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Abstract
In this paper, we study the universal lifting spaces of local Galois representations valued in arbitrary reductive group
schemes when ℓ ≠ 𝑝. In particular, under certain technical conditions applicable to any root datum, we construct a
canonical smooth component in such spaces, generalizing the minimally ramified deformation condition previously
studied for classical groups. Our methods involve extending the notion of isotypic decomposition for a GL𝑛-valued
representation to general reductive group schemes. To deal with certain scheme-theoretic issues coming from this
notion, we are led to a detailed study of certain families of disconnected reductive groups, which we call weakly
reductive group schemes. Our work can be used to produce geometric lifts for global Galois representations, and
we illustrate this for G2-valued representations.

1. Introduction

1.1. Galois deformations

Fix a local field F with residue characteristic ℓ. Fix a prime 𝑝 ≠ ℓ and a reductive group scheme G (with
connected fibers) over the ring of integers O in a p-adic field. Let k be the residue field of O and Γ𝐹 the
absolute Galois group of F.

Given a G-valued representation of Γ𝐹 over k (i.e., a continuous homomorphism 𝜌 : Γ𝐹 → 𝐺 (𝑘)),
Tillouine[Til96] introduced a Galois lifting ring 𝑅�

𝜌
(building on work of Mazur treating the GL𝑛 case

[Maz89, Maz97]). These lifting rings and the associated formal schemes are central in many modern
developments in number theory, and it is important to

◦ understand whether 𝜌 lifts to characteristic zero; and
◦ understand the geometry of Spf (𝑅�

𝜌
), especially to find formally smooth components and understand

how they intersect.

(There are similar questions in the complementary situation when ℓ = 𝑝, but the analysis is quite
different and is connected with p-adic Hodge theory.) Work on these questions originally focused on
the case that 𝐺 = GL𝑛 (especially GL2), but recent developments in the Langlands program have made
it increasingly important to understand general reductive groups G. For example, progress on these
questions can be used to
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◦ produce ‘nice’ lifts of global mod-p representations to characteristic zero [Ram02, HR08, Pat16,
Boo19b, Tan19, FKP21, FKP22];

◦ investigate ℓ ≠ 𝑝 versions of the Breuil-Mézard conjecture [Sho18, Sho22, Sho23];
◦ establish potential automorphy theorems and automorphy lifting theorems over global function fields

for general G [BHKT19, BFH+22].

Theorem 1.1. (see Theorems 6.1 and 6.20) Let 𝜌 : Γ𝐹 → 𝐺 (𝑘) be a continuous homomorphism.
Suppose p is large enough for the root datum of G (see Remark 6.21). Then there exists a continuous
homomorphism 𝜌 : Γ𝐹 → 𝐺 (O) lifting 𝜌 such that 𝐶𝐺 (𝜌(𝐼𝐹 )) is O-smooth. Moreover, there is a
canonical O-formally smooth irreducible component Spf 𝑅m.r.,�

𝜌
of Spf 𝑅�

𝜌
.

We call 𝑅m.r.,�
𝜌

the minimally ramified lifting ring and the associated Galois representations minimally
ramified. Previous work about the smoothness of (components of) 𝑅�

𝜌
has been for classical groups

[CHT08, Boo19a] or about the generic fiber [BP19, BG19] or has had strong dependencies between ℓ
and p [DHKM24, §5].

The existence of lifts of 𝜌 without the smooth centralizer condition also follows from Z𝑝-flatness of
𝑅�
𝜌

, a consequence of results about moduli of Langlands parameters in [DHKM24], [FS24] and [Zhu21]
which are established using completely different techniques. In [DHKM24], one ingredient in the proof
of Z𝑝-flatness is to find a finite extension O′ of O such that 𝜌 lifts to 𝜌 : Γ𝐹 → 𝐺 (O′). The lifts
produced in [DHKM24] are different than those produced using our method: they have finite image,
and we do not expect the centralizers of the inertia to be O-smooth.

Our initial motivation for this project was to produce characteristic zero lifts of global 𝜌 : Γ𝐾 → 𝐺 (𝑘)
that are geometric in the sense of the Fontaine-Mazur conjecture when K is a number field, using
variations on a local-to-global lifting result going back to Ramakrishna [Ram02]. As a sample application
of Theorem 1.1, we give a lifting result for the exceptional group of type 𝐺2, making use of [FKP21,
Theorem A] (a generalization of the local-to-global lifting result) and [Lin20b, Theorem C] (giving
local lifts at p). For a representation 𝜌 : Γ→ 𝐺 (𝑘), let 𝜌(𝔤) denote the Lie algebra of 𝐺𝑘 with Γ acting
via the composition of 𝜌 and the adjoint action.

Corollary 1.2. Let G be the exceptional split group 𝐺2 over Z. Let p be a sufficiently large prime, and
let 𝜌 : ΓQ → 𝐺 (F𝑝) be a continuous representation. Assume that

◦ 𝜌 is odd (i.e. dim H0 (ΓR, 𝜌(𝔤)) = dim Flag𝐺).
◦ 𝜌 |ΓQ(𝜁𝑝 ) is absolutely irreducible (i.e., its image in 𝐺 ( �̄�) is not contained in any proper parabolic

subgroup of G).

Then 𝜌 lifts to a 𝜌 : ΓQ → 𝐺 (Z𝑝) which is geometric in the sense of the Fontaine–Mazur conjecture.

The proof is given in Appendix C. All that is needed from Theorem 1.1 is the existence of local lifts
at places away from p, which follows as above from [DHKM24, FS24, Zhu21].

Remark 1.3. We emphasize that O-smoothness of the centralizer of the inertia in Theorem 1.1 is
crucial for establishing the existence of a formally smooth component of the universal lifting ring; see
Theorem 6.16. Besides producing minimally ramified lifts, our method can also produce lifts with other
inertial types and sometimes establish smoothness of the component of the deformation ring containing
the lift. We do not systematically explore this, as this is not the focus of this work, but we do build
flexibility into our results in Section 6 and give a simple illustration in Example 6.10. This is of interest
when studying generalizations of the ℓ ≠ 𝑝 version of the Breuil-Mézard conjecture and the irreducible
components of the moduli of Langlands parameters as in [Sho18, Sho22, Sho23].

Remark 1.4. The Galois lifting space for 𝜌 is a formal completion of the moduli spaces of [DHKM24],
[FS24, §VIII] and [Zhu21] at 𝜌. To make this precise, one can apply [Zhu21, Lemma 2.4.10] to the
various moduli spaces of Galois representations and Weil-Deligne representations studied and compared
in [Zhu21, §3.1]. Then the main results in these papers show that the Galois lifting spaces are flat local
complete intersections, and [DHKM24, §5] provides some results on generic smoothness.
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In this language, Theorem 1.1 shows in particular that the underlying reduced subscheme of the mod-
p fiber of the moduli space ℋ𝑊 of Weil-Deligne representations is smooth away from the intersections
of components for large p, and even at a point of intersection, there is some smooth component passing
through this point. Indeed, Theorem 1.1 asserts that every point lies in a formally smooth irreducible
component of Spf 𝑅�

𝜌
, whose mod-p fiber is therefore a smooth localization of the underlying reduced

subscheme of an irreducible component of the mod-p fiber of ℋ𝑊 . As our bound on p is independent
of the size of the residue field of F, it applies in situations where the mod-p fibers of the above moduli
space are not reduced (see [DHKM24, Proposition 5.26], and note that the banality of p depends on the
size of the residue field of F by [DHKM24, Lemma 5.28]). See Remark 6.23 for a slight reinterpretation
of our main result in terms of this moduli space.

Remark 1.5. In [BFH+22, Section 4.3], an automorphy lifting theorem for G-valued Galois represen-
tations over global function fields is established, assuming that the mod-p residual automorphic Galois
representation has suitably large image and that the local deformation problems are balanced in the
sense of [BFH+22, Definition 3.4]. Section 5 of loc. cit. shows that the unrestricted local condition at a
place of ramification is balanced (and hence formally smooth) if p is larger than an ineffective constant
depending on the automorphic representation using global arguments. In contrast, Theorem 1.1 pro-
duces a natural balanced local deformation condition in the general case with an effective lower bound
on p depending only on the root datum of G (see Remark 6.21 for this lower bound).

Remark 1.6. The restrictions on p in Theorem 1.1 are effective but not optimal: see Remark 6.21. We
expect a similar result should hold as long as p is a pretty good prime for G and 𝑝 > 3.

1.2. Weakly reductive group schemes

To prove Theorem 1.1, we will directly adapt the argument of [CHT08] (which dealt with 𝐺 = GL𝑛)
to a general G. For clarity, we will outline (a reinterpretation of) the argument from [CHT08] which
constructs a canonical lift of 𝜌 : Γ𝐹 → GL(𝑉 ⊗O 𝑘) up to conjugacy, where V is a finite free O-module
of rank n. Let Λ𝐹 be the maximal prime-to-p closed subgroup of the inertia subgroup 𝐼𝐹 of Γ𝐹 .

1. Lift 𝜌 |Λ𝐹 to a representation 𝜌0 : Λ𝐹 → GL(𝑉). Let 𝑉 =
⊕

𝑖 𝑉𝑖⊗O𝑊𝑖 be the isotypic decomposition
of V.

2. Show that if 𝑝 > 𝑛, then there is a unique extension of theΛ𝐹 -representation
⊕

𝑖 𝑉𝑖 to a representation
𝜏 = (𝜏𝑖) : 𝐼𝐹 →

∏
𝑖 GL(𝑉𝑖) such that det(𝜏𝑖 (𝜎)) is of finite prime-to-p order for all 𝜎 ∈ 𝐼𝐹 and all i.

3. Choosing an identification 𝐼𝐹/Λ𝐹 � Z𝑝 and a splitting 𝐼𝐹/Λ𝐹 → 𝐼𝐹 , show that there is a unipotent
element 𝑢0 ∈

∏
𝑖 GL(𝑊𝑖 ⊗O 𝑘) such that 𝜌(𝑛) = 𝑢𝑛0 for all 𝑛 ∈ Z𝑝 . Show that 𝑢0 lifts uniquely up

to conjugacy to a section 𝑢 ∈
∏

𝑖 GL(𝑊𝑖) with the same Jordan block decomposition on both fibers,
and define 𝜌1 : 𝐼𝐹 = Λ𝐹 � Z𝑝 → GL(𝑉) by

𝜌1(𝜆𝑛) = 𝜏(𝜆𝑛)𝑢𝑛.

4. Using the uniqueness assertions of (2) and (3), finally extend 𝜌1 to 𝜌 : Γ𝐹 → GL(𝑉).

To adapt this argument for general G in place of GL𝑛, one first needs to interpret the objects appearing.
For instance, in steps 2 and 3, we need analogs of

∏
𝑖 GL(𝑉𝑖) and

∏
𝑖 GL(𝑊𝑖). The main observation is

that when 𝐺 = GL(𝑉), the centralizer ℭ = 𝐶𝐺 (Λ𝐹 ) is equal to
∏

𝑖 GL(𝑊𝑖), while the double centralizer
Δ = 𝐶𝐺 (𝐶𝐺 (Λ𝐹 )) is equal to

∏
𝑖 GL(𝑉𝑖). From this perspective, it is natural to study ℭ = 𝐶𝐺 (Λ𝐹 ) and

Δ = 𝐶𝐺 (𝐶𝐺 (Λ𝐹 )) for general G, which we formalize using the notion of a decomposition type. This
provides a structure for extending a prime-to-p inertial type to a G-valued representation of Γ𝐹 . It is also
necessary to understand the abelianization morphism Δ → Δab (the analog of the determinant) and the
center 𝑍 (Δ) (the analog of the group of scalar matrices). We must, therefore, understand representability
and smoothness properties of the O-group schemes ℭ, Δ , Δab, and 𝑍 (Δ).
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Remark 1.7. In step 3, it is also necessary to find a suitable meaning of ‘the same Jordan block
decomposition on both fibers’ for a unipotent section of a general G and to show a suitable conjugacy
result for these. This has been handled in [Cot22a]; see also [Har18] for similar results.

Unlike the case 𝐺 = GL𝑛, it is not evident that Δ is smooth (or even representable), and it is usually
not true that ℭ and Δ are reductive group schemes; they often have disconnected fibers. This causes
serious difficulties when working integrally, and the theory developed in [GP11] is not sufficient to
handle this situation. These difficulties are well known to experts, and we describe some pathologies in
Examples 2.16, 2.20 and 2.28.

In order to handle the families of disconnected reductive groups that are relevant to us, we introduce
the notion of weak reductivity. Recall [Con14, Proposition 3.1.3] that if S is a scheme and G is a smooth
affine S-group scheme with (possibly disconnected) reductive fibers, then the relative identity component
𝐺0 is a reductive group scheme, and 𝐺/𝐺0 is an étale separated S-group scheme of finite presentation.

Definition 1.8. Over a scheme S, a weakly reductive group scheme is a smooth affine S-group scheme G
such that 𝐺0 is reductive and the component group 𝐺/𝐺0 is finite étale over S with order invertible on S.

We emphasize the condition that 𝐺/𝐺0 is of order invertible on S; if this assumption is omitted,
such a smooth affine G is often called geometrically reductive or generalized reductive. However, as we
show in Examples 2.20, 2.28 and 2.16, general geometrically reductive smooth affine group schemes
are more pathological than their reductive counterparts.

Theorem 1.9 (Corollary 3.5, Corollary 3.7, Proposition 2.19, Proposition 2.27). Let S be a scheme, and
let G be a weakly reductive S-group scheme.

1. If Λ is a finite étale group scheme acting on G whose order is invertible on S, then the fixed point
scheme ℭ = 𝐶𝐺 (Λ) is weakly reductive. If char 𝑘 (𝑠) is pretty good1 for 𝐺𝑠 for all 𝑠 ∈ 𝑆, then the
centralizer Δ = 𝐶𝐺 (ℭ) is weakly reductive.

2. If H is a simple reductive group scheme acting on G and (dim 𝐺/rank 𝐻)! is invertible on S, then
the fixed point scheme 𝐶𝐺 (𝐻) is weakly reductive.

3. The center 𝑍 (𝐺) is a group scheme of multiplicative type, and it is smooth if 𝑍 (𝐺0) is smooth.
4. The derived group 𝒟(𝐺) (in the sense of fppf group sheaves) is represented by a weakly reductive

S-group scheme, and the abelianization 𝐺ab = 𝐺/𝒟(𝐺) of G is a smooth group scheme of multi-
plicative type.

The main new input in the proof of Theorem 1.9 is an analysis of schemes of homomorphisms
between weakly reductive group schemes. If S is a scheme and G and H are S-group schemes, we
let Hom𝑆-gp (𝐻, 𝐺) denote the functor which sends an S-scheme 𝑆′ to the set of 𝑆′-homomorphisms
𝐻𝑆′ → 𝐺𝑆′ . In [GP11, Exp. XXIV, Corollaire 7.2.3], it is proved that if H is a reductive S-group scheme
and G is a smooth affine S-group scheme, then Hom𝑆-gp(𝐻, 𝐺) is representable by a separated S-scheme
locally of finite presentation. Usually Hom𝑆-gp (𝐻, 𝐺) is usually not quasi-compact or flat over S (see
Example 2.4). However, we will show in Theorem 2.2 that Hom𝑆-gp(𝐻, 𝐺) is always a disjoint union
of finitely presented S-affine S-schemes. Proving this involves revisiting the proof of representability
of Hom𝑆-gp(𝐻, 𝐺) in [GP11], using ind-quasi-affine descent and affineness results for schemes of tori
in [Ray70]. Over a field, this affineness result was proved in [Bri21, Theorem 6.3], and in general, it
strengthens affineness results from [Rom22, Theorem 3.1.4].

Let us give a sense of some key steps in the proof of Theorem 1.9, starting with part (2).

1. Use known cohomology vanishing results (Theorem 3.4) to see that 𝐶𝐺 (𝐻) is smooth affine, and
use classical arguments over a field to show that 𝐶𝐺 (𝐻)/𝐶𝐺 (𝐻)

0 is of order invertible on S.
2. Reduce to the case 𝑆 = Spec 𝐴 for a DVR A, and use Matsushima’s theorem (Theorem 2.1) to reduce

to showing that the quotient 𝐺/𝐶𝐺 (𝐻) is affine.

1See Definition 1.12.
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3. Show that the natural monomorphism 𝑖 : 𝐺/𝐶𝐺 (𝐻) → Hom𝑆-gp(𝐻, 𝐺), given as the orbit map
through the inclusion 𝐻 → 𝐺, is a closed embedding, and conclude using the above geometric
property of Hom𝑆-gp (𝐻, 𝐺).

The proof of Theorem 1.9(1) is similar, but when 𝐻 = 𝐶𝐺 (Λ), we cannot show that i is a closed
embedding, so our argument is slightly longer.

To prove Theorem 1.9(3), we first show that the automorphism functor Aut𝐺/𝑆 is representable
by a smooth clopen subscheme Aut𝐺/𝑆 of Hom𝑆-gp (𝐺, 𝐺). Since 𝑍 (𝐺) is the kernel of the natural
S-homomorphism 𝜑 : 𝐺 → Aut𝐺/𝑆 , this reduces us to understanding Aut𝐺/𝑆 and 𝜑. We prove Theo-
rem 1.9(4) through a somewhat complicated reduction to the separate cases of reductive group schemes
and finite étale group schemes, both of which are understood.

Remark 1.10. Appendix B provides a curious consequence of Theorem 1.9 to the sizes of component
groups of centralizers over fields. It illustrates the power of working with group schemes over rings,
even when interested in questions over fields.

1.3. Outline of the paper

Sections 2 and 3 develop the theory of weakly reductive group schemes and establish a variety of results
about centralizers. Section 4 introduces the notion of a decomposition type, and Sections 5 and 6 use
this and the results about weakly reductive group schemes to construct lifts and the minimally ramified
deformation condition. Depending on the reader’s interests, Sections 4–6 can be read first relying on the
properties of weakly reductive group schemes summarized in Theorem 1.9.

1.4. Notation and terminology

Given a group scheme H defined over a ring R and an R-algebra A, we write 𝐻𝐴 for the base change of
H to A, and write 𝐻 (𝐴) for the A-points of H.

If S is a scheme and H is an S-group scheme acting on another S-group scheme G, then we denote
by 𝐶𝐺 (𝐻) the functor of fixed points for the action of H on G. If H is an S-subgroup scheme of G,
then we denote by 𝑁𝐺 (𝐻) the functor of sections of G normalizing H. Note that if H is an S-subgroup
scheme of G, then 𝐶𝐺 (𝐻) is the centralizer of H in G. For representability results, see [GP11, Exp. XII,
Proposition 9.2] and [Con14, Proposition 2.1.6]; when these functors are representable, we will use the
same notation to denote their representing objects.

We follow the convention in [GP11] and require that reductive group schemes have connected fibers.
In Section 2, we introduce the notion of weakly reductive group schemes which allows disconnected
fibers under some hypotheses. However, when working over a field, we do allow reductive groups to be
disconnected, following general practice. We will require all groups of multiplicative type to be finitely
presented, unlike the definition in [GP11, Exp. IX].

For a local field F, we use Γ𝐹 to denote the absolute Galois group of F, 𝐼𝐹 to denote the inertia
subgroup of Γ𝐹 , and Λ𝐹 ⊂ 𝐼𝐹 to be the kernel of a homomorphism 𝐼𝐹 → Z𝑝 as in Section 5.1.

We also recall the definition of a good and pretty good primes for a root datum (𝑋,Φ, 𝑌 ,Φ∨).

Definition 1.11. A prime p is good if for every closed subsystem Σ ⊂ Φ, ZΦ/ZΣ is p-torsion free.

Definition 1.12. We say that p is pretty good if the groups 𝑋/ZΦ′ and 𝑌/ZΦ′∨ have no p-torsion for
all subsets Φ′ ⊂ Φ.

A prime is good (resp. pretty good) for a weakly reductive group G if it is good (resp. pretty good)
for the root datum associated to 𝐺0. By convention, we also say that 0 is good (and pretty good).

Remark 1.13. By [Cot22a, Lemma 2.2], a prime p is pretty good for a connected reductive group G
over a field of characteristic p if and only if all of the following conditions hold:
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1. p is good for G,
2. p does not divide the order of 𝜋1 (𝒟(𝐺)),
3. 𝑍 (𝐺) is smooth.

2. Weakly reductive group schemes

In this section, we study weakly reductive group schemes. Weak reductivity is slightly more stringent
than the condition of geometric reductivity, as introduced in [Alp14, Definition 9.1.1]. We will not recall
the definition in general, but we quote the following theorem, which will be used several times in the
sequel, especially in Section 3.

Theorem 2.1 [Alp14, Theorems 9.4.1, 9.7.6]. Let S be a scheme, and let 𝐻 ⊂ 𝐺 be flat, finitely
presented, and separated S-group schemes, with H closed in G.

1. If G is smooth and affine, then it is geometrically reductive if and only if 𝐺0 is reductive and 𝐺/𝐺0

is finite.
2. If G is affine and geometrically reductive, then H is geometrically reductive if and only if 𝐺/𝐻 is

affine.

In light of Theorem 2.1, a weakly reductive group scheme is just a geometrically reductive smooth
affine group scheme with tame component group in the sense of [AOV08]. We will extend some
fundamental constructions for reductive group schemes to weakly reductive group schemes. These
extensions do not generally work for more general geometrically reductive smooth affine group schemes
(see Examples 2.16, 2.20 and 2.28). We note that, by [AHR23, Theorem 9.9], all smooth affine linearly
reductive group schemes are weakly reductive; we omit the definition of linear reductivity (which may
be found in [AHR23, Definition 2.1] because it is of a technical nature orthogonal to the goals of this
paper.

We work throughout with arbitrary base schemes, but many proofs begin by reducing to simpler
cases. For the most part, we do not spell out these reductions in detail, and we refer the reader to [DG67,
IV3, Sections 8, 9, 11] for the techniques involved in such reduction steps.

2.1. Schemes of homomorphism

Let S be a scheme. If G and H are S-group schemes, then we define the set-valued functor Hom𝑆-gp(𝐻, 𝐺)
on S-schemes by

Hom𝑆-gp(𝐻, 𝐺) (𝑆′) � Hom𝑆′-gp (𝐻𝑆′ , 𝐺𝑆′ ).

The goal of this section is to study this functor. The first aim is the following theorem.

Theorem 2.2. Let S be a scheme, let G be a smooth affine S-group scheme, and let H be a geometrically
reductive smooth affine S-group scheme. The functor Hom𝑆-gp (𝐻, 𝐺) is representable by an ind-quasi-
affine S-scheme locally of finite presentation. Moreover, suppose S is normal, quasi-compact and quasi-
separated, and 𝐻0 admits a maximal S-torus. Then Hom𝑆-gp(𝐻, 𝐺) is representable by a disjoint union
of finitely presented S-affine S-schemes.

As a general rule, we like to use underlines to refer to functors, and we omit the underline when
referring to a representing object. However, in this case, the notation without the underline has an
independent meaning, so it would be confusing to omit it.

It is not clear a priori that Hom𝑆-gp (𝐻, 𝐺) is even representable; for this, we begin with the following
fundamental result of Demazure.

Lemma 2.3. Suppose that H is a reductive S-group scheme and that G is smooth and quasi-projective
over S with affine fibers. Then Hom𝑆-gp(𝐻, 𝐺) is representable by a separated S-scheme locally of finite
presentation.
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Proof. This is [GP11, Exp. XXIV, Corollaire 7.2.3]. �

Example 2.4 [GP11, Exp. XXIV, 7.4]. The scheme HomZ-gp (SL2,Z, SL2,Z) is the disjoint union of the
following Z-schemes:
1. a scheme isomorphic to Spec Z (corresponding to the trivial homomorphism SL2,Z → SL2,Z),
2. a scheme isomorphic to PGL2,Z (corresponding to conjugates of the identity homomorphism

SL2,Z → SL2,Z),
3. for each prime number p and each positive integer n, a scheme isomorphic to PGL2,F𝑝 (corresponding

to conjugates of the 𝑝𝑛-Frobenius morphism SL2,F𝑝 → SL2,F𝑝 ).
In particular, HomZ-gp(SL2,Z, SL2,Z) is neither flat nor quasi-compact.

To prove Theorem 2.2, we will use étale descent to pass further to the case that 𝐻/𝐻0 is constant and
then realize Hom𝑆-gp (𝐻, 𝐺) as a closed subscheme of Hom𝑆-gp (𝐻

0, 𝐺) × 𝐺𝑛 for some n. However, in
order to make the descent argument, one needs to know effectivity of étale descent for closed subschemes
of Hom𝑆-gp (𝐻

0, 𝐺) × 𝐺𝑛. Since Hom𝑆-gp (𝐻
0, 𝐺) is usually not quasi-compact over S, this descent

argument is not trivial. Thus, before showing representability, we will show that Hom𝑆-gp (𝐻
0, 𝐺) is ind-

quasi-affine over S [Sta21, Tag 0AP6] in order to apply effectivity of fpqc descent for ind-quasi-affine
morphisms [Sta21, Tag 0APK]. We begin with a more detailed study of Hom𝑆-gp (𝐻, 𝐺) in the case that
H is reductive.
Lemma 2.5. Let X be a locally noetherian scheme, and let 𝜋 : 𝑌 → 𝑋 be a finite surjective morphism,
where Y is a disjoint union of affine schemes. Then X is ind-quasi-affine. If 𝜋 is open (e.g., flat), then X
is a disjoint union of affine schemes.
Proof. Let 𝑈 ⊂ 𝑋 be a quasi-compact open subscheme; to show that X is ind-quasi-affine, we must
show that U is quasi-affine. Note that 𝜋−1 (𝑈) ⊂ 𝑌 is quasi-compact, so it is contained in an affine clopen
subscheme 𝑉 ⊂ 𝑌 by assumption. By Chevalley’s theorem, that affineness can be checked after passing
to a finite cover [DG67, II, Théorème 6.7.1], the closed subset 𝜋(𝑉) ⊂ 𝑋 is affine (when considered
with its reduced subscheme structure). The schematic closure 𝑈 of U in X is a closed subset of 𝜋(𝑉),
so 𝑈red is affine. Thus, by Chevalley’s theorem again, 𝑈 is affine. Since U is open in 𝑈, it follows that
U is quasi-affine.

If 𝜋 is open, then the closed subset 𝜋(𝑉) ⊂ 𝑋 is also open, so it is affine when considered with the
structure of an open subscheme of X. �

Lemma 2.6. In the setting of Theorem 2.2, suppose that H is a torus. Then Hom𝑆-gp (𝐻, 𝐺) is repre-
sentable by a smooth ind-quasi-affine S-scheme. If S is normal, quasi-compact and quasi-separated,
then Hom𝑆-gp(𝐻, 𝐺) is representable by a disjoint union of smooth affine S-schemes.
Proof. First, smoothness of Hom𝑆-gp(𝐻, 𝐺) is proved in [GP11, Exp. XI, Corollaire 4.2]. If S is
normal and locally noetherian, then the result follows from [Ray70, Théorème IX 2.6]. For the re-
mainder, we therefore assume that S is quasi-compact and quasi-separated. By spreading out (using
[TT90, Theorem C.9]), we may assume that S is of finite type over Spec Z. In particular, the nor-
malization 𝑆′ → 𝑆 is finite. Now Hom𝑆′-gp(𝐻𝑆′ , 𝐺𝑆′ ) is a disjoint union of affine S-schemes, and the
morphism Hom𝑆′-gp (𝐻𝑆′ , 𝐺𝑆′ ) → Hom𝑆-gp (𝐻, 𝐺) is finite and surjective, so ind-quasi-affineness of
Hom𝑆-gp(𝐻, 𝐺) follows from Lemma 2.5. �

Lemma 2.7. In the setting of Theorem 2.2, assume that H is reductive. Then Hom𝑆-gp(𝐻, 𝐺) is repre-
sentable by an ind-quasi-affine S-scheme. If S is normal, quasi-compact, and quasi-separated, and H
admits a maximal S-torus, then Hom𝑆-gp(𝐻, 𝐺) is representable by a disjoint union of finitely presented
affine S-schemes.
Proof. To show ind-quasi-affineness, we may work locally on S and spread out to assume that S is affine,
noetherian and excellent. (For the second claim, we may use [TT90, Theorem C.9] to make the same
reduction.) Using Lemma 2.5, we may also pass from S to its normalization to assume that S is normal.
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Passing to a further étale cover, we may and do assume that H admits a maximal S-torus. By [GP11,
Exp. XXIV, Corollaire 7.1.9], the natural restriction map

Hom𝑆-gp(𝐻, 𝐺) → Hom𝑆-gp(𝑇, 𝐺)

is finitely presented and affine, so the result follows from Lemma 2.6. (Note that a smooth affine S-
scheme is automatically finitely presented.) �

Proof of Theorem 2.2. Recall that H is now assumed to be a geometrically reductive smooth affine S-
group scheme. In particular, 𝐻0 is a reductive group scheme and 𝐻/𝐻0 is finite by Theorem 2.1 (and
similarly for G). There are two issues: first, we need to show that Hom𝑆-gp(𝐻, 𝐺) is representable, and
then we need to show that if S is normal, quasi-compact and quasi-separated, and H admits a maximal
S-torus, then Hom𝑆-gp (𝐻, 𝐺) is a disjoint union of finitely presented S-affine S-schemes (at which
point ind-quasi-affineness in general follows from Lemma 2.5). For both points, by working locally and
spreading out, we may assume that S is noetherian and connected.

To prove representability, first assume that 𝐻/𝐻0 is constant and that the natural map 𝐻 (𝑆) →
(𝐻/𝐻0) (𝑆) is surjective. Let ℎ1, . . . , ℎ𝑛 ∈ 𝐻 (𝑆) be a system of representatives for (𝐻/𝐻0) (𝑆). We may
and do assume ℎ1 = 1. There is then a natural morphism of functors

𝛽 : Hom𝑆-gp(𝐻, 𝐺) → Hom𝑆-gp(𝐻
0, 𝐺) × 𝐺𝑛,

given by 𝑓 ↦→ ( 𝑓 |𝐻 0 , 𝑓 (ℎ1), . . . , 𝑓 (ℎ𝑛)). We claim that 𝛽 is a closed embedding. To this end, we need
to understand when a tuple ( 𝑓0, 𝑔1, . . . , 𝑔𝑛) in Hom𝑆-gp (𝐻

0, 𝐺) (𝑆′) × 𝐺 (𝑆′)𝑛 lies in the image of 𝛽.
For indices 𝑖, 𝑗 , let ℎ𝑖ℎ 𝑗 = ℎ𝛿 (𝑖, 𝑗)ℎ𝑖, 𝑗 , where 1 ≤ 𝛿(𝑖, 𝑗) ≤ 𝑛 and ℎ𝑖, 𝑗 ∈ 𝐻0 (𝑆). In any case, there

is a unique morphism of S-schemes 𝑓 : 𝐻 → 𝐺 with 𝑓 |𝐻 0 = 𝑓0 and 𝑓 (ℎ𝑖) = 𝑔𝑖 for all i: for this, note
that for any S-scheme 𝑆′ and any ℎ ∈ 𝐻 (𝑆′), there is a unique open decomposition 𝑆′ =

⊔𝑛
𝑖=1 𝑆′𝑖 such

that ℎ|𝑆′𝑖 = ℎ𝑖ℎ
′
𝑖 for some ℎ′𝑖 ∈ 𝐻0 (𝑆′𝑖). Thus, f is defined uniquely by requiring 𝑓 (ℎ𝑖ℎ

′) = 𝑔𝑖 𝑓0(ℎ
′) for

every S-scheme 𝑆′ and every ℎ′ ∈ 𝐻0(𝑆′). Now ( 𝑓0, 𝑔1, . . . , 𝑔𝑛) lies in the image of 𝛽 if and only if the
above-defined f is a homomorphism.

Unraveling, we find that f is a homomorphism if and only if the following conditions are satisfied:

1. 𝑔1 = 1,
2. 𝑔−1

𝑖 𝑓0(ℎ)𝑔𝑖 = 𝑓0(ℎ
−1
𝑖 ℎℎ𝑖) for all i,

3. 𝑔𝑖𝑔 𝑗 = 𝑔𝛿 (𝑖, 𝑗) 𝑓0 (ℎ𝑖, 𝑗 ).

So indeed, 𝛽 is a finitely presented closed embedding, whence Hom𝑆-gp(𝐻, 𝐺) is representable, and
in fact, it is ind-quasi-affine over S by Lemma 2.7. Moreover, if S is normal, then this shows that
Hom𝑆-gp(𝐻, 𝐺) is a disjoint union of finitely presented S-affine S-schemes.

Now pass to the general case (i.e., no longer assume that 𝐻/𝐻0 is constant and that 𝐻 (𝑆) →
(𝐻/𝐻0) (𝑆) is surjective). In any case, there is a finite étale cover 𝑆′ → 𝑆 such that 𝐻𝑆′/𝐻

0
𝑆′ is

constant and 𝐻 (𝑆′) → (𝐻/𝐻0) (𝑆′) is surjective (e.g., take 𝑆′ to be a Galois closure of the finite
étale 𝐻/𝐻0), and so Hom𝑆′-gp (𝐻𝑆′ , 𝐺𝑆′ ) is ind-quasi-affine over 𝑆′ by the above. Thus, by effectivity
of fpqc descent for ind-quasi-affine morphisms [Sta21, Tag 0APK], we see that Hom𝑆-gp(𝐻, 𝐺) is
representable and locally of finite presentation. Now that we have representability, we may assume
that S is normal, quasi-compact and quasi-separated. As we have already seen, Hom𝑆′-gp (𝐻𝑆′ , 𝐺𝑆′ ) is
representable by a disjoint union of finitely presented 𝑆′-affine 𝑆′-schemes, so because the morphism
Hom𝑆′-gp (𝐻𝑆′ , 𝐺𝑆′ ) → Hom𝑆-gp (𝐻, 𝐺) is finite étale, the result follows from Lemma 2.5. �

Example 2.8. The schemes in Theorem 2.2 are usually not quasi-compact or flat, and they can fail to
have smooth fibers. We saw examples of the first two phenomena in Example 2.4. For an example in
which smoothness fails, let k be an algebraically closed field of characteristic 𝑝 > 0, and consider the
component C of Hom𝑘-gp(SL2, GL𝑝+1) containing the representation Sym𝑝 𝑉 , where V is the standard
representation of SL2. This representation is not semisimple: in the notation of [Jan03, II, Chapter 2], it
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has Jordan–Hölder factors 𝐿(𝑝) and 𝐿(𝑝 − 2). In fact, one can check that C consists of three orbits for
the GL𝑝+1-action: the orbit of Sym𝑝 𝑉 , the orbit of 𝐿(𝑝) ⊕ 𝐿(𝑝 − 2) and the orbit of (Sym𝑝 𝑉)∗. The
first and last of these orbits are smooth and open, and their closures intersect in the second orbit.

Even worse, components of Hom𝑘-gp(SL𝑛, GL𝑁 ) can have infinitely many orbits for large n and
N; one can deduce this using [SX10, Theorem 5.2]. Consequently, it can be difficult to predict the
dimensions of components of Hom𝑘-gp (𝐻, 𝐺).

Question 2.9.

1. If k is a field of characteristic 𝑝 > 0 and H and G are reductive, can Hom𝑘-gp(𝐻, 𝐺) be non-reduced?
This cannot occur if 𝑝 > dim 𝐺/rank 𝐻, essentially by Theorem 3.4.

2. More generally, if H and G are reductive group schemes over Z, can HomZ-gp (𝐻, 𝐺) be non-reduced?
3. If A is a DVR and H and G are reductive, can Hom𝐴-gp(𝐻, 𝐺) have a non-flat component with an

integral point? Again, this cannot happen if p is ‘large’.

The geometry of Hom-schemes can be related to the theory of complete reducibility as in [BMR05].
Recall that if k is a field, G is a reductive k-group, and 𝐻 ⊂ 𝐺 is a closed k-subgroup scheme, then H is
G-completely reducible (or G-cr) if, for any R-parabolic 𝑘-subgroup 𝑃 ⊂ 𝐺𝑘 such that 𝐻𝑘 ⊂ 𝑃, there
exists an R-Levi 𝐿 ⊂ 𝑃 such that 𝐻𝑘 ⊂ 𝐿. (The notions of R-parabolic and R-Levi subgroup are defined
in [BMR05, Section 6]; they coincide with the usual notions of parabolic and Levi if G is connected.)

By [BMR05, Proposition 2.16, Theorem 3.1, Section 6], if H is topologically generated by
𝑥1, . . . , 𝑥𝑛 ∈ 𝐻 (𝑘) (in the sense that the subgroup of 𝐻 (𝑘) generated by 𝑥1, . . . , 𝑥𝑛 is Zariski-dense
in H), then H is G-cr if and only if the G-orbit of the n-tuple (𝑥1, . . . , 𝑥𝑛) is closed in 𝐺𝑛. Moreover,
[Ser03, Property 4] shows that if H is smooth and G-cr, then 𝐻0 is reductive. With these two facts in
mind, the following lemma relates G-complete reducibility to orbits in Hom-schemes.

Lemma 2.10. Let k be a field, and let G and H be (possibly disconnected) reductive k-groups. If H is
topologically generated by 𝑥1, . . . , 𝑥𝑛 ∈ 𝐻 (𝑘), then the k-morphism 𝜄 : Hom𝑘-gp (𝐻, 𝐺) → 𝐺𝑛 sending
f to ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) is monic and satisfies the valuative criterion of properness. In particular, 𝜄 is a
closed embedding when restricted to any connected component of Hom𝑘-gp (𝐻, 𝐺).

Proof. It is clear that 𝜄 is monic, and the final claim follows from the others by [DG67, IV3, Proposition
8.11.5] and Theorem 2.2, which shows that every connected component of Hom𝑘-gp (𝐻, 𝐺) is of finite
type over k. We now verify that 𝜄 satisfies the valuative criterion of properness. Let A be a k-algebra which
is a DVR with fraction field K, and let (𝑔1, . . . , 𝑔𝑛) ∈ 𝐺 (𝐴)𝑛 be such that there exists a K-homomorphism
𝑓1 : 𝐻𝐾 → 𝐺𝐾 satisfying 𝑓1 (𝑥𝑖) = 𝑔𝑖 for all i. Let now Γ ⊂ 𝐻 ×Spec 𝐴𝐺 be the schematic closure of the
graph of 𝑓1, so that Γ is a flat closed A-subgroup scheme of 𝐻 ×Spec 𝐴 𝐺 whose projection map 𝜋1 to H
is an isomorphism on generic fibers over A. Moreover, since (𝑥𝑖 , 𝑔𝑖) ∈ 𝐻 (𝐴) ×𝐺 (𝐴) for all i, it follows
that (𝑥𝑖 , 𝑔𝑖) ∈ Γ(𝐴), and thus, 𝜋1,𝑠 : Γ𝑠 → 𝐻𝑠 is surjective. Since 𝐻𝑠 is smooth, we see that 𝜋1,𝑠 is
flat, and by fibral flatness, it follows that 𝜋1 is flat. Since (ker 𝜋1)𝐾 = {1}, it follows from flatness that
ker 𝜋1 = {1}. Thus, 𝜋1,𝑠 is a closed embedding, and since 𝜋1,𝑠 is surjective and 𝐻𝑠 is smooth, it follows
that 𝜋1,𝑠 is an isomorphism. By the fibral isomorphism criterion, 𝜋1 is therefore an isomorphism, and
it is the graph of an A-homomorphism 𝑓 : 𝐻 → 𝐺 whose generic fiber is 𝑓1. This verifies the valuative
criterion. �

Lemma 2.11. Let k be a field, and let G and H be reductive k-groups. If 𝑓 : 𝐻 → 𝐺 is a k-homomorphism,
then 𝑓 (𝐻) ⊂ 𝐺 is G-cr if and only if the G-orbit through f in Hom𝑘-gp(𝐻, 𝐺) is closed.

Proof. We may and do pass to a (possibly transcendental) field extension of k to assume that there exist
𝑥1, . . . , 𝑥𝑛 ∈ 𝐻 (𝑘) which topologically generate H. If 𝑓 (𝐻) is G-cr, then by [BMR05, Proposition 2.16,
Theorem 3.1], the G-orbit of ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) in 𝐺𝑛 is closed. Thus, the G-orbit of f is closed in
Hom𝑘-gp(𝐻, 𝐺) since this orbit is simply the preimage of the G-orbit of ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) under the
map 𝜄 of Lemma 2.10. Conversely, if the G-orbit of f is closed, then 𝜄(𝐺 · 𝑓 ) is closed in 𝐺𝑛 by Lemma
2.10, and we conclude with the fact that 𝜄(𝐺 · 𝑓 ) is simply the G-orbit of ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)). �
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Remark 2.12. Using [Mar03, Proposition 3.2, Theorem 10.3] and Lemma 2.11, one can show that
every component of Hom𝑘-gp(𝐻, 𝐺) contains only finitely many closed G-orbits. Consequently, [Ser05,
Théorème 4.4] shows that if G is simple and 𝑝 > 1 + rank 𝐺, then Hom𝑘-gp(𝐻, 𝐺)red is a disjoint union
of G-orbits. For classical groups G, Hom𝑘-gp(𝐻, 𝐺) is reduced under these conditions, but we do not
know what happens if G is exceptional.

2.2. Automorphism schemes

Next, if G is an S-group scheme, we define the set-valued functor Aut𝐺/𝑆 by

Aut𝐺/𝑆 (𝑆
′) = { 𝑓 ∈ Hom𝑆′-gp(𝐺𝑆′ , 𝐺𝑆′ ) : 𝑓 is an isomorphism}.

The following two lemmas are the crucial inputs needed to analyze this functor.

Lemma 2.13. Let G be a finitely presented S-group scheme. If 𝑓 : 𝐺 → 𝐺 is an S-homomorphism, then
f is an isomorphism if and only if ker 𝑓𝑠 = {1} for all 𝑠 ∈ 𝑆.

Proof. If f is an isomorphism, then certainly ker 𝑓 = {1}. If ker 𝑓𝑠 = {1} for all 𝑠 ∈ 𝑆, then ker 𝑓 = {1}:
indeed, the identity section 𝑒 : 𝑆 → ker 𝑓 is a morphism of S-schemes which is an isomorphism
on fibers over S, so because S is S-flat, it follows from the fibral isomorphism criterion [DG67, IV4,
Corollaire 17.9.5] that e is an isomorphism (i.e., ker 𝑓 = {1}). Thus, f is monic, and it follows from the
Ax–Grothendieck theorem [DG67, IV4, Proposition 17.9.6] that f is an isomorphism. �

Lemma 2.14. Let A be a DVR, and let G and H be geometrically reductive smooth affine A-group
schemes. If 𝑓 : 𝐺 → 𝐻 is an A-homomorphism, then the following are equivalent.

1. 𝑓𝑠 is an isomorphism,
2. 𝑓𝜂 is an isomorphism,
3. f is an isomorphism.

Proof. Clearly, (3) implies (1) and (2). Conversely, if 𝑓𝑠 and 𝑓𝜂 are both isomorphisms, then f is an
isomorphism by the fibral isomorphism criterion [DG67, IV4, Corollaire 17.9.5]. Thus, it suffices to
show that (1) and (2) are equivalent. We may and do further assume that A is complete with algebraically
closed residue field.

First, suppose that G (and hence also H under either (1) or (2), due to finiteness of 𝐻/𝐻0) has
connected fibers. Assume 𝑓𝑠 is an isomorphism. By the fibral isomorphism criterion, 𝑓𝐴/𝔪𝑛 is an
isomorphism for all 𝑛 ≥ 1. By the local flatness criterion [Mat89, Theorem 22.3], f is flat. In fact, f
is étale near 1 because the étale locus is open, and since it is a homomorphism with G fppf over A, it
follows that f is étale. In particular, ker 𝑓 is étale. One can check that an étale normal subgroup scheme
of a connected group scheme over a field is automatically central, so ker 𝑓𝜂 is central, and thus, ker 𝑓 is
contained in 𝑍 (𝐺). But 𝑍 (𝐺) is of multiplicative type, and ker 𝑓 is a flat closed A-subgroup scheme of
𝑍 (𝐺), so it is also of multiplicative type by [Con14, Corollary B.3.3]. Since ker 𝑓𝑠 = {1}, we conclude
that ker 𝑓𝜂 = {1}, and hence, 𝑓𝜂 is a closed embedding by [GP11, Exp. VIB, Corollaire 1.4.2]. For
dimension reasons, 𝑓𝜂 is dominant, so it is surjective by [GP11, Exp. VIB, Proposition 1.2], and hence,
it is an isomorphism since 𝐻𝜂 is smooth.

Conversely, suppose that 𝑓𝜂 is an isomorphism. If 𝑔 ∈ 𝐺 (𝑘 (𝑠)) is a nontrivial semisimple element,
then there is a maximal 𝑘 (𝑠)-torus 𝑇0 ⊂ 𝐺𝑠 such that 𝑔 ∈ 𝑇0 (𝑘 (𝑠)). By [GP11, Exp. IX, Théorème 3.6],
since A is complete, we may find a maximal A-torus 𝑇 ⊂ 𝐺 with special fiber 𝑇0. Since ker 𝑓 |𝑇𝜂 = {1},
it follows from [GP11, Exp. IX, Théorème 6.8] that ker 𝑓 |𝑇 = {1}, so in particular, 𝑔 ∉ (ker 𝑓 ) (𝑘 (𝑠)).
Note that (ker 𝑓𝑠)

0
red is a smooth connected closed normal subgroup of 𝐺𝑠 , so it is reductive, and thus,

its semisimple locus is dense. But the above argument shows that its semisimple locus is {1}, so in
fact, (ker 𝑓𝑠)

0
red = {1}, whence ker 𝑓𝑠 is finite. Thus, for dimension reasons, 𝑓𝑠 is dominant, and since G

is smooth, we find that 𝑓𝑠 is flat: this follows from generic flatness and a simple translation argument.
By the fibral flatness criterion [DG67, IV3, Théorème 11.3.10], f is flat, and so ker 𝑓 is flat. Since
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ker 𝑓𝜂 = {1}, it follows that ker 𝑓 = {1}: as a flat closed subscheme of G, ker 𝑓 is the closure of its
generic fiber. So 𝑓𝑠 is a surjective closed embedding, and hence an isomorphism.

Now consider the general case – namely, that 𝐺/𝐺0 is finite. Suppose that either 𝑓𝑠 or 𝑓𝜂 is an
isomorphism. By the reductive case settled above, we find that 𝑓 |𝐺0 : 𝐺0 → 𝐻0 is an isomorphism.
Moreover, the homomorphism 𝐺/𝐺0 → 𝐻/𝐻0 between constant groups is an isomorphism, since
this can be checked on either the special or generic fiber. Thus, a diagram chase shows that f is an
isomorphism. �

Theorem 2.15. Let S be a scheme, and let G be a geometrically reductive smooth affine S-group scheme.
The functor Aut𝐺/𝑆 is representable by an open and closed subscheme Aut𝐺/𝑆 of Hom𝑆-gp (𝐺, 𝐺).

Proof. By spreading out, we may and do assume that S is noetherian, so that ℋ � Hom𝑆-gp (𝐺, 𝐺) is
locally noetherian by Lemma 2.3. Note that there is a universal S-homomorphism

𝑓 : 𝐺 ×𝑆 ℋ → 𝐺 ×𝑆 ℋ

whose fiber over a given section of ℋ is the corresponding endomorphism of G. By Lemmas 2.13 and
2.14, since ℋ is locally noetherian, the locus U of 𝑢 ∈ℋ such that ker 𝑓𝑢 = {1} is open and closed, and
𝑓𝑈 : 𝐺×𝑆𝑈 → 𝐺×𝑆𝑈 is an isomorphism. It follows from this reasoning that U represents Aut𝐺/𝑆 . �

To use Theorem 2.15, it will be necessary to establish some more properties of the Aut-scheme. If
G is a weakly reductive group scheme over a scheme S, then we will see in Lemma 2.18 that Aut𝐺/𝑆 is
always smooth. However, the following example shows that Aut𝐺/𝑘 may fail to be smooth if k is a field
of characteristic 𝑝 > 0 and G is a reductive k-group with component group of order divisible by p.

Example 2.16. Let 𝐺 = G𝑚 × Z/𝑝Z over a field k of characteristic 𝑝 > 0. If S is a k-scheme, then
S-automorphisms of 𝐺𝑆 correspond to pairs (𝜙0, 𝑔), where 𝜙0 : G𝑚,𝑆 → G𝑚,𝑆 is an S-automorphism
and 𝑔 ∈ 𝐺 (𝑆) is a section of order p such that for all 𝑠 ∈ 𝑆, 𝑔𝑠 does not lie in 𝐺0 (𝑘 (𝑠)); the correspondence
is given by sending an S-automorphism 𝜙 of 𝐺𝑆 to (𝜙|𝐺0

𝑆
, 𝜙(𝑥)), where 𝑥 = (1, 1) ∈ G𝑚(𝑆) ×Z/𝑝Z(𝑆).

Using this, one sees that Aut0𝐺/𝑘 � 𝜇𝑝 . In particular, Aut𝐺/𝑘 is not smooth.

Lemma 2.17. Let G be a (possibly disconnected) reductive group over a field k. The natural map
𝐺 → Aut𝐺/𝑘 is open. If k is perfect, then 𝜙 : 𝐺 → (Aut𝐺/𝑘 )red is flat.

Proof. Since formation of (Aut𝐺/𝑘 )red commutes with separable field extensions on k and purely
inseparable extensions leave topological spaces unchanged, we may and do assume that k is algebraically
closed. To show that 𝜙 is flat, it suffices to show that the map 𝐺0(𝑘) → (Aut𝐺/𝑘 )0(𝑘) is surjective.
Indeed, then 𝜙 is a dominant map from a smooth finite type k-scheme to a smooth k-scheme, so it is
generically flat, and being a group homomorphism translation, arguments show that it is flat.

Let 𝑟 : Aut𝐺/𝑘 → Aut𝐺0/𝑘 ×Aut(𝐺/𝐺0)/𝑘 denote the natural restriction homomorphism. The map
𝐺0 → Aut𝐺/𝑘 induces a map 𝑍 (𝐺0) → ker 𝑟 . We claim that the image of 𝑍 (𝐺0) in ker 𝑟 is of finite
index. Once this is done, the lemma will follow: indeed, then

dim ker 𝑟 |𝜙 (𝐺0) = dim ker 𝑟 |𝜙 (𝑍 (𝐺0)) = dim ker 𝑟.

Since the group scheme of outer automorphisms of 𝐺0 is etale, pr1 ◦ 𝑟 : 𝐺0 → Aut0
𝐺0/𝑘

is surjective.
Since Aut(𝐺/𝐺0)/𝑘 is finite, we find in particular that dim 𝑟 (𝜙(𝐺)) = dim 𝑟 (Aut𝐺/𝑘 ), so

dim 𝜙(𝐺0) = dim ker 𝑟 + dim 𝑟 (Aut𝐺/𝑘 ) = dim Aut𝐺/𝑘 .

Therefore, 𝜙(𝐺0) is an open subgroup scheme of the smooth k-group scheme (Aut𝐺/𝑘 )red, so it contains
(Aut𝐺/𝑘 )0 and hence is equal to it.

So it remains to show that the image of 𝑍 (𝐺0) of finite index in (ker 𝑟) (𝑘). First, we must understand
some properties of Aut𝐺/𝑘 . Suppose that 𝑓 : 𝐺 → 𝐺 is a k-homomorphism inducing the identity on
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𝐺0 and 𝐺/𝐺0 (i.e., 𝑓 ∈ (ker 𝑟) (𝑘)). We define a morphism 𝜆 : 𝐺 → 𝐺 by

𝜆(𝑔) = 𝑓 (𝑔)𝑔−1.

One checks that 𝜆 is a 1-cocycle. Since 𝑓 |𝐺0 is the identity, we have

𝜆(𝑔ℎ) = 𝑓 (𝑔ℎ) (𝑔ℎ)−1 = 𝑓 (𝑔) 𝑓 (ℎ)ℎ−1𝑔−1 = 𝜆(𝑔)

for all functorial points g and h of G and 𝐺0, respectively. Thus, 𝜆 factors through a morphism
𝐺/𝐺0 → 𝐺. Moreover, for such g and h, we have

𝜆(𝑔) = 𝜆(ℎ𝑔) = 𝑓 (ℎ𝑔) (ℎ𝑔)−1 = ℎ𝜆(𝑔)ℎ−1,

so in fact, 𝜆 has image lying in 𝑍 (𝐺0). Thus, 𝜆 is a 1-cocycle 𝐺/𝐺0 → 𝑍 (𝐺0). Note that any such 𝜆
determines f uniquely.

As in ordinary group cohomology, there is a short exact sequence

0→ B1 (𝐺/𝐺0, 𝑍 (𝐺0)) → Z1 (𝐺/𝐺0, 𝑍 (𝐺0)) → H1(𝐺/𝐺0, 𝑍 (𝐺0)) → 0.

Notice that B1 (𝐺/𝐺0, 𝑍 (𝐺0)) = B1((𝐺/𝐺0) (𝑘), 𝑍 (𝐺0) (𝑘)) (and so on) because 𝐺/𝐺0 is constant.
Under the correspondence between f and 𝜆 as in the previous paragraph, B1 (𝐺/𝐺0, 𝑍 (𝐺0)) consists
of those k-homomorphisms f induced by conjugation by an element of 𝑍 (𝐺0) (𝑘). Moreover, if 𝐺/𝐺0

is of order n, then H1 (𝐺/𝐺0, 𝑍 (𝐺0)) is n-torsion, so H1(𝐺/𝐺0, 𝑍 (𝐺0)) admits a surjection from
H1 (𝐺/𝐺0, 𝑍 (𝐺0) [𝑛]) and hence is finite. So indeed, the map 𝑍 (𝐺0) (𝑘) → (ker 𝑟) (𝑘) has finite index
image, and we are done. �

Lemma 2.18. If G is a weakly reductive group scheme over S, then Aut𝐺/𝑆 is smooth and the natural
map 𝜙 : 𝐺 → Aut𝐺/𝑆 is flat. If 𝑍 (𝐺0) is smooth, then 𝜙 is smooth.

Proof. Let 𝔤 = Lie 𝐺. We claim that H2 (𝐺𝑠 , 𝔤𝑠) = 0 for all 𝑠 ∈ 𝑆. There is a Hochschild–Serre spectral
sequence

E𝑝𝑞
2 = H𝑝 (𝐺𝑠/𝐺

0
𝑠 , H𝑞 (𝐺0

𝑠 , 𝔤𝑠)) ⇒ H𝑝+𝑞 (𝐺𝑠 , 𝔤𝑠),

and since 𝐺𝑠/𝐺
0
𝑠 has order prime to char 𝑘 (𝑠) for all 𝑠 ∈ 𝑆, we find

H𝑛 (𝐺𝑠 , 𝔤𝑠) = H0(𝐺𝑠/𝐺
0
𝑠 , H𝑛 (𝐺0

𝑠 , 𝔤𝑠))

for all n. By [GP11, Exp. XXIV, Corollaire 1.13(ii)] (in which reference reductive groups over fields are
also required to be connected), we have H2(𝐺0

𝑠 , 𝔤𝑠) = 0, so indeed, H2 (𝐺𝑠 , 𝔤𝑠) = 0 for all 𝑠 ∈ 𝑆. The
same argument, using [GP11, Exp. XXIV, Corollaire 1.15.1], shows that H1 (𝐺𝑠 , 𝔤𝑠) = 0 for all 𝑠 ∈ 𝑆 if
𝑍 (𝐺0) is smooth.

To show that Aut𝐺/𝑆 is smooth, it suffices to verify the infinitesimal criterion of smoothness, and
for this [GP11, Exp. III, Corollaire 2.9(ii)] shows that it suffices to show H2 (𝐺𝑠 , 𝔤𝑠) = 0 for all 𝑠 ∈ 𝑆,
which we showed above. Moreover, [GP11, Exp. III, Corollaire 2.9(i)] shows that if H1 (𝐺𝑠 , 𝔤𝑠) = 0 for
all 𝑠 ∈ 𝑆, then the morphism 𝜙 satisfies the infinitesimal criterion of smoothness, so it is smooth. In
particular, the previous paragraph shows that if 𝑍 (𝐺0) is smooth, then 𝜙 is smooth.

Finally, to show that 𝜙 is flat in general, we may use the fibral flatness criterion [DG67, IV3, Théorème
11.3.10] to assume that 𝑆 = Spec 𝑘 for a field k. Thus, since Aut𝐺/𝑘 is smooth, we may conclude using
Lemma 2.17. �

Proposition 2.19. If G is a weakly reductive S-group scheme, the functorial center 𝑍 (𝐺) is an S-group
scheme of multiplicative type. If 𝑍 (𝐺0) is smooth, then 𝑍 (𝐺) is smooth.
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Example 2.20. Before proving the proposition, we offer the following example to show that geometric
reductivity for a smooth affine G is not enough for flatness of 𝑍 (𝐺). Let 𝐴 = Z𝑝 [𝜁𝑝]. There is a
non-split central extension of constant A-group schemes

1→ Z/𝑝 → 𝑈 → (Z/𝑝)2 → 1,

where U is isomorphic to the group of F𝑝-points of the unipotent radical of a Borel in SL3 (i.e., U is
the ‘Heisenberg group’ over F𝑝). There is a homomorphism of A-group schemes Z/𝑝 → 𝜇𝑝 which is
trivial on the special fiber and an isomorphism on the generic fiber, given by the choice of a primitive pth
root of unity 𝜁𝑝 . Pushing the above extension forward by the map Z/𝑝 → 𝜇𝑝 → G𝑚 gives an extension

1→ G𝑚 → 𝐺 → (Z/𝑝)2 → 1,

where G has commutative special fiber and non-commutative generic fiber. In fact, 𝑍 (𝐺) has special
fiber G and generic fiber 𝐺0, so it is not flat.

Proof. Working locally and spreading out, we may and do assume that S is locally noetherian. Consider
the morphism 𝜙 : 𝐺 → Aut𝐺/𝑆 . By Lemma 2.18, 𝜙 is flat, so 𝑍 (𝐺) = ker 𝜙 is a flat closed S-subgroup
scheme of G, and it is smooth provided that 𝑍 (𝐺0) is smooth. So we need only show that 𝑍 (𝐺) is of
multiplicative type.

We define 𝐶𝐺0 (𝐺) := ker 𝜙|𝐺0 = ker 𝜙|𝑍 (𝐺0) ; note that 𝑍 (𝐺0) is of multiplicative type. By [GP11,
Exp. IX, Théorème 6.8], it follows that 𝐶𝐺0 (𝐺) is of multiplicative type. Moreover, there is a short
exact sequence

1→ 𝐶𝐺0 (𝐺) → 𝑍 (𝐺) → 𝑍 (𝐺)/𝐶𝐺0 (𝐺) → 1.

Since 𝑍 (𝐺)/𝐶𝐺0 (𝐺) is a closed commutative flat and finitely presented S-subgroup scheme of 𝐺/𝐺0,
it is finite étale commutative of order invertible on S, and in particular, it is of multiplicative type. Thus,
𝑍 (𝐺) is a commutative extension of multiplicative type group schemes, so it is of multiplicative type
by [GP11, Exp. XVII, Prop. 7.1.1]. �

Remark 2.21. With more work, the kind of arguments used in the proof of Lemma 2.17 (expanded
upon in the case of ‘abstract’ groups in [Wel71]) can be used to proved that if G is weakly reductive
over S, then there is a short exact sequence

1→ 𝐺/𝑍 (𝐺) → Aut𝐺/𝑆 → Out𝐺/𝑆 → 1

in which Out𝐺/𝑆 is an étale-locally constant S-group scheme, just as in the theory of reductive group
schemes. Proving this would take us somewhat far afield, so we omit it.

We note that the above discussion gives a slight strengthening of [Mar03, Lemma 6.8].

Corollary 2.22. Let k be a field, let G be a finite type k-group scheme, and let 𝐻 ⊂ 𝐺 be a closed
(not necessarily connected) reductive k-subgroup. The quotient 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻) is finite. If 𝐻/𝐻0 has
order prime to char 𝑘 , then 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻) is étale.

Proof. We may and do assume that k is algebraically closed. Let 𝜙 : 𝐻 → Aut𝐻/𝑘 be the natural map.
By Lemma 2.17, 𝜙(𝐻) is an open subset of Aut𝐻/𝑘 , so 𝜙(𝐻) is an open subgroup scheme of (Aut𝐻/𝑘 )red
and the quotient 𝐴 � Aut𝐻/𝑘/𝜙(𝐻) (which exists as a scheme by [GP11, Exp. VIA, Théorème 3.2]) is
locally of finite type. Moreover, 𝐴red is étale: since 𝜙(𝐻) is (topologically) open in Aut𝐻/𝑘 , A is discrete,
and any reduced discrete scheme locally of finite type over an algebraically closed field is étale. The
natural map 𝑁𝐺 (𝐻) → 𝐴 has kernel 𝐻𝐶𝐺 (𝐻), so 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻) is a finite type closed subscheme
of A. Since 𝐴red is étale, it follows that 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻) is finite. If 𝐻/𝐻0 has order prime to char 𝑘 , so
H is weakly reductive, then already A is étale by Lemma 2.18, and thus, 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻) is étale. �
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Definition 2.23. If G is a finite type k-group scheme and H is a reductive k-subgroup scheme of G, then
we set 𝑊𝐻 := 𝑁𝐺 (𝐻)/𝐻𝐶𝐺 (𝐻), which we call the Weyl group of the pair (𝐺, 𝐻).

If H is a maximal torus of a smooth affine G, then this is the usual Weyl group W of G.

Proposition 2.24. Let G be a reductive group over a field k, and let H be a reductive k-subgroup scheme
of G. For a prime p, if 𝑝 � |𝑊 | and 𝑝 ≥ |𝐻/𝐻0 |, then 𝑝 � |𝑊𝐻 |.

Proof. We may and do assume that k is algebraically closed. Let 𝑔 ∈ 𝑁𝐺 (𝐻) (𝑘); we need to show that
under our hypotheses, 𝑔𝑛 acts by an inner automorphism on H for some integer n prime to p. Let T
be a maximal torus of H, and note that conjugacy of maximal tori in 𝐻0 implies that after translation
by 𝐻0 (𝑘), we may assume 𝑔 ∈ 𝑁𝐺 (𝑇) (𝑘). Since 𝑁𝐺 (𝑇)/𝐶𝐺 (𝑇) is a subquotient of W, it follows that
𝑔 |𝑊 | ∈ 𝐶𝐺 (𝑇) (𝑘). Thus, after replacing g by 𝑔 |𝑊 | , we may and do assume that g centralizes T. In
particular, g acts trivially on the Dynkin diagram of (𝐻0, 𝑇), so g acts on 𝐻0 by an inner automorphism.
Thus, after further translation by 𝐻0(𝑘), we may and do assume that g centralizes 𝐻0. Since 𝑝 ≥ |𝐻/𝐻0 |,
we may pass to a further prime-to-p power of g to assume that g acts trivially on 𝐻/𝐻0. (It is a general
fact, easily checked, that if 𝑝 | |Aut(𝐴) | for a finite group A, then 𝑝 < |𝐴|.)

Now that g acts trivially on 𝐻0 and 𝐻/𝐻0, the argument of Lemma 2.17 shows that Ad(𝑔) corre-
sponds to a 1-cocycle 𝜂 : 𝐻/𝐻0 → 𝑍 (𝐻0) (which lands in 𝑍 (𝐻0) (𝑘) since 𝐻/𝐻0 is constant). The
corresponding class in H1(𝐻/𝐻0, 𝑍 (𝐻0) (𝑘)) is killed by |𝐻/𝐻0 |, so further passing from g to 𝑔 |𝐻/𝐻

0 | ,
we may and do assume that Ad(𝑔) is cohomologically trivial, from which is follows that g acts on H by
conjugation by an element of ℎ ∈ 𝑍 (𝐻0) (𝑘). Thus, g now acts on H by inner automorphisms, and we
are done. �

2.3. Abelianization

Our final goal in this section is to show the existence of the ‘abelianization’ of a weakly reductive group
scheme G. We begin with the following folkloric lemma.

Lemma 2.25. Let S be a scheme, and let 𝑓 : 𝐺 → 𝐻 be a homomorphism of finitely presented S-group
schemes. The following are equivalent.

1. f is faithfully flat,
2. f is an epimorphism of fppf sheaves and ker 𝑓 is flat.

Proof. Omitted. �

Lemma 2.26. Let 1 → 𝑀 → 𝐸 → 𝐻 → 1 be a central extension, where M is an S-group scheme
of multiplicative type and H is a finite étale group scheme of constant order n invertible on S. Letting
𝑁 = 𝑛2, for every integer 𝑑 ≥ 1, the S-morphism [𝑁𝑑] : 𝐸 → 𝐸 is a homomorphism. If M is moreover
a torus, then 𝐸 [𝑁] → 𝐻 is faithfully flat, where 𝐸 [𝑁] := [𝑁]−1 (1).

Proof. By spreading out and étale-localizing around a point of S, we may and do assume that 𝑆 = Spec 𝐴
for a strictly henselian noetherian local ring A. In particular, since H is finite étale, it is a constant group
and there exists a scheme-theoretic section 𝐻 → 𝐸 . We may moreover pushforward by an inclusion of
M into a torus to assume that M is a torus. The existence of a section implies that for every S-scheme
𝑆′, the sequence

1→ 𝑀 (𝑆′) → 𝐸 (𝑆′) → 𝐻 (𝑆′) → 1

is exact.
First, note that as an extension of H by M which admits a section, E corresponds to a cohomology

class in H2 (𝐻, 𝑀), the Hochschild cohomology group (see, for example, [DG70, II, §3, Prop. 2.3] or
[Dem15, Prop. 2.3.6]). Concretely, this is the space of 2-cocycles 𝐻 × 𝐻 → 𝑀 modulo coboundaries.
Since H is a constant group scheme, we have H2(𝐻, 𝑀) = H2(𝐻 (𝑆), 𝑀 (𝑆)). Since 𝐻 (𝑆) is finite of
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order n, H2 (𝐻 (𝑆), 𝑀 (𝑆)) is killed by n by the classical theory. Since n is invertible on the strictly
henselian S, via the correspondence between extensions and classes in H2, the image of the extension
corresponding to multiplication by n on M is

1→ 𝑀 (𝑆)
�
←−
𝑛

𝑀 (𝑆)/𝑀 [𝑛] (𝑆) → 𝐸 (𝑆)/𝑀 [𝑛] (𝑆) → 𝐻 (𝑆) → 1.

Thus, this extension is split (i.e., there is a section 𝛼0 : 𝐻 (𝑆) → 𝐸 (𝑆)/𝑀 [𝑛] (𝑆) which is a homomor-
phism). This is equivalent to a section 𝐻 → 𝐸/𝑀 [𝑛], which we also denote by 𝛼0.

Since S is strictly henselian, 𝛼0 lifts to a section 𝛼 : 𝐻 → 𝐸 . Now 𝛼0 (𝑥)
𝑛 = 𝛼0 (𝑥

𝑛) = 1 for all
𝑥 ∈ 𝐻 (𝑆), so we have 𝛼(𝑥)𝑛 ∈ 𝑀 [𝑛] (𝑆), and thus,

𝛼(𝑥)𝑁 = 𝛼(𝑥)𝑛
2
= 1.

Moreover, since 𝛼0 is a homomorphism, we have 𝛼(𝑥𝑥 ′)−1𝛼(𝑥)𝛼(𝑥 ′) ∈ 𝑀 [𝑛] (𝑆) for all 𝑥, 𝑥 ′ ∈ 𝐻 (𝑆).
In other words,

𝛼(𝑥)𝛼(𝑥 ′) = 𝛼(𝑥𝑥 ′)𝑔𝑥,𝑥′

for some 𝑔𝑥,𝑥′ ∈ 𝑀 [𝑛] (𝑆).
Now we conclude the proof that [𝑁𝑑] : 𝐸 → 𝐸 is a homomorphism. We shall check this on 𝑆′-points

for every S-scheme 𝑆′. Any element of 𝐺 (𝑆′) is Zariski-locally of the form 𝛼(𝑥)𝑔 for some 𝑥 ∈ 𝐻 (𝑆′)
and 𝑔 ∈ 𝑀 (𝑆′), and using centrality of M, we compute, for 𝑥, 𝑥 ′ ∈ 𝐻 (𝑆′) and 𝑔, 𝑔′ ∈ 𝑀 (𝑆′),

(𝛼(𝑥)𝑔𝛼(𝑥 ′)𝑔′)𝑁𝑑 = 𝛼(𝑥𝑥 ′)𝑁𝑑𝑔𝑁𝑑
𝑥,𝑥′𝑔

𝑁𝑑𝑔′𝑁𝑑 = 𝑔𝑁𝑑𝑔′𝑁𝑑 = (𝛼(𝑥)𝑔)𝑁𝑑 (𝛼(𝑥 ′)𝑔′)𝑁𝑑 ,

so indeed [𝑁𝑑] : 𝐸 → 𝐸 is a homomorphism.
Finally, we show that 𝐸 [𝑁] → 𝐻 is faithfully flat when M is a torus. For this, let h be a local section

of H. After fppf localization, we may lift h to a section e of E. Note that 𝑒𝑛 is a local section of M, so
because M is a divisible group scheme, we may pass to a further fppf localization to assume 𝑒𝑛 = 𝑚𝑛

for some local section m of M. Because M is central in E, we see that (𝑒𝑚−1)𝑛 = 1, and thus, 𝑒𝑚−1 is a
local section of 𝐸 [𝑁] mapping to h. So faithful flatness follows from Lemma 2.25. �

Proposition 2.27. Suppose G is a weakly reductive S-group scheme. There exists a smooth S-group
scheme 𝐺ab of multiplicative type and a faithfully flat homomorphism 𝜋 : 𝐺 → 𝐺ab with the universal
property that for any fppf abelian sheaf H on the category of S-schemes and homomorphism of sheaves
𝑓 : 𝐺 → 𝐻, there is a unique homomorphism 𝐺ab → 𝐻 through which f factors.

The kernel 𝒟(𝐺) of 𝜋 represents the fppf-sheafification of the functor 𝑆′ ↦→ [𝐺 (𝑆′), 𝐺 (𝑆′)] on
S-schemes 𝑆′, and in particular, the formation of 𝐺ab commutes with any base change on S.

Example 2.28. Before giving the proof, we illustrate again the relevance of weak reductivity (as opposed
to geometric reductivity). For the G in Example 2.20, we claim that 𝐺ab cannot exist as a scheme. Indeed,
note that 𝐺𝑠 is commutative, so on the special fiber, we have 𝒟(𝐺𝑠) = 1. However, since 𝜁𝑝 does not
lie in 𝑝𝐴, it follows that 𝐺𝐴/𝑝 is not commutative, so 𝒟(𝐺𝐴/𝑝) ≠ 1. Since every scheme over 𝐴/𝑝 with
trivial special fiber is trivial (by ‘nilpotent Nakayama’), this is a contradiction.

Proof of Proposition 2.27. The claims in the second paragraph of the proposition follow directly from
the universal property of the first paragraph. First, note that if G has connected fibers, then [Con14,
Thm. 5.3.1] shows that 𝐺ab exists and is a torus. In general, any S-homomorphism 𝑓 : 𝐺 → 𝐻 as in the
statement of the proposition induces an S-homomorphism 𝐺0 → 𝐻, so f kills 𝒟(𝐺0) and hence factors
through an S-homomorphism 𝐺/𝒟(𝐺0) → 𝐻, where 𝐺/𝒟(𝐺0) is a smooth affine S-group scheme
with torus identity component. Thus, we may and do assume that 𝐺0 is a torus.

Working étale-locally on S (using effectivity of étale descent for affine S-schemes), we may choose
representatives ℎ1, . . . , ℎ𝑛 ∈ 𝐺 (𝑆) for 𝐺/𝐺0. Define the map 𝜙 : (𝐺0)𝑛 → 𝐺0 by 𝜙(𝑔1, . . . , 𝑔𝑛) =
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∏𝑛
𝑖=1 ℎ𝑖𝑔𝑖ℎ

−1
𝑖 𝑔−1

𝑖 . Note that 𝜙 is an S-homomorphism, so by [GP11, Exp. IX, Thm. 6.8], there is some
S-subgroup scheme M of 𝐺0 of multiplicative type through which 𝜙 factors and such that the factored
map 𝜙 : (𝐺0)𝑛 → 𝑀 is faithfully flat. Since f vanishes on all commutators, it annihilates M, and thus,
f must factor through 𝐺/𝑀 . By definition, if 𝑔 ∈ 𝐺0 (𝑆′) is a section, then ℎ𝑖𝑔ℎ−1

𝑖 ∈ 𝑔𝑀 , so since 𝐺0

is commutative, it follows that 𝐺0/𝑀 is central in 𝐺/𝑀 . Thus, replacing G by 𝐺/𝑀 , we may and do
assume that 𝐺0 is central in G.

Working Zariski-locally on S, we may and do assume that the index of 𝐺0 in G is constant, say equal
to n. By Lemma 2.26, 𝐺 [𝑁] := [𝑁]−1 (1) is an S-subgroup scheme of G where 𝑁 = 𝑛2. By the same
lemma, the map 𝐺 [𝑁] → 𝐺/𝐺0 is faithfully flat, so there is a short exact sequence

1→ 𝐺0 [𝑁] → 𝐺 [𝑁] → 𝐺/𝐺0 → 1.

Since 𝐺0 [𝑁] and 𝐺/𝐺0 are both finite étale (the former because N is invertible on the base), it follows
that 𝐺 [𝑁] is also finite étale.

By working étale locally on S, we may assume that 𝐺 [𝑁] is a constant group scheme. In this case,
the functor on S-schemes 𝑆′ ↦→ [𝐺 [𝑁] (𝑆′), 𝐺 [𝑁] (𝑆′)] is represented by the constant S-group scheme
𝒟(𝐺 [𝑁]). Moreover, if 𝒟(𝐺) denotes the sheafification of the functor 𝑆′ ↦→ [𝐺 (𝑆′), 𝐺 (𝑆′)], then we
have 𝒟(𝐺) = 𝒟(𝐺 [𝑁]): indeed, for an S-scheme 𝑆′ and 𝑔, ℎ ∈ 𝐺 (𝑆′), centrality of 𝐺0 in G shows that
the commutator 𝑔ℎ𝑔−1ℎ−1 depends only on the images of g and h in (𝐺/𝐺0) (𝑆′). In particular, since the
map 𝐺 [𝑁] → 𝐺/𝐺0 is an epimorphism of fppf sheaves, we may pass to an fppf cover of 𝑆′ to assume
𝑔, ℎ ∈ 𝐺 [𝑁] (𝑆′). So indeed, 𝒟(𝐺) = 𝒟(𝐺 [𝑁]), which is a finite étale group scheme killed by N, so
its order is invertible on S.

Finally, note that 𝐺ab := 𝐺/𝒟(𝐺 [𝑁]) is a smooth S-group scheme by [GP11, Exp. V, Thm. 4.1].
It is commutative by the previous paragraph. Moreover, since 𝐺0 is a torus the image of 𝐺0 in 𝐺ab

(which makes sense by [GP11, Exp. IX, Thm. 6.8]) is also a torus, which must be equal to the relative
identity component (𝐺ab)0 for dimension reasons. Moreover, 𝐺/𝐺0 → 𝐺ab/(𝐺ab)0 is an epimorphism
of sheaves, so the component group of 𝐺ab is of order invertible on S. Thus, it follows from [GP11, Exp.
XVII, Prop. 7.1.1] that 𝐺ab is a group scheme of multiplicative type, as desired. �

The center and abelianization of G are related. We begin with a useful lemma.

Lemma 2.29. Let 𝑇1 and 𝑇2 be S-group schemes of multiplicative type such that 𝑇2 is a torus, and let
𝑓 : 𝑇1 → 𝑇2 be an isogeny. Let Γ be a finite group acting on 𝑇1 and 𝑇2 compatibly with f, and define maps

𝜙 : 𝑇1 →
∏
𝛾∈Γ

𝑇1, 𝜙(𝑥) = ((𝛾 · 𝑥)𝑥−1)𝛾∈Γ

𝜓 :
∏
𝛾∈Γ

𝑇2 → 𝑇2, 𝜓((𝑦𝛾)𝛾∈Γ) =
∏
𝛾∈Γ

(𝛾 · 𝑦𝛾)𝑦
−1
𝛾 .

The natural map 𝑓 : ker 𝜙 → coker 𝜓 is an isogeny, and if Γ is of order n, then ker 𝑓 is contained in
[𝑛]−1 (ker 𝑓 ).

Note that ker 𝜙 and coker 𝜓 are S-group schemes of multiplicative type and that ker 𝑓 is of multi-
plicative type, and in particular flat, by [GP11, Exp. IX, Thm. 6.8].

Proof. By Lemma 2.25, to show that 𝑓 is faithfully flat, it suffices to show that 𝑓 is an epimorphism
of fppf sheaves. To this end, let 𝑡2 be a local section of 𝑇2. Since 𝑇2 is a torus, after localizing, we may
assume there is some section 𝑡 ′2 such that 𝑡 ′2𝑛 = 𝑡2. Further localizing, there exists a section 𝑡1 of 𝑇1 such
that 𝑓 (𝑡1) = 𝑡 ′2. We then have

𝑓

(∏
𝛾∈Γ

(𝛾 · 𝑡1)

)
=

∏
𝛾∈Γ

(𝛾 · 𝑡 ′2) = 𝑡2 ·
∏
𝛾∈Γ

(𝛾 · 𝑡 ′2)𝑡
′
2−1,
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which has the same image in coker 𝜓 as 𝑡2. Since
∏

𝛾∈Γ (𝛾 · 𝑡1) lies in ker 𝜙, we see that indeed 𝑓 is an
epimorphism of fppf sheaves.

Now suppose that 𝑡1 is a local section of ker 𝜙 such that 𝑓 (𝑡1) = 1. We claim that then 𝑓 (𝑡1)
𝑛 = 1.

We may write 𝑓 (𝑡1) =
∏

𝛾∈Γ (𝛾 · 𝑡2,𝛾)𝑡
−1
2,𝛾 locally. Using Γ-equivariance of f and the fact that 𝑡1 is fixed

by Γ, we have

𝑓 (𝑡1)
𝑛 =

∏
𝛾′ ∈Γ

(𝛾′ · 𝑓 (𝑡1)) =
∏

𝛾,𝛾′ ∈Γ

(𝛾′𝛾 · 𝑡2,𝛾) (𝛾
′ · 𝑡−1

2,𝛾) =
∏
𝛾∈Γ

(∏
𝛾′ ∈Γ

(𝛾′𝛾 · 𝑡2,𝛾) (𝛾
′ · 𝑡2,𝛾)

−1

)
= 1,

where the final equality follows by reindexing. So indeed, ker 𝑓 lies in [𝑛]−1 (ker 𝑓 ), and in particular,
it is quasi-finite. Since it is of multiplicative type, it is finite, and hence, 𝑓 is an isogeny. �

Proposition 2.30. Let G be a weakly reductive S-group scheme. If 𝑍 (𝐺) is smooth, then the natural
map 𝑓 : 𝑍 (𝐺)0 → 𝐺ab,0 is an isogeny of S-tori. If, moreover, 𝑍 (𝒟(𝐺0)) is smooth, then f is smooth
(equivalently, étale).

Proof. Propositions 2.19 and 2.27 show that 𝑍 (𝐺)0 and 𝐺ab,0 are S-tori under our assumptions, so it
suffices to check the result on geometric fibers. In other words, we may and do assume that 𝑆 = Spec 𝑘
for an algebraically closed field k. Note that the natural 𝑍 (𝐺0) → 𝐺0,ab (whose target is not 𝐺ab,0)
is an isogeny of multiplicative type groups with kernel 𝑍 (𝒟(𝐺0)) (irrespective of whether 𝑍 (𝐺0) is
smooth): a maximal central torus 𝑇0 of 𝐺0 is of finite index in 𝑍 (𝐺0), and there is the standard central
isogeny 𝑇0 ×𝒟(𝐺

0) → 𝐺0.
Now 𝐺/𝐺0 acts on 𝑍 (𝐺0) and 𝐺0/𝒟(𝐺0) by conjugation, so we can apply Lemma 2.29 with

𝑇1 = 𝑍 (𝐺0), 𝑇2 = 𝐺0,ab, Γ = 𝐺/𝐺0, and 𝑓 : 𝑇1 → 𝑇2 the natural map. We will also use the notation
𝜙, 𝜓, 𝑓 of Lemma 2.29. In this case, ker 𝜙 = 𝐶𝐺0 (𝐺), which admits 𝑍 (𝐺)0 as an open and closed
S-subgroup scheme: indeed, 𝐶𝐺0 (𝐺) = 𝐺0 ∩ 𝑍 (𝐺), and 𝑍 (𝐺)0 (resp. 𝐺0) is open and closed in 𝑍 (𝐺)
(resp. G). Moreover, coker 𝜓 = 𝐺ab,0. Thus, to establish the proposition, it suffices to show that 𝑓 is an
isogeny, which is smooth provided 𝑍 (𝒟(𝐺0)) is smooth. The fact that 𝑓 is an isogeny follows directly
from Lemma 2.29. The last statement of Lemma 2.29 shows that ker 𝑓 lies in [𝑛]−1 (𝑍 (𝒟(𝐺0))), where
n is the order of 𝐺/𝐺0. Since n is invertible on S by hypothesis, smoothness of 𝑍 (𝒟(𝐺0)) implies
smoothness of [𝑛]−1 (𝑍 (𝒟(𝐺0))). �

3. Centralizers

In this section, we study various kinds of centralizers in weakly reductive group schemes. Before diving
into the results, we would like to summarize what is available in the literature for centralizers of weakly
reductive subgroups of weakly reductive groups.

1. Over a field of pretty good characteristic (see Definition 1.12), [Her13] shows that the centralizer of
any subgroup scheme of any connected reductive group is smooth. In fact, this property characterizes
pretty good characteristic.

2. Over a field of good characteristic 𝑝 > 0, the centralizer of any subgroup scheme of a connected
reductive group has no p-torsion in its component group; this follows via a short argument with the
Springer isomorphism. This general statement is false in every bad characteristic, as Springer showed
in [Spr66, Theorem 4.12] by considering centralizers of regular unipotent elements.

3. If G is a connected reductive group over a field k of characteristic 𝑝 ≥ 0 and H is a finite subgroup
of 𝐺 (𝑘) of order prime to p, then 𝐶𝐺 (𝐻) has reductive identity component by [PY02, Theorem 2.1],
and its component group is of order prime to p (even in bad characteristic) by [FS24, Proposition
VIII.5.11].

4. If H is a connected reductive subgroup of a connected reductive group G over a field of characteristic
𝑝 > 0, then we are not aware of any general results concerning reductivity of 𝐶𝐺 (𝐻) apart from the
‘classical’ case that H is of multiplicative type [Con14, Lemma 2.2.4] or the upcoming Corollary 3.5.
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5. If G is a weakly reductive group scheme over a base scheme S and H is a finite subgroup of 𝐺 (𝑆) of
order invertible on S, then 𝐶𝐺 (𝐻) is smooth and affine with reductive identity component; this follows
from simple deformation theory and (3). If H is moreover solvable, then [DHKM24, Theorem A.12]
shows that 𝐶𝐺 (𝐻) has finite component group. Apart from this, we are not aware of any results in
the literature concerning smoothness, reductivity or finiteness of component groups for centralizers
of weakly reductive subgroup schemes of G prior to Corollaries 3.5 and 3.7 below.

3.1. Centralizers of weakly reductive subgroup schemes

We will now input the general results of Section 2 into concrete results on centralizers. We begin with
the following lemma.

Lemma 3.1. Let A be a DVR, and let X be a locally noetherian A-scheme. If 𝑋0 is an open and closed
subscheme of the special fiber 𝑋𝑠 , then the natural map 𝑋 − 𝑋0 → 𝑋 is affine. In particular, if X is
affine, then 𝑋 − 𝑋0 is also affine.

Proof. Affineness of a morphism can be checked Zariski-locally on the target, so we may freely shrink
X to assume that the special fiber of X is connected. In this case, 𝑋0 is either empty or all of 𝑋𝑠 . If 𝑋0 is
empty, then the lemma is obvious; otherwise, 𝑋0 = 𝑉 (𝜋), where 𝜋 is a uniformizer of A, and the lemma
is again clear. �

The proof of the following theorem is similar in spirit to one of the proofs of [PY02, Theorem 2.1],
which shows reductivity of the centralizer 𝐶𝐺 (Λ) of a finite group Λ over a field k by realizing it as the
stabilizer of the conjugation action of G on Hom𝑘-gp(Λ, 𝐺).

Theorem 3.2. Let S be a scheme, and let G and H be geometrically reductive smooth affine S-group
schemes. Suppose 𝑓 : 𝐻 → 𝐺 is an S-homomorphism such that

1. H1 (𝐻𝑠 , 𝔤𝑠) = 0 for all 𝑠 ∈ 𝑆,
2. 𝑓𝑠 (𝐻𝑠) is 𝐺𝑠-cr for all 𝑠 ∈ 𝑆.

Then 𝐶𝐺 (𝐻) is geometrically reductive smooth affine S-scheme. If G is weakly reductive and char 𝑘 (𝑠)
is good for 𝐺𝑠 for all 𝑠 ∈ 𝑆, then 𝐶𝐺 (𝐻) is also weakly reductive.

Proof. By (1) and deformation theory [GP11, Exp. III, Corollaire 2.8], the orbit map 𝜙 : 𝐺 →
Hom𝑆-gp(𝐻, 𝐺) is smooth, and thus, 𝐶𝐺 (𝐻) is smooth and affine. To show that 𝐶𝐺 (𝐻) is geometrically
reductive, it suffices by Theorem 2.1 to assume that 𝑆 = Spec 𝐴 for a complete DVR A with algebraically
closed residue field. In this case, Theorem 2.2 shows that Hom𝑆-gp(𝐻, 𝐺) is a disjoint union of finite
type S-affine S-schemes.

Let C be the schematic closure of the G-orbit of 𝑓𝜂 in Hom𝑆-gp(𝐻, 𝐺), so C is a G-stable closed
subscheme of Hom𝑆-gp (𝐻, 𝐺) through which the orbit map of f factors. Let 𝐶1 be the G-stable open
subscheme of C obtained by deleting all of the components of 𝐶𝑠 not containing a G-translate of 𝑓𝑠 , so
𝐶1 is affine by Lemma 3.1. Since 𝜙 is smooth, 𝜙 has open image; moreover, each fiber of 𝜙 has closed
image by (2) and Lemma 2.10. Consequently, each fiber of 𝐶1 is the (open) orbit of f in that fiber, and
the map 𝑖 : 𝐶1 → Hom𝑆-gp(𝐻, 𝐺) is an open embedding on both fibers. Since 𝐶1 is flat, it follows that i
is étale and radicial, and thus, [DG67, IV4, Théorème 17.9.1] shows that i is an open embedding.

Now we show that 𝐶𝐺 (𝐻) is geometrically reductive; for this, it is equivalent to show that 𝐺/𝐶𝐺 (𝐻)
is affine by Theorem 2.1. We will show, in fact, that the natural map 𝐺/𝐶𝐺 (𝐻) → 𝐶1 is an isomorphism.
By definition, 𝜙 factors through 𝐶1, and the previous paragraph shows that this factored map is surjective.
Note that the quotient 𝐺/𝐶𝐺 (𝐻) exists as a smooth separated algebraic space of finite type by work of
Artin [Art74, Corollary 6.3]. Moreover, the induced morphism 𝐺/𝐶𝐺 (𝐻) → 𝐶1 is a monomorphism, so
by [Knu71, II, 6.15], it follows that 𝐺/𝐶𝐺 (𝐻) is a scheme. We claim that the morphism 𝐺/𝐶𝐺 (𝐻) → 𝐶1
is an isomorphism. Indeed, from the above, we see that it is a smooth surjective monomorphism. Thus,
by [DG67, IV4, Théorème 17.9.1], it is a surjective open embedding and thus an isomorphism. As
remarked above, this shows that 𝐶𝐺 (𝐻) is geometrically reductive.
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For the final claim, we may and do assume that 𝑆 = Spec 𝑘 for an algebraically closed field k
of characteristic 𝑝 > 0. If 𝜋0𝐶𝐺 (𝐻) has any p-torsion, then a simple argument with the Jordan
decomposition shows that 𝐶𝐺 (𝐻) (𝑘) admits unipotent elements not lying in 𝐶𝐺 (𝐻)

0(𝑘). This does not
happen in good characteristic by the argument of [SS70, III, 3.15]. �

In order to apply Theorem 3.2, we need the following simple lemma.

Lemma 3.3. Let k be an algebraically closed field, and let G and H be (possibly disconnected) reductive
groups over k. Let T be a maximal k-torus of H. Suppose 𝑓 : 𝐻 → 𝐺 is a k-homomorphism such that
H1 (𝐻,𝑉) = 0 for all representations V isomorphic to Lie 𝐺 under some k-homomorphism 𝐻 → 𝐺 such
that the multiset of weights for T on V is the same as the multiset of weights for T on 𝔤. Then 𝑓 (𝐻) is G-cr.

Proof. Note that Hom𝑘-gp (𝐻, 𝐺) admits a disjoint union decomposition into pieces on which the multiset
of weights for T on 𝔤 is constant; let U be the piece containing f. By hypothesis and [GP11, Exp. III,
Corollaire 2.8], every orbit map 𝐺 → 𝑈 is smooth, and thus, every orbit is an open subscheme of U.
Thus, every orbit is also closed. By Lemma 2.11, it follows that 𝑓 (𝐻) is G-cr. �

Now we recall the following fundamental result of McNinch [McN98], which builds on work of
Jantzen [Jan97]. If H is a (possibly disconnected) reductive group and 𝐻1, . . . , 𝐻𝑛 are the simple factors
of 𝒟(𝐻0), we let ℓ𝐻 = inf𝑖 (rank 𝐻𝑖). Note that if 𝐻0 is a torus, then ℓ𝐻 = ∞.

Theorem 3.4 [McN98, Corollary 1.1.2]. Let k be a field of characteristic 𝑝 > 0, and let H be a connected
reductive k-group. If V is an algebraic k-representation of H and dim𝑉 ≤ 𝑝ℓ𝐻 , then V is semisimple.
In particular, if dim𝑉 < 𝑝ℓ𝐻 , then H1 (𝐻,𝑉) = Ext1𝐻 (𝑘,𝑉) = 0.

Corollary 3.5. Let S be a scheme, and let G and H be geometrically reductive smooth affine S-group
schemes. Suppose that H is weakly reductive and that for every 𝑠 ∈ 𝑆, either char 𝑘 (𝑠) = 0 or char 𝑘 (𝑠) >
dim𝒟(𝐺0

𝑠)/ℓ𝐻𝑠 . If H acts faithfully on G, then 𝐶𝐺 (𝐻) is smooth, affine and geometrically reductive. If
G is weakly reductive, then 𝐶𝐺 (𝐻) is also weakly reductive.

Note that if 𝐻0 is a torus (in particular if H is finite étale), then Corollary 3.5 involves no hypothesis
on the residue characteristics of S.

Proof. By passing separately from H to 𝒟(𝐻0), 𝐻0/𝒟(𝐻0), and 𝐻/𝐻0 (and from G to centralizers of
these), we can assume that H is either semisimple, a torus or finite étale of order invertible on S. Assume
first that H is either a torus or finite étale. In this case, let 𝐺1 = 𝐺 �𝐻, a geometrically reductive smooth
affine S-group scheme which is weakly reductive whenever G is. By Theorem 3.2 (whose hypotheses
always hold in the current setting), the centralizer 𝐶𝐺1 (𝐻) is smooth, affine and geometrically reductive,
and it is weakly reductive whenever G is. There is a natural projection map 𝑓 : 𝐶𝐺1 (𝐻) → 𝐻, and
𝐶𝐺 (𝐻) = 𝑓 −1(1). If H is a torus, then in particular, it is commutative, and so f is split by the natural
inclusion 𝐻 → 𝐺1. Thus, 𝐶𝐺1 (𝐻) = 𝐶𝐺 (𝐻) × 𝐻 and 𝐶𝐺 (𝐻) is geometrically reductive, smooth and
affine. Moreover, 𝐶𝐺0 (𝐻) has connected fibers by the classical theory, so 𝐶𝐺 (𝐻) is weakly reductive if
G is weakly reductive. Now assume that H is finite étale of order invertible on S. Note f factors through a
constant map 𝐶𝐺1 (𝐻)/𝐶𝐺1 (𝐻)

0 → 𝐻, so 𝐶𝐺 (𝐻) is an open and closed S-subgroup scheme of 𝐶𝐺1 (𝐻),
from which the result follows in this case. If G is weakly reductive, then to show that 𝐶𝐺 (𝐻) is weakly
reductive, it suffices to show that 𝐶𝐺0 (𝐻) is weakly reductive, which follows from the above and [FS24,
Proposition VIII 5.11] applied on S-fibers.

Now assume that H is semisimple. By Lemma 3.3, Theorem 3.4, [BMR05, Corollary 3.42], and our
bounds on the residue characteristics, 𝐻𝑠 is 𝐺𝑠-cr for all 𝑠 ∈ 𝑆. The action of H on 𝐺0 is given by a
map 𝑓 : 𝐻 → 𝐺0/𝑍 (𝐺0), and Theorem 3.2 combines with Theorem 3.4 to show that 𝐶𝐺0/𝑍 (𝐺0) (𝐻)
is geometrically reductive, smooth and affine. The assumption on residue characteristics implies (by
considering the simple types) that 𝑍 (𝐺0) is smooth, so as H acts faithfully, we conclude that 𝐶𝐺0 (𝐻)
is geometrically reductive, smooth and affine. If X is the stabilizer of f in G, then 𝐶𝐺0 (𝐻) = 𝑋 ∩ 𝐺0 is
an open S-subgroup scheme of X, so X is smooth affine, and we claim that X is geometrically reductive.
For this, we may and do assume 𝑆 = Spec 𝐴 for a DVR A. Now the quotient 𝐺/𝑋 is affine: first,
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𝐺0/𝐶𝐺0 (𝐻) is isomorphic to an affine open subscheme U of Hom𝑆-gp (𝐻, 𝐺0/𝑍 (𝐺0)) which is also a
closed subscheme on S-fibers, as follows from the proof of Theorem 3.2. The quotient 𝐺/𝑋 is a finite
union of 𝐺/𝐺0-translates of U in Hom𝑆-gp(𝐻, 𝐺0/𝑍 (𝐺0)), so it is an open subscheme which is closed
on fibers. By Theorem 2.2 and Lemma 3.1, it follows that 𝐺/𝑋 is affine and thus X is geometrically
reductive by Theorem 2.1. We may now pass from G to X to assume that H acts trivially on 𝐺0.

Since H has connected fibers, it also acts trivially on the finite étale S-group scheme 𝐺/𝐺0. It would
now be enough to show that H acts trivially on G. Thus, there is a natural map 𝜑 : 𝐻 × 𝐺 → 𝐺0

given by 𝜑(ℎ, 𝑔) = (ℎ𝑔ℎ−1)𝑔−1. Since H acts trivially on 𝐺0, it follows that 𝜑 factors through a map
𝐻×𝐺/𝐺0 → 𝑍 (𝐺0). For fixed 𝑔 ∈ (𝐺/𝐺0) (𝑆), the map 𝜑(−, 𝑔) : 𝐻 → 𝑍 (𝐺0) is an S-homomorphism.
Since 𝑍 (𝐺0) is of multiplicative type and H is semisimple, 𝜑(−, 𝑔) is trivial, as desired. Finally, if G is
weakly reductive, then to show that 𝐶𝐺 (𝐻) is weakly reductive, it is easy to pass from G to 𝐺0/𝑍 (𝐺0)
and thus reduce to Theorem 3.2. �

Next, we obtain a similar result under better bounds when H is the centralizer of a finite group of
order invertible on the base. For this, we will use recent fundamental results of Fargues–Scholze. First,
we must recall the notion of good filtration. The following theorem is a basic consequence of [FS24,
Proposition VIII.5.12].

Theorem 3.6 [FS24, Proposition VIII.5.12]. Let k be an algebraically closed field of characteristic
𝑝 > 0, and let G be a connected reductive k-group such that p is pretty good for G. If Λ is a finite group
of order prime to p acting on G, then H𝑖 (𝐶𝐺 (Λ), 𝔤) = 0 for all 𝑖 > 0.

Proof. By [AJ84, 4.4], every symmetric power Sym𝑛 𝔤∗ admits a good filtration: in other words, there
is a filtration of Sym𝑛 𝔤∗ such that every subquotient is isomorphic to H0(𝜆) for some dominant weight
𝜆. Since p is pretty good for G, [Her13, Theorem 5.2] shows that 𝔤 � 𝔤∗ as G-representations and
thus, in particular, 𝔤 admits a good filtration. Now if 𝐻 = 𝐶𝐺 (Λ), then the above discussion and
[FS24, Proposition VIII.5.12] show that O(𝐺/𝐻) also admits a good filtration. Using the equality
H𝑖 (𝐻, 𝔤) = H𝑖 (𝐺, 𝔤 ⊗𝑘 O(𝐺/𝐻)) (which relies on the fact that 𝐺/𝐻 is affine), it is enough to show that
H𝑖 (𝐺, H0 (𝜆) ⊗𝑘 H0(𝜇)) = 0 for all 𝑖 > 0 and all dominant weights 𝜆 and 𝜇. This is proved in [Jan03,
II, 4.13]. �

Corollary 3.7. Let S be a scheme, and let G be a weakly reductive S-group scheme. Let Λ be a finite étale
S-group scheme of order invertible on S which acts on G. Then 𝐶𝐺 (Λ) is a weakly reductive S-group
scheme. Moreover, suppose that for every 𝑠 ∈ 𝑆, char 𝑘 (𝑠) is pretty good for 𝐺𝑠 . Then 𝐶𝐺 (𝐶𝐺 (Λ)) is a
weakly reductive S-group scheme.

Proof. The first claim follows immediately from Corollary 3.5. Let 𝐻 = 𝐶𝐺 (Λ). By Theorem 3.2, it
is enough to show that H1(𝐻𝑠 , 𝔤𝑠) = 0 and 𝐻𝑠 is 𝐺𝑠-cr for all 𝑠 ∈ 𝑆. The first condition holds by
Theorem 3.6, and the second condition holds by [BMR05, Corollary 3.17]. �

Example 3.8. In general, some bound on the residue characteristics as in Corollary 3.5 is necessary,
even in pretty good characteristic. For example, let p be any prime number, let 𝑆 = Spec F𝑝 [[𝑡]], let
𝐻 = SL2, and let 𝐺 = GL𝑝+1. With notation as in [Jan03, II, Chapter 2], there is an indecomposable
𝑝 + 1-dimensional representation H0(𝑝) of SL2 equipped with a filtration

0→ L(𝑝) → H0(𝑝) → L(𝑝 − 2) → 0.

This gives an extension class in Ext1𝐻 (L(𝑝 − 2), L(𝑝)). Multiplying this class by t gives a 𝑝 + 1-
dimensional representation V of SL2 over S with special fiber L(𝑝) ⊕ L(𝑝 − 2) and generic fiber H0(𝑝).
Relative to the corresponding map 𝐻 → 𝐺, we have 𝐶𝐺 (𝐻)𝑠 � G2

𝑚, while 𝐶𝐺 (𝐻)𝜂 � G𝑚 [Jan03,
Proposition II.2.8], so 𝐶𝐺 (𝐻) is not flat.

Moreover, the centralizer of a connected reductive subgroup of a reductive group need not be reductive
if the characteristic is too small; this is related to the fact that representations of connected reductive
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groups can fail to be semisimple in positive characteristic. For explicit examples, see the MathOverflow
answer [hm], as well as the comments on that answer.

We do not know the optimal bound on the residue characteristics in Corollary 3.5; if 𝐺 = GL𝑛, then
one can improve the bound from 𝑛2/ℓ𝐻 to 𝑛/ℓ𝐻 . If 𝐺 = Sp𝑛 (resp. SO𝑛), then one can improve the
bound from 𝑛(2𝑛 + 1)/ℓ𝐻 (resp. 𝑛(𝑛 − 1)/2ℓ𝐻 ) to 𝑛/ℓ𝐻 . In general, it seems reasonable to expect that
something like ℎ𝐺/ℓ𝐻 is the correct bound, where ℎ𝐺 is the Coxeter number of G.

3.2. Centralizers of pure unipotent elements

Later arguments rely heavily on the smoothness of centralizers of pure fiberwise unipotent elements.
The notion of purity will capture the idea that an element of G ‘looks similar’ across all fibers. For

example, an element like
(
1 𝑝
0 1

)
∈ GL2(Z𝑝)will not be pure.

Definition 3.9. Let G a reductive group over a scheme S. A section 𝑔 ∈ 𝐺 (𝑆) is pure if 𝑠 ↦→ 𝐶𝐺𝑠 (𝑔𝑠)
is locally constant on s. There is an analogous definition for elements of the Lie algebra.

If S is the spectrum of a discrete valuation ring, this means that the special and generic fibers of the
centralizer of g have the same dimension.

Using a Springer isomorphism, the smoothness for centralizers of unipotent elements is closely
related to the smoothness for centralizers of nilpotent elements in the Lie algebra. This smoothness
was claimed in [McN08], but the argument there has a gap. This has been fixed by Hardesty (for pure
nilpotents) and by the second author (for pure unipotents and nilpotents) [Har18, Cot22a]. Since our
later arguments are naturally phrased in terms of unipotent elements, we will build on the latter.

Theorem 3.10. Let A be a DVR with residue characteristic p, and let G be a weakly reductive group
scheme over Spec 𝐴. If p is pretty good for G and 𝑢 ∈ 𝐺 (𝐴) is a pure fiberwise unipotent element, then
𝐶𝐺 (𝑢) is A-smooth.

Using Remark 1.13, it would be equivalent to suppose that p is good for 𝐺0, that #𝜋1 (𝒟(𝐺
0)) is

prime-to-p, and that 𝑍 (𝐺0) is A-smooth.

Proof. If G is connected, flatness comes from [Cot22a, Theorem 1.1]. The smoothness of the fibers
follows, for example, from [Her13, Theorem 1.1].

In general, note that 𝑢 has order a power of p, and hence, u lies in the identity component of G. It
suffices to show that every component of G which contains a point in the special fiber centralizing u has
an A-point centralizing u. For then, the centralizer 𝐶𝐺 (𝑢) is a union of copies of the smooth 𝐶𝐺0 (𝑢).

Given 𝑔 ∈ 𝐺 (𝐴) such that 𝑔 centralizes 𝑢𝑠 in the special fiber, as u is pure, [Cot22a, Theorem 5.11]
shows that 𝑔𝑢𝑔−1 and u are 𝐺0 (𝐴)-conjugate. Thus, there is ℎ ∈ 𝐺0 (𝐴) such that ℎ𝑢ℎ−1 = 𝑔𝑢𝑔−1, and
hence, ℎ−1𝑔 ∈ 𝐺 (𝐴) centralizes u and lies in the desired component of G. �

3.3. Complements on pure unipotents

We conclude with some additional results about pure unipotents which elaborate the sense in which a
pure unipotent ‘looks similar’ in the special and generic fibers.

We begin by reviewing the Bala-Carter method which classifies nilpotent orbits for a connected
reductive group over an algebraically closed field k of good characteristic 𝑝 ≥ 0. (More information
can be found in [Jan04, §4], and a uniform proof without case-checking in small characteristic is due
to Premet [Pre03].) Using a Springer isomorphism, this equivalently gives a classification of conjugacy
classes of unipotent elements. To state it, we need to define some terminology.

Let H be a connected reductive k-group with p good for H, and 𝔥 = Lie 𝐻.

◦ A nilpotent 𝑁 ∈ 𝔥 is a distinguished nilpotent if each torus contained in 𝐶𝐻 (𝑁) is contained in the
center of H.
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◦ For a parabolic 𝑃 ⊂ 𝐻 with unipotent radical U, the Richardson orbit associated to P is the unique
nilpotent orbit of H with dense intersection with Lie𝑈. Its intersection with Lie 𝑃 is a single orbit
under P.

◦ A parabolic subgroup 𝑃 ⊂ 𝐻 with unipotent radical U is a distinguished parabolic if dim 𝑃/𝑈 =
dim𝑈/𝒟(𝑈).

Bala and Carter classified nilpotent orbits when the characteristic is good. One can check that if p is
good for H, it will also be good for any Levi factor of a parabolic subgroup of H. The following fact can
be found in [Jan04, §4].

Fact 3.11. If p is a good prime for H, the nilpotent orbits for H are in bijection with 𝐻 (𝑘)-conjugacy
classes of pairs (𝐿, 𝑃) where L is a Levi factor of a parabolic subgroup of H and P is a distinguished
parabolic of L. The nilpotent orbit for H associated to (𝐿, 𝑃) is the unique one meeting Lie(𝑃) in its
Richardson orbit for L.

The Bala-Carter data for H is the set of 𝐻 (𝑘)-conjugacy classes of pairs (𝐿, 𝑃) as above. It turns
out it is independent of k in the sense that it can be described completely in terms of the root datum of
H as follows. All Levi subgroups L of a parabolic k-subgroup Q of H are a single R𝑢,𝑘 (𝑄)-orbit, so in
Fact 3.11, we may restrict to one Q per 𝐻 (𝑘)-conjugacy class and one L per Q. We may pick L so that
it contains a (split) maximal torus T. After conjugation by 𝐿(𝑘), the distinguished parabolic subgroup
𝑃 ⊂ 𝐿 may be assumed to contain T as well. But we know that parabolic subgroups Q of H containing
T are in bijection with parabolic subsets of Φ(𝐻, 𝑇) via 𝑄 ↦→ Φ(𝑄, 𝑇), so the possible Levi factors L
of Q containing T are described just in terms of the root datum. Likewise, parabolic subgroups P of L
containing T are in bijection with parabolic subsets of Φ(𝐿, 𝑇). If we can characterize the condition
that P is distinguished just in terms of the root data, this would mean that the Bala-Carter data can be
described solely in terms of the root data and so is completely combinatorial.

We do so by constructing a grading on the Lie algebra of a parabolic P. Pick a Borel subgroup
𝐵 ⊂ 𝐻 satisfying 𝑇 ⊂ 𝐵 ⊂ 𝑃. Let 𝔱 = Lie(𝑇) and Δ ⊂ Φ = Φ(𝐿, 𝑇) be the set of positive simple
roots determined by B. There is a unique subset 𝐼 ⊂ Δ such that 𝑃 = 𝐵𝑊𝐼 𝐵 where 𝑊𝐼 is the subset
of the Weyl group generated by reflections with respect to roots in I. Define a group homomorphism
𝑓 : ZΦ ⊂ ZΔ → Z by specifying that on the basis Δ , we have

𝑓 (𝛼) =

{
2 𝛼 ∈ Δ − 𝐼,

0 𝛼 ∈ 𝐼 .

This function gives a grading on 𝔩 = Lie(𝐿):

𝔩(𝑖) =
⊕
𝑓 (𝛼)=𝑖

𝔩𝛼 and 𝔩(0) = ��
⊕
𝑓 (𝛼)=0

𝔩𝛼
��� ⊕ 𝔱

(sums indexed by 𝛼 ∈ Φ). With respect to this grading,

Lie 𝑃 =
⊕
𝑖≥0

𝔩(𝑖) and Lie𝑈 =
⊕
𝑖>0

𝔩(𝑖).

The condition that P is distinguished is equivalent to the condition that

dim 𝔩(0) = dim 𝔩(2) + dim 𝑍𝐿

by [Car85, Corollary 5.8.3] as p is good for L. But this condition depends only on the root datum. Thus,
the Bala-Carter data for H can be described in a manner independent of the choice of algebraically closed
field. We call this combinatorial description the Bala-Carter label for the nilpotent (or unipotent) orbit.
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Definition 3.12. If K is a field (not necessarily algebraically closed), then the Bala-Carter label label for
a nilpotent (resp. unipotent) element of Lie 𝐻 (resp. 𝐻 (𝐾)) is the Bala-Carter label for the corresponding
nilpotent (resp. unipotent) orbit over the algebraic closure.

Remark 3.13. From the classification of nilpotent orbits over algebraically closed fields, it is known that
the corresponding nilpotent orbits in characteristic zero and characteristic p have the same dimension.
Thus, the dimension of centralizers of elements in an orbit is also independent of the characteristic and
depends only on the Bala-Carter label. There is a similar statement for conjugacy classes of unipotent
elements and their centralizers.

We now return to the relative setting.

Lemma 3.14. Let G be a connected reductive group scheme over a DVR A with residue field k whose
characteristic is good for G. Given a unipotent element 𝑢 ∈ 𝐺 (𝑘) with Bala-Carter label 𝜎, there exists
a pure fiberwise unipotent element 𝑢 ∈ 𝐺 (𝐴) lifting 𝑢 with Bala-Carter label 𝜎 in the generic fiber, and
a similar statement for nilpotent elements of the Lie algebra.

Proof. We will prove this for a nilpotent element 𝑋; the unipotent case follows using an integral Springer
isomorphism [Cot22b, Theorem 1.1]. Let 𝜏𝑠 : (G𝑚)𝑠 → 𝐺𝑠 be a cocharacter associated to 𝑋 , which
exists since char(𝑘) is good for G. This lifts to a cocharacter 𝜏 : G𝑚 → 𝐺 by smoothness of the scheme
of maximal tori [Con14, Theorem 3.2.6]. This cocharacter defines⊕

𝑛≥2
𝔤(𝜏, 𝑛) ⊂ 𝔤.

Over the special fiber, 𝑋 is in 𝔤𝑠 (𝜏, 2), and the Ad𝑃 (𝜏𝑠) -orbit of 𝑋 is open and dense. Pick a fiberwise
nilpotent 𝑋 ∈ 𝔤(𝜏, 2) lifting 𝑋 and consider the parabolic 𝑃𝐺 (𝜏) ⊂ 𝐺. It naturally acts on

⊕
𝑛≥2 𝔤(𝜏, 𝑛)

and the stabilizer of X is 𝐶𝐺 (𝑋). As we know, dim 𝐶𝐺 (𝑋)𝜂 ≤ dim 𝐶𝐺 (𝑋)𝑠 , and since the orbit is open
and dense in the special fiber, it follows that X is pure. Then argue as in [Cot22a, Lemma 5.2] to show
that 𝑃𝐺 (𝜏) gives the instability parabolic for X and 𝜏 is an associated cocharacter for X in the special
and generic fibers. By [Cot22a, Proposition 2.13(6)], this information determines the Bala-Carter data
in the special and generic fibers. �

Definition 3.15. Let K be a p-adic field and G be a connected reductive group over the ring of integers
O𝐾 . We say that 𝑔1, 𝑔2 ∈ 𝐺 (O𝐾 ) are geometrically conjugate if there exists a finite extension L of K
such that 𝑔1 and 𝑔2 are 𝐺 (O𝐿)-conjugate.

Proposition 3.16. Let K be a p-adic field with residue field k, and let G be a connected reductive group
over O𝐾 such that p is pretty good for G. Fix a Bala-Carter label 𝜎 and a pure unipotent 𝑢𝜎 with
Bala-Carter label 𝜎 in 𝐺 (𝐾) and 𝐺 (𝑘) using Lemma 3.14. The following are equivalent for a fiberwise
unipotent 𝑢 ∈ 𝐺 (O𝐾 ):

1. u is geometrically conjugate to 𝑢𝜎;
2. the images of u in 𝐺 (𝐾) and 𝐺 (𝑘) have Bala-Carter label 𝜎;
3. u is pure, and it has Bala-Carter label 𝜎 in 𝐺 (𝐾);
4. u is pure, and it has Bala-Carter label 𝜎 in 𝐺 (𝑘);

Proof. Note that (1) implies (2) as the images of 𝑢𝜎 in 𝐺 (𝐾) and 𝐺 (𝑘) have the same Bala-Carter
labels. Since the dimensions of the centralizer of a unipotent element over an algebraically closed field
depend only on the Bala-Carter label and not the characteristic, (2) implies (3) and (4). If u is pure
and generically has Bala-Carter label 𝜎, then u and 𝑢𝜎 are 𝐺 (𝐾 ′)-conjugate for some extension 𝐾 ′ of
K. By [Cot22a, Theorem 5.11], u and 𝑢𝜎 are 𝐺 (O𝐾 ′ )-conjugate. Thus, (3) implies (1). Similarly, (4)
implies (1). �
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Remark 3.17. ◦ When defining the minimally ramified deformation condition in [Boo19a] and this
paper, a key step is to restrict to deformations where a particular inertial element 𝜎, whose mod-p
image is unipotent, is sent to a conjugate of a particular pure unipotent lift. Proposition 3.16 shows
that this condition is equivalent to controlling the conjugacy class of the lift in the generic fiber or to
enforcing purity of the lift.

◦ There is, of course, an analogous statement for nilpotents. These can be cheaply deduced using an
integral Springer isomorphism [Cot22b, Theorem 1.1] or proven directly using similar techniques.

We will also need the following lemma later.

Lemma 3.18. Let K be a p-adic field and G a connected reductive group defined over O𝐾 such that p
is good for G. Suppose u is a fiberwise unipotent element of 𝐺 (O𝐾 ) satisfying any of the equivalent
conditions of Proposition 3.16. Then for any integer n relatively prime to n, the elements u and 𝑢𝑛

generically have the same Bala-Carter label, and 𝑢𝑛 is pure.

Proof. Over an algebraically closed field, if X is nilpotent, then all nonzero multiples of X lie in the
same nilpotent orbit [Jan04, 2.10 Lemma]. Thus, the same is true for powers of unipotents. In particular,
𝑢𝑛 is therefore pure, and 𝑢𝑛 has the same Bala-Carter labels as u generically and in the special fiber. �

4. Decomposition types

Throughout this section, let G be a weakly reductive group scheme over a DVR O with residue field k
of characteristic p.

4.1. Definitions and examples

Definition 4.1. A decomposition type for G over O is a pair (ℭ,Δ) where ℭ and Δ are closed subgroup
schemes of G defined over O such that

◦ ℭ and Δ are weakly reductive (i.e., O-smooth with (not necessarily connected) reductive fibers and
finite étale component groups of order invertible on O).

◦ Δ (resp. ℭ) represents the scheme theoretic centralizer of ℭ (resp. Δ).

Definition 4.2. Let Λ ⊂ 𝐺 (𝑘) be a finite subgroup with order prime to p. We say a decomposition type
(ℭ,Δ) over O is adapted to Λ if 𝐶𝐺𝑘 (Λ) = ℭ𝑘 (hence, also 𝐶𝐺𝑘 (𝐶𝐺𝑘 (Λ)) = Δ 𝑘 ).

This definition is motivated by the goal of giving a group theoretic reformulation of the isotypic
decomposition of a representation, which we now explain.

Example 4.3. This is an elaboration of the example of GL𝑛 discussed in the introduction. Let M be a
free O-module of rank n, 𝐺 = Aut(𝑀), and 𝑉 = 𝑀𝑘 . As Λ has pro-order prime to p, V decomposes as
a direct sum of irreducible Λ-representations

𝑉 = 𝑉 ⊕𝑚1
1 ⊕ · · · ⊕ 𝑉 ⊕𝑚𝑟

𝑟 ,

where 𝑉𝑖 and 𝑉 𝑗 are non-isomorphic for 𝑖 ≠ 𝑗 , and the 𝑚𝑖’s are multiplicities of the irreducibles. Letting
𝑊𝑖 = HomΛ(𝑉𝑖 , 𝑉) be the weight space associated to 𝑉𝑖 , we have that dim 𝑊𝑖 = 𝑚𝑖 and

𝑉 = (𝑉1 ⊗𝑘 𝑊1) ⊕ . . . ⊕ (𝑉𝑟 ⊗𝑘 𝑊𝑟 ). (4.1)

Enlarging k if necessary, we may and do assume that 𝑉𝑖 is absolutely irreducible for all i. Let

𝐿𝑘 := GL(𝑉1)
𝑚1 × · · · × GL(𝑉𝑟 )𝑚𝑟 ⊂ GL(𝑉)
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be the standard Levi associated to the decomposition of 𝜏, and let 𝑑𝑖 = dim𝑘 𝑉𝑖 . By Schur’s lemma,

ℭ𝑘 := 𝐶GL(𝑉 ) (Λ) = AutΛ(𝑉) =
𝑟∏
𝑖=1

GL(𝑊𝑖) ⊂ GL(𝑉).

A direct computation then shows that

Δ 𝑘 := 𝐶GL(𝑉 ) (ℭ𝑘 ) =
𝑟∏
𝑖=1

GL(𝑉𝑖) ⊂ GL(𝑉),

where the embedding into GL(𝑉) comes from acting on the first factors of the tensor products in (4.1).
Note that Δ 𝑘 ⊂ 𝐿𝑘 , with GL(𝑉𝑖) embedding in GL(𝑉𝑖)𝑚𝑖 diagonally. One checks that (ℭ𝑘 ,Δ 𝑘 ) is a
decomposition type adapted to Λ.

A decomposition type for GL𝑛 over O adapted to Λ is just a version of this decomposition for the
O-module M phrased group-theoretically. We can specify a representation (of a group containing Λ) on
M compatible with the isotypic decomposition using the groups ℭ and Δ , which are the automorphisms
of the weight spaces and irreducible constituents.

We also give some examples for the symplectic groups that are reminiscent of the ‘isotypic decom-
position with pairings’ in [Boo19a, §6.1]. Fix the symmetric form so that

Sp2𝑛 =

{
𝑀 ∈ GL2𝑛 : 𝑀

(
0 𝐼𝑛
−𝐼𝑛 0

)
𝑀 𝑡 =

(
0 𝐼𝑛
−𝐼𝑛 0

)}
.

For 𝐴 ∈ GL𝑛, we write 𝐴∗ for (𝐴𝑡 )−1. Notice that 𝐿 =

{(
𝐴 0
0 𝐴∗

)
: 𝐴 ∈ GL𝑛

}
is a Levi subgroup of Sp2𝑛.

Let Λ ⊂ 𝐿(𝑘) be an L-irreducible subgroup. This gives a natural 2𝑛-dimensional representation of the
form 𝜏 ⊕ 𝜏∗ where 𝜏 is irreducible representation of Λ with dimension n.

Example 4.4. If 𝜏 and 𝜏∗ are non-isomorphic Λ-representations, we have

ℭ𝑘 =

{(
𝑎𝐼𝑛 0
0 𝑎−1𝐼𝑛

)
: 𝑎 ∈ G𝑚

}
= 𝑍 (𝐿)𝑘 , Δ 𝑘 = 𝐿𝑘 .

Example 4.5. Suppose 𝜏 � 𝜏∗. In this case, it is easy to see that there exists 𝐽 ∈ GL𝑛 (𝑘), either
symmetric or skew-symmetric, such that 𝜏𝐽𝜏𝑡 = 𝐽. Let us suppose that 𝑝 ≠ 2 and J is skew-symmetric
(the other case is similar but occurs inside an orthogonal group). Conjugating 𝜏 if necessary, we may

assume that 𝐽 =

(
0 𝐼𝑛/2
−𝐼𝑛/2 0

)
, so 𝜏 takes values in Sp𝑛 (𝑘). We then have

ℭ𝑘 =

{(
𝑎𝐼𝑛 0
0 𝑎−1𝐼𝑛

)
: 𝑎 ∈ G𝑚

}
∪

(
0 𝐽
−𝐽 0

) {(
𝑎𝐼𝑛 0
0 𝑎−1𝐼𝑛

)
: 𝑎 ∈ G𝑚

}
,

Δ 𝑘 =

{(
𝐴 0
0 𝐴∗

)
: 𝐴 ∈ Sp𝑛

}
.

Definition 4.6. Let (ℭ,Δ) be a decomposition type over O. We say p is good for (ℭ,Δ) if

1. p is pretty good for G.
2. 𝑍 (𝒟(Δ0))𝑘 is smooth.
3. p does not divide #𝑁𝐺𝑘 (Δ 𝑘 )/ℭ𝑘Δ 𝑘 .
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4.2. Basic properties

As the group schemes constituting a decomposition type are weakly reductive, we begin by recalling
what we know about their centers and abelianizations.

Proposition 4.7. Let H be a weakly reductive group scheme over O.

1. The center 𝑍 (𝐻) and abelianization 𝐻ab both exist as group schemes of multiplicative type over O.
2. 𝐻ab is smooth.
3. If 𝑍 (𝐻) is smooth, then the natural map 𝑍 (𝐻)0 → 𝐻ab,0 is an isogeny of tori. If 𝑍 (𝒟(𝐻0)) is

smooth, then this map is smooth.

Proof. Combine Proposition 2.19, Proposition 2.27 and Proposition 2.30. �

Lemma 4.8. Let (ℭ,Δ) be a decomposition type over k. Then the quotient group scheme 𝑁𝐺 (ℭ)/ℭΔ =
𝑁𝐺 (Δ)/ℭΔ is finite étale.

Proof. Note that the quotient is well defined since 𝐶𝐺 (Δ) = ℭ and 𝐶𝐺 (ℭ) = Δ . Since ℭ and Δ are
weakly reductive, the finiteness follows from Corollary 2.22. �

Lemma 4.9. Let (ℭ,Δ) be a decomposition type for G over O. Then for any O-algebra R,
𝑁𝐺 (𝑅) (ℭ(𝑅)) = 𝑁𝐺 (𝑅) (Δ (𝑅)). Moreover, 𝑍 (ℭ) = 𝑍 (Δ).

Proof. This is basic group theory using Definition 4.1. For O-algebras R, if 𝑔 ∈ 𝐺 (𝑅) normal-
izes ℭ(𝑅), then it normalizes Δ (𝑅) = 𝐶𝐺 (𝑅) (ℭ(𝑅)), so 𝑁𝐺 (𝑅) (ℭ(𝑅)) ⊂ 𝑁𝐺 (𝑅) (Δ (𝑅)), and hence,
𝑁𝐺 (𝑅) (ℭ(𝑅)) = 𝑁𝐺 (𝑅) (Δ (𝑅)) by symmetry. Note that for O-algebras R, 𝑍 (Δ) (𝑅) = Δ (𝑅) ∩ ℭ(𝑅) =
𝑍 (ℭ) (𝑅) by Definition 4.1. �

Lemma 4.10. If (ℭ,Δ) is a decomposition type adapted to Λ, and Λ is as in Proposition 4.12, then
𝐶Δ (Λ) = 𝑍 (Δ).

Proof. This is basic group theory using Definition 4.1: for O-algebras R, we see that 𝐶Δ (𝑅) (Λ) =
𝐶𝐺 (𝑅) (Λ) ∩ Δ (𝑅) = ℭ(𝑅) ∩ Δ (𝑅) ⊂ 𝑍 (Δ (𝑅)) = 𝑍 (Δ) (𝑅). �

We also record a few useful properties about 𝐶𝐺 (Λ) for later use, where Λ is a constant group scheme
whose order is invertible in O (equivalently, the order of Λ is prime to p). We know it is O-smooth and
weakly reductive by Corollary 3.7.

Lemma 4.11. If p is pretty good for G, then p is pretty good for 𝐶𝐺 (Λ).

Proof. It suffices to work over a field of characteristic p. By [Her13, Theorem 3.3], p is pretty good if
and only if the centralizer of every closed subgroup is smooth. Note (𝐺, 𝐶𝐺 (Λ)) is a reductive pair in
the sense of [Her13, 2.7] since the Λ-isotypic decomposition of Lie 𝐺 is stable under 𝐶𝐺 (Λ). Using
[Her13, Lemma 3.6], if H is a closed subgroup of 𝐶𝐺 (Λ) such that 𝐶𝐺 (𝐻) is smooth, then 𝐶𝐶𝐺 (Λ) (𝐻)
is smooth as well. Since p is pretty good for G, 𝐶𝐺 (𝐻) is always smooth, and therefore, 𝐶𝐶𝐺 (Λ) (𝐻) is
always smooth. �

Proposition 4.12. Let (ℭ,Δ) and Λ be as in Definition 4.2. Suppose that O is a complete DVR. Then
there exists a subgroup Λ ⊂ 𝐺 (O) reducing to Λ such that 𝐶𝐺 (Λ) = ℭ (hence, also 𝐶𝐺 (𝐶𝐺 (Λ)) = Δ).

Proof. Note that Λ ⊂ Δ (𝑘). Since Δ is O-smooth and O is complete, there is a subgroup Λ ⊂ Δ (O)
lifting Λ. We have 𝐶𝐺 (Λ) ⊃ 𝐶𝐺 (Δ) = ℭ, which is an equality on special fibers. Since ℭ and 𝐶𝐺 (Λ)
are smooth O-group schemes of the same dimension, it follows that ℭ0 = 𝐶𝐺 (Λ)0: by the fibral
isomorphism criterion, it is enough to show that if k is an algebraically closed field and 𝐻 ⊂ 𝐻 ′ is a
closed embedding of reduced connected k-schemes of the same dimension, then 𝐻 = 𝐻 ′. For this, note
that the natural map 𝐻 → 𝐻 ′ is dominant for dimension reasons, so it is surjective by closedness. Being
a surjective closed embedding with reduced target, we find 𝐻 = 𝐻 ′.
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In view of the previous paragraph, there is a monomorphism 𝜋0ℭ ↩→ 𝜋0𝐶𝐺 (Λ). Since 𝜋0ℭ𝑘 =
𝜋0𝐶𝐺 (Λ)𝑘 and both 𝜋0ℭ and 𝜋0𝐶𝐺 (Λ) are finite étale (by Corollary 3.7), it follows that 𝜋0ℭ = 𝜋0𝐶𝐺 (Λ),
and hence, ℭ = 𝐶𝐺 (Λ) by the five lemma. �

Proposition 4.13. Let (ℭ,Δ) be a decomposition type adapted to Λ. Suppose that p is pretty good for
G and 𝑍 (𝒟(Δ0))𝑘 is smooth. Then 𝑍 (Δ) is smooth over O, and the natural map 𝑍 (Δ)0 → Δab,0 is a
smooth isogeny of O-tori.
Proof. By hypothesis and Proposition 4.12, there is a group Λ ⊂ 𝐺 (O) such that 𝐶𝐺 (Λ) = ℭ.
To show the smoothness of 𝑍 (Δ), first note that 𝑍 (Δ) = 𝑍 (ℭ) = 𝑍 (𝐶𝐺 (Λ)) by Lemma 4.9. By
Proposition 2.19, the smoothness of 𝑍 (Δ) would then follow from the smoothness of 𝑍 (𝐶𝐺 (Λ)0). As
𝑍 (Δ) is of multiplicative type and hence O-flat, it suffices to check smoothness on fibers. But since p
is pretty good for G, Lemma 4.11 and Remark 1.13 imply that 𝑍 (𝐶𝐺 (Λ)0) is smooth. Thus, 𝑍 (Δ) is
smooth. By Proposition 4.7(3), it follows that the natural map 𝑍 (Δ)0 → Δab,0 is an isogeny of O-tori.
But 𝑍 (𝒟(Δ0))𝑘 is smooth by assumption, so the isogeny is smooth by loc. cit. �

Proposition 4.14. Let Λ be as in Definition 4.2. Suppose that p is pretty good for G. Then there exists a
decomposition type (ℭ,Δ) over O adapted to Λ.
Proof. Fix a lift Λ ⊂ 𝐺 (O) of Λ such that the natural map Λ→ Λ is an isomorphism. Let ℭ = 𝐶𝐺 (Λ),
and let Δ = 𝐶𝐺 (𝐶𝐺 (Λ)). By Corollary 3.7, (ℭ,Δ) is a decomposition type over O adapted to Λ. �

5. Clifford theory

This section proves a result about lifting and extending representations that is the analog of Part 2 of
the argument for GL𝑛 sketched in Section 1.2.

5.1. Local Galois groups

Fix a local field F with residue characteristic ℓ ≠ 𝑝. Let the residue field of F have size q, a power of ℓ.
Lemma 5.1. The maximal tame extension of F has inertia group isomorphic to

∏
ℓ′≠ℓ Zℓ . The Galois

group of the maximal tame extension is a semi-direct product of the inertia group with Ẑ, with Ẑ acting
via the cyclotomic character. In particular, conjugation by the Frobenius is multiplication by q on∏

ℓ′≠ℓ Zℓ .
Proof. This is standard. �

Let Γ𝐹 be the absolute Galois group of F, and let 𝐼𝐹 be the inertia group. Using Lemma 5.1, we may
fix a surjection 𝐼𝐹 → Z𝑝 with kernel Λ𝐹 .

Lemma 5.2. The group Λ𝐹 is normal in Γ𝐹 . The quotient Γ𝐹/Λ𝐹 is isomorphic to 𝑇𝑞 := Ẑ�Z𝑝 , where
conjugating by 1 ∈ Ẑ is multiplication by q on Z𝑝 .
Proof. This is also well known. �

Lemma 5.3. The exact sequence

1→ Λ𝐹 → Γ𝐹 → Γ𝐹/Λ𝐹 → 1

is topologically split, so Γ𝐹 is a semi-direct product.
Proof. This is basically [CHT08, 2.4.10]. �

For the rest of this paper, fix a preimage 𝜎 of a topological generator of Z𝑝 under the surjection
𝐼𝐹 → Z𝑝 and a Frobenius 𝜙 satisfying

𝜙𝜎𝜙−1 = 𝜎𝑞 .
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5.2. 𝜈-Tame extensions

Let O be the ring of integers in a p-adic field with residue field k and Δ be as in Definition 4.1. Recall
Proposition 4.7. We write Z for 𝑍 (Δ) and write S for Δab, which are both multiplicative groups. The
natural morphism 𝜈 : Δ → 𝑆 restricts to an isogeny 𝑍 → 𝑆 (also denoted by 𝜈). Let R be a complete
local noetherian O-algebra with residue field k.

Definition 5.4. We say a homomorphism 𝜌 : 𝐼𝐹 → Δ (𝑅) is 𝜈-tame if for any 𝜎 ∈ 𝐼𝐹 , (𝜈◦𝜌) (𝜎) ∈ 𝑆(𝑅)
is of finite prime-to-p order.

We will prove the following:

Proposition 5.5. Given Δ as above. Assume that 𝜈 : 𝑍 → 𝑆 is smooth. Given a continuous homomor-
phism 𝜏 : Λ𝐹 → Δ (𝑅) such that

1. ker 𝜏 = ker 𝜏 (in particular, the image of 𝜏 is finite);
2. 𝜏𝜎 � 𝜏 for any 𝜎 ∈ 𝐼𝐹 (i.e., the representations are conjugate by an element in Δ (𝑘));
3. 𝐶Δ (𝑅) (𝜏(Λ𝐹 )) = 𝑍 (𝑅);

then 𝜏 admits a unique continuous, 𝜈-tame extension to 𝐼𝐹 .

We first establish some useful lemmas. Recall that for a group scheme H over O, 𝐻 (𝑅) is the kernel
of the reduction map 𝐻 (𝑅) → 𝐻 (𝑘).

Lemma 5.6. For any 𝜎 ∈ 𝐼𝐹 , 𝜏𝜎 � 𝜏 (i.e., they are conjugate by an element in Δ (𝑅)).

Proof. Note that H1(Λ𝐹 , ad 𝜏) = 0 since Λ𝐹 has pro-order prime to p and ad 𝜏 has order a power of
p. Therefore, if 𝜏′ : Λ𝐹 → Δ (𝑅) is another continuous lift of 𝜏, then 𝜏′ is Δ̂ (𝑅)-conjugate to 𝜏. (See
[Til96, §3] for deformation theory in this level of generality.) By assumption for 𝜎 ∈ 𝐼𝐹 , we have
𝜏𝜎 � 𝜏 (i.e., 𝜏𝜎 = �̄�𝜏�̄�−1 for some �̄� ∈ Δ (𝑘)). As Δ is O-smooth, there exists a lift 𝑔 ∈ Δ (𝑅) of �̄�.
Now both 𝜏𝜎 and 𝑔𝜏𝑔−1 reduce to 𝜏𝜎 , and hence, they are Δ̂ (𝑅)-conjugate. Thus, 𝜏𝜎 � 𝜏. �

Lemma 5.7. If H is a smooth group scheme over O, then 𝐻 (𝑅) = 𝐻0(𝑅) for any O-algebra R.

Proof. If an R-point reduces to the identity, it lies in the identity component of H. �

Lemma 5.8. The group 𝑆(𝑅) is the product of 𝑆(𝑅) and a finite group whose order is prime to p.

Proof. Recall that S is smooth multiplicative by Proposition 4.7. In particular, 𝑆(𝑘) has order prime
to p. Consider the exact sequence of groups

1→ 𝑆(𝑅) → 𝑆(𝑅) → 𝑆(𝑘) → 1.

Lemma 5.7 implies that 𝑆(𝑅) = 𝑆0 (𝑅), the latter is pro-p. Then since S is commutative, 𝑆(𝑅) is the
product of the pro-p group 𝑆0 (𝑅) and the Teichmuller lifts of elements in 𝑆(𝑘). �

Lemma 5.9. The map 𝜈 : 𝑍 (𝑅) → 𝑆(𝑅) is an isomorphism.

Proof. By the completeness of R, it suffices to prove the following: suppose A is a local Artinian O-
algebra and 𝐼 ⊂ 𝐴 is a nilpotent ideal. Let 𝑧 ∈ 𝑍 (𝐴/𝐼) and 𝑠 ∈ 𝑆(𝐴/𝐼) be such that 𝜈(𝑧) = 𝑠. Then for
any 𝑠 ∈ 𝑆(𝐴) mapping to 𝑠 ∈ 𝑆(𝐴/𝐼), there exists a unique element 𝑧 ∈ 𝑍 (𝐴) mapping to 𝑧 ∈ 𝑍 (𝐴/𝐼)
such that 𝜈(𝑧) = 𝑠. By assumption, 𝜈 : 𝑍 → 𝑆 is a smooth isogeny of multiplicative groups; in particular,
it is étale, so the above follows immediately from the infinitesimal criterion for étale morphisms. �

Proof of Proposition 5.5. A continuous extension of 𝜏 to 𝐼𝐹 is determined by its value on 𝜎, a chosen
topological generator of the Z𝑝-part of the tame inertia. By Lemma 5.6, there is an 𝐴 ∈ Δ (𝑅) such that
for 𝑔 ∈ Λ𝐹 ,

𝜏𝜎 (𝑔) = 𝜏(𝜎𝑔𝜎−1) = 𝐴𝜏(𝑔)𝐴−1.
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As 𝜏 is continuous, it factors through a finite quotient, so there is a power 𝑝𝑏 such that 𝜏𝜎
𝑝𝑏

= 𝜏 as 𝜎
has pro-p order.

Since ker 𝜏 = ker 𝜏, we see that for all 𝑔 ∈ Λ𝐹 ,

𝐴𝑝𝑏𝜏(𝑔)𝐴−𝑝
𝑏
= 𝜏𝜎

𝑝𝑏

(𝑔) = 𝜏(𝑔).

It follows that 𝐴𝑝𝑏 ∈ 𝐶Δ (𝑅) (𝜏(Λ𝐹 )), which equals 𝑍 (𝑅) by assumption. As k is perfect and Z is
multiplicative, the p-th power map is an automorphism of 𝑍 (𝑘). We can then modify A by a lift of an
appropriate element of 𝑍 (𝑘) so that 𝐴𝑝𝑏 reduces to the identity. By Lemma 5.8 and (the surjectivity
part of) Lemma 5.9, we can further multiply A by an element in 𝑍 (𝑅) so that 𝜈(𝐴) has finite prime-to-p
order. We can now obtain a continuous, 𝜈-tame extension 𝜏 : 𝐼𝐹 → Δ (𝑅) by sending 𝜎 to A.

It remains to show this extension is unique. Suppose another (continuous and 𝜈-tame) extension sends
𝜎 to 𝐵 ∈ Δ (𝑅). Note that 𝐵𝐴−1 commutes with 𝜏(Λ𝐹 ) so 𝑧 := 𝐵𝐴−1 ∈ 𝑍 (𝑅). By continuity, there is a
power 𝑝𝑏 such that 𝐴𝑝𝑏 and 𝐵𝑝𝑏 reduce to the identity in Δ (𝑘), and hence, 𝑧𝑝

𝑏 does as well. Hence, z
reduces to the identity as the p-th power map is an automorphism of 𝑍 (𝑘). Since both extensions are
𝜈-tame, we see that 𝜈(𝑧) has finite order relatively prime to p. Since 𝜈(𝑧) also reduces to the identity,
we see that 𝜈(𝑧) = 1. By Lemma 5.9, 𝜈 : 𝑍 (𝑅) → 𝑆(𝑅) is injective. We conclude that 𝑧 = 1, and hence,
the extensions are the same. �

Remark 5.10. We call this step in the argument ‘Clifford theory’ as the analogous step for GL𝑛 [CHT08,
Lemma 2.4.11] makes use of ideas from Clifford theory (see [CR81, §11]).

6. Lifts and minimally ramified deformations

As before, let F be a local field of residue characteristic ℓ ≠ 𝑝 and G be a weakly reductive group
scheme over a p-adic ring of integers O with residue field k.

6.1. Lifting residual representations

Recall the terminology for decomposition types from Definitions 4.1 and 4.2. We will prove the following
theorem over the course of this subsection.

Theorem 6.1. Let 𝜌 : Γ𝐹 → 𝐺 (𝑘) be a continuous homomorphism. Suppose there exists a decomposi-
tion type (ℭ,Δ) over O adapted to 𝜌(Λ𝐹 ). Suppose that p is good for the decomposition type (ℭ,Δ).
Then there exists a continuous homomorphism 𝜌 : Γ𝐹 → 𝐺 (O) that lifts 𝜌 such that 𝐶𝐺 (𝜌(𝐼𝐹 )) is
O-smooth.

Remark 6.2. The proof will also show that 𝜌(Λ𝐹 ) ⊂ Δ (O) and give some control over the ‘inertial
type’ of the lift. We remark that the O-smoothness of 𝐶𝐺 (𝜌(𝐼𝐹 )) is crucial for identifying a formally
smooth component of the deformation ring; see Theorem 6.16. In the course of the proof, we will
construct ‘many’ lifts parameterized by an element 𝑧 ∈ ℭ0(O). This is not strictly necessary for the
proof, and in fact, one can take z to be the identity element throughout this subsection. However, we
use this z to build flexibility into our argument and allow inertial types that are not minimally ramified,
which correspond to other components of the deformation ring.

Set 𝜏 := 𝜌 |Λ𝐹 , and let Λ := 𝜏(Λ𝐹 ). As the decomposition type is adapted to 𝜌(Λ𝐹 ), by Proposition
4.12, there exists Λ ⊂ Δ (O) lifting Λ such that 𝐶𝐺 (Λ) = ℭ and Δ = 𝐶𝐺 (ℭ). As the pro-order of Λ𝐹 is
prime to p, there is also a lift 𝜏 : Λ𝐹 → Δ (O) of 𝜌 |Λ𝐹 with ker(𝜏) = ker(𝜌 |Λ𝐹 ). Thus, Λ = 𝜏(Λ𝐹 ).

Lemma 6.3. The order of 𝜋0𝐶𝐺 (Λ) is prime to p.

Proof. This follows from Corollary 3.7. �

Lemma 6.4. We have that 𝑁𝐺 (Λ) ⊂ 𝑁𝐺 (Δ).
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Proof. Any point of 𝑁𝐺 (Λ) normalizes Λ and hence normalizes 𝐶𝐺 (Λ) and therefore normalizes
𝐶𝐺 (𝐶𝐺 (Λ)) = Δ . �

As in Section 5.1, fix a preimage 𝜎 of a topological generator of Z𝑝 under the surjection 𝐼𝐹 → Z𝑝

and a Frobenius 𝜙 satisfying

𝜙𝜎𝜙−1 = 𝜎𝑞 ,

where q is the size of the residue field of F (a power of ℓ). As 𝜎 and 𝜙 normalize Λ𝐹 , 𝜌(𝜎) and
𝜌(𝜙) belong to 𝑁𝐺 (𝑘) (Λ). Then Lemma 6.4 shows that 𝜌(𝜎) and 𝜌(𝜙) are contained in N (𝑘) :=
𝑁𝐺 (𝑘) (Δ (𝑘)). As 𝐼𝐹/Λ𝐹 is pro-p and p does not divide the index of Δ (𝑘)ℭ(𝑘) in N (𝑘) as p is good
for the decomposition type, it follows that 𝜌(𝜎) ∈ Δ (𝑘) · ℭ(𝑘).

Recall the morphism 𝜈 : Δ → Δab and the notion of 𝜈-tameness from Definition 5.4.

Proposition 6.5. There is a continuous, 𝜈-tame extension of 𝜏 to a homomorphism

𝜏 : 𝐼𝐹 → Δ (O).

We use 𝜏 and 𝜏 to denote the extensions as well as the functions originally defined on Λ𝐹 .

Proof. We will apply Proposition 5.5 with 𝑅 = O. First, since p is good for the decomposition type,
Proposition 4.13 implies that 𝜈 : 𝑍 (Δ)0 → Δab,0 is smooth. It remains to check the three hypotheses.
The first is built into the construction of 𝜏. Since 𝜌(𝜎) ∈ Δ (𝑘) · ℭ(𝑘) and Δ and ℭ commute, it follows
that 𝜏𝜎 = 𝜌(𝜎)𝜏 𝜌(𝜎)−1 and 𝜏 are isomorphic as Δ (𝑘)-valued representations, whence the second
condition. Lemma 4.10 gives the third condition. �

Corollary 6.6. We have 𝜏𝜙 = 𝜌(𝜙) · 𝜏 · 𝜌(𝜙)−1 on 𝐼𝐹 .

Proof. Since 𝜌(𝜙) ∈ 𝑁𝐺 (𝑘) (Δ (𝑘)), this is a consequence of the uniqueness part of Proposition 5.5. �

We next analyze 𝜌 as a combination of 𝜏 (valued in Δ) and a representation valued in ℭ0.

Proposition 6.7. Continuing the standing assumptions:

1. There is a continuous homomorphism 𝜔 : 𝐼𝐹/Λ𝐹 → ℭ0 (𝑘) such that

𝜌 |𝐼𝐹 = 𝜏 · 𝜔 = 𝜔 · 𝜏.

2. The element 𝜔(𝜎) is unipotent, and there exists a pure fiberwise unipotent 𝑢 ∈ ℭ0(O) lifting 𝜔(𝜎).
3. For any element 𝑧 ∈ ℭ0(O) which reduces to the identity in ℭ0(𝑘) and commutes with u, define a

homomorphism 𝜔𝑧 : 𝐼𝐹/Λ𝐹 → ℭ0(O) sending 𝜎 to 𝑧𝑢. The function 𝜏 ·𝜔𝑧 : 𝐼𝐹 → Δ (O)ℭ0(O) ⊂
𝐺 (O) is a continuous homomorphism lifting 𝜌 |𝐼𝐹 .

(At a first reading, it is fine to take z to be the identity.)

Proof. We define 𝜔 := 𝜏−1 · 𝜌 |𝐼𝐹 . For any 𝑔 ∈ 𝐼𝐹 and for any ℎ ∈ Λ𝐹 ,

𝜔(𝑔)𝜌(ℎ)𝜔(𝑔)−1 = 𝜏(𝑔−1)𝜌(𝑔ℎ𝑔−1)𝜏(𝑔) = 𝜏(𝑔−1)𝜏(𝑔ℎ𝑔−1)𝜏(𝑔) = 𝜏(ℎ) = 𝜌(ℎ),

where the second equality holds because 𝑔ℎ𝑔−1 ∈ Λ𝐹 and 𝜌 |Λ𝐹 = 𝜏 |Λ𝐹 . Thus, 𝜔 is valued in 𝐶𝐺𝑘 (Λ) (𝑘).
Since 𝐼𝐹/Λ𝐹 is pro-p and 𝜋0𝐶𝐺𝑘 (Λ) has order prime to p by Lemma 6.3, 𝜔 is valued in 𝐶𝐺 (Λ)0(𝑘) =
ℭ0 (𝑘), with the equality following from Definition 4.2.

Moreover, for any 𝑔, ℎ ∈ 𝐼𝐹 , we see that

𝜔(𝑔ℎ) = 𝜏(𝑔ℎ)−1𝜌(𝑔ℎ) = 𝜏(ℎ)−1𝜏(𝑔)−1𝜌(𝑔)𝜌(ℎ) = 𝜏(𝑔)−1𝜌(𝑔)𝜏(ℎ)−1𝜌(ℎ) = 𝜔(𝑔)𝜔(ℎ),
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where the third equality uses that 𝜏(𝑔)−1𝜌(𝑔) = 𝜔(𝑔) ∈ 𝐶𝐺𝑘 (Λ) (𝑘) = ℭ(𝑘) commutes with 𝜏(ℎ)−1 ∈
Δ (𝑘) (Definition 4.1). So 𝜔 is a group homomorphism. It is continuous because both 𝜌 |𝐼𝐹 and 𝜏 are
continuous.

Second, we show that 𝜔(𝜎) is unipotent. This element decomposes as a commuting product of
semisimple and unipotent elements of ℭ0(𝑘). The order of a semisimple element in ℭ0(𝑘) is prime to p,
while by continuity, there is an 𝑟 ≥ 0 such that 𝜎𝑝𝑟 ∈ ker 𝜔. Thus, 𝜔(𝜎) is unipotent. By Lemma 3.14,
there exists a pure unipotent in ℭ0(O) lifting 𝜌(𝜎).

For the last statement, note that 𝜔𝑧 is continuous as the image of a topological generator of
𝐼𝐹/Λ𝐹 � Z𝑝 reduces to a unipotent element. The function 𝜏 · 𝜔𝑧 is a homomorphism as Δ and ℭ0

commute. �

Definition 6.8. For z as above, define 𝜃𝑧 : 𝐼𝐹 → Δ (O)ℭ0(O) to be the product 𝜏 · 𝜔𝑧 .

Note that 𝜃
𝜙
𝑧 = 𝜌𝜙 |𝐼𝐹 = 𝜌(𝜙) · 𝜃𝑧 · 𝜌(𝜙)

−1. Corollary 6.6 implies that 𝜔𝜙 = 𝜌(𝜙) ·𝜔 · 𝜌(𝜙)−1, hence
using the structure of Γ𝐹/Λ𝐹 from Lemma 5.2 that

𝜔(𝜎)𝑞 = 𝜌(𝜙)𝜔(𝜎)𝜌(𝜙)−1. (6.1)

Lemma 6.9. Continuing the standing assumptions, there exists 𝑛 ∈ 𝐺 (O) lifting 𝜌(𝜙) such that

1. 𝜏𝜙 = 𝑛𝜏𝑛−1 on 𝐼𝐹 and
2. 𝑢𝑞 = 𝑛𝑢𝑛−1.

Proof. There exists an element 𝑛 ∈ 𝐺 (O) lifting 𝜌(𝜙) as G is O-smooth. Since the mod-p reductions of
𝜏𝜙 and 𝑛𝜏𝑛−1 agree on Λ𝐹 and Λ𝐹 is prime to p, we may and do multiply n by an element in 𝐺 (O) so
that 𝜏𝜙 = 𝑛𝜏𝑛−1 on Λ𝐹 . In particular, using Lemma 6.4, we see that 𝑛 ∈ 𝑁𝐺 (O) (Λ) ⊂ 𝑁𝐺 (O) (Δ (O)).

Since 𝜏 is 𝜈-tame, so is 𝜏𝜙 . However, Ad 𝑛 : ΔO → ΔO induces an automorphism 𝐴 : Δab
O → Δab

O
with 𝜈 ◦ Ad 𝑛 = 𝐴 ◦ 𝜈 by natural properties of the abelianization map 𝜈 : Δ → Δab. So for any
𝜎 ∈ 𝐼𝐹 , 𝜈(𝑛 · 𝜏(𝜎) · 𝑛−1) = 𝐴(𝜈(𝜏(𝜎))) has finite prime to p order. Therefore, 𝑛𝜏𝑛−1 is 𝜈-tame, and the
uniqueness part of Proposition 5.5 then implies that 𝜏𝜙 = 𝑛𝜏𝑛−1 on 𝐼𝐹 .

Note that u is pure by construction, and Lemma 3.18 implies that 𝑢𝑞 is pure. Furthermore, 𝑛𝑢𝑛−1 ∈
ℭ0 (O) is also pure. Now (6.1) shows that 𝑢𝑞 and 𝑛𝑢𝑛−1 agree in the special fiber. Recall that p is pretty
good for G, so Lemma 4.11 implies that p is pretty good for ℭ = 𝐶𝐺 (Λ). Hence, we can apply [Cot22a,
Theorem 5.11] to conclude that 𝑢𝑞 and 𝑛𝑢𝑛−1 are ℭ0(O)-conjugate (i.e., 𝑐𝑛𝑢𝑛−1𝑐−1 = 𝑢𝑞 for some
𝑐 ∈ ℭ0 (O)).

We claim that we may choose c so that it reduces to the identity. We know that the reduction of c
centralizes 𝑢𝑞 = 𝜌(𝜙)𝑢𝜌(𝜙)−1. As the centralizer 𝐶ℭ (𝑢

𝑞) is smooth by Theorem 3.10 (recall that ℭ is
weakly reductive and 𝑢𝑞 is pure fiberwise unipotent), we may modify c so that it reduces to the identity.
Making this choice, it is clear that 𝑐𝑛 reduces to 𝜌(𝜙) and that 𝑢𝑞 = (𝑐𝑛)𝑢(𝑐𝑛)−1. As 𝜏𝜙 = 𝑛𝜏𝑛−1 takes
values in Δ and the groups Δ and ℭ commute, we have 𝜏𝜙 = 𝑐𝑛𝜏𝑛−1𝑐−1 on 𝐼𝐹 , as desired. �

We now have the necessary ingredients to complete the proof.

Proof of Theorem 6.1. Given 𝜌 : Γ𝐹 → 𝐺 (𝑘), construct 𝜃𝑧 : 𝐼𝐹 → 𝐺 (O) lifting 𝜌 |𝐼𝐹 as in Proposi-
tion 6.7, depending on the choice of pure fiberwise unipotent 𝑢 ∈ ℭ0(O) lifting 𝜔(𝜎) and choice of z.
Then Lemma 6.9 gives an element 𝑛 ∈ 𝐺 (O) lifting 𝜌(𝜙) such that 𝜏𝜙 = 𝑛𝜏𝑛−1 on 𝐼𝐹 and such that
𝑢𝑞 = 𝑛𝑢𝑛−1.

We now fix a choice of 𝑧 ∈ ℭ0(O) so that

◦ z reduces to the identity in ℭ0(𝑘);
◦ z commutes with u;
◦ 𝑛𝑧𝑛−1 = 𝑧𝑞 .
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(For example, we may take 𝑧 = 1.) We define the lift 𝜌 : Γ𝐹 → 𝐺 (O) to be 𝜃𝑧 on 𝐼𝐹 and by setting
𝜌(𝜙) = 𝑛. Note that

𝜔
𝜙
𝑧 (𝜎) = 𝜔𝑧 (𝜎

𝑞) = (𝑧𝑢)𝑞 = 𝑧𝑞𝑢𝑞 .

Then 𝜌 is a homomorphism as

𝜌(𝜙)𝜃𝑧 (𝜎)𝜌(𝜙)
−1 = 𝑛𝜏(𝜎)𝑛−1𝑛𝑧𝑢𝑛−1 = 𝜏𝜙 (𝜎)𝜔

𝜙
𝑧 (𝜎) = 𝜃

𝜙
𝑧 (𝜎),

where the penultimate step uses that 𝑛𝑢𝑛−1 = 𝑢𝑞 and that 𝑛𝑧𝑛−1 = 𝑧𝑞 . It is continuous as 𝜃𝑧 is continuous,
and 𝜌(𝜙) = �̄� has finite order.

Finally, Lemma 6.11 implies that if, moreover, 𝑧 ∈ 𝑍 (ℭ) (O), then the centralizer of the inertia is
O-smooth. �

Example 6.10. Taking 𝑧 = 1 is simplest and gives a minimally ramified lift. Other choices of z give lifts
with different inertial types, which are of interest but are not the focus of the present work. We will just
give an example.

After fixing the choice of 𝜏, the restriction of 𝜌 to 𝐼𝐹 depends on u and z. Let𝑉 = spanO{𝑒1, 𝑒2, 𝑒3, 𝑒4}
and ℭ be the Levi preserving the grading 𝑉 = span{𝑒1, 𝑒2} ⊕ span{𝑒3, 𝑒4}; observe 𝑉 � GL2 ×GL2 ⊂
GL4. Suppose u is the unipotent such that

𝑢(𝑒1) = 𝑒1, 𝑢(𝑒2) = 𝑒1 + 𝑒2, 𝑢(𝑒3) = 𝑒3, 𝑢(𝑒4) = 𝑒3 + 𝑒4.

One possible case is that 𝜌(𝜙), and hence n, swap span{𝑒1, 𝑒2} and span{𝑒3, 𝑒4}. In that case, for any
𝑝𝑎-th root of unity 𝜁 ∈ O where 𝑝𝑎 | (𝑞 − 1), we can take the scalar matrix 𝑧 = 𝜁 𝐼4. It is clear that 𝜁
reduces to the identity in k, that n and u commute with z, and that 𝑧𝑞 = 𝑧. In this case, the centralizer of
𝜌(𝐼𝐹 ) equals 𝐶ℭ (𝑢) and is O-smooth.

Lemma 6.11. Under the standing assumptions, if 𝑧 ∈ 𝑍 (ℭ) (O) and satisfies the conditions on z in the
proof of Theorem 6.1, then 𝐶𝐺 (𝜃𝑧 (𝐼𝐹 )) = 𝐶ℭ (𝜔𝑧 (𝜎)) is O-smooth.

Proof. Note that 𝜃𝑧 (𝐼𝐹 ) is generated by 𝜃𝑧 (Λ𝐹 ) = 𝜏(Λ𝐹 ) and 𝜃𝑧 (𝜎) = 𝜏(𝜎)𝜔𝑧 (𝜎). For any O-algebra
R, we have

𝐶𝐺 (𝑅) (𝜃𝑧 (𝐼𝐹 )) = 𝐶𝐺 (𝑅) (𝜏(Λ𝐹 )) ∩ 𝐶𝐺 (𝑅) (𝜃𝑧 (𝜎)) = ℭ(𝑅) ∩ 𝐶𝐺 (𝑅) (𝜃𝑧 (𝜎)).

Now an element of ℭ(𝑅) commutes with 𝜃𝑧 (𝜎) = 𝜏(𝜎)𝜔𝑧 (𝜎) if and only if it commutes with 𝜔𝑧 (𝜎)
since 𝜏(𝜎) ∈ Δ (O) and Δ commutes with ℭ, and hence, 𝐶𝐺 (𝑅) (𝜃𝑧 (𝐼𝐹 )) = 𝐶ℭ (𝑅) (𝜔𝑧 (𝜎)). When z is
central in ℭ, we see that 𝐶ℭ (𝑅) (𝜔𝑧 (𝜎)) = 𝐶ℭ (𝑅) (𝑢). Thus, the smoothness follows from Theorem 3.10
(recall that ℭ is weakly reductive and u is pure fiberwise unipotent). �

Remark 6.12. If z is not central in ℭ, the centralizer need not be smooth. In particular, the dimension of
the centralizer of the semisimple part of 𝜔𝑧 (𝜎) = 𝑧𝑢 is not locally constant as would be needed to apply
[Cot22a, Theorem 1.1] (since z reduces to the identity). See [Cot22a, Remark 5.5] for some examples
of the failure of flatness for centralizers of pure sections.

6.2. The minimally ramified deformation condition

We now fix a residual representation 𝜌 : Γ𝐹 → 𝐺 (𝑘). For a continuous homomorphism 𝜃 : 𝐼𝐹 → 𝐺 (O)
lifting 𝜌 |𝐼𝐹 , let 𝜃𝑅 denote the composition 𝐼𝐹 → 𝐺 (O) → 𝐺 (𝑅) for an O-algebra R. Recall that ĈO
is the category of coefficient O-algebras (complete local Noetherian rings with residue field k, with
morphisms local homomorphisms inducing the identity map on k and with the structure morphism a
map of coefficient rings). For the rest of this subsection, we suppose there exists a decomposition type
(ℭ,Δ) over O adapted to 𝜌(Λ𝐹 ) and that p is good for (ℭ,Δ). By the paragraph below Remark 6.2, there
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is a lift 𝜏 : Λ𝐹 → Δ (O) of 𝜌 |Λ𝐹 such that 𝐶𝐺 (𝜏(Λ𝐹 )) = ℭ. Moreover, 𝜏 extends to a homomorphism
𝜏 : 𝐼𝐹 → Δ (O) by Proposition 6.5. We fix this homomorphism throughout this subsection.

Lemma 6.13. Let 𝜃 : 𝐼𝐹 → 𝐺 (O) be a continuous homomorphism lifting 𝜌 |𝐼𝐹 . Then there exists
𝑔 ∈ 𝐺 (O) and 𝜔 : 𝐼𝐹/Λ𝐹 → ℭ(O) such that 𝜃𝑔 = 𝜏 ·𝜔. Moreover, 𝜔 is unique up to ℭ(O)-conjugacy.

Proof. Since both 𝜃 |Λ𝐹 and 𝜏 |Λ𝐹 lift 𝜌 |Λ𝐹 , they are 𝐺 (O)-conjugate. So after conjugating, we may
assume that 𝜃 |Λ𝐹 = 𝜏 |Λ𝐹 . An argument similar to the first part of the proof of Proposition 6.7 then gives
the first statement. For the second part, suppose 𝜃𝑔 = 𝜏 ·𝜔 and 𝜃𝑔

′
= 𝜏 ·𝜔′ for 𝜔, 𝜔′ : 𝐼𝐹/Λ𝐹 → ℭ(O).

Restricting to Λ𝐹 , we see that 𝑔−1𝑔′ centralizes 𝜏(Λ𝐹 ), and hence, 𝑐 := 𝑔−1𝑔′ ∈ ℭ(O). So 𝜃𝑔
′
= 𝜃𝑔𝑐 =

𝜏𝑐 · 𝜔𝑐 = 𝜏 · 𝜔𝑐 , and hence 𝜔′ = 𝜔𝑐 . �

Corollary 6.14. There is a unique 𝐺 (O)-conjugacy class of lifts 𝜃 : 𝐼𝐹 → 𝐺 (O) of 𝜌 |𝐼𝐹 such that the
associated homomorphism 𝜔 satisfies that 𝜔(𝜎) is a pure unipotent element in ℭ0(O). Moreover, 𝜃
extends to a continuous homomorphism Γ𝐹 → 𝐺 (O).
Proof. The existence follows from Section 6.1 (taking 𝑧 = 1), which also shows that 𝜃 extends to Γ𝐹 .
For uniqueness, by Lemma 6.13, it suffices to show that if u and 𝑢′ are pure unipotents in ℭ0(O) lifting
𝜔(𝜎) ∈ ℭ0(𝑘), then they are ℭ0(O)-conjugate. Recall that p is pretty good for G, so Lemma 4.11
implies that p is pretty good for ℭ = 𝐶𝐺 (𝜏(Λ𝐹 )). Since u and 𝑢′ agree on the special fiber, [Cot22a,
Theorem 5.11] implies that u and 𝑢′ are ℭ0(O)-conjugate. �

Definition 6.15. Let 𝜃 : 𝐼𝐹 → 𝐺 (O) be a continuous homomorphism lifting 𝜌 |𝐼𝐹 . Let Lift𝜃𝜌 : ĈO → Sets
be the functor whose set of R-points Lift𝜃𝜌 (𝑅) is given by lifts 𝜌 : Γ𝐹 → 𝐺 (𝑅) of 𝜌 such that there
exists 𝑔 ∈ 𝐺 (𝑅) such that 𝜌𝑔 |𝐼𝐹 = 𝜃𝑅.

Let Lift𝑚.𝑟 .𝜌 be this functor when 𝜃 is a homomorphism as in Corollary 6.14. We call this the minimally
ramified lifting condition for 𝜌.

We will use the notions of lifting conditions and deformation conditions for Galois representations
which are reviewed in [Boo19a, Definition 2.3] – in particular, the notion of liftability and its connection
with formal smoothness of the representing object.

Theorem 6.16. Let 𝜃 : 𝐼𝐹 → 𝐺 (O) be a continuous homomorphism lifting 𝜌 |𝐼𝐹 . Suppose that
𝐶𝐺 (𝜃 (𝐼𝐹 )) is O-smooth and 𝜃 extends to a continuous homomorphism 𝜌0 : Γ𝐹 → 𝐺 (O). Then Lift𝜃𝜌
is a well-defined lifting condition. Moreover, it is liftable, and the tangent space to the corresponding
deformation functor Def 𝜃𝜌 has dimension dim𝑘 H0 (Γ𝐹 , 𝜌(𝔤)).

Proof. The functor Lift𝜃𝜌 is obviously closed under strict equivalence. The key to checking the second
condition of [Boo19a, Definition 2.3] is that 𝐶𝐺 (𝜃 (𝐼𝐹 )) is O-smooth. In particular, suppose we have a
Cartesian diagram in ĈO

𝑅1 ×𝑅0 𝑅2 ��

��

𝑅2

��

𝑅1 �� 𝑅0

and 𝜌1 ∈ Lift𝜃𝜌 (𝑅1) and 𝜌2 ∈ Lift𝜃𝜌 (𝑅2) with common image in Lift𝜃𝜌 (𝑅0). There exists 𝑔1 ∈ 𝐺 (𝑅1) and
𝑔2 ∈ 𝐺 (𝑅2) such that 𝑔1𝜌1 |𝐼𝐹 𝑔−1

1 = 𝜃𝑅1 and 𝑔2𝜌2 |𝐼𝐹 𝑔−1
2 = 𝜃𝑅2 . Looking at the images in 𝑅0, we conclude

that 𝑔1𝑔−1
2 ∈ 𝐶𝐺 (𝑅0) (𝜃 (𝐼𝐹 )). Since 𝐶𝐺 (𝜃 (𝐼𝐹 )) is O-smooth, there exists a lift 𝑥 ∈ 𝐶𝐺 (𝑅1) (𝜃 (𝐼𝐹 )). Then

the element (𝑥𝑔1, 𝑔2) ∈ 𝐺 (𝑅1×𝑅0 𝑅2) conjugates (𝜌1, 𝜌2) to (𝜃𝑅1 , 𝜃𝑅2), so (𝜌1, 𝜌2) ∈ Lift𝜃𝜌 (𝑅1×𝑅0 𝑅2),
as desired.

To check smoothness, let 𝑅 → 𝑆 be a small morphism in ĈO, and let 𝜌𝑆 ∈ Lift𝜃𝜌 (𝑆). We need
to show that there exists 𝜌𝑅 ∈ Lift𝜃𝜌 (𝑅) mapping to 𝜌𝑆 under the morphism 𝑅 → 𝑆. Since G is
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O-smooth, we may assume that 𝜌𝑆 |𝐼𝐹 = 𝜃𝑆 by 𝐺 (𝑆)-conjugation. Since 𝜃𝜙 = 𝜌0 (𝜙)𝜃𝜌0(𝜙)
−1 and

𝜃
𝜙
𝑆 = 𝜌𝑆 (𝜙)𝜃𝑆𝜌𝑆 (𝜙)

−1, 𝜌0(𝜙)
−1𝜌𝑆 (𝜙) centralizes 𝜃𝑆 (𝐼𝐹 ). Using the O-smoothness of 𝐶𝐺 (𝜃 (𝐼𝐹 )), we

obtain an element 𝑐 ∈ 𝐶𝐺 (𝑅) (𝜃 (𝐼𝐹 )) lifting 𝜌0(𝜙)
−1𝜌𝑆 (𝜙). Then 𝜌0 (𝜙)𝑐 lifts 𝜌𝑆 (𝜙) and on 𝐼𝐹 ,

(𝜌0 (𝜙)𝑐)𝜃𝑅 (𝜌0 (𝜙)𝑐)
−1 = 𝜌0 (𝜙) (𝜌0 |𝐼𝐹 )𝜌0(𝜙)

−1 = 𝜃
𝜙
𝑅 .

Define 𝜌𝑅 : Γ𝐹 → 𝐺 (𝑅) by 𝜌𝑅 |𝐼𝐹 = 𝜃𝑅 and 𝜌𝑅 (𝜙) = 𝜌0 (𝜙)𝑐, and observe that 𝜌𝑅 ∈ Lift𝜃𝜌 (𝑅) and that
it maps to 𝜌𝑆 .

Notice that the tangent space to Def 𝜃𝜌 equals ker(H1 (Γ𝐹 , 𝜌(𝔤)) → H1(𝐼𝐹 , 𝜌(𝔤)). The last claim then
follows from inflation-restriction and the fact that dim H1 (Γ𝐹/𝐼𝐹 , 𝜌(𝔤)𝐼𝐹 ) = dim H0(Γ𝐹 , 𝜌(𝔤)) [Was97,
Lemma 1]. �

Corollary 6.17. Let 𝜌 : Γ𝐹 → 𝐺 (𝑘) be a continuous homomorphism. Suppose there exists a decompo-
sition type (ℭ,Δ) over O adapted to 𝜌(Λ𝐹 ), and that p is good for (ℭ,Δ). Then Liftm.r.𝜌 is a formally
smooth lifting condition. Moreover, the corresponding deformation condition Defm.r.

𝜌 has dimension
dim𝑘 H0 (Γ𝐹 , 𝜌(𝔤)). Equivalently, Spf 𝑅m.r.,�

𝜌
is O-formally smooth of relative dimension dim𝑘 𝐺𝑘 .

Proof. Construct a lift 𝜌 as in Section 6.1 with 𝑧 = 1, and observe that 𝐶𝐺 (𝜃 (𝐼𝐹 )) is O-smooth by
Lemma 6.11. Applying Theorem 6.16 with 𝜃 = 𝜌 |𝐼𝐹 , we obtain that Lift𝜃𝜌 is formally smooth. Note
that 𝜃 satisfies Corollary 6.14 by construction (since 𝑧 = 1 in Proposition 6.7), and so Lift𝜃𝜌 = Liftm.r.𝜌 .
Finally, note that adding a framing increases the relative dimension by dim𝑘 𝐺𝑘 minus the dimension
of the automorphisms compatible with the Γ𝐹 -action, dim𝑘 𝐻0(Γ𝐹 , 𝜌(𝔤)). �

Remark 6.18. Let 𝜈𝑅 : 𝐺 → 𝐺ab = 𝐺/𝒟(𝐺) be the quotient map (see Proposition 2.27). We could also
formulate a variant of the deformation condition where the morphism 𝜈𝑅 ◦𝜌𝑅 : Γ𝐹 → 𝐺 (𝑅) → 𝐺ab(𝑅)
is a fixed lift of 𝜈𝑘 ◦ 𝜌. This generalizes adding the requirement that the determinant of the lift be fixed
when 𝐺 = GL𝑛.

Remark 6.19. The deformation conditions Def 𝜃𝜌 where 𝜃 has different inertial types should be of interest
when investigating ℓ ≠ 𝑝 versions of the Breuil-Mézard conjecture. Lifts where 𝐶𝐺 (𝜃 (𝐼𝐹 )) isO-smooth
give formally smooth components of the lifting ring Spf 𝑅�

𝜌
. For example, we may take 𝜃 = 𝜃𝑧 for 𝑧 ≠ 1

as in Lemma 6.11.

We can now prove our main theorem from the introduction. Recall that G is a weakly reductive group
defined over O.

Theorem 6.20. Let 𝜌 : Γ𝐹 → 𝐺 (𝑘) be a continuous homomorphism. Suppose that p is large
enough relative to the root datum of G (the bound can be made effective). Then Liftm.r.𝜌 is a formally
smooth lifting condition. Moreover, the corresponding deformation condition Defm.r.

𝜌 has dimension
dim𝑘 H0 (Γ𝐹 , 𝜌(𝔤)). Equivalently, Spf 𝑅m.r.,�

𝜌
is O-formally smooth of relative dimension dim𝑘 𝐺𝑘 .

Proof. By Proposition 4.14, if p is pretty good for G, then there exists a decomposition type (ℭ,Δ) over
O adapted to Λ := 𝜌(Λ𝐹 ). We need to ensure that p is good for (ℭ,Δ) in the sense of Definition 4.6.
Condition (1) is trivially satisfied. If 𝑝 > rank𝒟(𝐺0) + 1, condition (2) follows as well. In fact, for any
connected semisimple group H and any prime p dividing the order of 𝑍 (𝐻), 𝑝 ≤ rank 𝐻 + 1. To check
this, we may assume that H is simply-connected, and hence, it is a direct product of simple, simply-
connected groups, in which case the claim follows from a simple case-checking. It remains to consider
Definition 4.6, (3). By Proposition 2.24, this will hold if 𝑝 � |𝑊𝐺 | and 𝑝 > |𝜋0ℭ𝑘 | = |𝜋0𝐶𝐺𝑘 (Λ) |.
Theorem A.10 gives a bound for the last quantity which depends only on G. The theorem now follows
from Corollary 6.17. �

Remark 6.21. By the proof of the above theorem, the condition that p is large enough relative to the
root datum of G is equivalent to the following:
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◦ p is pretty good for G in the sense of Definition 1.12.
◦ 𝑝 > rank𝒟(𝐺0) + 1.
◦ p does not divide the order of 𝑊𝐺 .
◦ p is larger than the constant in Theorem A.10.

The last condition is explicit but not always pleasant. To illustrate, notice that the constant in
Theorem A.10 must be at least the number of components of the centralizer of any particular prime-to-p
solvable subgroup of 𝐺𝑘 .

When 𝐺 = GL𝑛, Schur’s lemma shows that centralizer of a completely reducible subgroup is a
product of general linear groups. Hence, the component group is always trivial.

For the exceptional group of type 𝐺2, the lower bound for p is 72; see Example A.5.
When 𝐺 = PGL𝑛, there is an example of a subgroup whose centralizer is finite of order 𝑛2 [Lie23,

Examples(3)]. Similarly, when 𝐺 = Sp2𝑛, there is an example of a subgroup whose centralizer is finite
of order 2𝑛 [Lie23, Examples(2)].

In particular, for 𝐺 = Sp2𝑛, the last example shows that we must require 𝑝 > 2𝑛. This is far from
optimal: the techniques from [Boo19a] work when 𝑝 > 2𝑛.
Remark 6.22. Note that the last bulleted point in Remark 6.21 is needed to ensure Definition 4.6, (3)
for the decomposition type (ℭ,Δ) adapted to the residual representation 𝜌. This in turn implies that
𝜌(𝐼𝐹 ) ⊂ ℭ(𝑘)Δ (𝑘), which is the starting point of the argument in Section 6.1. Currently, we do not
know how to construct lifts of 𝜌 without this condition.
Remark 6.23. A variant of the arguments in this section can be used to show the following mild
strengthening of Theorem 6.20. Maintain all of the assumptions on F,O, G, and so on. Let W be the Weil
group of F, and let 𝑊0 be the ‘discretized version’ from [DHKM24], obtained by choosing a topological
generator of tame intertia. Let ℋ𝑊 be the moduli space HomO-gp (𝑊

0, 𝐺), which is representable by
[DHKM24]. Moreover, [DHKM24, Theorem 1.5] shows that the p-adic formal completion of ℋ𝑊

represents the functor on p-adically complete (and separated) O-algebras given by

𝑅 ↦→ Homcts(𝑊, 𝐺 (𝑅)).

There is a similar functor ℋΛ, obtained from ℋ𝑊 by replacing W by Λ𝐹 . Attached to ℋΛ are the
universal centralizer ℭ and the universal double centralizer Δ .

For any continuous 𝑓 : 𝑊 → 𝐺 (𝑅) as above, the restriction 𝑓 |𝐼𝐹 factors uniquely as 𝑓 |𝐼𝐹 = 𝜏 · 𝜔,
where 𝜏 : 𝐼𝐹 → Δ (𝑅) is the unique tame extension of 𝑓 |Λ𝐹 (which exists by a variant of Proposition
5.5) and 𝜔 : 𝐼𝐹/Λ𝐹 → ℭ(𝑅) is a homomorphism. Let ℋpure

𝑊 be the subfunctor of ℋ𝑊 with ℋ
pure
𝑊 (𝑅)

consisting of those f as above such that 𝜔(𝜎) is pure fiberwise unipotent, where 𝜎 is a generator of the
pro-p part of 𝐼𝐹 . (If R is not reduced, ‘pure fiberwise unipotent’ should be interpreted to mean that 𝑓 (𝜎)
is fppf-locally on R conjugate to a pure fiberwise unipotent section of 𝐺 (O′), for some finite extension
O′ of O.)

The arguments of this section can be used to show thatℋpure
𝑊 is formally smooth and the inclusion map

ℋ
pure
𝑊 →ℋ𝑊 gives a stratification of ℋ𝑊 into smooth pieces, each of which is open in an irreducible

component of ℋ𝑊 (for dimension reasons coming from Theorem 6.20). Because of this openness
statement, it follows that every point f in the special fiber of ℋ𝑊 lies in an irreducible component X
such that f is a smooth point of 𝑋red.

A. Some group theory

The following Theorem is due to Liebeck [Lie23], which originated in an email correspondence between
the third author (S.T.) and Martin Liebeck. S.T. would like to thank Martin Liebeck for his interest in our
question and for answering it, which allows us to obtain an effective lower bound for p in Theorem 1.1.
Theorem A.1. Let G be a connected semisimple group over an algebraically closed field k, and let H
be a G-irreducible subgroup. Then there is a constant 𝑐 ≤ 197 such that #𝐶𝐺 (𝐻) ≤ 𝑐rank𝐺#𝑍 (𝐺).
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By [Lie23], the constant c is at most 16 if all the simple factors of G are classical, and [Lie23, Lemma
2.5] gives precise bounds for c when G is of exceptional type.

Corollary A.2. Let G be a connected reductive group over an algebraically closed field k, and let H be
a G-irreducible subgroup. Then #𝜋0𝐶𝐺 (𝐻) ≤ 𝑐rank𝐺ad #𝜋0𝑍 (𝐺).

Proof. Consider the exact sequence

1→ 𝑍 (𝐺) → 𝐶𝐺 (𝐻) → 𝐶𝐺ad (𝐻),

where 𝐻 ⊂ 𝐺ad is the image of H under the natural map 𝐺 → 𝐺ad. Note that 𝐻 is 𝐺ad-irreducible,
so Theorem A.1 implies that #𝐶𝐺ad (𝐻) ≤ 𝑐rank𝐺ad . However, since H is G-irreducible, 𝐶𝐺 (𝐻)

0 =
𝑍 (𝐺)0, so the above exact sequence implies that 𝜋0𝐶𝐺 (𝐻)/𝜋0𝑍 (𝐺) injects into 𝐶𝐺ad (𝐻). Therefore,
#𝜋0𝐶𝐺 (𝐻) ≤ #𝜋0𝑍 (𝐺)𝑐rank𝐺ad . �

Lemma A.3. Let H be a closed, completely reducible subgroup of G. Choose a maximal torus S of
𝐾 := 𝐶𝐺 (𝐻)

0, and let 𝐿 = 𝐶𝐺 (𝑆). Denote by 𝑊 (𝐺, 𝐿) (resp. 𝑊 (𝐾, 𝑆)) the quotient 𝑁𝐺 (𝐿)/𝐿 (resp.
𝑁𝐾 (𝑆)/𝑆); the latter can be naturally identified as a subgroup of the former. Then there is a canonical
injection

𝑁𝐺 (𝐻)/𝑁𝐿 (𝐻) · 𝐾 ↩→ 𝑁𝑊 (𝐺,𝐿) (𝑊 (𝐾, 𝑆))/𝑊 (𝐾, 𝑆).

Proof. Observe that 𝑍0
𝐿 = 𝑆, which implies 𝑁𝐺 (𝐿) = 𝑁𝐺 (𝑆). So 𝑁𝐺 (𝐿)/𝐿 = 𝑁𝐺 (𝑆)/𝐶𝐺 (𝑆) contains

𝑁𝐾 (𝑆)/𝐶𝐾 (𝑆) = 𝑁𝐾 (𝑆)/𝑆 as a subgroup. Any 𝑛 ∈ 𝑁𝐺 (𝐻) normalizes 𝐾 = 𝐶𝐺 (𝐻)
0, so 𝑆𝑛 is another

maximal tori of K. By the conjugacy of maximal tori, there is an element 𝑐 ∈ 𝐾 such that (𝑆𝑛)𝑐 = 𝑆 (i.e.
𝑛𝑐 ∈ 𝑁𝐺 (𝑆) = 𝑁𝐺 (𝐿)). For any element 𝑤 ∈ 𝑁𝐺 (𝐿), denote by �̄� its image in 𝑊 (𝐺, 𝐿). Define a map

𝜑 : 𝑁𝐺 (𝐻) → 𝑁𝑊 (𝐺,𝐿) (𝑊 (𝐾, 𝑆))/𝑊 (𝐾, 𝑆)

by 𝜑(𝑛) = 𝑛𝑐𝑊 (𝐾, 𝑆). First, note that 𝑛 ↦→ 𝑛𝑐𝑊 (𝐾, 𝑆) is a well-defined map from 𝑁𝐺 (𝐻) to
the quotient set 𝑊 (𝐺, 𝐿)/𝑊 (𝐾, 𝑆), and that 𝑛𝑐 normalizes 𝑁𝐾 (𝑆), which implies 𝑛𝑐 normalizes
𝑊 (𝐾, 𝑆). It follows that 𝜑 defined above is a well-defined map. We check that 𝜑 is a group ho-
momorphism. Let 𝑛1, 𝑛2 ∈ 𝑁𝐺 (𝐻) with 𝑐1, 𝑐2 ∈ 𝐾 such that 𝑛1𝑐1, 𝑛2𝑐2 both normalize S. So
𝜑(𝑛𝑖) = 𝑛𝑖𝑐𝑖𝑊 (𝐾, 𝑆) for 𝑖 = 1, 2. However, the product (𝑛1𝑐1) (𝑛2𝑐2) normalizes S, and we have
(𝑛1𝑐1) (𝑛2𝑐2) = (𝑛1𝑛2) (𝑛

−1
2 𝑐1𝑛2)𝑐2 with (𝑛−1

2 𝑐1𝑛2)𝑐2 ∈ 𝐾 , so 𝜑(𝑛1𝑛2) = (𝑛1𝑛2) (𝑛
−1
2 𝑐1𝑛2)𝑐2𝑊 (𝐾, 𝑆) =

(𝑛1𝑐1) (𝑛2𝑐2)𝑊 (𝐾, 𝑆) = 𝑛1𝑐1𝑊 (𝐾, 𝑆)𝑛2𝑐2𝑊 (𝐾, 𝑆) = 𝜑(𝑛1)𝜑(𝑛2). We now compute ker 𝜑. It consists
of 𝑛 ∈ 𝑁𝐺 (𝐻) for which 𝑛𝑐 ∈ 𝑊 (𝐾, 𝑆) = 𝑁𝐾 (𝑆)/𝑆 = 𝑁𝐾 (𝑆)/𝐶𝐾 (𝑆) = 𝑁𝐾 (𝑆)/𝑁𝐾 (𝑆) ∩ 𝐶𝐺 (𝑆) =
𝑁𝐾 (𝑆) · 𝐿/𝐿 for some 𝑐 ∈ 𝐾 . So 𝑛𝑐 ∈ 𝑁𝐾 (𝑆) · 𝐿, which implies 𝑛 ∈ 𝐾 · 𝐿. As n normalizes
H and K commutes with H, it follows that 𝑛 ∈ 𝐾 · 𝑁𝐿 (𝐻). However, if 𝑛 = 𝑏 · 𝑐 ∈ 𝑁𝐿 (𝐻) · 𝐾 ,
then 𝜑(𝑛) = 𝑛𝑐−1𝑊 (𝐾, 𝑆) = 𝑏𝑊 (𝐾, 𝑆) = 𝑊 (𝐾, 𝑆), where the first equality holds since 𝑆𝑏 = 𝑆
(𝑏 ∈ 𝐿 = 𝐶𝐺 (𝑆)), and the last equality holds since 𝑏 ∈ 𝑁𝐿 (𝐻) ⊂ 𝐿, and hence, 𝑏 = 1 ∈ 𝑊 (𝐺, 𝐿). Thus,
ker 𝜑 = 𝐾 · 𝑁𝐿 (𝐻) = 𝑁𝐿 (𝐻) · 𝐾 (the last equality holds since 𝑁𝐿 (𝐻) normalizes 𝐾 = 𝐶𝐺 (𝐻)

0). �

Theorem A.4. Let G be a connected reductive group over an algebraically closed field k, and let H be
a G-completely reducible subgroup. Then the size of 𝜋0𝐶𝐺 (𝐻) is bounded by

𝑐𝐺 := #𝑊𝐺 · sup
𝐿⊂𝐺

{
𝑐rank 𝐿ad

· #𝜋0𝑍 (𝐿)
}
,

where L runs over the finitely many conjugacy classes of Levi subgroups of G.

Proof. Let L be as in Lemma A.3. Note that H is an irreducible subgroup of L. There is a natural
surjection from 𝜋0 (𝐶𝐺 (𝐻)) to 𝐶𝐺 (𝐻)/𝐶𝐿 (𝐻) · 𝐶𝐺 (𝐻)

0, the latter injects into the group on the left
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side of the inclusion in Lemma A.3, and the kernel is a quotient of 𝜋0𝐶𝐿 (𝐻). The theorem now follows
from Corollary A.2 and Lemma A.3. �

Example A.5. The constant 𝑐𝐺 is a very crude bound, which can be made much smaller for specific G
by going through the proof of Theorem A.4. For example, for G the exceptional group of type 𝐺2, if
H is not G-ir, then the minimal Levi containing H (unique up to conjugacy) is either a maximal torus
or isomorphic to GL2, and 𝜋0𝐶𝐺 (𝐻) injects into the group on the left side of the inclusion in Lemma
A.3, so #𝜋0𝐶𝐺 (𝐻) ≤ 𝑊𝐺 = 12. Now if H is G-ir, then 𝜋0𝐶𝐺 (𝐻) ≤ 8.52 = 72.25 by Theorem A.1 and
[Lie23, Lemma 2.5]. Thus, the bound 𝑐𝐺 can be improved to 72 in this case.

For the remainder of this section, we will generalize Theorem A.4 to non-connected reductive groups
in the case that H is solvable. In what follows, we make no attempt in optimizing the bounds for the
component groups.

Lemma A.6. Let 𝑓 : 𝐺 ′ → 𝐺 be a central isogeny of connected reductive groups over an algebraically
closed field k, and let 𝜆′ and 𝜆 be compatible automorphisms of 𝐺 ′ and G, respectively. Then #𝜋0𝐶𝐺 (𝜆) ≤
#𝜋0𝐶𝐺′ (𝜆

′) · # ker 𝑓 .

Proof. Note that there is an exact sequence

1→ 𝐶𝐺′ (𝜆
′) → 𝑓 −1(𝐶𝐺 (𝜆)) → ker 𝑓 ,

where the rightmost map is 𝑥 ↦→ 𝜆′(𝑥)𝑥−1. The component group of 𝑓 −1(𝐶𝐺 (𝜆)) is thus an extension
of a subgroup of (ker 𝑓 )red by a quotient of the component group of 𝐶𝐺′ (𝜆

′).
Moreover, there is an obvious exact sequence

1→ ker 𝑓 → 𝑓 −1(𝐶𝐺 (𝜆)) → 𝐶𝐺 (𝜆) → 1.

Thus, the component group of 𝐶𝐺 (𝜆) is a quotient of the component group of 𝑓 −1(𝐶𝐺 (𝜆)). The lemma
follows. �

Lemma A.7. Let T be a split torus, and let 𝜆 be an automorphism of T of order n. Then #𝜋0𝐶𝑇 (𝜆)
divides 𝑛dim𝑇 .

Proof. This follows immediately from [DM18, Lemma 1.2(1)]. �

Lemma A.8. Let G be a connected reductive group over an algebraically closed field k. Let 𝜆 be a
semisimple automorphism of G of order n. Then #𝜋0𝐶𝐺 (𝜆) ≤ 4rank𝒟(𝐺) · 𝑛dim 𝑍 (𝐺) .

Proof. By a theorem of Steinberg, if G is semisimple, then 𝜋0𝐶𝐺 (𝜆) can be identified with a subgroup of
𝜋1 (𝐺). Moreover, #𝜋1 (𝐺) ≤ 2rank𝐺 (realized by 𝐺 = (PGL2)

rank𝐺). Now we suppose that 𝐺 = 𝑇×𝐻 for
a torus T and a semisimple group H. Then 𝜆 induces acts on T and H. By the above, #𝜋0𝐶𝐻 (𝜆) ≤ 2rank𝐻 =
2rank𝒟(𝐺) . By Lemma A.7, #𝜋0𝐶𝑇 (𝜆) ≤ 𝑛dim𝑇 = 𝑛dim 𝑍 (𝐺) . So #𝜋0𝐶𝐺 (𝜆) ≤ 2rank𝒟(𝐺) · 𝑛dim 𝑍 (𝐺) .

For the general case, note the canonical isogeny 𝑍 (𝐺)0 ×𝒟(𝐺) → 𝐺, whose kernel is contained in
𝑍 (𝒟(𝐺)). By Lemma A.6 and the above, it follows that

#𝜋0𝐶𝐺 (𝜆) ≤ 2rank𝒟(𝐺) · 𝑛dim 𝑍 (𝐺) · #𝑍 (𝒟(𝐺)).

Finally, note that if H is semisimple, then #𝑍 (𝐻) ≤ #𝑍 (𝐻sc) = #𝜋1𝐻ad ≤ 2rank𝐻 . So #𝑍 (𝒟(𝐺)) ≤
2rank𝒟(𝐺) . The lemma follows. �

Lemma A.9. Let H be a (possibly nonconnected) reductive group over an algebraically closed field k.
Let F be a solvable finite group with prime-to-p order acting on H. Then the size of 𝜋0𝐶𝐻 (𝐹) is bounded
by a constant depending only on rank 𝐻0, #𝜋0𝐻 and #𝐹.
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Proof. This will follow from the preceding lemma and induction. First, note the exact sequence

1→ 𝐶𝐻 0 (𝐹) → 𝐶𝐻 (𝐹) → 𝜋0 (𝐻)

and that 𝐶𝐻 0 (𝐹)0 = 𝐶𝐻 (𝐹)
0. It follows that #𝜋0𝐶𝐻 (𝐹) ≤ #𝜋0𝐻 · #𝜋0𝐶𝐻 0 (𝐹).

Since F is solvable, there is a composition series

𝐹 = 𝐹0 ⊃ 𝐹1 ⊃ · · · ⊃ 𝐹𝑛 = {1}

such that 𝐹𝑖+1 is normal in 𝐹𝑖 and 𝐹𝑖/𝐹𝑖+1 is cyclic. Since 𝐹𝑖+1 is normal in 𝐹𝑖 , 𝐹𝑖 acts on 𝐶𝐻 (𝐹𝑖+1),
and in fact, 𝐶𝐻 (𝐹𝑖) = 𝐶𝐶𝐻 (𝐹𝑖+1) (𝐹𝑖) = 𝐶𝐶𝐻 (𝐹𝑖+1) (𝐹𝑖/𝐹𝑖+1). So

#𝜋0𝐶𝐻 (𝐹𝑖) ≤ #𝜋0𝐶𝐻 (𝐹𝑖+1) · #𝜋0𝐶𝐶𝐻 (𝐹𝑖+1)0 (𝐹𝑖/𝐹𝑖+1),

and hence,

#𝜋0𝐶𝐻 (𝐹) ≤
∏

0≤𝑖<𝑛
#𝜋0𝐶𝐶𝐻 (𝐹𝑖+1)0 (𝐹𝑖/𝐹𝑖+1) · #𝜋0𝐻.

We now conclude by applying Lemma A.8 to the group 𝐶𝐶𝐻 (𝐹𝑖+1)0 (𝐹𝑖/𝐹𝑖+1). �

Theorem A.10. Let G be a (possibly nonconnected) reductive group over an algebraically closed field
k. Let Λ ⊂ 𝐺 (𝑘) be a solvable finite group with prime-to-p order. Then the size of 𝜋0𝐶𝐺 (Λ) is bounded
by a constant depending only on 𝑐𝐺0 , rank 𝐺0 and #𝜋0𝐺. In the special case when G is connected,
#𝜋0𝐶𝐺 (Λ) ≤ 𝑐𝐺 by Theorem A.4.

Proof. By the first part of the proof of Lemma A.9, we have #𝜋0𝐶𝐺 (Λ) ≤ #𝜋0𝐶𝐺0 (Λ) · #𝜋0𝐺. Let Λ′
be Λ∩𝐺0 (𝑘), so that Λ/Λ′ ↩→ 𝐺/𝐺0. Note that 𝐶𝐺0 (Λ) = 𝐶𝐶𝐺0 (Λ′) (Λ/Λ

′). By Theorem A.4 (recall Λ
has prime-to-p order by assumption), the size of 𝜋0𝐶𝐺0 (Λ′) is at most 𝑐𝐺0 . Applying Lemma A.9 with
𝐻 = 𝐶𝐺0 (Λ′) and 𝐹 = Λ/Λ′ yields a bound for #𝜋0𝐶𝐺0 (Λ) in terms of 𝑐𝐺0 , rank 𝐺0 and #𝜋0𝐺. �

B. A curious application

This section is not relevant to the main aims of this paper, but it follows from the methods developed
here, so we will give a (terse) proof.

Theorem B.1. Let G be a connected reductive group over a field k, and letΛ ⊂ 𝐺 (𝑘) be a finite subgroup
of order n, prime to char 𝑘 . The only prime numbers dividing the order of 𝜋0𝐶𝐺 (Λ) also divide n.

Proof. We may extend k to assume that G is split, and if k is of positive characteristic, we may then lift Λ
to characteristic 0. Using Corollary 3.7, it therefore suffices to assume that char 𝑘 = 0. By spreading out
and specializing, we may and do assume that k is a number field. Let p be a prime number not dividing
n, and let v be a place of k dividing p. The argument of [GR98, Lemma A.8] shows that after passing
to a finite extension of k and conjugating, we may assume Λ ⊂ 𝒢(𝒪𝑣 ), where 𝒢 is the split model of
G over Z and 𝒪𝑣 is the ring of integers of the completion of k at v. But now Corollary 3.5 shows that
𝐶𝒢 (Λ) is weakly reductive, so in particular, p does not divide the order of 𝜋0𝐶𝐺 (Λ), as desired. �

C. A Proof of Corollary 1.2

Proof. It is enough to check the third bulleted point in [FKP21, Theorem A]. By Theorem 1.1, for
𝑣 ≠ 𝑝, 𝜌 |ΓQ𝑣

has a p-adic lift. However, by [Lin20b, Theorem C], 𝜌𝑝 := 𝜌 |ΓQ𝑝
has a crystalline

lift 𝜌𝑝 : ΓQ𝑝 → 𝐺 (Z𝑝) for 𝑝 > 3. We claim that the Hodge–Tate cocharacter of the lift can be
chosen to be regular. If 𝜌𝑝 is irreducible, this follows from [Lin20a, Theorem 2]. Otherwise, 𝜌𝑝
factors through a maximal parabolic subgroup P of G with Levi factor 𝐿 � GL2, and there is a
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corresponding representation 𝑟𝑝 : ΓQ𝑝 → 𝐿(F𝑝). By [Lin20b, §7.2.1-7.2.2], 𝑟𝑝 has a crystalline lift 𝑟𝑜

with regular Hodge–Tate cocharacter such that 𝜙Lie(𝑟𝑜) has Hodge–Tate weights slightly less than 0 (in
the terminology of loc. cit.). Now the second half of [Lin20b, Theorem C] implies that 𝜌𝑝 can be chosen
such that it factors through P, and its associated L-valued representation lies on the same irreducible
component of the spectrum of the crystalline lifting ring that 𝑟𝑜 does; in particular, its Hodge–Tate
cocharacter is the same as that of 𝑟𝑜. Thus, [FKP21, Theorem A] gives the desired lift of 𝜌. �

Remark C.1. The lower bound for p in Corollary 1.2 has to do with the global lifting theorem [FKP21,
Theorem A], the local lifting theorem in the ℓ = 𝑝 case [Lin20b, Theorem C], and Theorem 1.1.
The bound for [FKP21, Theorem A] can be made explicit; see [FKP21, Remark 6.17]. The bound for
[Lin20b, Theorem C] is 3, and the bound for Theorem 1.1 in the 𝐺2 case is 72 (Remark 6.21).
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