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Abstract

We determine almost sure limits of rescaled intrinsic volumes of the construction steps
of fractal percolation in R

d for any dimension d ≥ 1. We observe a factorization of
these limit variables which allows one, in particular, to determine their expectations
and covariance structure. We also show the convergence of the rescaled expectations
and variances of the intrinsic volumes of the construction steps to the expectations and
variances of the limit variables, and we give rates for this convergence in some cases.
These results significantly extend our previous work, which addressed only limits of
expectations of intrinsic volumes.

Keywords: Fractal percolation; Mandelbrot percolation; Minkowski functionals; intrin-
sic volumes; curvature measures; fractal curvatures; random self-similar set; renewal
theorem; Galton–Watson process; branching random walk

2020 Mathematics Subject Classification: Primary 28A80
Secondary 60K35; 82B43; 60D05

1. Introduction

Let p ∈ (0, 1] and M ∈N, M ≥ 2. Divide the unit cube J := [0, 1]d of Rd into Md subcubes
of side length 1/M. Keep each of these subcubes independently with probability p and dis-
card it otherwise. Then repeat this construction independently for each of the retained cubes,
producing a random collection of cubes of side length 1/M2, and so on. For n ∈N, denote
by Fn the union of the cubes retained in the nth step of this construction. The sets Fn form a
decreasing sequence of random compact subsets of J, and its limit

F :=
⋂

n∈N0

Fn (1.1)
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928 M. A. KLATT AND S. WINTER

is known as fractal percolation or Mandelbrot percolation; cf. e.g. [10, 20]. It is easily seen
that for any p < 1, F has a positive probability of being empty, and it is well known that F is
in fact almost surely empty if p is too small, i.e., if p ≤ 1/Md. For p > 1/Md, however, there
is a positive probability (depending on p, M, and d) that F �= ∅, and conditioned on F being
non-empty, the Hausdorff dimension and equally the Minkowski dimension of F are almost
surely given by the number

D := log (Mdp)

log (M)
; (1.2)

see e.g. [10]. Many properties of this simple model have been studied, including e.g. its con-
nectivity [5, 6, 10], its visibility (or behavior under projections) [1, 26, 27], its porosity [3, 12],
path properties [7, 11], and very recently its (un-)rectifiability [8].

Intrinsic volumes are a basic tool in stochastic geometry and other fields of mathematics,
providing essential geometric information about complex structures. We refer to [28, Chapter
4] or [29, Chapter 14.2] for their definition and properties; see also the summary in our previous
paper [18, pp. 1087–1088]. Let Vk(Fn), k = 0, 1, . . . , d, denote the intrinsic volumes of the
random set Fn in R

d. Note that they are well defined, since each Fn is a finite union of cubes
and thus polyconvex almost surely. In [18], we studied the expected intrinsic volumes EVk(Fn)
of the construction steps Fn and in particular their limiting behavior as n → ∞. More precisely,
we established the existence of the limit functionals

Vk(F) := lim
n→∞ Mn(k−D)

EVk(Fn)

and derived formulas to compute them; see also Theorem 2.1 below. Moreover, we investigated
possible connections of these functionals with percolation thresholds; see [18].

In this article we continue our investigation of the random variables Vk(Fn) and their limiting
behavior as n → ∞. We are interested in the question of which further properties of these
random geometric functionals, beyond convergence of expectations, can be derived. Here we
will prove in particular that the random variables Vk(Fn), when properly rescaled, converge
almost surely, as n → ∞, to some nontrivial limit, and we will determine the expectations
and covariances of the limit variables. Moreover, for k = d and k = d − 1 (i.e., for volume
and surface area), we derive expansions for the expectations and variances of the functionals
Vk(Fn) of the nth approximations. This will enable us not only to show convergence of these
expectations and variances (when suitably rescaled) as n → ∞ to the expectation and variance
of the limit variable, but also to obtain the rates for this convergence.

Outline. In the next two sections we will formulate our main results. The almost sure con-
vergence of the rescaled intrinsic volumes and some consequences are discussed in Section 2,
while some additional results regarding the finite approximations are addressed in Section 3.
In order to prepare for the proofs, in Section 4 we review random iterated function systems as
well as Nerman’s renewal theorem for branching random walks. Sections 5–7 are devoted to
the proofs. In Section 5 the main result of Section 2 is proved, and in Section 6 the expectation
and variance of the volume of the finite approximations Fn are discussed. Finally, in Section 7,
the expectation and variance of the surface area of Fn are addressed.

2. Almost sure convergence of rescaled intrinsic volumes

Let F be a fractal percolation on J = [0, 1]d with parameters M ∈N≥2 and p ∈ (0, 1]. Recall
that the nth construction step Fn is a random union of cubes of side length 1/Mn, which we

https://doi.org/10.1017/apr.2023.48 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.48


Geometric functionals of fractal percolation: a.s. convergence and second moments 929

will call the basic cubes of level n in the sequel. Let us first focus on the (random) numbers Nn

of basic cubes of level n contained in Fn. For convenience, we also set F0 := J to be the unit
cube and N0 := 1. The sequence of random variables Nn, n ∈N0, forms a Galton–Watson pro-
cess with a binomial offspring distribution with parameters Md and p. Indeed, by the assumed
independence in the subdivision-and-retention procedure, the number of preserved subcubes
of any existing cube of any level is a sum of Md independent Bernoulli random variables with
parameter p, and is thus Bin(Md, p)-distributed. In particular, we have N1 ∼ Bin(Md, p), and
hence EN1 = Mdp and Var(N1) = Mdp(1 − p). From this, one can easily deduce (see e.g. [2,
Chapter I.A.2]) that the mean and variance of Nn are given by ENn = (EN1)n = (Mdp)n and

Var(Nn) = Var(N1)

EN1 − 1
(EN1)n−1((EN1)n − 1)

= 1 − p

Mdp − 1

(
Mdp

)n((Mdp)n − 1
)
, (2.1)

provided EN1 �= 1, and Var(Nn) = n · Var(N1) in the case EN1 = 1, i.e. p = 1/Md.
Furthermore, it is well known (see e.g. [2, Theorem I.6.1, p. 9]) that the sequence

Wn := Nn/ENn, n ∈N, is a martingale with respect to the filtration naturally induced by the
construction steps of the process (i.e., the sequence (Fn)n, where Fn is the σ -algebra gener-
ated by N0, N1, . . . , Nn). Since Wn ≥ 0, this implies that there exists a random variable W∞
such that

lim
n→∞ Wn = W∞ almost surely. (2.2)

Moreover, for p > M−d, we have EN1 > 1 (and Var(N1) < ∞), and therefore [2, Theorem I.6.2]
implies

EW∞ = 1 and Var(W∞) = Var(N1)

(EN1)2 −EN1
= 1 − p

Mdp − 1
. (2.3)

In [18], we studied the limiting behavior of expected intrinsic volumes EVk(Fn) of the con-
struction steps Fn, as n → ∞, and found that these functionals converge for all parameter
combinations M, p when suitably rescaled. We recall the main result concerning this conver-
gence. Denote the basic cubes of level 1 by J1, . . . , JMd , and for each j ∈ � := {1, . . . , Md}
and each n ∈N, let Fj

n be the union of those basic cubes of level n that are contained in the
union Fn and subcubes of Jj; see (4.5) for a formal definition.

Theorem 2.1. ([18, Theorem 1.1].) Let F be a fractal percolation on [0, 1]d with parameters
M ∈N≥2 and p ∈ (0, 1]. Let D be as in (1.2). Then, for each k ∈ {0, . . . , d}, the limit

Vk(F) := lim
n→∞ Mn(k−D)

EVk(Fn)

exists and is given by the expression

Vk([0, 1]d) +
∑

T⊂�,|T|≥2

(−1)|T|−1
∞∑

n=1

Mn(k−D)
EVk

(⋂
j∈T

Fj
n

)
. (2.4)

Thus, the expectations EVk(Fn) of the random variables Vk(Fn) converge as n → ∞, when
rescaled with the sequence Mn(k−D). It is natural to ask whether the random variables Vk(Fn)
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930 M. A. KLATT AND S. WINTER

themselves also converge. In view of the convergence behavior of their expectations, it is likely
to be a good idea to rescale them in the same way by Mn(k−D). Therefore, we define the random
variables

Zk
n := M(k−D)nVk(Fn), n ∈N, k ∈ {0, 1, . . . , d}.

The following statement is our main result. It establishes for each k ∈ {0, . . . , d} the almost
sure convergence of the sequence (Zk

n) as n → ∞ for all parameter combinations (p, M) for
which a nontrivial limit set F exists, i.e. whenever p > M−d.

Theorem 2.2. Let F be a fractal percolation on [0, 1]d with parameters M ∈N≥2 and p ∈
(M−d, 1]. Then, for each k ∈ {0, . . . , d}, the random variables Zk

n converge almost surely, as
n → ∞, to some random variable Zk∞. Moreover, Zk∞ is given by

Zk∞ = Vk(F) · W∞; (2.5)

i.e., Zk∞ factorizes into a deterministic part Vk(F), given by Theorem 2.1, and a random part
W∞, which is the martingale limit given by (2.2).

The factorization of the limit variable Zk∞ in (2.5) separates the probabilistic effects from the
geometric information. The random variations in the limit set F depend only on the underlying
Galton–Watson process, i.e., on the number of cubes that survive, but not on their positions
or mutual intersections. Such geometric information is captured by the purely deterministic
factors Vk(F), which depend on k and describe some almost sure geometric property of the
limit set F.

Fortunately, the expectation and variance of W∞ are well known; see (2.3). This allows us
to derive from the above statement the complete covariance structure of the random variables
Z0∞, Z1∞, . . . , Zd∞.

Corollary 2.1. For each k ∈ {0, . . . , d}, the limit variable Zk∞ has mean Vk(F) and positive
and finite variance given by

Var(Zk∞) = (Vk(F))2 · Var(W∞) = (Vk(F))2 · 1 − p

Mdp − 1
. (2.6)

Moreover, for any k, � ∈ {0, . . . , d},

Cov(Zk∞, Z�∞) = Vk(F) · V�(F) · Var(W∞) = Vk(F) · V�(F) · 1 − p

Mdp − 1
. (2.7)

Proof. This follows immediately from combining (2.5) with (2.3). �
For plots of the variances and covariances of Zk∞, see Figure 1. The proof of Theorem 2.2 is

given in Section 5 below. We will employ a renewal theorem for branching random walks due
to Nerman [23], which has previously been used in the setting of random self-similar sets by
Gatzouras [15] and Zähle [30]. In these papers the functionals studied depend on a continuous
parameter (the radius of a parallel set grown around the limit set F) which is sent to zero,
while in our case the approximation of F is by a discrete sequence, for which we derive below
a variant of the renewal theorem; cf. Proposition 4.1. While a factorization similar to that of
Theorem 2.2 is observed in these previous papers, our somewhat simpler setting allows for
explicit computation of the limits. Note also that we do not need any additional integrability or
regularity conditions, such as the ones imposed e.g. in Zähle [30].
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FIGURE 1. Semi-logarithmic plots of the variances and the absolute values of the covariances of Zk∞ in
R

2 as functions of p for different values of M ≤ 20 (indicated by the color scale); see (2.6) and (2.7). For
M → ∞, all variances and covariances converge to zero.

Remark 2.1. From the factorization in Theorem 2.2 it is clear that further progress concerning
the distributional properties of the limit variables Zk∞ depends solely on understanding the
distribution of W∞, as the expectations Vk(F) are known already; cf. Theorem 2.1 and [18]
for more explicit expressions in R

2 and R
3. It is clear that P(W∞ = 0) = P(F = ∅) is strictly

positive for all p �= 1, meaning that the distribution of W∞ (and thus of the Zk∞) has an atom
at 0. From the more advanced theory of branching processes, it follows that the distribution of
W∞ is absolutely continuous on the open interval (0, ∞); see [2, Corollary I.12.1].

Remark 2.2. In [18] we addressed the question of whether percolation thresholds can be
approximated by the roots or critical points of mean intrinsic volumes Vk(Fp) (as func-
tions of p). The question was motivated by observations in [17, 22] for many classical
percolation models. Similar questions have been asked for second moments. Indeed, Last
and Ochsenreither [19] observed that the variance of the expected Euler characteristic of
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FIGURE 2. Semi-logarithmic plots of the variance of Z0∞ rescaled by M2 as functions of p for M = 2
(left), M = 3 (center), and M = 1000 (right). The shaded areas for M = 2 and M = 3 indicate rigorously
known bounds on the percolation threshold [13], as in [18, Figure 4]. The vertical line for M = 1000
indicates an empirical estimate of pc,NN provided by simulations [24].

Poisson–Voronoi percolation in the plane has a maximum at 1
2 , which equals the percola-

tion threshold in this model. Simulations in [17] suggest that for various variants of continuum
percolation in R

2 (Boolean models of rectangles), some minima of the variance of the Euler
characteristic and of the covariance of the Euler characteristic and perimeter are good approx-
imations for the percolation thresholds in these models. For fractal percolation in the plane we
observe that (for any M) the local maximum of the variance of the expected Euler characteristic
(as a function of p) may provide a rather close lower bound for the (unknown) percola-
tion threshold pc(M), but we have not tried to prove this. Recall from [9] that, as M → ∞,
pc(M) ↘ pc,NN , the threshold of nearest-neighbor site percolation. A comparison to the value
pc,NN ≈ 0.59274621(13) provided by simulations (see e.g. [24]) indicates that for large M this
local maximum could be a tight lower bound for pc(M); cf. Figure 2. However, there are at
least two arguments contrary to such a close relation: (1) the observed factorization suggests
that there is no additional geometric information in the second moments; (2) as discussed at
the end of Section 2 in [18] (based on a result in [7]), the dust (i.e., the points not contained in
large clusters) may have a dominant influence on the functionals Vk(Fp). That is, it is possible
that in the supercritical regime these functionals do not see the backbone but only the dust.

3. Additional results: analysis of the finite approximations

A priori it is not clear whether the almost sure convergence Zk
n → Zk∞ obtained in

Theorem 2.2 implies the convergence of the expectations EZk
n to the expectation EZk∞ of the

limit variable, as n → ∞, or whether any higher moments converge. However, for the expecta-
tions, this convergence can easily be deduced from the above results. Indeed, by Theorem 2.1,
EZk

n → Vk(F), and by Corollary 6.1, the latter number equals EZk∞. In [18] we observed that
the convergence, as n → ∞, of the rescaled expected intrinsic volumes M(k−D)n

EVk(Fn) = Zk
n

to the limit functionals Vk(F) is very fast; more precisely, their difference decays exponentially.
In [18, Remark 5.2] we explicitly determined the speed of convergence in some cases, which
can now be interpreted as the speed of the convergence EZk

n →EZk∞. For d = 2 and k = 0, for
instance, one has EZ0

n −EZ0∞ ∼ c(p/M)n as n → ∞ (where c is explicitly known). But what
about higher moments? In Corollary 6.1 we have obtained the variances of the limit variables
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Zk∞. But do the variances Var(Zk
n) converge to Var(Zk∞)? We provide here some explicit expres-

sions for the variances of the nth approximations for some of the functionals, namely for
volume and surface area. They allow us to deduce that the variances of the rescaled functionals
Zk

n = M(k−D)nVk(Fn) also converge exponentially fast to the variance of the limit variable, and
we provide explicit rates. We start with the volume.

Theorem 3.1. Let F be a fractal percolation on [0, 1]d with parameters M ∈N≥2 and p ∈
(0, 1]. Then, for each n ∈N, EVd(Fn) = pn and

Var(Vd(Fn)) =
⎧⎨⎩

1−p
Mdp−1

(
p2n −

(
p

Md

)n)
, p �= M−d,

(1 − p) · n · p2n, p = M−d.
(3.1)

Observe that, for any n ∈N, the variance in (3.1) is continuous in p even at the value p =
M−d. Indeed, for any p it can be written as

Var(Vd(Fn)) = p2n(1 − p)
n−1∑
i=0

(Mdp)i−n.

From Theorem 3.1 we can deduce the following rates of convergence for the expectation
and variance of the rescaled volume Zd

n = M(d−D)nVd(Fn) to the expectation and variance,
respectively, of the limit Zd∞.

Corollary 3.1. If p > M−d, then, as n → ∞, EZd
n = 1 → 1 =EZd∞ and

Var(Zd∞) − Var(Zd
n ) = 1 − p

Mdp − 1
(Mdp)−n → 0.

If p ≤ M−d, then Zd
n → 0 almost surely, as n → ∞, while EZd

n = 1 → 1 �= 0 =EZd
n and

Var(Zd
n ) → ∞.

Proof. First, let p > M−d. Since MD = Mdp, we infer from Theorem 3.1 that for any n ∈N,
EZd

n = p−n
EVd(Fn) = 1 and

Var(Zd
n ) = Var(p−nVd(Fn)) = p−2nVar(Vd(Fn)) = 1 − p

Mdp − 1

(
1 −

(
Mdp

)−n)
.

Moreover, by Theorem 2.1, we have Vd(F) = 1, and thus we conclude from Corollary 6.1 and
(2.3) that EZd∞ = Vd(F)EW∞ = 1 and Var(Zd∞) = 1−p

Mdp−1
. From this the asserted convergence

of the expectation and variance are obvious.
If p ≤ M−d, then F = ∅ almost surely. Moreover, it is clear from the definition of F that

F(ω) = ∅, for some ω ∈ �, if and only if there is some m = m(ω) ∈N such that Fm(ω) = ∅, and
in this case one has Zd

n (ω) → 0 as n → ∞. Hence Zd
n → 0 almost surely as n → ∞, as stated.

Now the last assertions are obvious from (3.1). �
In the terminology of numerical analysis, Corollary 3.1 says that the variances converge

linearly with rate (Mdp)−1 < 1 whenever p > M−d. This corresponds to our observations in
simulations of the variables Zd

n for different parameters p and M. In Section 6 we will provide
two proofs of Theorem 3.1. The first one uses a standard branching process argument, based
on the observation that the volume of Fn in this model is directly related to the number of
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offspring in the nth generation of the associated Galton–Watson process. The second one uses
a recursion argument, which generalizes to other intrinsic volumes and is a warm-up for the
more involved discussion of the surface area.

For the surface area of Fn, we obtain the following explicit expressions. Here we concentrate
on the case p > M−d, when the limit set F is nontrivial. Recall that Vd−1 is, in fact, half the
surface area.

Theorem 3.2. Let F be a fractal percolation on [0, 1]d with parameters M ∈N≥2 and p ∈
(0, 1]. Then, for each n ∈N,

EVd−1(Fn) = c̄1 · (Mp)n
(

1 + M − 1

1 − p

(
p

M

)n+1)
, (3.2)

where c̄1 := dM(1−p)
M−p = Vd−1(F). Moreover, if p > M−d, then, as n → ∞,

Var(Vd−1(Fn)) =c̄2 · (Mp)2n +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O((Mp3)n) if p2 > 1/Md−1,

O((Mp3)n · n) if p2 = 1/Md−1,

O(
(

p
Md−2

)n
) if p2 < 1/Md−1,

(3.3)

where c̄2 := c̄2
1 · 1−p

Mdp−1
= (Vd−1(F))2Var(W∞).

Corollary 3.2. Let p > M−d. Then, for any n ∈N,

EZd−1∞ −EZd−1
n = dp(M − 1)

M − p

(
p

M

)n

,

and as n → ∞,

Var(Zd−1∞ ) − Var(Zd−1
n ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(( p

M

)n)
if p2 > 1/Md−1,

O
(( p

M

)n · n
)

if p2 = 1/Md−1,

O
((

Mdp
)−n
)

if p2 < 1/Md−1.

In particular, Var(Zd−1
n ) → Var(Zd−1∞ ) as n → ∞.

Proof. Since Md−1−D = (Mp)−1, we infer from Theorem 3.2 that

EZd−1
n = (Mp)−n

EVd−1(Fn) = c̄1

(
1 + M − 1

1 − p

(
p

M

)n+1)
for any n ∈N. As noted above, Theorem 2.1 and Corollary 6.1 imply that EZd−1

n →EZd−1∞ ,
as n → ∞, for any p > M−d, and therefore we conclude that EZd−1∞ = c̄1 (which can also be
deduced directly from Theorem 2.1). The stated formula for the difference EZd−1∞ −EZd−1

n is
now obvious. Moreover, from (3.3) we infer that

Var(Zd−1
n ) = (Mp)−2nVar(Vd−1(Fn)) = c̄2 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(( p

M

)n) if p2 > 1/Md−1,

O
(( p

M

)n · n
)

if p2 = 1/Md−1,

O
((

Mdp
)−n
)

if p2 < 1/Md−1,
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which implies in particular that Var(Zd−1
n ) → c̄2 as n → ∞. From Corollary 6.1 we see

that Var(Zd−1∞ ) = (Vk(F))2 · Var(W∞) = c̄2. Hence Var(Zd−1
n ) → Var(Zd−1∞ ) as n → ∞, and the

stated order of convergence for the difference follows at once. �

4. Random iterated function systems and a renewal theorem for branching random
walks

Fractal percolation in R
d can be viewed as a random self-similar set, i.e., as a random

compact set generated by a random iterated function system (RIFS) S .
The general definition of such RIFSs is as follows; cf. [14, 16, 21]. Let J ⊂R

d be a compact
set such that J = int(J), and let Sim be some family of contracting similarity mappings on J.
Then an RIFS S on J is defined to be a random subset of Sim which is almost surely finite
and satisfies the uniform open set condition with respect to int(J). That is, there exist a random
variable ν with values in N0 = {0} ∪N, and random elements �i ∈ Sim, i = 1, . . . , ν, such that
S = {�1, �2, . . . , �ν} if ν > 0, and S := ∅ if ν = 0. Moreover, S is said to satisfy the uniform
open set condition (UOSC) with respect to int(J) if

ν⋃
i=1

�i(int(J)) ⊂ int(J) and �i(int(J)) ∩ �j(int(J)) = ∅, i �= j, (4.1)

holds with probability 1. Additionally, we assume throughout that ν satisfies

0 <Eν < ∞.

Given an RIFS S , a random fractal set F can be associated to it by constructing a Galton–
Watson tree on the code space N

∗ := ⋃∞
n=0 N

n of all finite words with letters in N. Here
N

0 := {ε}, where ε is the empty word. For any word σ ∈N
n, |σ | := n will denote its length.

Moreover, for σ, τ ∈N
∗, we write στ for the concatenation of σ and τ . For each σ ∈N

∗,
let Sσ be a copy of the RIFS S generated in its own probability space (�σ ,Aσ , Pσ ). Let
(�,A, P) := ⊗

σ∈N∗ (�σ ,Aσ , Pσ ) be the common probability space in which all these RIFSs
are independent. Recall that Sσ contains a random number νσ of maps. To distinguish them,
let Iσ ⊆N be a set of indices with cardinality |Iσ | = νσ . It is convenient to denote the maps in
Sσ by �σ i, i ∈ Iσ . Note that νσ may be 0, in which case Iσ = ∅. (In general, one could choose
Iσ = {1, . . . , νσ } here without loss of generality, but later in the case of fractal percolation it
will be much more convenient to use different index sets.) We build a random tree T in N

∗ as
follows: set T0 := {ε}, and for n ∈N0, define Tn+1 := ∅ if Tn = ∅, and

Tn+1 := {σ i : σ ∈ Tn, i ∈ Iσ }
if Tn �= ∅. Finally, let

T∗ :=
∞⋃

n=0

Tn

be the vertex set of the tree T , and define the edge set by

E(T ) := {(σ, σ i) : σ ∈ T∗, i ∈ Iσ }.
The tree T can be interpreted as the population tree of a Galton–Watson process in which
Tn represents the nth generation and σ i ∈ Tn+1, i ∈ Iσ , are the descendants of an individual
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σ ∈ Tn. The distribution of ν is called the offspring distribution of the process. For any finite
word σ ∈N

n and any k ∈N, k ≤ n, write σ |k for the word consisting of the first k letters of σ .
With this notation, the self-similar random set F associated with the RIFS S is defined by

F :=
∞⋂

n=1

⋃
σ∈Tn

Jσ , (4.2)

where

Jσ := �σ (J) := �σ |1 ◦ �σ |2 ◦ . . . ◦ �σ |n−1 ◦ �σ (J) (4.3)

are the cylinder sets of the construction.

Fractal percolation as a random self-similar set. Before we continue the general discussion
of RIFS, let us briefly indicate how fractal percolation F on [0, 1]d with parameters M ∈N≥2
and p ∈ (0, 1] fits into this setting. Choose J := [0, 1]d as the basic set. Recall the basic cubes
J1, . . . , JMd of side length 1/M into which J is subdivided in the first step of the construction
of F. Let Sim′ := {ϕ1, . . . , ϕMd }, where, for j = 1, . . . , Md, ϕj is the similarity which maps J
to Jj (rotation- and reflection-free, for simplicity and uniqueness). Let S be the random subset
of Sim′ such that each of the maps ϕj is contained in S with probability p independently of all
the other maps in Sim′. It is obvious that S satisfies the UOSC with respect to the interior of
J. Indeed, S is a random subset of Sim′, and any subset of Sim′ satisfies the condition (4.1)
with respect to int(J). Now fractal percolation with parameters M ∈N≥2 and p ∈ (0, 1] is the
random self-similar set F (defined by (4.2)) generated by this particular RIFS S . Note that
S contains at most Md maps. One can therefore reduce the code space to �∗ := ⋃

n∈N0
�n,

where � := {1, 2, . . . , Md}. If we choose the index set Iσ to contain exactly those indices
i ∈ � for which ϕi ∈ Sσ , and if we set �σ i := ϕi, then the cylinder sets Jσ , σ = σ1 . . . σn ∈ �n,
defined in (4.3) are more conveniently given by

Jσ := ϕσ1 ◦ . . . ◦ φσn (J). (4.4)

They correspond to the basic cubes of level n used in the previous sections. Note also that
for n = 1 this is consistent with the above notation Jj, j ∈ �, for the first-level cubes. In the
language of the tree and the associated sets considered above, the construction steps Fn, n ∈N,
of the fractal percolation process are given by

Fn =
⋃

σ∈Tn

Jσ .

For each j ∈ � and each n ∈N, the random set Fj
n introduced just before Theorem 2.1 is then

given by

Fj
n =

⋃
σ∈Tn,σ |1=j

Jσ . (4.5)

A branching random walk associated with F. Let us go back to general RIFSs. To any
random self-similar set F, a branching random walk {Sσ : σ ∈N

∗} can naturally be asso-
ciated. It controls the size of the cylinder sets of F (i.e., of the basic cubes in the case
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of fractal percolation), by keeping track of the contraction ratios applied during the con-
struction. In general, it is defined recursively by setting Sε := 0 and, for n ∈N and any
σ = σ1 . . . σn ∈ Tn,

Sσ := Sσ |n−1 + log r−1
σ ,

where rσ is the contraction ratio of the similarity �σ . It is convenient to set Sσ := ∞ for
σ ∈N

∗ \ T . Then {Sσ : σ ∈N
∗} is a branching random walk with positive step sizes. In the

case of fractal percolation F in R
d with subdivision parameter M ≥ 2, all contraction ratios (of

all �σ , σ ∈ T ) equal 1/M. Therefore, we have in this case, for any n ∈N,

Sσ =
⎧⎨⎩n · log M, σ ∈ Tn,

+∞ otherwise.

Let ξ be the random measure on R defined by

ξ (B) :=
∑
σ∈T1

1B(Sσ ) (4.6)

for any Borel set B ⊂R, and let μ := E[ξ (·)] be the intensity measure of ξ . The random mea-
sure ξ is called lattice if μ is concentrated on λZ for some λ > 0 (we also say ξ is lattice with
lattice constant λ in this case), and ξ is called nonlattice otherwise. Observe that in the case of
fractal percolation with subdivision parameter M, the intensity measure μ is concentrated on
the value log M, and so ξ is clearly lattice with lattice constant λ = log M.

For a general RIFS S , recall that ν = #S = #T1. Assume from now on that

1 <Eν < ∞.

Denote by D ∈R the number determined uniquely by the equation

E

(
ν∑

i=1

rD
i

)
= 1.

Here ri denotes the contraction ratio of the mapping �i in S . It is well known that conditioned
on F �= ∅ the Hausdorff and Minkowski dimensions of F equal D almost surely; cf. [14, 16, 21,
25]. Note that in the case of fractal percolation in R

d with parameters M and p, the assumption
Eν > 1 equals the condition p > M−d, and the above D equals the number given in (1.2).
Furthermore, we set

m(D) := E

(∑
i∈T1

| log ri|rD
i

)
.

To the branching random walk {Sσ : σ ∈N
∗} we can associate the following nonnegative mar-

tingale (Wn)n∈N0 , which in the case of fractal percolation specializes to the one defined after
Equation (2.1):

Wn :=
∑
τ∈Tn

e−DSτ , n ∈N0. (4.7)

Indeed, for fractal percolation with parameters M and p, we have Sσ = n log M for σ ∈ Tn, and
|Tn| = Nn, so that Wn =∑τ∈Tn

M−Dn = (Mdp)−nNn = Nn/ENn.
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Also, in general, (Wn)n is a nonnegative martingale (with respect to the filtration (F̂n)n,
where F̂n is the product σ -algebra generated by the Fσ with |σ | ≤ n) with EWn = 1 for each
n ∈N, and by the martingale convergence theorem, the almost sure limit

W∞ := lim
n→∞ Wn (4.8)

is well defined. Moreover, by Biggins’s theorem [4] (see also [15, Theorem 3.3]), W∞ is non-
trivial, i.e., P(W∞ = 0) < 1, if and only if E[W1 log+ W1] < ∞. (Note that this condition is
satisfied for fractal percolation for all parameters such that p > M−d.)

In [15], a renewal theorem for branching processes Zt, t ∈R, associated to the random walk
S = {Sσ : σ ∈N

∗} is formulated, which is based on and extends a result of Nerman [23]. First
we recall the theorem from [15]; see also [30]. Then we reformulate this statement in order to
apply it to some discrete processes.

Recall that the underlying probability space is (�,F , P) =∏σ∈N∗ (�σ ,Fσ , Pσ ), where the
components (�σ ,Fσ , Pσ ) are identical and each of them generates an RIFS which, loosely
speaking, determines the offspring of Fσ , i.e. the sets Fσ i, i = 1, . . . , νσ . The tree T∗ induces
a tree structure on the elements of �, and it is easy to see that any subtree rooted at some
τ ∈ T∗ and containing all words starting with τ is equivalent in distribution to the full tree T∗.
Using only the components of ω ∈ T∗ determined by this subtree, we can generate a random
self-similar set F(τ ) which is equal in distribution to F. More formally, define for each τ ∈N

∗
the shift operator θτ : � → � by

(θτω)σ := ωτσ .

Since the images θτ (ω) are again in �, we can define for any random variable X on � (tak-
ing values in some arbitrary space E) a whole family of random variables {X(τ ) : τ ∈N

∗} by

X(τ )(ω) := X(θτω), ω ∈ �. They have the property that X(τ ) d= X for any τ ∈N
∗. In particular,

we define the random set F(τ ) by

F(τ )(ω) := F(θτω), ω ∈ �. (4.9)

It satisfies F(τ ) d= F for any τ ∈N
∗. Similarly, we define for any stochastic process Y :=

{Yt : t ∈R} on (�,F , P) a family of independent and identically distributed (i.i.d.) copies of Y
by Y (τ )

t (ω) := Yt(θτω), ω ∈ �, τ ∈N
∗. Then the branching process associated with S and Y is

defined by

Zt :=
∑
σ∈T∗

Y (σ )
t−Sσ

. (4.10)

Now we are ready to recall the relevant part of the Nerman–Gatzouras renewal theorem.

Theorem 4.1. ([15, Theorem 3.4, lattice case].)
Let {Yt : t ∈R} be a stochastic process on (�,F , P)( =∏σ∈N∗ (�σ ,Fσ , Pσ )), which is con-
tinuous almost everywhere with probability 1 and takes values in the space of functions
which vanish on (−∞, 0). Assume there exists a non-increasing and integrable function
h : [0, ∞) → (0, ∞) such that

E

[
sup
t≥0

e−Dt|Yt|
h(t)

]
< ∞. (4.11)

https://doi.org/10.1017/apr.2023.48 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.48


Geometric functionals of fractal percolation: a.s. convergence and second moments 939

Assume further that the random measure ξ (defined in (4.6)) is lattice with lattice constant
λ > 0, and let s ∈ [0, λ). Then, as n → ∞, almost surely

e−DnλZs+λn = e−Dnλ
∑
σ∈T∗

Y (σ )
s+nλ−Sσ

−→ λW∞
m(D)

∞∑
n=0

e−Dnλ
E[Ynλ+s].

There is also a corresponding statement for the nonlattice case, which we omit here as we
will not use it. The following discrete version of the previous theorem will be the main tool
in the proof of our main result Theorem 2.2. We only formulate it for the special case that the
random measure ξ is concentrated on a single value λ > 0, which is the only case we need
here. The statement can easily be generalized to any lattice random self-similar set (but the
formulas are not as neat). Note that the assumption means that all contraction ratios are the
same and equal 1/� = e−λ almost surely. It implies in particular that D = log E[ν]/ log � and
m(D) = λ.

Proposition 4.1. Let {Yn : n ∈N} be a (discrete-time) stochastic process on (�,F , P). Assume
the random measure ξ is almost surely concentrated on some λ > 0, and set � := eλ. Suppose
there exists a non-increasing and summable sequence (hn)n∈N such that

E

[
sup
n∈N

�−Dn|Yn|
hn

]
< ∞. (4.12)

Then almost surely, as n → ∞,

�−Dn
∑
σ∈T∗

Y (σ )
n−|σ | → W∞

∞∑
n=0

�−Dn
E[Yn]. (4.13)

Proof. With the intention of applying Theorem 4.1, we consider the process Ỹ defined by
Ỹt := Yn for t ∈ In := [n log �, (n + 1) log �), n ∈N0, and Ỹt := 0 for t < 0. Note that for any
t ∈ In,

e−Dt|Ỹt| ≤ e−Dn log �|Yn| = �−Dn|Yn|.
Define the function h : [0, ∞) → (0, ∞) by h(t) := hn for t ∈ In, n ∈N. The assumed properties
of the sequence (hn) imply that h is non-increasing and integrable. Moreover, for any t ≥ 0 we
have

e−Dt|Ỹt|
h(t)

≤ �−Dn|Yn|
hn

,

and thus (for any realization ω ∈ �)

sup
t≥0

e−Dt|Ỹt|
h(t)

= sup
n∈N0

sup
t∈In

e−Dt|Ỹt|
h(t)

≤ sup
n∈N0

�−Dn|Yn|
hn

.

Since, by assumption, the random variable on the right-hand side has a finite expectation, so has
the one on the left-hand side. Thus, the process Ỹ satisfies the condition (4.11) in Theorem 4.1,
and we can apply this theorem to Ỹ . (Note also that Ỹ vanishes on (−∞, 0) and is continuous
almost everywhere with probability 1.) Recalling that λ = log �, we conclude in particular that
(for s = 0) the rescaled sum

e−Dnλ
∑
σ∈T∗

Ỹ (σ )
nλ−Sσ

= �−Dn
∑
σ∈T∗

Ỹ (σ )
(n−|σ |) log � = �−Dn

∑
σ∈T∗

Y (σ )
n−|σ |
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converges almost surely, as n → ∞, to the random variable

λW∞
m(D)

∞∑
n=0

e−Dnλ
E[Ỹnλ] = W∞

∞∑
n=0

�−Dn
E[Yn].

�

5. Proof of Theorem 2.2

We introduce some further notation. For τ ∈ T∗, recall from (4.9) the definition of the ran-

dom set F(τ ) and the fact that it satisfies F(τ ) d= F. Furthermore, we will write F[τ ] := �τ (F(τ ))
for the corresponding scaled copy of F(τ ) in F. We use F(τ )

n for the nth approximation of F(τ ), in
particular F(τ )

0 = J, and similarly, for any τ ∈ T∗ and n ≥ |τ |, we let F[τ ]
n := �τ (F(τ )

n−|τ |). To see

the relationship to the notation Fj
n introduced in (4.5), let Fτ

n := ⋃
σ∈Tn,σ ||τ |=τ Jσ for n ≥ |τ |.

Then Fτ
n = F[τ ]

n ∩ J̃τ , where J̃τ is the random set which equals the cube Jτ provided τ ∈ T∗ and
is empty otherwise. Note that in particular

Fn =
Md⋃
j=1

Fj
n =

⋃
j∈T1

F[j]
n . (5.1)

Now we are ready to provide a proof of Theorem 2.2.

Proof of Theorem 2.2. Fix k ∈ {0, . . . , d}. In order to express the functionals Zk
n in

the form of the left-hand side of (4.13), we set Ẑn := MnkVk(Fn). We will also write
Ẑ(σ )

n := MnkVk(F(σ )
n ) for the corresponding functionals of the shifted random set F(σ ), σ ∈ T∗.

(To simplify the notation, we suppress the dependence on k here.) Observe that, by the
inclusion–exclusion principle, we can decompose the random variables Ẑn for any n ∈N as
follows:

Ẑn = MnkVk(Fn) = MnkVk

( ⋃
j∈T1

F[j]
n

)

= Mnk
∑
j∈T1

Vk(F[j]
n ) + Mnk

∑
T⊂T1,|T|≥2

(−1)|T|−1Vk

(⋂
j∈T

F[j]
n

)
.

For any n ∈N, we define Yn to be the second of the two summands above, and we set Y0 := 0
(which is consistent). Using the relation Vk(F[j]

n ) = M−kVk(F(j)
n−1) (recall that F[j]

n = φj(F
(j)
n−1),

where φj has contraction ratio 1/M, and that Vk is homogeneous of order k), we infer that

Ẑn =
∑
j∈T1

M(n−1)kVk(F(j)
n−1) + Yn =

∑
j∈T1

Ẑ(j)
n−1 + Yn.

Now each of the variables Ẑ(j)
n−1, j ∈ T1, can be decomposed in the very same manner,

which yields Ẑ(j)
n−1 =∑σ∈T2,σ |1=j Ẑ(σ )

n−2 + Y (j)
n−1 for n ∈N≥2. For n = 1 we simply get Ẑ(j)

n−1 =
Vk(F(j)

0 ) = Vk(J) = qd,k for any j ∈ T1. Iterating this procedure, we end up with one term Y (σ )
�
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for each finite word σ ∈ T∗ of length |σ | up to n − 1, i.e. we obtain

Ẑn =
∑
σ∈Tn

Ẑ(σ )
0 +

∑
σ∈T∗,|σ |<n

Y (σ )
n−|σ |. (5.2)

Here the first summand simplifies to qd,k|Tn| = qd,kNn, since, for each σ ∈ Tn, F(σ )
0 equals the

unit cube J and so Ẑ(σ )
0 = Vk(J) = qd,k.

We wish to study the limit of Zk
n = M−DnẐn as n → ∞, which we can do by studying sep-

arately the limits of the two sequences given by the two summands in (5.2). The limiting
behavior of the first resulting sequence (M−Dnqd,kNn) is obvious. Since MDn = (Mdp)n =ENn,
we conclude that

M−Dnqd,kNn = qd,kWn → qd,kW∞ almost surely, as n → ∞. (5.3)

Thus the first summand shows the desired factorization, with the first factor being deterministic
and the second one being W∞. The second sequence is of a form which allows us to employ
Proposition 4.1. In order to do so we need to verify that our process (Yn)n satisfies the assump-
tions of this proposition. More precisely, we need to verify that there is a non-increasing and
summable sequence (hn)n∈N such that

E

[
sup
n∈N

M−Dn|Yn|
hn

]
< ∞. (5.4)

This can be derived from the following result, Proposition 5.1, whose proof is postponed to the
end of the section.

Proposition 5.1. Let F be a fractal percolation in [0, 1]d with parameters M ∈N≥2 and p ∈
(0, 1]. Then there exists a non-increasing and summable sequence (hn) such that, for any subset
T ⊂ {1, 2, . . . , Md} with |T| ≥ 2,

E

[
sup
n∈N

M(k−D)n

hn

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
]

< ∞. (5.5)

Let us now show that this statement implies the condition (5.4). First observe that, since T1
is a random subset of � = {1, . . . , Md}, we have for any n ∈N

|Yn| = Mnk

∣∣∣∣∣ ∑
T⊂T1,|T|≥2

(−1)|T|−1Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
≤ Mnk

∑
T⊂T1,|T|≥2

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣≤ ∑
T⊂�,|T|≥2

Mnk

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣.
Therefore, Proposition 5.1 implies that there is some non-increasing and summable sequence
(hn) such that
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E

[
sup
n∈N

M−Dn

hn
|Yn|
]

≤E

[
sup
n∈N

M−Dn

hn

∑
T⊂�,|T|≥2

Mnk

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
]

≤E

[ ∑
T⊂�,|T|≥2

sup
n∈N

M(k−D)n

hn

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
]

≤
∑

T⊂�,|T|≥2

E

[
sup
n∈N

M(k−D)n

hn

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
]

< ∞,

verifying the condition (5.4). Hence we can apply Proposition 4.1 to the sequence of the second
summands in (5.2). We infer that, as n → ∞,

M−Dn
∑
σ∈T∗

Y (σ )
n−|σ | → W∞ ·

∞∑
n=1

M−Dn
E[Yn], (5.6)

where, for any n ∈N,

E[Yn] = Mkn
E

[ ∑
T⊂T1,|T|≥2

(−1)|T|−1Vk

(⋂
j∈T

F[j]
n

)]

= Mkn
E

[ ∑
T⊂�,|T|≥2

(−1)|T|−1Vk

(⋂
j∈T

Fj
n

)]
.

Here the last equality is due to (5.1). Using this last representation, we get

∞∑
n=1

M−Dn
E[Yn] =

∞∑
n=1

M(k−D)n
∑

T⊂�,|T|≥2

(−1)|T|−1
E

[
Vk

(⋂
j∈T

Fj
n

)]

=
∑

T⊂�,|T|≥2

(−1)|T|−1
∞∑

n=1

M(k−D)n
E

[
Vk

(⋂
j∈T

Fj
n

)]
,

where the interchange of the summations in the last equality is justified as long as all the
(finitely many) series in the last expression converge. But this convergence is shown in [18,
Proposition 5.1] for any p ∈ (0, 1]. Recall that this is an expression for the limit of the second
summands in (5.2). Combining it with the limit of the first summands in (5.3), we see by
comparison with (2.4) that

Zk∞ = lim
n→∞ Zk

n = Vk(F) · W∞ almost surely,

as asserted in Theorem 2.2. This completes the proof. �
Proof of Proposition 5.1. First observe that, for any index set T ⊂ �, the set C := ⋂

j∈T Jj

is a cube with side length 1/M and some dimension u ≤ d − 1. If u = 0 the estimate in (5.5)
is obviously satisfied. So assume u ≥ 1. For any n ∈N, the set

⋂
j∈T F[j]

n is a subset of C

and thus at most u-dimensional. Note that in each of the sets F[j]
n , only those level-n cubes
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which intersect C are relevant for the intersection
⋂

j∈T F[j]
n . This means we can also model the

independent random sets F[j], j ∈ T , by independent u-dimensional fractal percolations K{j},
j ∈ T , constructed on the cube C (with the same parameters p and M as F). That is, we have

F[j] ∩ C
d= K{j} for each j ∈ T , and therefore F[j]

n ∩ C
d= K{j}

n for each n ∈N. In particular, this

implies
⋂

j∈T F[j]
n

d=⋂j∈T K{j}
n . Choose some index j1 from T and denote by Nu

n the number of

level-n cubes contained in K{j1}
n . Recall that the sequence (Nu

n ) forms a Galton–Watson pro-
cess with binomial offspring distribution Bin(Mu, p). Now we can apply [18, Lemma 7.2],
according to which there is some constant cu,k (independent of n) such that∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣ d=
∣∣∣∣∣Vk

(⋂
j∈T

K{j}
n

)∣∣∣∣∣≤ Cvar
k

(⋂
j∈T

K{j}
n

)
≤ cu,kM−knNu

n .

Note that we are dealing here with unions of level-n subcubes of C and not of the unit cube.
However, this only changes the constant of the lemma by a factor of M−k, since we can scale
the whole situation by a factor of M to take place in a unit-size cube. Multiplying by M(k−D)n

and setting Wu
n := Nu

n/ENu
n , where ENu

n = (ENu
1 )n = Munpn, we get

M(k−D)n

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣≤ cu,kM(u−D)npnWu
n = cu,kM(u−d)nWu

n .

Now, choosing e.g. hn := M−n/2, n ∈N (which obviously forms a non-increasing and
summable sequence), we conclude from the above inequality that

E

[
sup
n∈N

M(k−D)n

hn

∣∣∣∣∣Vk

(⋂
j∈T

F[j]
n

)∣∣∣∣∣
]

≤ cu,kE

[
sup
n∈N

M−αnWu
n

]
, (5.7)

where α := d − u − 1
2 . Note that α ≥ 1

2 , since u ≤ d − 1. Now observe that the sequence of
random variables Xm := supn∈{1,...,m} M−αnWu

n , m ∈N, is non-decreasing and converges as
m → ∞ to supn∈N M−αnWu

n . Moreover, for any m ∈N, we have

E [Xm] ≤E

[
n∑

�=1

M−α�Wu
�

]
=

n∑
�=1

M−α�
E
[
Wu

�

]= 1 − M−αn

Mα − 1
≤ 1

Mα − 1
,

which, by monotone convergence, implies that the right-hand side of (5.7) is bounded (by cu,k

times the latter constant, in which α ≥ 1/2). Finally, note that the chosen sequence (hn) is
independent of the set T , and hence it can be used for all sets T ⊆ �, |T| ≥ 2. Moreover, there
are only finitely many choices for the constant cu,k (which depends on T via the dimension u
of the resulting cube C). This shows the finiteness of the expectation in (5.5) and completes
the proof. �

6. Variance of the volume of Fn

Theorem 3.1 provides exact expressions for the expectation and variance of the volume of
Fn. We discuss two proofs of this result. A standard argument provides a short and elegant proof
of the particular case of the volume, which does not generalize to other intrinsic volumes. The
second one uses a recursion argument and avoids branching process techniques. It is ultimately
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based on the inclusion–exclusion principle and provides the idea of how to prove analogous
results for the other intrinsic volumes.

First proof of Theorem 3.1. Observe that the volume Vd(Fn) equals the number Nn of
cubes in the union Fn times the volume of a single cube of level n, i.e. Vd(Fn) = M−dnNn,
n ∈N0. If we recall the expectation and variance of Nn from (2.1), this implies E(Vd(Fn)) =
M−dn

E(Nn) = pn and

Var(Vd(Fn)) = M−2dnVar(Nn) =
⎧⎨⎩

1−p
Mdp−1

(M−dp)n
(
(Mdp)n − 1

)
if p �= 1/Md,

M−2dn · n · (1 − p) if p = 1/Md,

from which the formula (3.1) follows at once. �
For the other intrinsic volumes Vk(Fn), k = 0, . . . , d − 1, a similar argument will not work,

since the mutual intersections of the cubes are essential for determining the functionals.
Therefore we want to discuss a different proof of Theorem 3.1, which provides an idea of
how to proceed in the general case. It is based on simple recursions. We start by introducing
some additional notation and some useful observations needed for the proof.

Recall the definition of the code space �∗ and the encoding of the basic cubes Jσ from (4.4).
Observe that Jσω ⊂ Jσ for all σ, ω ∈ �∗. It will be convenient to consider all basic cubes and
not only those whose ancestors survived previous steps of the construction. The construction
steps Fn can also be characterized as follows.

For n ∈N and σ ∈ �n, let Yσ be the 0–1 random variable which models the decision of
whether the subcube Jσ is kept in the nth step of the construction of F. Observe that {Yσ : σ ∈
�∗} is a family of i.i.d. Bernoulli variables with parameter p. For n ∈N, we define the nth layer
Ln to be the random set given by

Ln :=
⋃

σ∈�n,Yσ =1

Jσ ,

and the nth construction step Fn is then given by

Fn =
n⋂

m=1

Lm.

For convenience set F0 := L0 := J, which is a deterministic set. The sets Fj
n (defined in

(4.5)) can also be characterized by Fj
n =⋂n

m=1 Lj
m, where

Lj
m :=

⋃
σ∈�m,σ |1=j,Yσ =1

Jσ .

It will also be convenient to have notation for the resulting set in the nth step if we ignore the
first step of the construction. To this end, we define for any pair of indices �, n ∈N, with � ≤ n,
the sets

F�,n :=
n⋂

m=�

Lm and Fj
�,n :=

n⋂
m=�

Lj
m, j = 1, . . . , Md.
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Note that F1,n = Fn and Fn,n = Ln (and similarly, Fj
1,n = Fj

n and F1
n,n = Lj

n). The most important

observation is that Fj
2,n is a scaled version of Fn−1; that is, for any j ∈ �, we have

Fj
2,n

d= ϕj(Fn−1). (6.1)

When we study the intrinsic volumes of the Fn, it will convenient to separate the effect of
the first step from the effect of the later steps.

Lemma 6.1. For any n ∈N, k ∈ {0, . . . , d}, and j ∈ �,

Vk(Fj
n)

d= M−kVk(Fn−1) · Y,

where Y is a Bernoulli variable with parameter p independent of Fn−1. In particular, this
implies that

EVk(Fj
n) = p

Mk
EVk(Fn−1) and (6.2)

Var
(
Vk
(
Fj

n

))= p

M2k

(
Var(Vk(Fn−1)) + (1 − p)(EVk(Fn−1))2

)
. (6.3)

Proof. On the one hand, by (6.1) and the invariance properties of the intrinsic volumes, we
have for any n ∈N

Vk
(
Fj

2,n

) d= Vk(ϕj(Fn−1)) = M−kVk(Fn−1). (6.4)

On the other hand,

Vk
(
Fj

n

)= Vk
(
Lj

1 ∩ Fj
2,n

)= Vk
(
Fj

2,n

) · Yj, (6.5)

where Yj is the Bernoulli variable which determines whether Jj is kept in the first step.

Observe that Yj is independent of Fj
2,n. Combining both equations proves the first assertion.

The expressions for the expectation and variance can be deduced from the first equation,
taking into account the independence of Y and Fj

2,n and recalling that EY =EY2 = p and
Var(Y) = p(1 − p). �

Now we are ready to provide an alternative proof of Theorem 3.1 based on a direct recursion,
as previously stated.

Second proof of Theorem 3.1. Recall that Fn =⋃Md

j=1 Fj
n and that from the perspective

of volume this union is disjoint. Hence Vd(Fn) =∑j Vd(Fj
n). Observe that this decomposes

Vd(Fn) into a sum of independent random variables. According to Lemma 6.1, the sets Fj
n

satisfy EVd(Fj
n) = p

Md EVd(Fn−1), which implies that

EVd(Fn) =
∑

j

pM−d
EVd(Fn−1) = p ·EVd(Fn−1)

for any n ∈N, where EVd(F0) = 1. This is a recursion relation which implies immediately
that EVd(Fn) = pn. Furthermore, Lemma 6.1 also yields a recursion equation for the variance
of Vd(Fn),
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Var(Vd(Fn)) = Var

(
Md∑
j=1

Vd(Fj
n)

)
=

Md∑
j=1

Var
(
Vd(Fj

n)
)

=
Md∑
j=1

p

M2d

(
Var(Vd(Fn−1)) + (1 − p)(EVd(Fn−1))2

)

= p

Md
· Var(Vd(Fn−1)) + 1 − p

Mdp
· p2n,

where we have used the independence of the Vd(Fj
n) for the second equality. By induction, this

leads to

Var(Vd(Fn)) = p

Md
Var(Vd(F0)) + 1 − p

Mdp
·

n−1∑
�=0

(
p

Md

)�

p2(n−�),

where the first summand vanishes, since F0 = [0, 1]2 is deterministic, and the second summand
simplifies to the expression stated in Theorem 3.1. �
Remark 6.1. For the variances of the other intrinsic volumes, similar (but more involved)
recursions can be formulated. The decomposition Fn =⋃j Fj

n is still useful, but because of
the inclusion–exclusion formula, it will lead to additional terms taking care of the intersection
structure. Moreover, the functionals Vk(Fj

n) are not independent anymore, and their covariances
have to be taken into account. In the last section we work this out for the surface area Vd−1(Fn).

The following statement is a generalization of Theorem 3.1 to the volume of the intersection
of several fractal percolations generated independently on the same basic cube J. It will be
used in the computations for the surface area, where some of the intersection terms can be
interpreted as lower-dimensional volumes.

Corollary 6.1. Let � ∈N and let F{1}, . . . , F{�} be independent fractal percolations on [0, 1]d

with the same parameters M ∈N≥2 and p ∈ (0, 1]. Then, for each n ∈N,

Vd(F{1}
n ∩ . . . ∩ F{�}

n )
d= Vd(F′

n),

where F′ is a fractal percolation on [0, 1]d with parameters M and p�. In particular,

EVd(F{1}
n ∩ . . . ∩ F{�}

n ) = p�n and

Var(Vd(F{1}
n ∩ . . . ∩ F{�}

n )) =
⎧⎨⎩

1−p�

Mdp�−1

(
p2�n −

(
p�

Md

)n)
, p� �= M−d,

(1 − p�) · n · p2�n, p� = M−d.

Proof. Let N′
n denote the number of basic cubes of level n contained in the intersection In :=

F{1}
n ∩ . . . ∩ F{�}

n . Note that a basic cube Jσ , σ = σ1 . . . σn ∈ �n, of level n is contained in In if
and only if Jσ1...σn−1 is contained in In−1 and if, for each i = 1, . . . , �, Y{i}

σ = 1, i.e. Jσ survives

in F{i}
n . This implies that for each basic cube of level n − 1 contained in In−1, the random

number of descendants (i.e. of subcubes of level n contained in In) is Bin(Md, p�)-distributed,
and hence (N′

n) forms a Galton–Watson process that is equivalent to the one associated to a
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fractal percolation F′ on [0, 1]d with parameters M and p�. Now the assertion follows from the
fact that Vd(In) equals N′

n times M−dn, the volume of a single basic cube of level n, which is
also the volume Vd(F′

n). The formulas for the expectation and variance then follow directly
from Theorem 3.1. �

7. Expectation and variance of the surface area of Fn

For computing the expectation and variance of the surface area of the nth step Fn of fractal
percolation, one has to study those intersections Fj

n ∩ F�
n for which Jj and J� are direct neigh-

bors. We call two basic cubes of level n direct neighbors if they are distinct and share a common
facet. For the computations the following statement will be helpful. It will be combined below
with Corollary 6.1.

Lemma 7.1. For any n ∈N, k ∈ {0, . . . , d}, and j, � ∈ � such that Jj and J� are direct
neighbors,

Vk
(
Fj

n ∩ F�
n

) d= M−kVk

(
K{1}

n−1 ∩ K{2}
n−1

)
· Y,

where K{1} and K{2} are independent fractal percolations in [0, 1]d−1 (with the same parame-
ters M and p as F), K{1}

n and K{2}
n are their nth construction steps, and Y is a Bernoulli variable

with parameter p2 independent of K{1}, K{2}.
In particular, one obtains that

EVk
(
Fj

n ∩ F�
n

)= p2

Mk
EVk

(
K{1}

n−1 ∩ K{2}
n−1

)
and

Var
(
Vk
(
Fj

n ∩ F�
n

))= p2

M2k

(
Var
(
Vk
(
K{1}

n−1 ∩ K{2}
n−1

))
+(1 − p2)

(
EVk

(
K{1}

n−1 ∩ K{2}
n−1

))2) .

Proof. First observe that, similarly as in the proof of Lemma 6.1,

Vk
(
Fj

n ∩ F�
n

)= Vk
(
Lj

1 ∩ Fj
2,n ∩ L�

1 ∩ F�
2,n

)= Vk
(
Fj

2,n ∩ F�
2,n

) · Yj · Y�, (7.1)

where Yj and Y� are the Bernoulli variables which determine whether Jj and J�, respectively,

are kept in the first step. Note that Yj, Y�, Fj
2,n, F�

2,n are independent and that the product Yj · Y�

is a Bernoulli variable with parameter p2. Now observe that, by (6.1), and with K{i} as in the

statement, for any n ∈N, Fj
2,n ∩ F�

2,n
d= ϕ(K{1}

n−1 ∩ K{2}
n−1), where ϕ : Rd−1 →R

d is the similarity

with contraction ratio 1/M mapping [0, 1]d−1 to Jj ∩ J�. This implies in particular that

Vk
(
Fj

2,n ∩ F�
2,n

) d= Vk
(
ϕ
(
K{1}

n−1 ∩ K{2}
n−1

))= M−kVk
(
K{1}

n−1 ∩ K{2}
n−1

)
. (7.2)

Combining both equations proves the first assertion. The expressions for the expectation and
variance follow easily. �

Now we have all the ingredients needed to start the proof of Theorem 3.2.

Proof of Theorem 3.2. Fix n ∈N. For j, � ∈ �, let Xn := Vd−1(Fn), Xj
n := Vd−1(Fj

n), and

Xj,�
n := Vd−1(Fj

n ∩ F�
n).
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Note that all these random variables are nonnegative. The variables Xj
n, j ∈ � are i.i.d. Note

also that Xj,�
n = 0 whenever the corresponding cubes Jj and J� are not direct neighbors. By the

inclusion–exclusion principle, we have

Xn =
∑
j∈�

Xj
n −

∑
{j,�}⊂�

Xj,�
n . (7.3)

For the expectation this implies

E(Xn) =
∑
j∈�

E
(
Xj

n

)− ∑
{i,�}⊂�

E
(
Xi,�

n

)
.

By Lemma 6.1, the first sum simplifies to MpE(Xn−1). In the second term it is enough to sum
over those pairs {i, �} for which the corresponding cubes Ji and J� are direct neighbors. There
are d(M − 1)Md−1 such pairs in dimension d. All other summands are zero. Now observe
that to direct neighbors Lemma 7.1 can be applied, which in combination with Corollary 6.1
yields

E
(
Xi,�

n

)= p2

Md−1
EVd−1

(
K{1}

n−1 ∩ K{2}
n−1

)
= p2

Md−1
p2(n−1) = p2n

Md−1
. (7.4)

Therefore we conclude that for any n ∈N,

E(Xn) = MpE(Xn−1) − d(M − 1)Md−1 · M1−dp2n = MpE(Xn−1) − d(M − 1)p2n,

where E(X0) = Vd−1(J) = d. This is a recursion relation for the expectation and leads to

E(Xn) = (Mp)n
E(X0) − d(M − 1)

n∑
i=1

(Mp)n−ip2i

= d(Mp)n
(

1 − (M − 1)p

M − p

[
1 −

(
p

M

)n])
,

which is equivalent to the expression stated in Equation (3.2), completing the proof of this
equation.

For the computation of the variance of Xn, the following statement is useful.

Lemma 7.2. For i = 1, 2, let Zi, Z′
i be stochastically independent random variables. Then

Cov(Z1 · Z′
1, Z2 · Z′

2) = Cov(Z1, Z2) ·E(Z′
1 · Z′

2) +EZ1 ·EZ2 · Cov(Z′
1, Z′

2).

In particular, Var(Z1 · Z′
1) = Var(Z1) ·E(Z′

1 · Z′
1) + (EZ1)2 · Var(Z′

1).

Proof. A straightforward computation that uses the assumed independence yields the
first formula, and the second one is an easy consequence obtained by setting Z1 = Z2 and
Z′

1 = Z′
2. �

Now we are ready to compute the variance of Xn. Our starting point is again the central
equation (7.3), which allows us to split the variance Var(Xn) into several terms which will then
be treated separately. Equation (7.3) implies that
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Var(Xn) = Var

⎛⎝∑
j∈�

Xj
n

⎞⎠+ Var

⎛⎝ ∑
{i,�}⊂�

Xi,�
n

⎞⎠− 2 · Cov

⎛⎝∑
j∈�

Xj
n,
∑

{i,�}⊂�

Xi,�
n

⎞⎠
=
∑
j∈�

Var
(
Xj

n

)+ ∑
{i,�}⊂�

Var
(
Xi,�

n

)+ ∑
{i,�}�={i′,�′}

Cov
(

Xi,�
n , Xi′,�′

n

)
(7.5)

− 2
∑
j∈�

∑
{i,�}⊂�

Cov
(
Xj

n, Xi,�
n

)
,

where we have used the independence of the Xj
n in the first sum. Note that the sum in the

third term extends over all pairs ({i, �}, {i′, �′}) of subsets of � with two elements such that
{i, �} �= {i′, �′}. Since the Xj

n are identically distributed, we get for the first term above∑
j∈�

Var(Xj
n) = Md · Var

(
X1

n

)= Md p

M2(d−1)

(
Var(Xn−1) + (1 − p)(EXn−1)2

)

= p

Md−2
Var(Xn−1) + p(1 − p)

Md−2
(EXn−1)2,

where for the second equality we employed Equation (6.2) of Lemma 6.1. By Equation (3.2),
we have

(EXn−1)2 = (Mp)2n d2(1 − p)2

p2(M − p)2

(
1 + M − 1

1 − p

( p

M

)n
)2

and thus ∑
j∈�

Var(Xj
n) = p

Md−2
Var(Xn−1) + d2(1 − p)3

Md−2p(M − p)2
× (7.6)

× (Mp)2n
(

1 + M − 1

1 − p

( p

M

)n
)2

.

Inserting this expression into Equation (7.5) yields a recursion relation for the variance Var(Xn).
In order for this to be of use, it remains to find explicit expressions for the other terms in (7.5).
The discussion below of the three remaining terms will show that all of them are of some order
lower than (Mp)2n and thus do not contribute to the first term in (3.3). Moreover, it will become
clear that for certain parameter combinations the last term in (7.5) provides a contribution to
the second term in (3.3).

Analysis of the second term in (7.5). First recall that Xj,�
n = Vd−1(Fj

n ∩ F�
n) = 0 whenever the

corresponding cubes Jj and J� are not direct neighbors, which implies Var(Xj,�
n ) = 0 in this case.

Recall also that there are d(M − 1)Md−1 pairs {j, �} such that Jj and J� are direct neighbors.

By Lemma 7.1, we get for all such pairs {j, �} that Var(Xj,�
n ) equals

p2

M2(d−1)

(
Var
(

Vd−1

(
K{1}

n−1 ∩ K{2}
n−1

))
+ (1 − p2)

(
EVd−1

(
K{1}

n−1 ∩ K{2}
n−1

))2)
,
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where K{1}, K{2} are independent (d − 1)-dimensional fractal percolations. Hence, by
Corollary 6.1, we have (EVd−1(K{1}

n−1 ∩ K{2}
n−1))2 = p4(n−1) and, for p2 �= M1−d,

Var
(

Vd−1

(
K{1}

n−1 ∩ K{2}
n−1

))
= p4(n−1) 1 − p2

Md−1p2 − 1

(
1 −

(
1

Md−1p2

)n−1
)

.

For p2 = M1−d, a different expression for the variance is provided by Corollary 6.1. Inserting
these expressions into the above formula yields

Var(Xj,�
n ) = 1 − p2

Md−1
· p4n

⎧⎨⎩
1

Md−1p2−1

(
1 − (Md−1p2

)−n
)

, Md−1p2 �= 1,

n, Md−1p2 = 1.
(7.7)

This provides explicit expressions for the second term in (7.5).

Analysis of the third term in (7.5). First note that the covariances of the form

Cov
(

Xi,�
n , Xi′,�′

n

)
appearing in the third term vanish whenever {i, �} ∩ {i′, �′} = ∅, simply

because in this case the variables Xi,�
n and Xi′,�′

n are determined by disjoint subfamilies of the
basic random variables Yσ , σ ∈ �∗, and are therefore independent. Since also {i, �} �= {i′, �′},
all relevant terms in the third sum refer to pairs of the form ({i, �}, {i, �′}) with � �= �′, where

J� and J
�
′ are both direct neighbors of Ji. Now observe that the covariance Cov

(
Xi,�

n , Xi,�′
n

)
depends on the relative position of J� and J

�
′ , since this determines which of the basic variables

Yσ determining Fi
n are relevant for both quantities Xi,�

n and Xi,�′
n . Since Ji ∩ J� and Ji ∩ J

�
′ are

facets of Ji, and any two facets of a cube either are disjoint (if they lie on opposite sides, i.e. in
parallel hyperplanes) or intersect in a (d − 2)-face (i.e. in a cube of dimension d − 2), we are
left with exactly these two cases. The remaining task is now to determine how many covariance
terms there are for each of these two types, and to provide an explicit expression for each of
them. We start with the easier one, for which the cubes J�, Ji, and J

�
′ have to be arranged in

a row (in this order) in one of the 2d directions. (Note that because of the independent sum-
mation through all pairs {i, �} and all pairs {i, �′}, it is a different contribution if � and �′ are
interchanged.) There are 2d(M − 2)Md−1 such terms. (For M = 2 this situation is not possible,
and accordingly the number is zero.) The only basic variable which affects both quantities Xi,�

n

and Xi,�′
n is Yi; i.e. only the first construction step affects this covariance term. To compute it,

we separate the influence of the first construction step from the rest (just as in Lemma 6.1) and
use the independence. We have, for any n ∈N,

Cov
(

Xi,�
n , Xi,�′

n

)
= Cov

(
Vd−1

(
Fi

2,n ∩ Li
1 ∩ F�

n

)
, Vd−1

(
Fi

2,n ∩ Li
1 ∩ F�

′
n

))
= Cov

(
Vd−1

(
Fi

2,n ∩ F�
n

)
· Yi, Vd−1

(
Fi

2,n ∩ F�
′

n

)
· Yi

)
.

Setting X̃n := Vd−1(Fi
2,n ∩ F�

n) and X̃n
′ := Vd−1

(
Fi

2,n ∩ F�
′

n

)
and noting that these two vari-

ables are independent, identically distributed, and independent of Yi, with mean given by

EXi,�
n =E

(
Vd−1

(
Fi

2,n ∩ F�
n

)
· Yi

)
=EX̃n ·EYi =EX̃n · p, (7.8)
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we obtain, using the first formula in Lemma 7.2, that

Cov
(

Xi,�
n , Xi,�′

n

)
= Cov

(
X̃n, X̃n

′)
E(Yi · Yi) +EX̃n ·EX̃n

′ · Cov(Yi, Yi)

= (EX̃n
)2 Var(Yi) = 1 − p

p

(
EXi,�

n

)2.

By Equation (7.4), this yields for the 2d(M − 2)Md−1 terms for which the corresponding cubes
J�, Ji, and J

�
′ are arranged in a row, and for any n ∈N,

Cov
(

Xi,�
n , Xi,�′

n

)
= 1 − p

p

(
p2n

Md−1

)2

= 1 − p

M2(d−1)
p4n−1. (7.9)

Now let us look at the second type of covariance term occurring in the third sum in (7.5), for
which the cubes involved, namely Ji, J�, and J

�
′ , intersect in a (d − 2)-face of Ji. First let us

determine the number of such terms. It is convenient to determine first the number of (d − 2)-
dimensional cubes at which this intersection can happen. There are

(d
2

)
(M − 1)2Md−2 such

cubes. (Indeed, choose d − 2 out of d directions to span the direction space L of (the affine
hull of) the cube (or equivalently, choose 2 out of d to span the orthogonal complement of L).
For each direction space there are (M − 1)2Md−2 such cubes: there are (M − 1)2 in each 2-
dimensional ‘layer’, and there are Md−2 such layers.) Each such (d − 2)-cube C is surrounded
by four d-dimensional cubes; hence there are four choices for Ji. Then the two cubes which
are direct neighbors of Ji must be J� and J

�
′ , and the only choice we can make is which one

is J�. Hence for each (d − 2)-cube there are eight possible choices, and so the total number of
terms of the second type in the third sum of (7.5) is 8

(d
2

)
(M − 1)2Md−2. It remains to compute

the covariance for this type.
Setting (in analogy with the first type)

X̂n := Vd−1
(
Fi

2,n ∩ F�
2,n

)
and X̂′

n := Vd−1

(
Fi

2,n ∩ F�
′

2,n

)
and noting that these two variables are independent, identically distributed, and independent
of Yi, Y�, and Y

�
′ , we obtain for the mean

EXi,�
n =E(Vd−1(Fi

2,n ∩ F�
2,n) · Yi · Y�) =EX̂n ·EYi ·EY� =EX̂n · p2, (7.10)

and for the covariance, using the first formula in Lemma 7.2 and (7.4),

Cov
(

Xi,�
n , Xi,�′

n

)
= Cov

(
X̂n · YiY�, X̂′

n · YiY�
′
)

= Cov
(
X̂n, X̂′

n
)
E(Y2

i Y�Y
�
′ ) +EX̂n ·EX̂′

n · Cov(YiY�, YiY�
′ )

= Cov
(
X̂n, X̂′

n
) · p3 + (EX̂n

)2
p3(1 − p)

= Cov
(
X̂n, X̂′

n
) · p3 + 1 − p

M2(d−1)
· p4n−1. (7.11)

But this time X̂n and X̂′
n are not independent, so the covariance term does not vanish. In

order to derive a recursion for the left-hand side, notice that the intersection Ji ∩ J� is (d − 1)-
dimensional and intersects Md−1 of the second-level cubes Jij contained in Ji. The intersection
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Ji ∩ J� ∩ J
�
′ is (d − 2)-dimensional and intersects Md−2 of the second-level cubes Jij contained

in Ji. Denote the latter cubes by Ji1, Ji2, . . . , JiMd−2 , and let R be the union of all the remaining
second-level cubes contained in Ji; i.e., set R := ∪{Jij : j ∈ � \ {1, . . . , Md−2}}. Observe that

X̂n = Vd−1(Fi
2,n ∩ F�

2,n) = Vd−1(Fi
2,n ∩ R ∩ F�

2,n)︸ ︷︷ ︸
=: R̃

+
Md−2∑
k=1

Vd−1(Fi
2,n ∩ Jik ∩ F�

2,n)︸ ︷︷ ︸
=: Q̃k

,

where all the terms on the right are independent. The same holds with � replaced by �′,
for which we denote the corresponding terms by R̃′ and Q̃′

k, respectively. What happens
in Jik is now a scaled version of what happens in Ji. More precisely, we have, for any
k ∈ {1, . . . , Md−2},

Q̃k
d= M−d+1Vd−1

(
Fi

n−1 ∩ F�
n−1

)= M−d+1Xi,�
n−1. (7.12)

(Note that the corresponding sets are not equal in distribution, owing to intersections with
neighboring cubes, which are fortunately of lower dimension and thus do not contribute to the
intrinsic volume of order d − 1.) Taking into account the dependence structure of R̃, R̃′, Q̃k, Q̃k

and (7.12), we conclude that

Cov
(
X̂n, X̂′

n
)= Cov

(
R̃ +

∑
k

Q̃k, R̃′ +
∑

k

Q̃′
k

)

=
∑

k

Cov
(
Q̃k, Q̃′

k
)

= Md−2 · Cov
(

M1−d · Xi,�
n−1, M1−d · Xi,�′

n−1

)
= M−dCov

(
Xi,�

n−1, Xi,�′
n−1

)
.

Plugging this into (7.11) yields the desired recursion for the covariance of the second type:

Cov
(

Xi,�
n , Xi,�′

n

)
= p3

Md
· Cov

(
Xi,�

n−1, Xi,�′
n−1

)
+ 1 − p

M2(d−1)
· p4n−1, n ∈N, (7.13)

where Cov
(

Xi,�
0 , Xi,�′

0

)
:= 0. We conclude that, for n ∈N,

Cov
(

Xi,�
n , Xi,�′

n

)
= 1 − p

M2(d−1)
· p4n−1

n−1∑
k=0

(
1

Mdp

)k

=
⎧⎨⎩

1−p
Md−2(Mdp−1)

· p4n
(
1 − (Mdp)−n

)
, Mdp �= 1,

1−p
M2(d−1) · p4n−1 · n, Mdp = 1.

(7.14)

Analysis of the last term in (7.5). First note that the covariances Cov(Xj
n, Xi,�

n ) in the last term
vanish whenever j /∈ {i, �}, because the variables Xj

n and Xi,�
n are determined by disjoint sub-

families of the basic random variables Yσ , σ ∈ �∗, in this case and are therefore independent.
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Hence, all relevant terms in the last sum refer to pairs (j, {i, �}) such that Ji and J� are direct
neighbors and j ∈ {i, �}. Let us first determine the number of such terms. For each pair {i, l}
there are two choices for j (namely, j = i and j = �), and there are d(M − 1)Md−1 pairs such that
Ji and J� are direct neighbors. Hence there are 2d(M − 1)Md−1 such terms. To find an expres-
sion for this covariance, we choose j = i without loss of generality. Again we start by separating
the influence of the first construction step from the rest. Setting X̂n := Vd−1(Fi

2,n ∩ F�
2,n) and

X̌n := Vd−1(Fi
2,n) we infer, using the first formula in Lemma 7.2,

Cov(Xi
n, Xi,�

n ) = Cov
(

Vd−1(Fi
2,n) · Yi, Vd−1(Fi

2,n ∩ F�
2,n) · YiY�

)
= Cov

(
X̌n, X̂n

)
E

(
Y2

i Y�

)
+EVd−1(Fi

2,n) ·EX̂n · Cov(Yi, YiY�)

= Cov
(

X̌n, X̂n

)
· p2 +EVd−1(Fi

2,n) ·EX̂n · p2(1 − p).

Now recall from (7.10) that EX̂n · p2 =EXi,�
n , for which an explicit expression is provided in

(7.4). Moreover, by (6.4), we have EX̌n = M1−d
EVd−1(Fn−1), and for the latter an expression

is given by (3.2). Hence, setting γn := Cov(X̌n, X̂n), n ∈N (and noting that γ1 = 0), we infer
that for any n ∈N,

Cov
(
Xi

n, Xi,�
n

)= γn · p2 + (Mp3)n d(1 − p)2

M2(d−1)p(M − p)

(
1 + M − 1

1 − p

( p

M

)n
)

. (7.15)

This time again, the covariance term γn on the right does not vanish. But we can derive a
recursion for γn using an approach similar to the one used for the second type in the third term.
The intersection Ji ∩ J� is (d − 1)-dimensional and intersects Md−1 of the second-level cubes
Jij contained in Ji. Denote the latter cubes by Q1, Q2, . . . , QMd−1 and let R be the union of
all the remaining second-level cubes contained in Ji, i.e. R = ∪{Jij : j ∈ �, Jij �= Qm for all m}.
Observe that Vd−1(Fi

2,n ∩ R ∩ F�
2,n) = 0 and therefore

X̂n = Vd−1(Fi
2,n ∩ F�

2,n) =
Md−1∑
k=1

Vd−1(Fi
2,n ∩ Qk ∩ F�

2,n)︸ ︷︷ ︸
=: Q̂k

,

where the terms on the right are independent. What happens in Qk is now again a scaled version
of what happens in Ji. More precisely, we have, for k ∈ {1, . . . , Md−1},

Q̂k
d= M1−dVd−1(Fi

n−1 ∩ F�
n−1) = M1−dXi,�

n−1.

Observe that for any n ∈N,

γn = Cov

⎛⎝X̌n,

Md−1∑
k=1

Q̂k

⎞⎠=
Md−1∑
k=1

Cov
(

X̌n, Q̂k

)
. (7.16)

Now we split X̌n = Vd−1(Fi
2,n) in a similar way using the decomposition Ji = R ∪⋃k Qk. It

is clear that the main contribution of the kth term above will come from Cov(Vd−1(Fi
2,n ∩

Qk), Q̂k), but there are further contributions this time which are due to the fact that the sets
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Fi
2,n ∩ Qj are full-dimensional, so that their intersections cannot be neglected. In fact, in

order to separate the contributions of the cubes Qk we need more refined notation. Without
loss of generality, we can assume that the basic cubes Jij contained in Ji are enumerated in

such a way that Jik = Qk for k = 1, . . . , Md−1. Let Fij
2,n be the union of those cubes Jσ of

level n (i.e. σ = σ1 . . . σn ∈ �n) contained in F2,n such that σ1 = i and σ2 = j, j ∈ �, and let
Fi,R

2,n := ⋃
j>Md−1 Fij

2,n. By the inclusion–exclusion principle, and ignoring lower-dimensional
intersections, we have

X̌n = Vd−1

(
Fi,R

2,n

)
+

Md−1∑
j=1

[
Vd−1

(
Fij

2,n

)
− Vd−1

(
Fij

2,n ∩ Fi,R
2,n

)]

−
∑

{j,m}:Qj∼Qm

Vd−1

(
Fij

2,n ∩ Fim
2,n

)
,

where Qj ∼ Qm in the last sum means that Qj and Qm are direct neighbors. Now we insert
this representation into the kth covariance term in (7.16) and sort out which of the terms still
have some of the basic random variables in common with Q̂k and which are independent.
First observe that for any k, Cov(Vd−1(Fi,R

2,n), Q̂k) = 0, since the variables are determined by
disjoint families of the basic random variables of the process. For a similar reason, the covari-
ances Cov(Vd−1(Fij

2,n), Q̂k) and Cov(Vd−1(Fij
2,n ∩ Fi,R

2,n), Q̂k) vanish whenever j �= k. Finally,

Cov(Vd−1(Fij
2,n ∩ Fim

2,n), Q̂k) = 0 whenever k /∈ {j, m}. Hence we get

Cov
(

X̌n, Q̂k

)
= Cov

(
Vd−1

(
Fik

2,n

)
, Q̂k

)
− Cov

(
Vd−1

(
Fik

2,n ∩ Fi,R
2,n

)
, Q̂k

)
−

∑
m:Qm∼Qk

Cov
(

Vd−1

(
Fik

2,n ∩ Fim
2,n

)
, Q̂k

)
. (7.17)

In order to derive a recursion, note that analogously to Lemma 6.1, we have(
Vd−1

(
Fik

3,n

)
, Vd−1

(
Fi

3,n ∩ Qk ∩ F�
2,n

))
d= M1−d

(
Vd−1

(
Fi

2,n−1

)
, Vd−1

(
Fi

2,n−1 ∩ F�
2,n−1

))
= M1−d

(
X̌n−1, X̂n−1

)
,

which implies for the first term in the right-hand side of (7.17)

Cov
(

Vd−1

(
Fik

2,n

)
, Q̂k

)
= Cov

(
Vd−1

(
Fik

3,n

)
· Yik, Vd−1

(
Fi

3,n ∩ Qk ∩ F�
2,n

)
· Yik

)
= Cov

(
Vd−1

(
Fik

3,n

)
, Vd−1

(
Fi

3,n ∩ Qk ∩ F�
2,n

))
·E(Y2

ik

)
+EVd−1(Fik

3,n)EVd−1(Fi
3,n ∩ Qk ∩ F�

2,n)Var(Yik)

= M2(1−d)Cov(X̌n−1, X̂n−1) · p + M2(1−d)
EX̌n−1 ·EX̂n−1 · p(1 − p)

= p

M2(d−1)
· γn−1 + 1 − p

M3(d−1)
p2n−3 ·EX̌n−1.

Here we have used (7.10) and (7.4) to replace EX̂n−1 in the last equality. Similarly, employing
(6.2) and (3.2) of Theorem 3.2, we can replace EX̌n−1 with some explicit expression. We
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conclude that

Cov(Vd−1(Fik
2,n), Q̂k) = p

M2(d−1)
· γn−1 + 1 − p

M3(d−1)
p2n−2 ·EVd−1(Fn−2)

= p

M2(d−1)
γn−1 + (Mp3)n d(1 − p)2

M4d−3p4(M − p)

(
1 + M − 1

1 − p

( p

M

)n−1
)

. (7.18)

Inserting this into (7.17) and combining it with (7.16) yields the desired recursion relation for
γn, provided we can compute the two missing terms in (7.17). For the second term in (7.17),

Cov(Vd−1(Fik
2,n ∩ Fi,R

2,n), Q̂k), observe that we can replace Fi,R
2,n by Fik′

2,n without changing the

random variable Vd−1(Fik
2,n ∩ Fi,R

2,n), where k′ is the unique index such that Jik′ is the unique
direct neighbor of Jik contained in R. Indeed, all the other cubes in R have lower-dimensional
intersections with Fik

2,n. Similarly, in Q̂k = Vd−1(Fi
2,n ∩ Qk ∩ F�

2,n) we can replace the set Fi
2,n ∩

Qk by Fik
2,n and the set F�

2,n by F��
′

2,n, where �′ is the unique index such that the cubes Jik and
J
��

′ are direct neighbors. Hence,

Cov
(

Vd−1

(
Fik

2,n ∩ Fi,R
2,n

)
, Q̂k

)
= Cov

(
Vd−1

(
Fik

2,n ∩ Fik′
2,n

)
, Vd−1

(
Fik

2,n ∩ F��
′

2,n

))
.

Note that the cubes Jik′ , Jik, and J
��

′ lie in a row, and therefore we are in the situation of the first
type of covariance studied for the third term (cf. (7.9) and the paragraph before this equation),
but one level further down. More precisely, we have(

Vd−1

(
Fik

2,n ∩ Fik′
2,n

)
, Vd−1

(
Fik

2,n ∩ F��
′

2,n

))
d= M1−d

(
Vd−1

(
Fi

n−1 ∩ Fi′
n−1

)
, Vd−1

(
Fi

n−1 ∩ F�
n−1

))
,

where i′ is the (unique) index such that Ji′ , Ji, and J� lie in a row. (Note that i′ might not exist

if Ji touches the boundary of J, but then one can shift the situation or think of Fi′
n−1 as being

part of a second fractal percolation in the corresponding unit-size square neighboring J. This
will not change the stated distributional relation.) Employing (7.9), we conclude that for any
n ∈N, n ≥ 2,

Cov
(

Vd−1

(
Fik

2,n ∩ Fi,R
2,n

)
, Q̂k

)
= M2(1−d)Cov

(
Xi,i′

n−1, Xi,�
n−1

)
= 1 − p

M4(d−1)
p4n−5, (7.19)

while this covariance vanishes for n ≤ 1.
The last sum in (7.17) consists of 2(d − 1) terms of the form Cov(Vd−1(Fik

2,n ∩ Fim
2,n), Q̂k),

for which the corresponding cubes Jik and Jim are direct neighbors. As for the previous term,

we can use the relation Q̂k = Vd−1

(
Fik

2,n ∩ F��
′

2,n

)
, where �′ was the unique index such that the

cubes Jik and J
��

′ are direct neighbors. Hence,

Cov
(
Vd−1

(
Fik

2,n ∩ Fim
2,n

)
, Q̂k

)= Cov
(

Vd−1

(
Fik

2,n ∩ Fim
2,n

)
, Vd−1

(
Fik

2,n ∩ F��
′

2,n

))
,

where now the cubes Jim and J
��

′ have a non-empty intersection. Thus we are in the situation of
the second type of covariance studied for the second term (cf. (7.12) and the paragraph before
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this equation), just one level further down. More precisely, we have(
Vd−1

(
Fik

2,n ∩ Fim
2,n

)
, Vd−1

(
Fik

2,n ∩ F��
′

2,n

))
d= M1−d

(
Vd−1

(
Fi

n−1 ∩ Fi′
n−1

)
, Vd−1

(
Fi

n−1 ∩ F�
n−1

))
,

where now i′ is one of the indices such that Ji′ and Ji are direct neighbors and Ji′ and J� are
distinct and have a non-empty intersection. Employing (7.12), we conclude that for p > M−d

and any n ∈N, n ≥ 2,∑
m:Qk∼Qm

Cov(Vd−1
(
Fik

2,n ∩ Fim
2,n

)
, Q̂k) = 2(d − 1)M2(1−d)Cov

(
Xi,i′

n−1, Xi,�
n−1

)

= 2(d − 1)(1 − p)

M3d−4(Mdp − 1)
· p4(n−1)

(
1 − (Mdp)−n+1

)
, (7.20)

while this covariance vanishes for n ≤ 1.
Now, plugging the expressions derived in (7.18), (7.19), and (7.20) into (7.17) and summing

over all k = 1, ..., Md−1, we obtain the desired recursion for the covariance γn in (7.16). For
n ≥ 2 and Mdp �= 1, we have

γn = p

Md−1
· γn−1 + (Mp3)n d(1 − p)2

M3d−2(M − p)p4

(
1 + M − 1

1 − p

( p

M

)n−1
)

− 1 − p

M3(d−1)
p4n−5 − 2(d − 1)(1 − p)

M2d−3(Mdp − 1)
· p4(n−1)

(
1 − (Mdp)−n+1

)
= p

Md−1
· γn−1 + c̃1 · (Mp3)n + c̃2 · p4n + c̃3 ·

(
M−dp3

)n
,

where c̃1 := d(1−p)2

M3d−2p4(M−p)
, c̃3 := 2(d−1)(1−p)

Md−3p3(Mdp−1)
and

c̃2 := d(M − 1)(1 − p)

M3(d−1)p5(M − p)
− 1 − p

M3(d−1)p5
− 2(d − 1)(1 − p)

M2d−3(Mdp − 1)p4

= 1 − p

M3(d−1)p5

(
d

M − 1

M − p
− 1 − 2(d − 1)

Mdp

Mdp − 1

)
.

By induction, we get from the above recursion that for n ≥ 2,

γn =(Mp3)nc̃1
Mdp2

Mdp2 − 1
+ p4nc̃2

Md−1p3

Md−1p3 − 1
+
(

p3

Md

)n

c̃3
p2

p2 − M

−
( p

Md−1

)n
(

c̃1
(Mdp2)2

Mdp2 − 1
+ c̃2

(Md−1p3)2

Md−1p3 − 1
+ c̃3

(M−1p2)2

M−1p2 − 1

)
︸ ︷︷ ︸

=: c̃4

,

where we have used that γ1 = 0, and where we have excluded the case p2 = M−d, in which
the constant in the first term has to be replaced by c̃1(n − 1) and the first summand in c̃4 by 0.
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In the sequel, we will only need an asymptotic expression for γn as n → ∞. It turns out that
which term is the leading one depends on the parameter combination. For p > M−d we obtain,
as n → ∞,

γn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃1 · Mdp2

Mdp2−1
(Mp3)n + O( max{p4, p/Md−1}n) if p > M−d/2,

c̃1 · (Mp3)n · (n − 1) + O((Mp3)n) if p2 = M−d,

c̃4 · (p/Md−1)n + O((Mp3)n) if p < M−d/2.

Now we can complete the analysis of the fourth term. Inserting the last expression into
Equation (7.15) and noting that the second term in (7.15) is always of order O((Mp3)n), we
conclude that for any p > M−d, as n → ∞,

Cov(Xi
n, Xi,�

n ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ĉ1 · (Mp3)n + O( max{p4, p/Md−1}n) if p > M−d/2,

c̃1 · (Mp3)n · (n − 1) + O((Mp3)n) if p2 = M−d,

c̃4 · (p/Md−1)n + O((Mp3)n) if p < M−d/2,

(7.21)

where ĉ1 := d(1−p)
M2(d−1)p(M−p)

(1 + 1−p
p

1
Mdp2−1

).

Computation of the variance of Xn = Vd−1(Fn). Now that we have determined all the terms
on the right-hand side of (7.5), we can go back to this equation and put all the pieces together.
Setting βn := Var(Xn) and combining (7.6) with (7.5), we get

βn = p

Md−2
βn−1 + d2(1 − p)3

Md−2p(M − p)2
(Mp)2n

(
1 + M − 1

1 − p

( p

M

)n
)2

+
∑

{i,�}⊂�

Var(Xi,�
n ) +

∑
{i,�}�={i′,�′}

Cov
(

Xi,�
n , Xi′,�′

n

)
− 2

∑
j∈�

∑
{i,�}⊂�

Cov
(

Xj
n, Xi,�

n

)
. (7.22)

Observe from (7.7) that the first sum in the second line above satisfies

∑
{i,�}⊂�

Var(Xi,�
n ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(p4n), Md−1p2 > 1,

O(p4n · n), Md−1p2 = 1,

O((p2/Md−1)n), Md−1p2 < 1,

as n → ∞. So the order of the leading term depends on whether p is below, at, or above

the value M− d−1
2 . In any case this term is certainly dominated by p2n as n → ∞ (i.e.,∑

{i,�}⊂� Var(Xi,�
n ) = o(p2n)) and thus vanishes rapidly for n → ∞. Equations (7.9) and (7.14)

show that the situation for the second sum in (7.22) is easier. For p > M−d and any n ∈N, we
have ∑

{i,�}�={i′,�′}
Cov

(
Xi,�

n , Xi′,�′
n

)
= 2d(M − 2)(1 − p)

Md−1p
p4n + 8

(
d

2

)
(M − 1)2×

1 − p

Mdp − 1
· p4n

(
1 − (Mdp)−n

)
,
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and thus, as n → ∞, ∑
{i,�}�={i′,�′}

Cov
(

Xi,�
n , Xi′,�′

n ) = O(p4n
)

.

For the last sum in (7.22), we infer from (7.21) that in all three cases this term is certainly
dominated by (Mp)2n as n → ∞. Thus, the second term in (7.22) (of order (Mp)2n) is always
the leading one. But we also need the correct second-order term in order to say something
about the speed of convergence of Var(Zd−1

n ). The recursion for βn will produce a second term
of order (p/Md−2)n, but it turns out that for some parameters there are others of higher order
which we will therefore have to take into account in the recursion. Note that for p2 ≥ 1/Md−1

we have Mp3 ≥ p/Md−2, and thus we include in the recursion the corresponding term of
order (Mp3)n, which is the term of highest order among the remaining ones for these param-
eters. This is not necessary for p2 < 1/Md−1. More precisely, we have for any p > M−d, as
n → ∞,

βn = p

Md−2
· βn−1 + c̃ · (Mp)2n +

⎧⎨⎩ĉ1 · (Mp3)n + O(qn) if p2 ≥ M−(d−1),

O((Mp3)n) if p2 < M−(d−1),

where c̃ := d2(1−p)3

Md−2p(M−p)2 , ĉ1 is the same as in (7.21), and q is some number strictly less than

Mp3 (depending on the parameter combination). By induction, this yields

βn = c̃
Mdp

Mdp − 1
(Mp)2n +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĉ1

Md−1p2

Md−1p2−1
(Mp3)n + O(sn) if p2 > 1/Md−1,

ĉ1(Mp3)n · n + O((Mp3)n) if p2 = 1/Md−1,

c̄
(

p
Md−2

)n + O((Mp3)n) if p2 < 1/Md−1,

as n → ∞, where c̃ and ĉ1 are as above, s < Mp3 is some number, and c̄ ∈R is some constant
which we do not give explicitly here, as doing so would require us to determine all the terms in
the above recursion exactly. Here we have used that β0 = Var(Vd−1(F0)) = 0 and that p > M−d

is equivalent to M2p2 > p/Md−2. Note that c̃ Mdp
Mdp−1

= c̄2, i.e. the constant in the first-order
term of Var(Vd−1(Fn)) is as asserted in (3.3), and also the second-order terms given in (3.3) are
transparent from the above equation. This completes the proof of the formula for the variance
in Theorem 3.2. �
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