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Analytic solution for pulse wave propagation
in flexible tubes with application to
a patient-specific arterial tree
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In this paper, we present an analytic solution for pulse wave propagation in a flexible
arterial model with tapering, physiological boundary conditions and variable wall
properties (wall elasticity and thickness). The change of wall properties follows a
profile that is proportional to rα , where r represents the lumen radius and α is a
material coefficient. The cross-sectionally averaged velocity and pressure are obtained
by solving a hyperbolic system derived from the mass and momentum conservations,
and they are expressed in Bessel functions of order (4 − α)/(3 − α) and 1/(3 − α),
respectively. The solution is successfully validated by comparing it with numerical results
from three-dimensional (3-D) fluid–structure interaction simulations. Subsequently, the
solution is employed to study pulse wave propagation in an arterial model, revealing
that the wall properties and the physiological outlet boundary conditions, such as the
resistor–capacitor–resistor (RCR) model, play a crucial role in characterizing the input
impedance and reflection coefficient. At low-frequency range, the input impedance is
found to be insensitive to the wall properties and is primarily determined by the RCR
parameters. At high-frequency range, the input impedance oscillates around the local
characteristic impedance, and the oscillation amplitude varies non-monotonically with α.
Expressions for the input impedance at both low-frequency and high-frequency limits
are presented. This analytic solution is also successfully applied to model flow inside
a patient-specific arterial tree, with the maximum relative errors in pressure and flow
rate never exceeding 1.6 % and 9.0 % when compared with results from 3-D numerical
simulations.
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1. Introduction

The pumping action of the heart creates pulse waves within the arterial system. The
characteristics of pulse wave propagation is critical in understanding the behaviour
and functionality of arteries and, therefore, cardiovascular fitness (Safar, Levy &
Struijker-Boudier 2003; van de Vosse & Stergiopulos 2011). Pulse wave propagation
has been studied extensively through experiments (Moens 1878; Segers & Verdonck
2000; Bessems et al. 2008), theoretical analysis (Korteweg 1878; Womersley 1955, 1957;
Papadakis 2011) and numerical simulations (Alastruey et al. 2011; Mynard & Smolich
2015; Charlton et al. 2019; Zimmermann et al. 2021).

In theoretical studies, the artery is commonly modelled as a straight flexible tube with
uniform thickness and elasticity (Womersley 1955, 1957; Atabek & Lew 1966; Lighthill
2001; Flores, Alastruey & Corvera Poir 2016). However, the radius and thickness of the
artery usually decreases along the blood flow direction, while the wall elasticity increases.
It is known that these factors can change the local impedance of the artery and affect pulse
wave propagation (Myers & Capper 2004; Vlachopoulos, O’Rourke & Nichols 2011).
Also, arteries typically terminate at a bifurcation or connect to a vascular bed, resulting in
an intricate outlet impedance that is commonly neglected in theoretical analysis.

For human arteries, tapering is usually mild, with the tapering angle not exceeding
1.5◦ (Segers & Verdonck 2000; Papadakis 2011). In terms of wall properties, as will be
shown in § 2, it is actually the product of the elastic modulus E and the wall thickness
h that determines the overall property of the vessel wall. Hence, Eh is sometimes called
the arterial stiffness (Charlton et al. 2019). Experimental research shows that Eh can be
approximated by the following function of the local lumen radius r:

Eh = r[k1 exp(k2r) + k3], (1.1)

where k1, k2 and k3 are fitting parameters (Olufsen 1999). This wall property profile is
widely adopted in one-dimensional (1-D) numerical studies (Mynard & Smolich 2015;
Charlton et al. 2019). Figure 1 shows Eh for a young healthy subject using this function.
It can be seen that Eh can be approximated by a linear function when the vessel radius
is greater than 2 mm, which is true for most major arteries. It can be approximated by
an exponential function instead when the vessel radius is less than 2 mm. Moreover,
other researchers (Reymond et al. 2009; Willemet, Chowienczyk & Alastruey 2015) have
assumed that the relationship between Eh and the local radius can be characterized by the
following power-law function:

Eh = k1r̄k2, (1.2)

where r̄ represents the time-averaged radius of the artery.
Among the aforementioned factors, tapering of the blood vessel probably receives the

most attention. The first theoretical treatment of tapering was presented by Evans (1960).
The author found that it would cause constant reflection of the forward wave and claimed
that only by considering tapering could we explain the discrepancy between the pulse
wave velocity predicted from existing theory and experimental measurements. However, in
order to get an analytic solution, the vessel distensibility was assumed to be constant along
the tapered vessel in this study, which is considered invalid from a modern perspective.
Patel et al. (1963) investigated the effect of tapering on pulse wave propagation in an
animal experiment. By measuring the pressure–radius (P–R) relationship along the aorta
of 30 dogs, they found that �P/�R, a measurement of local impedance, decreased as
the mean radius reduced downstream of the aorta. Lighthill (1975) modelled the tapering
of a vessel using a series of compact sections of straight tubes with stepwise diameter
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Figure 1. Relationship between Eh and lumen radius of a healthy 30-year-old human subject with k1 =
3 × 106 g cm−1 s−2, k2 = −13.5 cm−1, k3 = 5.94 × 105 g cm−1 s−2 and k4 = −7.8 cm−1 (Charlton
et al. 2019).

reduction and directly applied the solution from straight tubes to each section to study
the pulse wave propagation. Abdullateef, Mariscal-Harana & Khir (2021) investigated the
effect of tapering using 1-D numerical simulations in the time domain and confirmed that
tapering would induce constant reflections which would lead to increased pulse pressure
amplification. They also studied the effect of modelling tapering with a stepwise diameter
reduction and concluded that this approach would cause artificial oscillations compared
with smooth tapering. The wall properties (elasticity and thickness) were assumed to be
uniform in their study. Papadakis (2011) started from the Navier–Stokes equation in the
spherical coordinate system and derived the closed-form analytic solution for a tapered
vessel with uniform wall properties. The pressure and velocity were expressed with Bessel
functions of orders 4/3 and 1/3. Segers & Verdonck (2000) conducted experiments with
hydraulic models made up of tapering tubes with uniform wall properties and also carried
out theoretical analysis using the transmission line theory. They concluded that the aortic
wave reflection indices from in vivo measurements resulted from the continuous wave
reflection from tapering and local reflections from the branches.

As for wall properties, Myers & Capper (2004) accounted for both the geometric and
elastic tapering in arteries by assuming the characteristic impedance and the propagation
constant varied exponentially with the axial distance. The nonlinear Riccati equation for
the input impedance was derived and solved to obtain the flow and pressure inside the
model with the help of the transmission line method. Wiens & Etminan (2021) recently
studied the flow inside straight tubes with a tapered wall thickness using frequency domain
analysis. They gradually varied the wall thickness along the axial direction while keeping
the lumen radius and the elasticity unchanged, resulting in a varying wave velocity along
the tube. They demonstrated that the change in wall thickness alone could induce strong
changes in the impedance and the wave propagation due to the change in wall compliance.

Another very important factor in the investigation of pulse waves is the proper treatment
of the outlet boundary. Many theoretical studies of single tube models adopted the
non-reflecting boundary condition (Womersley 1955; Papadakis 2011). On the other hand,
an artery usually ends with branching or a vascular bed. Taylor (1966) studied the input
impedance of the main artery connected to an artificial vascular bed and demonstrated
that the vascular bed acted as an absorber to reduce the effect of reflections. Therefore, it is
important to use proper outlet boundary conditions to incorporate the effect of downstream
vessels so as to correctly capture pulse wave propagation in an arterial segment.
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Figure 2. Schematic of a tapered artery model with variable wall elasticity and thickness.

Studies that have taken tapering, variable wall properties and physiological boundary
conditions into consideration are mainly 1-D numerical studies (Bessems et al. 2008;
Reymond et al. 2009; Xiao, Alastruey & Alberto Figueroa 2014; Mynard & Smolich 2015;
Willemet et al. 2015). A theoretical analysis that includes all of these factors is still lacking.
In this study, we present an analytic solution for the wave propagation in a flexible tapered
arterial model with variable wall properties and physiological boundary conditions.

This paper is organized as follows. Section 2 states the problem solved, including
the governing equations, boundary conditions and wall properties. In § 3, we obtain
the analytic solution in the velocity/pressure form using frequency domain analysis and
validate it with results from three-dimensional (3-D) fluid–structure interaction (FSI)
simulations. The analytic solution is subsequently used to analyse the characteristics of
pulse wave propagation in § 4, focusing on the impact of wall properties on impedance and
reflection. The potentials of the obtained solution are demonstrated through its application
to a patient-specific geometry in § 5. Finally, § 6 presents conclusions and discusses
limitations of the current work.

2. Problem statement

In this section, we define the problem solved by presenting the governing equations,
boundary conditions and vessel wall properties for a canonical arterial model. Some key
assumptions of the study are discussed.

2.1. Governing equations
We model the artery as a tapered axisymmetric tube of length l, as shown in figure 2.
The model has spatially distributed lumen (inner) radius r(z), modulus of elasticity E(z)
and wall thickness h(z), where z is the axial coordinate. Following the work of Papadakis
(2011), we assume a linear tapering and the change of lumen radius along z is given by

r(z) = r0 − bz, (2.1)

where r0 is the radius at the inlet and b is a constant that characterizes the degree of
tapering. For arteries, tapering is usually very mild and the maximum of b is around
0.026 (Segers & Verdonck 2000). The blood is assumed to be incompressible. Starting
from the mass and momentum conservations, the following classical 1-D equations in the
cylindrical coordinate system can be derived for the current model under the assumption
that the axial displacement is negligible; there is no flow through the lumen wall along
the z direction; and velocity and pressure are uniform in the cross-section (Sherwin et al.
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2003; van de Vosse & Stergiopulos 2011; Figueroa, Taylor & Marsden 2017):

∂A
∂t

+ ∂(Av)

∂z
= 0, (2.2a)

∂v

∂t
+ v

∂v

∂z
+ 1

ρ

∂p
∂z

= f
ρA

. (2.2b)

Here, A is the area of the cross-section; f is the frictional force per unit length; v and p are
the cross-sectionally averaged axial velocity and pressure, respectively.

To close this 1-D model, we need an extra equation to describe the FSI between blood
flow and the vessel wall. This is achieved by adopting the tube-law (Sherwin et al. 2003;
Alastruey et al. 2011; Papadakis 2011)

p = pext + 4Eh
3r2 ur, (2.3)

where pext is the constant external pressure and ur is the radial displacement of the vessel
wall. It is worth noting that (2.3) is derived assuming small displacement (ur � r) and
the vessel wall to be incompressible, linear elastic, thin-walled and longitudinally tethered
(Sherwin et al. 2003). This set of equations (2.2) and (2.3) have been widely used in
numerical studies of pulse wave propagation in arteries with tapering and variable wall
properties (Sherwin et al. 2003; Alastruey et al. 2011; van de Vosse & Stergiopulos 2011;
Figueroa et al. 2017).

Equations (2.2) and (2.3) form the governing equations in (A, v, p) form. They are recast
to (vr, v, p) form for easier manipulation in this study, which is achieved by noting that
∂A/∂t ≈ 2πrvr under the small displacement assumption. Here vr is the radial velocity at
the fluid–structure interface. Following the findings from previous work (Sherwin et al.
2003; Reymond et al. 2009), the nonlinear term and viscous term have a secondary
contribution to the momentum conservation and thus are omitted from (2.2b). To sum
up, the governing equations utilized in this study are as follows:

r
∂v

∂z
+ 2vr + 2

∂r
∂z

v = 0, (2.4a)

∂v

∂t
+ 1

ρ

∂p
∂z

= 0, (2.4b)

∂p
∂t

− 4Eh
3r2 vr = 0. (2.4c)

In this study, we focus on arteries with medium to large sizes. Based on the discussion in
§ 1, we assume that wall properties follow the general form Eh = βrα and limit the study
to cases with α = 0, 1 or 2 to facilitate discussion.

2.2. Boundary conditions
Proper boundary conditions are required to form a well-posed problem together with the
governing equations. At the inlet, a commonly adopted boundary condition is a prescribed
velocity profile vin(t) from in vivo measurements,

v0(t) = v(0, t) = vin(t). (2.5)

Due to the pulsatile nature of the cardiovascular flow, vin(t) is usually periodic.
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Upstream
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network

Ql

pl

CR2
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Figure 3. The RCR boundary condition at the outlet. Here C is the vascular compliance, and R1, R2 are the
proximal and distal resistance, respectively.

The outlet boundary condition represents the effect of downstream vascular networks on
the current section, and it plays an important role in capturing the correct characteristics
of pulse wave propagation. The downstream effect is usually modelled using lumped
parameter models, and the resistor–capacitor–resistor (RCR) model (three-element
Windkessel model, see figure 3) is one of the most popular choices (Westerhof, Lankhaar
& Westerhof 2009). This model is composed of the vascular compliance C, the proximal
resistance R1 and the distal resistance R2. These parameters can be tuned to match the
physiological condition of a patient. The RCR boundary condition at the outlet (x = l) is
governed by the following ordinary differential equation (ODE):

dpl

dt
+ pl

CR2
= (R1 + R2)

CR2
Ql + R1

dQl

dt
, (2.6)

where flow rate Ql = πr2
l vl, and pl and vl are average pressure and axial velocity at the

outlet, respectively.

3. Analytic solution

In this section, we present the closed-form solution to the problem. Solution for a single
frequency mode is first derived, and then the time domain solution is obtained by the
superposition of all frequency modes. Finally, the solution is validated with 3-D numerical
simulations.

3.1. Solution for a single frequency mode
To solve the governing equations (2.4a)–(2.4c) with frequency domain analysis, we assume
p(z, t) = P(z) eiωt and v(z, t) = V(z) eiωt, respectively. Replace vr in (2.4a) with (2.4c) and
replace Eh with βrα , and we end up with the following equations in the frequency domain:

iω
3r2−α

2β
P + r

dV
dz

− 2bV = 0, (3.1a)

iωV + 1
ρ

dP
dz

= 0. (3.1b)

Accordingly, the boundary conditions are transformed into the following form:

v(0, t) = Vin eiωt, (3.2a)

p(l, t) = ZlVl eiωt, (3.2b)
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where

Zl = (R1 + R2 + iωR1R2C)πr2
l

1 + iωCR2
(3.3)

is the impedance of the RCR boundary.
Substitute the pressure in (3.1b) with (3.1a) and change the partial derivative of z to that

of r following the linear tapering relation:

d
dz

= −b
d
dr

,
d2

dz2 = b2 d2

dr2 . (3.4a,b)

We obtain a second-order ODE of V(r):

r2 d2V
dr2 + (α + 1)r

dV
dr

+
[

3ρω2

2βb2 r3−α − (4 − 2α)

]
V = 0. (3.5)

With the following transformation:

y = rα/2V, ε =
√

6ρ

β

ω

b(3 − α)
r(3−α)/2, ν = 4 − α

3 − α
, (3.6a–c)

this ODE can be rewritten into the standard Bessel equation of order ν in y(ε),

ε2 d2y
dε2 + ε

dy
dε

+ (ε2 − ν2)y = 0. (3.7)

Therefore, (3.5) has the following general solution (Bowman 2012):

V = r−α/2 [c1Jν(ε) + c2Yν(ε)] , (3.8)

where Jν and Yν are Bessel functions of the first and second kind, and c1 and c2 are
undetermined constants. Pressure can be easily obtained from (3.1a):

P = −i

√
2ρβ

3r
[c1Jν−1(ε) + c2Yν−1(ε)]. (3.9)

Since V and P satisfy the RCR boundary condition at the outlet, we get c1 = Fc2, where

F = − iZlr
(1−α)/2
l Yν(εl) − BYν−1(εl)

iZlr
(1−α)/2
l Jν(εl) − BJν−1(εl)

, (3.10)

with B = √
2ρβ/3. Taking the inlet boundary condition into consideration, it is solved

giving

c1 = Vinrα/2
0

F
FJν(ε0) + Yν(ε0)

, c2 = Vinrα/2
0

1
FJν(ε0) + Yν(ε0)

. (3.11a,b)

To sum up, the analytic solution for a single frequency mode is

V(z, ω) = Vin

(
r
r0

)−α/2 Iv(ε)
Iv(ε0)

, (3.12a)

P(z, ω) = −iBVin

(
r

rα
0

)−1/2 Ip(ε)

Iv(ε0)
, (3.12b)
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with F being defined by (3.10) and

Ip(ε) = FJν−1(ε) + Yν−1(ε), Iv(ε) = FJν(ε) + Yν(ε), (3.13a,b)

B =
√

2ρβ

3
, ε =

√
6ρ

β

ω

b(3 − α)
r(3−α)/2. (3.13c,d)

Setting α = 0 in (3.12) results in a solution that is similar to the one obtained by Papadakis
(2011), which is for a tapered vessel with uniform wall properties. They are all expressed
in Bessel functions of order 4/3 and 1/3. But differences exist as they are derived under
different coordinate systems and complicated boundary conditions are considered in the
current study.

3.2. Analytic solution in the time domain
Through the discussion in § 3.1, it can be seen that the governing equations and the
boundary conditions are all linear with regard to the primary variables. Therefore, the
velocity and pressure solutions correspond to an arbitrary periodic inlet velocity profile
and can be obtained by the superposition of all frequency modes. An inlet velocity profile
with period T can be expanded into Fourier series

vin(t) =
∞∑

n=−∞
Vin

n eiωnt, (3.14)

where

Vin
n = 1

T

∫ T

0
vin(t) e−iωnt dt, ωn = 2πn/T. (3.15)

The same operation can be carried out for the velocity and pressure solutions

v(z, t) =
∞∑

n=−∞
Vn(z) eiωnt, p(z, t) =

∞∑
n=−∞

Pn(z) eiωnt. (3.16a,b)

For n > 0, the expressions for Vn(z) and Pn(z) are provided by (3.12), while n = 0
corresponds to the steady flow solution, which is governed by the following equations:

r
dV0

dz
+ 2

dr
dz

V0 = 0, (3.17a)

V0
dV0

dz
+ 1

ρ

dP0

dz
= 0. (3.17b)

Note that the nonlinear term is included here, which we find to improve the accuracy of
the pressure prediction. Combining with the boundary conditions, we can obtain the steady
state solution as

V0(z) = Vin
0

r2
0

r2 , (3.18a)

P0(z) = Vin
0 πr2

0(R1 + R2) + 1
2
ρ

(
Vin

0
r2

0

r2
l

)2

− 1
2
ρ

(
Vin

0
r2

0
r2

)2

. (3.18b)

Equation (3.18a) is a direct result of mass conservation, while (3.18b) is essentially the
Bernoulli equation. The first term on the right-hand side of (3.18b) represents the outlet

977 A36-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.996


Analytic solution for wave propagation in flexible tubes

Wall properties
Eh (g s−2) β = 5.94 × 105, α = 1
Poisson’s ratio 0.5
ρs (g cm−3) 1.0

Fluid properties
μ (g cm−1 s−1) 0.04
ρ (g cm−3) 1.06

Vessel geometry
r0 (cm) 0.4
rl (cm) 0.2
l (cm) 12.6

Boundary conditions
Inlet Prescribed flow rate with T = 1.1 s
Outlet R1, R2 (g cm−4 s−1): 6854.8, 14 330

C (g−1 cm4 s2): 1.7529 × 10−5

Table 1. Parameters of tapered carotid artery model.

pressure because the RCR boundary is reduced to a resistance boundary for steady flow,
and the second term is the difference in kinetic energy.

Finally, the time domain solution is

v(z, t) = V0(z) + Re

{ ∞∑
n=1

2Vin
n

(
r
r0

)−α/2 Iv(ε)
Iv(ε0)

eiωnt

}
, (3.19a)

p(z, t) = P0(z) + Re

{ ∞∑
n=1

−i2BVin
n

(
r

rα
0

)−1/2 Ip(ε)

Iv(ε0)
eiωnt

}
. (3.19b)

In all cases presented in this paper, we retain the first 20 terms of the series. It has been
confirmed that any further increase in n beyond 20 results in negligible improvement to
the solution.

3.3. Validation of the analytic solution
Flow through a tapered carotid artery model with the same geometric configuration as
figure 2 is used to validate the analytic solution. All relevant parameters are summarized
in table 1. The analytic solution is compared with a 3-D FSI simulation using the
coupled momentum method (CMM) (Figueroa et al. 2006), which is implemented in the
open-source software svFSI (Zhu et al. 2022). The CMM has recently been rigorously
verified with Womersley’s deformable wall analytical solution (Filonova et al. 2020). The
mesh resolution and the time step size follow the same settings as in Xiao et al. (2014).
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Figure 4. Comparison between the analytic solutions and 3-D simulation results for the tapered carotid with
α = 1: (a) the flow rate comparison; (b) the pressure comparison.

We quantify the differences between the analytic solution and the 3-D simulation results
using the following errors:

ηP,avg = 1
N

N∑
i=1

∣∣∣∣Pa
i − Pc

i
Pc

i

∣∣∣∣ , ηQ,avg = 1
N

N∑
i=1

∣∣∣∣∣ Qa
i − Qc

i
maxj(Qc

j )

∣∣∣∣∣ , (3.20a,b)

ηP,max = max
i

∣∣∣∣Pa
i − Pc

i
Pc

i

∣∣∣∣ , ηQ,max = max
i

∣∣∣∣∣ Qa
i − Qc

i
maxj(Qc

j )

∣∣∣∣∣ . (3.20c,d)

Here N is the number of sampling time points and is set to 125; Pa
i and Qa

i are the pressure
and flow rate calculated analytically, while Pc

i and Qc
i are the mean pressure and flow

rate on the cross-section from CMM; ηavg reports the average relative error, while ηmax
is the maximum relative error. In order to avoid dividing by small values in the flow rate
comparison, we divide the errors by the maximum flow rate for normalization (Xiao et al.
2014).

The comparison of flow rate and pressure at the inlet, midsection and outlet of the carotid
artery model is summarized in figure 4. Since the flow rates are prescribed at the inlet in
both cases, they match exactly. Though errors in flow rate increase slowly towards the
outlet, the values predicted by the analytic solution are still in excellent agreement with
the 3-D simulation results, with the maximum error being 1.61 % at the outlet. Moreover,
the average relative errors of pressure never exceed 1.86 %, and the maximum relative
errors remain under 3.4 %. Contrary to flow rate, the errors of pressure decrease gradually
from the inlet to the outlet. Since the RCR boundary condition is given at the outlet,
the pressure is directly calculated from the flow rate there. Towards the inlet, the errors
caused by omitting the fluid viscosity and the nonlinear term likely accumulate to cause
the slightly larger difference in pressure values.

In addition to the 3-D FSI simulation results, the analytic solutions are also compared
with the results reported in Xiao et al. (2014), wherein they used 1-D numerical
simulations to study the pulse wave propagation in the same geometry but with uniform
wall properties (see figure 5). Overall, results predicted by the analytic solution are in
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Figure 5. Comparison between the analytic solutions and 1-D, 3-D simulation results for the tapered carotid
with uniform wall properties. The 1-D results are extracted from Xiao et al. (2014) and α = 0, β = 2.1 × 105.
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Figure 6. Distribution of (a) wall properties and (b) wave velocity along the carotid artery model. Here,
β = 2.376 × 105/rα

0 so that all three cases have the same Eh value at the inlet. Other parameters are from
table 1.

excellent agreement with those from numerical simulations with either uniform or variable
wall properties.

4. Theoretical analysis of pulse wave propagation

In this section, the analytic solution is used to analyse the effect of wall properties on
pulse wave propagation in flexible tubes. As shown in figure 6(a), we focus on cases where
α = 0, 1 and 2. The Eh value is kept the same at the inlet of all three cases.

4.1. Wave propagation velocity
The governing equation (2.4) can be rewritten into the following form:

∂U
∂t

+ A
∂U
∂z

= BU, (4.1)
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where

U =
[

p
v

]
, A =

⎡
⎢⎢⎣

0
2Eh
3r

1
ρ

0

⎤
⎥⎥⎦ , B =

⎡
⎣0

4Ehb
3r2

0 0

⎤
⎦ . (4.2a–c)

This apparently forms a system of hyperbolic equations, and the wave propagation velocity
can be obtained by solving for the eigenvalues of matrix A (Papadakis 2011; Alastruey,
Parker & Sherwin 2012), which are

c = ±
√

2Eh
3ρr

= ±
√

2β

3ρ
r(α−1)/2. (4.3)

It can be seen from figure 6 that as α increases, the Eh value decreases at the same
axial location of the model. On the other hand, wave velocity increases along the model
when α = 0, while it decreases for α = 2. α = 1 are a special case where the wave
velocity remains constant. It is worth noting that the wave velocity expressed in Eh is
consistent with the well-known Moens–Korteweg equation (Korteweg 1878; Moens 1878;
Alastruey et al. 2012), which is derived for straight tubes without tapering. Papadakis
(2011) derived the wave velocity for a tapered vessel with uniform wall properties using
spherical coordinates. The result included a correction term of second order O(θ2) due to
tapering, where θ = arctan(b). In arterial systems, this correction term is negligible as the
tapering angle is usually less than 1.5◦.

4.2. Input impedance
With the wave velocity, the characteristic impedance can be expressed as Zc = ρc
(Westerhof et al. 2010). It is a representation of the local wave transmission characteristic
of the system without considering any reflections.

Moreover, based on the analytic solution (3.12), we have

P = −iBr(α−1)/2 Ip(ε)

Iv(ε)
V = −iρc

Ip(ε)

Iv(ε)
V = ZV, (4.4)

where Z is the impedance (Westerhof et al. 2010). Here Z is a function of both axial
location and frequency, while Zc is a function of axial location only; Z evaluated at z = 0
is referred to as the input impedance Zi. Compared with the characteristic impedance, the
additional coefficient −iIp/Iv in Zi measures the influence of the reflected waves caused
by tapering, wall property change and outlet boundary condition. If Ip/Iv = i, the input
impedance is equal to the characteristic impedance, i.e. there is no wave reflection from
downstream of the inlet. This is discussed in detail below.

The change of input impedance with frequency is of great interest in cardiovascular
research (Taylor 1966; Murgo et al. 1980). Figure 7 plots the input impedance of the carotid
artery model with α = 1. Two different boundary conditions are considered here

Zl = ρcl, for the non-reflecting boundary, (4.5a)

Zl = (R1 + R2 + iωR1R2C)πr2
l

1 + iωCR2
, for the physiological RCR boundary. (4.5b)

Here, cl is the wave velocity at the outlet. It is worth emphasizing that Zi is normalized by
the local characteristic impedance, which is Zc = ρc0. For the case with a non-reflecting
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Figure 7. (a) Magnitude and (b) phase of the input impedance of the tapered carotid artery model. Here, the
magnitude is normalized by the characteristic impedance at the inlet, and BC refers to boundary condition.
Parameters from table 1 are used.

boundary condition, the input impedance at low-frequency band is almost four times that
of the local characteristic impedance even without any reflection from the outlet. This
disparity can be attributed to the constant reflection of the forward flow due to tapering
as well the change in wall properties. As the frequency increases, the input impedance
decreases and eventually approaches the local characteristic impedance. The phase of the
input impedance with non-reflecting boundary also converges to zero as the frequency
increases. This indicates that tapering mainly affects the waves with long wavelength,
while waves with short wavelength behave as if tapering does not exist. For the case
with the RCR boundary condition, the input impedance is much higher than the local
characteristic impedance at the low-frequency band and is nearly four times that of the
non-reflecting case. The outlet impedance Zl of the RCR boundary is also plotted in
figure 7. It is clear that the RCR boundary induces a much greater increment in the
magnitude of the input impedance than its own magnitude. As the frequency increases,
the input impedance of the RCR case does not reduce to zero, but rather oscillates around
Zc as is shown in both the magnitude and the phase plots. Therefore, the inclusion of
a physiologically accurate outlet boundary condition is crucial in the study of the input
impedance of arteries.

The effect of α is shown in figure 8. For cases with non-reflecting outlet, the behaviour
of the input impedance at the high-frequency band is unaffected by the profile of the wall
properties, approaching the local characteristic impedance asymptotically. As is shown
in Appendix A, when ω → ∞, ε → ∞. Substituting Zl = ρcl into (A5), we have Zi ≈
ρc0 when ω → ∞. Otherwise, when the RCR boundary condition is employed, the input
impedance oscillates around the local characteristic impedance at high frequencies. From
(A5), it can be shown that as ω → ∞, we have∣∣∣∣ Zi

Zc

∣∣∣∣
max

= max

{
R1πr2

l
ρcl

,
ρcl

R1πr2
l

}
(4.6a)

and ∣∣∣∣ Zi

Zc

∣∣∣∣
min

= min

{
R1πr2

l
ρcl

,
ρcl

R1πr2
l

}
at z = 0. (4.6b)
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Figure 8. Magnitude of the input impedance of the tapered carotid artery model with different α.
(a) Non-reflecting boundary condition is employed; (b) RCR boundary condition is employed. The shaded
numbers are the asymptotic values as ω → 0 predicted by (4.7).

The accuracy of this asymptotic relation is confirmed numerically. It is clear that the
oscillation amplitude is determined by the proximal resistance R1 and α.

On the other hand, as the frequency decreases, the input impedance converges to the
same value regardless of α when the RCR boundary is used, while its value decreases
as the α value increases when non-reflecting boundary is used. It can be proven (see
Appendix B) that as ω → 0,

Zi

Zc

∣∣∣∣
z=0

≈
(

r0

rl

)(5−α)/2

, for the non-reflecting boundary, (4.7a)

Zi

Zc

∣∣∣∣
z=0

≈ πr2
0

ρc0
(R1 + R2), for the physiological RCR boundary. (4.7b)

Equation (4.7a) clearly shows that Zi is determined by tapering and wall properties jointly,
while (4.7b) shows that the RCR boundary condition is the determining factor when it is
present. The normalized input impedances predicted by these two equations are also listed
in figure 8. Compared with values evaluated numerically at 5 × 10−3 Hz, the maximum
relative difference is less than 0.1 %, affirming the accuracy of the asymptotic analysis.

The input impedance predicted by the current model (figure 8b) is in qualitative
agreement with in vivo measurements (Nichols et al. 1977; Murgo et al. 1980). Murgo
et al. (1980) measured the aortic input impedance in 18 healthy man and noticed the same
trend that |Zi| achieved its maximum at low-frequency, decreased sharply and started to
oscillate between 6–8 Hz. Unlike the current study, the oscillation amplitude decreased
with increasing frequency due to viscous damping in the arterial wall.

4.3. Wave reflection
Tapering, wall property variation and outlet impedance all cause pulse wave reflections.
The pressure wave can be separated into forward and backward components using
(Westerhof et al. 1972)

pf ,b = 1
2 ( p ± ρcv). (4.8)

Pressure waves at the midsection and its components are compared in figure 9. As the α

value increases, the artery becomes more compliant, which leads to a decrease in the pulse
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Figure 9. Pressure waves at z = l/2 of the tapered carotid artery model with RCR boundary condition and
different α. (a) Total pressure wave; (b) forward wave; (c) backward wave. The y-axis of the forward and
backward waves is set to the same range to facilitate comparison.

pressure (difference between the maximum and minimum). This decrease is a combined
result of an increase in diastolic pressure (minimum) and a decrease in systolic pressure
(maximum). From figure 9(b,c), it is clear that the forward wave is mostly responsible for
the reduction of the peak value while the diastolic value is mostly raised by the backward
wave. We can also observe a slight temporal shift of the peak pressure value as α changes,
due to the change in pulse wave velocity.

Equation (4.8) can also be applied to each frequency component and we have

Pf = 1
2

VinBrα/2
0 r−1/2

(
− Ip(ε)

Iv(ε0)
i + Iv(ε)

Iv(ε0)

)
, (4.9)

Pb = 1
2

VinBrα/2
0 r−1/2

(
− Ip(ε)

Iv(ε0)
i − Iv(ε)

Iv(ε0)

)
. (4.10)

The reflection coefficient can be defined as (Reymond et al. 2009; Westerhof et al. 2010)

λ = Pb

Pf
= iIp/Iv + 1

iIp/Iv − 1
= Zi/Zc − 1

Zi/Zc + 1
. (4.11)

Here, λ is complex indicating the phase difference between the forward and backward
waves. From figure 10, we can see that the behaviours of the reflection coefficient are
mostly similar to the input impedance in figure 8. One interesting trend is that at a
high-frequency range with a RCR boundary, the reflection coefficient increases with α

indicating a growing relative contribution from the backward waves.

5. Application of the analytic solution

Though developed based on an idealized model, (3.19) can be applied to complex,
patient-specific cases. Here we demonstrate the application of the analytic solution to a
patient-specific aorta and compare with the results from 3-D numerical simulations using
CMM.

5.1. Analytic solution for bifurcation
The analytic solution presented in this study can be extended to complex models with
multiple outlets by decomposing the model into simple blocks that are easier to solve.
Similar strategies are adopted in distributed lumped parameter models (Mirramezani &
Shadden 2022) and 1-D models (van de Vosse & Stergiopulos 2011). One of the most
common building blocks in an arterial network is the bifurcation. Figure 11(a) shows a
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Figure 10. Reflection coefficient at the inlet of the tapered carotid artery model with different α:
(a) non-reflecting boundary condition is employed; (b) RCR boundary condition is employed.
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Figure 11. (a) Schematic of a bifurcation with splitting flow. (b) Decomposition of the bifurcation into three
individual vessels. Here, the subscripts 0 and l represent the inlet and outlet of each vessel, respectively.

typical bifurcation where a parent vessel (labelled a) is connected to two daughter vessels
(labelled b and c). Each vessel in figure 11(b) can be solved with the analytic solution
given the proper inlet and outlet boundary conditions, and their solutions are related by
the following conditions at the junction (Olufsen 1999):

Pa
l = Pb

0 = Pc
0, (5.1a)

Va
l π(ra

l )
2 = Vb

0π(rb
0)

2 + Vc
0π(rc

0)
2. (5.1b)

Here, the subscripts 0 and l represent the inlet and outlet of each vessel. For vessel a,
velocity is prescribed at the inlet and a proper outlet boundary condition, Za

l , is required
to obtain its solution. Dividing (5.1b) by (5.1a), we get

π(ra
l )

2

Za
l

= π(rb
0)

2

Zb
0

+ π(rc
0)

2

Zc
0

. (5.2)

The outlet impedance of the vessel a is determined by the input impedances of vessels b
and c. If vessels b and c are terminal vessels, i.e. they are connected to RCR models, Zb

0
and Zc

0 can be determined explicitly through (4.4). Then, Za
l is readily available through

(5.2), and the velocity and pressure along vessel a can be obtained. It is worth noting that
(5.2) essentially describes that the input impedance of vessels b and c are connected in
parallel to form the outlet impedance of vessel a.
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For vessel b, once the pressure value at its inlet is known, the inlet velocity of vessel b
can be obtained from (3.12b). Therefore, the solution in this vessel is written as

Vb(z) = i
Pa

l
Bb (rb

0)
1/2(rb)−α/2 Iv(εb)

Ip(ε
b
0)

, (5.3)

Pb(z) = Pa
l

(
rb

0
rb

)1/2
Ip(ε

b)

Ip(ε
b
0)

. (5.4)

The same calculation can be carried out for vessel c. This procedure can be expanded to
multiple layers of bifurcations as well as junctions with more than two daughter vessels.

Similar to the current study, Flores et al. (2016) proposed an analytic solution based on
the generalized Darcy elastic model in the frequency domain and successfully applied it
to model blood flow in complex arterial networks. However, the vessel was assumed to be
cylindrical and to have uniform material properties. The tapering and material variation in
a large network were modelled in a discrete manner by dividing long vessels into segments.
Pressure values at segment ends were treated as unknown variables and were obtained by
solving a matrix system constructed from these segments. In the current study, tapering
and material changes are built into the analytic solution. The solution process described
above is much simpler and can be considered a special case of the matrix-based method
when the network only contains splitting junctions.

5.2. Application to patient-specific aorta
We use a patient-specific aorta model to demonstrate the accuracy and effectiveness of
the analytic solution. The model is from an open-source dataset (BodyParts3D 2011) and
is shown in figure 12. It includes the aorta and three main branches and is broken into
individual sections indicated by the dashed lines for analytic modelling. The parameters
used in each section are also listed in the figure. The vessel length l is defined as the
length of the curved centreline. The variation of the material properties follows the linear
relation in figure 1, i.e. Eh = βr with β = 5.94 × 105 g cm−1 s−2. A pulsatile velocity
profile with T = 0.9 s is prescribed at AAo, and RCR boundary conditions are applied
at all of the outlets. In CMM simulations, a grid independence study is carried out
and around 0.5 × 106 tetrahedral elements are used to obtained the final results. Based
on the Womersley number (Wo = r

√
2πρf /μ ≈ 16) and the Reynolds number defined

with Stokes layer thickness (Reδ = √
2ρvmax/

√
μω ≈ 195), the flow has not transitioned

to turbulence under the conditions considered here (Merkli & Thomann 1975; Hino,
Sawamoto & Takasu 1976).

The flow rate and pressure at the inlet and outlets are summarized in figure 13. It can
be seen that analytic results are in good agreement with numerical results. The pressure
distribution is particularly well-matched, as the maximum relative error is maintained
below 2 % and the average relative error remains under 1 %. The average relative error
of the flow rate is less than 2.4 %, while the maximum error is higher due to a slight
phase difference between these two results. It is worth noting that analytic results can
be obtained within 1 s on a desktop equipped with an Intel Core i9-12900 K processor,
while 3-D simulations take approximately 20 min per cardiac cycle when run in parallel
on 288 Intel Xeon Platinum 9242 cores. Therefore, the analytic solution provides a fast
and accurate alternative to 3-D simulations in estimating the pressure distribution in this
model.
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R1/R2 (×104

g cm–4 s–1)

C (×10–4

g–1 cm4 s–1)

r0/rl (cm)l (cm)

–– / –1.200 / 1.1646.542AAo

1.3680.050 / 0.8500.566 / 0.5552.672BCA

0.3600.190 / 3.2200.368 / 0.3605.111LCCA

0.4680.190 / 2.5000.375 / 0.3603.764LSUBA

4.5650.015 / 0.2501.132 / 0.99312.708DAo

AAo

BCA

LCCA

LSUBA

DAo

7.5 × 105

Eh (g s−2)

1.9 × 105

Figure 12. Patient-specific aorta model and the parameters used in the study. The dashed lines indicate all the
sections of arteries used in the analytic model; AAo, ascending aorta; BCA, brachiocephalic artery; LCCA, left
common carotid artery; LSUBA, left subclavian artery; DAo, descending aorta.

6. Conclusion

In this study, we derive an analytic solution for pulse wave propagation in an arterial model
using frequency domain analysis. In addition to tapering, this model also includes variable
wall properties that follow the profile Eh = βrα and a physiological RCR outlet boundary
condition that models the resistance and compliance of the downstream vascular network.
This analytic solution is successfully validated against 1-D and 3-D numerical simulations.
Then, it is used to theoretically analyse the wave propagation characteristics in an idealized
model. It is confirmed that tapering and variable wall properties can create constant
reflections along the path. Our study also demonstrates that wall properties and a RCR
boundary condition have a significant impact on the wave propagation, and their influences
are particularly prominent at the low-frequency range. Even though it is observed in
figure 8 that high-frequency components are also affected by these factors, it is essential to
approach these findings with caution, as viscous effects are not considered in the current
model. Furthermore, it is worth noting that these high-frequency components may not hold
significant physiological relevance, given the intrinsic frequency of the cardiac cycle.

Moreover, the analytic solution is applied to rapidly and accurately estimate the pressure
distribution in a patient-specific aorta by splitting the model into individual sections and
applying the analytic solution to each section. Compared with numerical methods, the
analytic solution can be a computationally economical alternative for modelling pulse
wave propagation. It also enables theoretical analysis to quantify the influence of different
model parameters, such as boundary conditions and material properties, thus allowing
for quick tuning of these parameters, which can then be used in 1-D and 3-D numerical
simulations. Additionally, this method is potentially useful for clinical applications such
as the estimation of the central pressure from peripheral pressure measurements. Building
upon the study by Flores et al. (2021), it is possible to model the pressure wave propagation
from the aorta to the brachial artery using the current analytic solution and derive a transfer
function between central and brachial pressure.

There are several limitations in the current study. First, the omission of the nonlinear
term (except for the steady component) and blood viscosity in the momentum equation
leads to the under-estimation of pressure values. Reymond et al. (2009) demonstrated
that both effects contributed approximately single-digit percentages to the predicted
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Figure 13. Comparison between the analytic solutions and 3-D simulation results for the patient-specific
aorta model.

pressure value. Given that the errors we observe are of the same order of magnitude,
including these effects can potentially improve our results. This is especially important
in predicting pulse wave propagation within a long artery network with multiple layers
of bifurcations, in which case avoiding error accumulation is of greater importance.
Second, the blood vessel is more accurately modelled as a viscoelastic material.
Experimental evidences have shown that there is hysteresis between pressure and lumen
area (Valdez-Jasso et al. 2009) and the viscoelasticity causes attenuation of pulse waves as
they travel downstream (Bessems et al. 2008). Last but not least, the current model cannot
be applied directly to diseased arteries such as those with an aneurism or stenosis, but can
potentially be expanded to model these anomalies (Papadakis & Raspaud 2019).
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Appendix A. High-frequency limit

When ω → ∞, we have ε → ∞. For Bessel functions at ε → ∞, we have (Abramowitz
& Stegun 1948)

Jν(ε) ≈
√

2
πε

cos
(
ε − v

2
π − π

4

)
, Yν(ε) ≈

√
2
πε

sin
(
ε − v

2
π − π

4

)
. (A1a,b)

From (3.3), the impedance at the outlet can be simplified to a real value:

Zl ≈ R1πr2
l . (A2)

Define

Rl = Zlr
(1−α)/2
l
B

= Zl

ρcl
(A3)

and substitute the above equations into (3.10), and we obtain

F ≈ −
iRl sin

(
εl − v

2
π − π

4

)
− cos

(
εl − v

2
π − π

4

)
iRl cos

(
εl − v

2
π − π

4

)
+ sin

(
εl − v

2
π − π

4

) . (A4)

The normalized input impedance as ε → ∞ can be simplified to

Zi

Zc

∣∣∣∣
z=0

= −i
Ip

Iv

∣∣∣∣
z=0

≈
[

Rl

R2
l sin2 θ + cos2 θ

+ i
(R2

l − 1) sin θ cos θ

R2
l sin2 θ + cos2 θ

]∣∣∣∣∣
z=0

. (A5)

Here, θ = εl − ε. If Zl = ρcl, we have Rl = 1 and Zi ≈ Zc at the inlet. If Rl /= 1, it
can be shown that the period of |Zi/Zc| is θ = π and the maximum and minimum are
max{Rl, 1/Rl} and min{Rl, 1/Rl}, respectively.

Appendix B. Low-frequency limit

In the limit ω → 0, we have ε → 0 and the following relation for Bessel function
(Abramowitz & Stegun 1948):

Jν(ε) ≈ 1
Γ (v + 1)

(ε

2

)v

, Yν(ε) ≈ −Γ (v)

π

(ε

2

)−v

. (B1a,b)

Moreover, from (3.3), the impedance at the outlet can be simplified to a real value

Zl ≈ (R1 + R2)πr2
l . (B2)
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Substitute the above relationships along with (A3) into (3.10), and we obtain

F = −R2
l JνYν + Jν−1Yν−1

R2
l J2

ν + J2
ν−1︸ ︷︷ ︸

Fr

+ i
Rl(Jν−1Yν − JνYν−1)

R2
l J2

ν + J2
ν−1︸ ︷︷ ︸

Fi

. (B3)

Note that the Bessel functions are evaluated at εl here. From the asymptotic relation in
(B1) and the parameters in table 1, it can be shown that the following equations hold in
this study:

|Fr| � |Fi|, |JνYν−1| � |Jν−1Yν |. (B4a,b)

Hence, in the limit of ε → 0, we have

F ≈ iFi, (B5)

and

Fi ≈ Rl(Jν−1Yν)

R2
l J2

ν + J2
ν−1

≈ −Rlν
2Γ (ν)2

π

[
R2

l

(εl

2

)2ν+1 + ν2
(εl

2

)2ν−1
]−1

. (B6)

The recursive relation Γ (v + 1) = vΓ (v) is used in the above derivation.
The normalized input impedance as ε → 0 can be simplified to

Zi

Zc

∣∣∣∣
z=0

= −i
Ip

Iv

∣∣∣∣
z=0

≈ Fi
Jν−1

Yν

∣∣∣∣
z=0

. (B7)

Further simplifying the above equation, we obtain

Zi

Zc

∣∣∣∣
z=0

≈ Rl

(
ε0

εl

)2ν−1

. (B8)

It is verified that the asymptotic (B8) is valid for both the non-reflecting boundary and the
physiological RCR boundary. In both cases, as ε → 0, we have

Zi

Zc

∣∣∣∣
z=0

≈
(

r0

rl

)(5−α)/2

, for the non-reflecting boundary, (B9a)

Zi

Zc

∣∣∣∣
z=0

≈ πr2
0

ρc0
(R1 + R2), for the physiological RCR boundary, (B9b)

where c0 is the pulse wave velocity at the inlet. Equation (B9b) is consistent with the
steady state solution (3.18), neglecting the nonlinear effect.
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