)

where Lt and G are the tangent operator and the geometric stiffness operator, respectively, defined as:

Lt

(
up

)= L
(
up

)+ 2Q
(
u0, up

)+ 3C
(
u0, u0, up

)
(36)

G
(
up

)= 2Q
(
u0, up

)+ 3C
(
u0, u0, up

)
(37)

The definition of λp is implicit from the orthogonality condition in Equation (33).
Note, the previous equations are retrieved for the full-displacement formulation. The equations

arising from the pseudo-mixed approach are not reported here, but can be found in Ref. [33].

2.2.3 Numerical solution via Ritz method
The Ritz method is introduced for the numerical approximation of the problem. In particular, the
generalised displacement components are expressed as:

u0 =
⎡
⎢⎣

φT
u (ξ , η)

φT
v (ξ , η)

φT
w(ξ , η)

⎤
⎥⎦
⎧⎪⎨
⎪⎩

cu

cv

cw

⎫⎪⎬
⎪⎭

= �u(ξ , η) cu (38)

where cu is the vector of displacement amplitudes, �u (ξ , η) collects the trial functions associated with
the generalised displacements, expressed in nondimensional coordinates. Legendre polynomials are
selected here for their stability and convergence properties, therefore the expansion reads:

φ i(ξ , η) = g(ξ , η)
(
ϕr(ξ ) ⊗ ϕs(η)

)
(39)

where ⊗ is the Kronecker product, ϕi is the vector of Legendre polynomial and g (ξ , η) is a known
function needed for the fulfillment of the essential boundary conditions, expressed as:

g (ξ , η) = (1 − ξ )γ1 (1 + ξ )γ2 (1 − η)γ3 (1 + η)γ4 (40)

where γi are 0 or 1 according to the boundary condition prescribed on the related edge: 0 if the edge is
free, 1 otherwise.

The rotations are approximated as:

ϕ =
⎡
⎢⎣

φT
ϕx

(ξ , η)

φT
ϕy

(ξ , η)

φT
ϕz

(ξ , η)

⎤
⎥⎦
⎧⎪⎨
⎪⎩

cϕx

cϕy

cϕz

⎫⎪⎬
⎪⎭= �ϕ(ξ , η) cϕ (41)

where cϕ is the vector of the rotation amplitudes. It is possible to collect the generalised displacements
in the vector d0, obtaining a more compact representation of the expansion:

d0 =
⎡
⎣�T

u (ξ , η)

�T
ϕ
(ξ , η)

⎤
⎦{

cu

cϕ

}
= �(ξ , η) c (42)

where c is the vector of the unknown amplitudes.
Starting from the approximation of the generalised displacements in Equation (42), it is possible to

derive the plate and stiffener contributions to the non-linear governing equations.
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Firstly, the plate tangent stiffness matrix is obtained as the sum of the material Kp
c (c) and geometric

Kp
g (c) contributions:

Kp
t (c) = Kp

c (c) + Kp
g (c) (43)

with:

Kp
c(c) =

∫ 1

−1

∫ 1

−1

{
[ B1(c)�(ξ , η) ]T Dp(ξ , η) [ B1(c)�(ξ , η) ]

}
Jdξdη (44)

Kp
g(c) =

∫ 1

−1

∫ 1

−1

{
[ B2�(ξ , η) ]T

{
Nxx Nxy

Nxy Nyy

}
[ B2�(ξ , η) ]

}
Jdξdη (45)

The matrix Dp of Equation (45) is a compact representation of the plate constitutive law as:

Dp(ξ , η) =
⎡
⎢⎣

A(ξ , η) B(ξ , η) 0

B(ξ , η) D(ξ , η) 0

0 0 An(ξ , η)

⎤
⎥⎦ (46)

The matrices B1 (c) � and B2 � are expressed as:

B1(c) � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φu/x 0 w/x φw/x + w∗
/x φw/x 0 0 0

0 φv/y w/y φw/y + w∗
/y φw/y 0 0 0

w/x φw/y + w∗
/x φw/y

φu/y φv/x + 0 0 0

w/y φw/x + w∗
/y φw/x

0 0 0 φϕx/x
0 0

0 0 0 0 φϕy/y
0

0 0 0 φϕx/y
φϕy/x

0

0 0 φw/x φϕx
0 0

0 0 φw/y 0 φϕy
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

B2 � =
[

0 0 φw/x 0 0 0

0 0 φw/y 0 0 0

]
(48)

where w = φwcw.
The plate contribution to the vector of non-linear forces can be expressed as:

FNL(p)
p =

∫ 1

−1

∫ 1

−1

{
p−1∑
r=1

{ [
GL

1G2�(ξ , η)
]T NNL(cr, cp−r) + [

GNL
1 (cr)G2�(ξ , η)

]T NL(cp−r) + (49)

+ [ Gk�(ξ .η) ]T MNL(cr, cp−r)
}+ (50)

+
p−1∑
r=1

r−1∑
q=1

[
GNL

1 (cq)G2�(ξ , η)
]T NNL(cp−r, cr−q) + (51)

+ 3
p−1∑
r=1

[
GNL

1 (c0)G2�(ξ , η)
]T NNL(cr, cp−r)

}
Jdξdη (52)
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where the superscripts L and NL refer to the linear and non-linear contributions of the differential matri-
ces and the generalised forces, respectively; the expression of these contributions is available in the
Appendix.

In order to retrieve the stiffener contributions, the Ritz approximation is substituted into the
expression of the stiffener generalised strains, Equation (25), obtaining:

{
ε0

s

ks

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tT

Js
fu + 1

2
bT

Js
fucu fu 0

nT

Js
fu −bTJ T�ϕ

bT

Js
fu nTJ T�ϕ

0 tT

Js
fϕ

0 nT

Js
fϕ

0 bT

Js
fϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
cu

cϕ

}
= Ĥ1(c) c (53)

with:

fu =
(

2

a

∂�u

∂ξ

∂x

∂ζ
+ 2

b

∂�u

∂η

∂y

∂ζ

)
(54)

fϕ =
(

2

a
J T ∂�ϕ

∂ξ

∂x

∂ζ
+ 2

b
J T ∂�ϕ

∂η

∂y

∂ζ

)
(55)

From the strains, the stiffener energy contributions are obtained following similar steps as done for the
skin. The corresponding tangent stiffness matrix is divided into material and geometric contributions:

Ks
t (c) = Ks

c (c) + Ks
g (c) (56)

with:

Ks
c(c) =

∫ 1

−1

HT
1 (c) Ds H1(c) Js dζ

Ks
g(c) =

∫ 1

−1

HT
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ft 0 0 0 0 0

0 Fn 0 0 0 0

0 0 Fb 0 0 0

0 0 0 Mt 0 0

0 0 0 0 Mn 0

0 0 0 0 0 Mb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H2 Js dζ (57)

where the matrices H1 and H2 are defined as:

H1(c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tT

Js
fu + bT

Js
fucu fu 0

nT

Js
fu −bTJ T�ϕ

bT

Js
fu nTJ T�ϕ

0 tT

Js
fϕ

0 nT

Js
fϕ

0 bT

Js
fϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(58)

H2 =
[
0 0 bT

Js
fu 0 0 0

]
(59)
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The stiffener contribution to the non-linear forces reads:

FNL(s)
p = ∫1

−1

{
p−1∑
r=1

HNL
1 (cr) Ds Ĥ

L

1 cp−r +
p−1∑
r=1

HL
1 DsĤ

NL

1 (cr) cp−r + (60)

+
p−1∑
r=1

r−1∑
q=1

HNL
1

(
cq

)
Ds Ĥ

NL

1

(
cp−r

)
cr−q + 3

p−1∑
r=1

HNL
1 (c0) DsĤ

NL

1 (cr) cp−r

}
Js dζ (61)

where Ds is the beam constitutive matrix, and L and NL refer to the linear and non-linear contributions
of the differential matrices; more details can be found in the Appendix.

Once the plate and stiffener contributions are available, it is possible to assemble them and derive
the final set of discrete governing equations. Indeed, the strong-form fulfillment of the skin/stiffener
compatibility condition allows these terms to be written as:

Kc = Kp
c +

Ns∑
s=1

Ks
c (62)

Kg = Kp
g +

Ns∑
s=1

Ks
g (63)

FNL
p = FNL(p)

p +
Ns∑

s=1

FNL(s)
p (64)

Starting from the energy contributions derived earlier, the Ritz approximation is introduced in the
perturbation problems and in the orthogonality condition of order p [33]. This operation leads to:

Kt (c1) cp = −
p−1∑
r=1

λrKg (c1) cp−r − FNL
p (c∗)T

(
cp

)= 0 (65)

where cp is the vector of unknown amplitudes of up, Kt (c1) is the tangent stiffness matrix at the bifur-
cation point, which is singular, Kg is the geometric stiffness matrix, FNL

p is the Ritz discretisation of the
right-hand-side contribution in Equation (35), which depends on Q and C, and c∗ = Kc1, where K is
the elastic stiffness matrix.

To avoid the singularity and obtain an invertible problem, the Lagrange multiplier k is introduced
into Equation (65), obtaining:[

Kt(c1) c∗

c∗T 0

] [
cp

k

]
=

[−∑p−1
r=1 λrKg(c1)cp−r − FNL

p

0

]
(66)

By solving Equation (66) the unknowns cp of the linear problems are found.

2.2.4 Continuation procedure
The perturbation algorithm detailed in the previous sections allows one to determine the non-linear
solution in a neighbourhood of the bifurcation point. A continuation procedure is applied to obtain the
remaining part of the branch, as outlined in Ref. [31]. The continuation procedure consists in apply-
ing the ANM in a step-by-step manner [33]; hence, a new starting point is defined within the radius
of convergence, and the asymptotic-numerical approach is applied again to obtain the solution in the
surroundings of the newly identified equilibrium point.

The range of validity and the definition of the new starting point are calculated automatically by
employing a heuristic criterion [31]:

αmax =
(

ε
‖ u1 ‖
‖ uN ‖

)( 1
N−1 )

(67)
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Table 1. Elastic properties of carbon/epoxy material [26]

E11(MPa) E22 (MPa) G12 (MPa) G13 (MPa) G23 (MPa) ν (-)
181, 000 10, 270 7, 170 4, 000 4, 000 0.28

where N is the order of the expansion. An adequate choice for the parameter ε is 10−5. This value can
be reduced to improve the accuracy of the solution, while increasing the computational time.

3.0 Results
In this section, different test cases are presented to illustrate the capabilities of the numerical tool.
Panels with different layups, stiffener paths and mechanical loading conditions are analysed. The results
are checked against numerical simulations conducted using: (a) the finite element code Abaqus, (b) a
Ritz-based code which exploits the Newton-Raphson iterative-incremental procedure, developed and
validated in a previous work [29].

In the examples below, all the generalised displacement components are approximated using the
same number of trial functions R × S. The analyses are carried out by considering a different number
of functions to perform convergence studies, while the number of integration points, unless otherwise
specified, is taken equal to R + 5 and S + 5 for the directions ξ and η, respectively. In a similar fashion,
line integrals are performed using R + S + 5 points. These choices are heuristic, but have been validated
by previous numerical studies [28]. In the numerical tests, different truncation orders of the power series,
as well as convergence radius and number of steps, are considered. A typical aerospace carbon/epoxy
material is used in the simulations. The thermoelastic properties are summarised in Table 1.

The numerical tests are conducted for three different configurations, denoted as C1, C2 and C3. The
details of each single configuration are reported next. The stringers, when present, are made of the same
material of the skin and are assumed to be layered with plies at 0◦.

For the Newton-Raphson simulations, the nominal geometry is altered by introducing slight imper-
fections with shape corresponding to the first buckling mode and amplitude equal to 0.1% of the skin
thickness.

The numerical solution procedure, when based on Newton-Raphson, is conducted with 100 equally
distributed load steps. In the asymptotic-numerical approach, the starting point for the expansion pro-
cedure is always set to be the first buckling mode, normalised to have maximum amplitude equal
to h.

Goal of this work is presenting the potential of the proposed formulation as a tool for the analysis of
curvilinearly stiffened panels. Hence, the configurations presented below are taken from the literature
and do not stem from the authors’ design considerations.

Configuration C1
The first configuration is an unstiffened VS plate, previously investigated in Ref. [43]. The panel is

square with dimensions a = b = 300 mm and 8 plies with thickness equal to 0.127 mm each. The lami-
nation sequence is [ ± θ1/ ± θ2]s; the fibers’ orientation has a non-linear distribution and is interpolated
according to Equation (1); the values of θi in the grid points are summarised below:

θ1 =
⎡
⎢⎣

71 49.5 71.5

67 50 51

17 12 45

⎤
⎥⎦ θ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−89 −67.5 −64 −65 −82

−81 −69 −65 −60 −60

−80.5 −66.5 −58 −54.5 −59

−26 −25 −18 −24 −25

−8 4.5 −1 5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(68)
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Table 2. Stiffeners Bézier control points of configuration C3

Stiffener 1 Stiffener 2 Stiffener 3 Stiffener 4

x (mm) y (mm) x (mm) y (mm) x (mm) y (mm) x (mm) y (mm)
P0 0 150 −150 0 135 150 −15 150
P1 70 125 −80 −35 30 100 30 100
P2 125 70 −35 −80 −30 −100 −30 −100
P3 150 0 0 −150 15 −150 −135 −150

Configuration C2
The second configuration is another test case from the literature [26]. It consists in a stiffened panel

with dimensions a = b = 300 mm and 16 plies of thickness of 0.127 mm. Two straight stiffeners of height
hs = 10.160 mm, ts = 2.032 mm and null eccentricity are considered. The stiffeners are equally spaced
with a pitch equal to b/3. The lamination sequence is [ ± θ1/ ± θ2]2s, with grid points:

θ1 =
⎡
⎢⎣

71 49.5 71.5

67 50 51

17 12 45

⎤
⎥⎦ θ2 =

⎡
⎢⎣

−72.5 −59 −59.5

−65 −54 −50.5

14 11.5 6

⎤
⎥⎦ (69)

Configuration C3
The last configuration is a VS plate stiffened by four curvilinear stringers. The same geometry, skin

lay-up and stiffener dimensions of C2 are considered. Their curvilinear path is parameterised via third-
order Bézier curves, whose control points are listed in Table 2.

A sketch of the configurations is presented in Fig. 2, where the stiffener paths, boundary and loading
conditions are illustrated.

3.1 Configuration C1: bi-axial load
The first example deals with the post-buckling response of configuration C1 under bi-axial loading
conditions. The edges x = ±a/2 are loaded with a membrane force, whereas the transverse displacement
is set to zero at y = ±b/2. The out-of-plane deflection is prevented on all four edges. The sketch of the
panel is reported in Fig. 2(a), together with the loading and boundary conditions.

A preliminary convergence analysis is carried out to identify the number of functions to guarantee
the convergence of the results. The analyses are conducted with the asymptotic-numerical method and
the Newton-Raphson routine. For the former, the results are presented by considering both the pure
displacement and the pseudo-mixed formulation.

In this context, the analyses with increasing number of trial functions are interrupted when the load
parameter λ is equal to 13. This stopping condition is meant to maintain the same load level for all the
analyses, thus allowing to compare the results in terms of the out-of-plane displacement. Furthermore,
the specific choice of λ = 13 is coherent with the unrestricted terminal condition returned from each
analysis. The order of the perturbation expansion is 10, and the parameter ε is equal to 10−5. The contin-
uation procedure is conducted by considering 10 steps. In addition a correction is added to the procedure,
and iterations are carried out until a convergence criterion is met.

The results of the numerical tests are summarised in Table 3 in terms of buckling multiplier, λcr,
maximum out-of-plane deflection, wmax, and CPU time, tCPU . The results are computed by consider-
ing the pure displacement approach, ANMdisp, and the pseudo-mixed one, ANMmix. The CPU time is
reported in nondimensional form by considering the Newton-Raphson, NR, procedure with R = S = 20
as a reference.

As seen in Table 3, the buckling multiplier λcr is captured with a good degree of accuracy with as
few as R = S = 5 functions. However, this choice corresponds to a noticeable underestimation of the the
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Figure 2. Test cases: (a) Configuration C1 under bi-axial load; (b) Configuration C2 under bi-axial
load; (c) Configuration C3 under bi-axial load; (d) Configuration C3 under bi-axial and shear load.

maximum out-of-plane displacement with respect to the converged one. When the number of functions
is increased to R = S = 15, the predictions are found to be satisfactory in terms of buckling multiplier
and post-buckling deflection, too.

The results of Table 3 clearly illustrate the advantages offered by the ANM method. In particular,
the advantage over the Newton-Raphson approach increases with the number of functions. For instance,
when R = S = 20, the asymptotic-numerical method requires about one third of the time employed by
Newton-Raphson. The results of Table 3 are useful for comparing the different times required by the
displacement and pseudo-mixed ANM approaches. In particular, the advantage of the pseudo-mixed
formulation is clear when a relatively large number of trial functions is considered. The maximum gain
is 15% approximately, and corresponds to the case R = S = 20. In spite of this moderate time saving, the
pseudo-mixed formulation is more complex to be implemented when the compatibility between the skin
and the stiffener needs to be imposed. For this reason, the displacement formulation is retained next.

To shed light into the influence of the ANM parameters on the solution, a sensitivity analysis is
carried out. The expansion order, the number of steps and the parameter ε are varied, while the number
of trial functions is fixed at 20. No stopping condition is imposed on the load parameter λ in this case,
so all the solutions are terminated at the end of the selected load steps. The results are summarised in
Table 4.

By increasing the order of the perturbation expansion, the solution can move further along the equi-
librium path with the same number of steps, as seen by the larger value of λ. The same conclusion is
drawn for the number of load steps. The parameter ε is decreased up to ε = 10−7. The result is a reduction
of the final load parameter, meaning that a smaller part of the equilibrium path is captured.
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Table 3. Configuration C1: comparison in terms of linearised buckling parameter, load parameter,
maximum out-of-plane deflection and CPU time between ANM and NR (Pert. exp. order = 10, ε =
10−5, Steps = 10)

ANMdisp ANMmix NR

R=S λcr(-) λ(-) wmax(mm) tCPU/tref (-) wmax(mm) tCPU/tref (-) wmax(mm) tCPU/tref
a(-)

5 3.1654 13.0000 2.8877 0.0173 2.8877 0.0144 2.8859 0.0202
10 3.1211 13.0000 4.6414 0.0260 4.6414 0.0231 4.6409 0.0490
15 3.0643 13.0000 5.0059 0.0576 5.0059 0.0519 5.0055 0.2190
20 3.0719 13.0000 4.9963 0.3026 4.9963 0.2565 4.9959 1
atref is the time employed by NR with R = S = 20 and 100 incremental steps.

Table 4. Sensitivity analysis for configuration C1: comparison in terms of load param-
eter, maximum out-of-plane deflection and CPU time for ANM (R = S = 20)

Pert. exp. order Number of steps ε λ(-) wmax(mm) tCPU/tref
a(-)

5 10 10−5 3.6458 0.7392 0.2046
10 10 10−5 13.1621 5.0644 0.3026
15 10 10−5 18.3321 7.2786 0.5303
15 15 10−5 26.9550 11.1265 0.7283
15 15 10−7 21.5551 8.6937 0.7406
atref is the time employed by NR with R = S = 20 and 100 incremental steps.

Figure 3. Force-displacement curve for configuration C1: (a) without correction; (b) with correction.

The equilibrium path obtained with the asymptotic-numerical method and Newton-Raphson is illus-
trated in Fig. 3 in terms of maximum out-of-plane displacement against the load parameter. The number
of trial functions is set to R = S = 20, while all the relevant parameters of the asymptotic-numerical
method are those employed to conduct the analysis in Table 3 and are kept unchanged in the subse-
quent analyses, unless otherwise stated. Figure 3 shows the force-displacement curve with and without
a correction procedure in the ANM.

As seen from Fig. 3(a), when a correction procedure is not carried out, the two curves present a
gap, which gets wider as the load increases, illustrating a drift of the solution. In Fig. 3(b), a correc-
tion procedure is included in the asymptotic routine: the force-displacement curve obtained with the
asymptotic-numerical method closely matches the one obtained with Newton-Raphson.

https://doi.org/10.1017/aer.2024.94 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.94


2896 Foligno et al.

Figure 4. Out-of-plane deflections and membrane resultants for configuration C2: (a)–(d) Ritz
asymptotic-numerical method; (e)–(h) Abaqus.

3.2 Configuration C2: bi-axial load
To further assess the potential of the proposed approach, the configuration C2 is analysed. The panel is
now characterised by the presence of two stiffeners and is subjected to the same boundary and loading
conditions of the previous example. The sketch is provided in Fig. 2(b).

The results are validated against Abaqus finite element simulations. The models are realised with
S4R elements, 4-node shell elements with reduced integration for the skin, and B31 elements, 2-node
shear deformable beam elements for the stiffeners. The converged mesh corresponds to 3,720 elements
and 3,721 nodes. In the models, the fiber angle is constant for each element and equal to the orientation
evaluated at the element centroid. The contour of the out-of-plane displacement and the membrane
resultants at λ/λcr = 4.42 are reported in Fig. 4. The plots illustrate the comparison against the Abaqus
simulations.

The post-buckled shape is of global type as the stiffeners undergo bending deformations. One can
appreciate the accuracy of the developed method in appropriately capturing not only the post-buckling
shape, but also the membrane resultants distribution. In particular, the membrane resultant Nxx redistri-
bution towards the edges, typical of the post-buckling response of axially loaded plates, is clearly visible
in Fig. 4(b) and (f). The maximum out-of-plane deflection is reported in Fig. 5, where ANM and Abaqus
results are compared.

As seen, the curves are very similar, further validating the accuracy of the predictions via Ritz-ANM
method.

For what concerns the computational time, the ANM method requires one third of the time required
by a Newton-Raphson scheme. When compared with a FE-based strategy, extra time saving is achieved
due to a much faster modeling phase, where no mesh is required.

3.3 Configuration C3: bi-axial load
The third example aims at illustrating the capabilities of the method to deal with more complex configu-
rations, i.e. panels stiffened by curvilinear stringers. The structure is loaded and constrained as illustrated
in Fig. 2(c). To verify the accuracy of the post-buckling response, the results are checked against simu-
lations based on the Newton-Raphson procedure, this approach being validated in a previous study [29].
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Figure 5. Force-displacement curve for configuration C2.

Figure 6. Out-of-plane deflections at different load levels for configuration C3: (a)–(d)
Asymptotic-numerical method; (e)–(h) Newton-Raphson.

The number of steps is varied to verify the quality of the solution at different load levels. The contour
of the out-of-plane displacement is reported in Fig. 6.

At each load level, the contours in Fig. 6 reveal an excellent degree of agreement between ANM
and NR predictions. The response is characterised by a post-buckled shape with two halfwaves in the
longitudinal direction. The deflected pattern experiences a progressive change of shape as the load level
increases. The complexity of the pattern provides good evidence of the ability of the method to precisely
capture the panel response in the post-buckling regime.

The contour of the membrane resultants at λ/λcr = 3.68 is illustrated in Fig. 7. Even in this case,
the distribution of the membrane forces is accurately predicted. The presence of both non-linear fibers
distribution and curvilinear stiffeners is responsible for a relatively complex stress distribution. The
membrane resultants present the typical redistribution mechanism toward the edges; as opposed to the
case of straight stiffeners, here the presence of the stringers provides further load-carrying capabilities,
causing peaks in the Nxx resultant pattern. As seen in Fig. 8, the equilibrium path obtained with the
perturbation technique closely matches the one obtained with Newton-Raphson.
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Figure 7. Membrane resultants for configuration C3 at λ/λcr = 3.68: (a)–(c) Asymptotic-numerical
method; (d)–(f) Newton-Raphson.

Figure 8. Force-displacement curve for configuration C3.

The presence of the stiffeners does not increase the number of degrees of freedom, therefore the
computational time for the analyses is similar to the first example. The evaluation of the stiffeners strain
energy requires additional line integrals to be performed. However, this operation requires just a slight
increase in the number of operations. Even in this case, the time saved for the different analyses is
roughly 70% with respect to NR routines.

3.4 Configuration C3: bi-axial and shear load
The last example is introduced to illustrate a more complex loading scenario, where bi-axial and shear
loads are applied in combination, as shown Fig. 2(d). The ratio between the two loads is defined as
γ = Nshear/Nbi−axial. The results are presented for γ = 0.5, γ = 1 and γ = 2. The number of load steps is
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Figure 9. In-plane displacements and out-of-plane deflection for configuration C3 with different ratios
of bi-axial and shear loads: (a)–(c) γ = 0.5; (d)–(f) γ = 1; (g)–(i) γ = 2.

set to 20, resulting in different load levels for the three test cases: specifically, λ/λcr is found to be equal
to 3.97, 3.92 and 4.62 for γ equal to 0.5, 1 and 2, respectively. The boundary conditions are the same of
the previous example. The in-plane and out-of-plane displacement components are shown in Fig. 9.

From Fig. 9(a) to (c), the similarity can be noted between the post-buckled shape for γ = 0.5 and the
pure bi-axial one of Fig. 6; indeed, the contribution of the bi-axial load is more relevant. The responses
obtained with γ = 1 and γ = 2 are more similar, meaning that also when the ratio between shear and
bi-axial load is equal to 1, the contribution of the former is more significant. The in-plane displacements
also vary with γ , leading to a more complex distribution as the shear load contribution becomes bigger.
The contours of the force resultants are depicted in Fig. 10 for the three ratios of γ .

The Nxx resultant redistribution towards the edges is more and more concentrated towards the stiffen-
ers attaching points and presents higher peaks values as γ increases. Also, the patterns of the transverse
and the shear resultants varies accordingly, going from a bi-axial to a prevalent shear distribution.

In Fig. 11 the force-displacement curves are illustrated for the different loading conditions and com-
pared to the ones obtained with the Newton-Raphson iterative-incremental routine. For γ = 0.5, one can
see a smoother curve similar to the one of the pure bi-axial case in Fig. 8. On the other hand, both curves
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Figure 10. Membrane resultants for configuration C3 with different ratios of bi-axial and shear loads:
(a)–(c) γ = 0.5; (d)–(f) γ = 1; (g)–(i) γ = 2.

with γ = 1 and γ = 2 feature a slope change given by the presence of the shear load. This slope change
happens around 2.5 times the critical load for γ = 1 and around 4 times the critical load for γ = 2.
Nevertheless, in all cases the equilibrium path is correctly represented by the perturbation method as it
is proven by the comparison with the Newton-Raphson results.

Considerations on time saving with respect to Newton-Raphson simulations are similar to the
previous test cases. Again, a 70% reduction of CPU time is observed.

4.0 Limitations
The proposed formulation is a viable mean for preliminary investigations on VS panels with curvilinear
stiffeners. Indeed, it is particularly useful for performing preliminary studies in a short amount of time.
Given its intrinsic purpose, the model suffers from some limitations. Firstly, the structure under inves-
tigation is a portion of a more complex structure. When referring to a typical aeronautical wing-box,
the present model can be used to represent the upper or the lower cover between two ribs. In addition,
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Figure 11. Force-displacement curves for configuration C3 with different ratios of γ = Nshear

Nbi−axial .

the planform is rectangular and no curvature effects are introduced. Hence, the tapering of typical wing
structures is not accounted for. The presence of cutouts is beyond the current modeling capabilities, too.

Restrictions exist in terms of loading and boundary conditions. The edges are assumed to be subjected
to uniform boundary conditions, meaning that the same kinematic constraints are applied along the same
edge. Likewise, the method is not able to handle loading regions involving only a portion of the edge.

The one-dimensional model for the stiffeners does not allow for local stringer instabilities to be cap-
tured, such as those involving the web or the flanges of blade, J and omega stringers. Even the interaction
between the skin and the stringer is simplified if a beam model is adopted, as the exchange of internal
forces is condensed upon a line rather than between the skin and the foot/flange of the stringer. At
the same time, section deformability is not modeled. Nevertheless, the adoption of a beam model pro-
vides the enormous advantage of not requiring extra degrees of freedom, as the beam displacements are
expressed as a function of the skin ones. More refined strategies could be implemented by modeling
the stringer components as two-dimensional elements. Note, this strategy would involve a noticeable
increase of the degrees of freedom, hence affecting the computational effectiveness of the approach.
Even the intersection between stringers would require particular care.

5.0 Conclusions
A formulation for the post-buckling analysis of variable stiffness panels with curvilinear stiffeners is
presented. The approach is developed combining the Ritz method for the spatial approximation, and the
asymptotic-numerical method for solution of the non-linear governing equations. Three test cases are
presented to validate the results against the ones obtained with the Newton-Raphson routine and Abaqus
finite element simulations. The results illustrate an excellent degree of agreement with the aforemen-
tioned routines, demonstrating that the asymptotic-numerical method is a powerful solution strategy for
determining the post-buckling response of innovative curvilinearly stiffened panels. For the unstiffened
panel only, both a displacement-based formulation and a pseudo-mixed formulation are considered.
The comparison between the two approaches shows that the pseudo-mixed formulation requires a lower
computational time. Despite this, when dealing with stiffened panels, the pseudo-mixed formulation is
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not recommended, as it would require an increasing complexity in the enforcement of the compatibility
between the stringers and the skin.

The proposed approach is promising for its high computational efficiency combined with almost null
modelling time. Indeed, a Ritz-based model is particularly suitable for the analysis of curvilinearly stiff-
ened structures, since node sharing between skin and stiffener is not needed as it would be in finite
element simulations. The proposed formulation is a highly automated numerical method that does not
require mesh generation. This is especially useful for optimisation procedures, as multiple configura-
tions can be analysed without the need to regenerate the model. In addition, any potential difficulty
arising from mesh distortion is fully avoided. Moreover, a much smaller number of degrees of freedom
is employed with respect to finite element models with comparable accuracy, making the present method
a valuable alternative.

The asymptotic-numerical method is particularly beneficial when the Ritz expansion is relatively
large, such as in the case of 20 functions along both directions. This situation is relatively common
in the design of curvilinearly stiffened panels, as local effects are generally relevant. In this context,
the ANM offers a number of interesting features: lower computational time, larger range of validity
of the solution and a complete analytic representation of the non-linear equilibrium path. For the test
cases considered in this study, the proposed method demonstrates noticeable analysis time saving. The
time required for the analysis is one third, approximately, of that required by an analogous incremental
iterative Newton-Raphson approach.

Overall, the proposed method is a valuable alternative to standard finite elements and classical
predictor-corrector techniques to perform preliminary analysis on variable stiffness panels with curvi-
linear stiffeners. Potential design advantages are not discussed here, but future activities will benefit
from the proposed analysis method to better investigate this aspect.

Given the aforementioned limitations, the proposed strategy can be further extended by considering
more complex panels configurations, i.e. shell-like panels with cutouts, and other thermo-mechanical
loading conditions, such as prescribed displacements and temperature gradients. These developments
are the topic of current research activities. The extension to a two-dimensional model for the stringers
is another interesting subject to be addressed in future works.
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Appendix
The linear and non-linear contributions of the strain vector ε0, of the matrix G1, of the plate forces and
moments per unit length and of the matrices H1 and Ĥ1 are detailed below:
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