
CYCLICALLY ORDERED SETS 

M. I. AISSEN 

Introduction. The classical separation theorems regarding the relative 
position of the zeros of two consecutive orthogonal polynomials, or of the 
positive zeros of two consecutive Bessel Functions, are well known. Less 
well known is a theorem of Bôcher and Porter (1, p. 237), which states that 
the positive zeros of three consecutive Bessel Functions occur in cyclic order. 
This paper extends the result to symmetric orthogonal polynomials and more 
generally to sequences of functions satisfying a certain type of difference 
equation. The investigation arose in an attempt to prove a conjecture of 
Schoenberg (3) for which it was believed that knowledge of the zeros of 
polynomials generated by exp (x + txk) would be helpful. This conjecture 
was proved by Edrei (2). 

1. Notation. By Z(A) we mean the number of elements in the set A. If 
A is not finite, we do not distinguish among different cardinals, and we 
write Z(A) — » . The elements of the various sets discussed are real numbers. 
Any term involving order such as "consecutive," "least," etc. refers to the 
natural order of the real numbers. We denote the empty set by </>. 

If I is an interval, then we denote Z(A P\ I) by Zj(A). The symbols I, 
J, / ' , In, J* always refer to intervals. The term interval is used in the wide 
sense and includes those which are open or closed at either end and which 
may be finite, semi-infinite, or infinite. The symbol k always refers to some 
fixed but unspecified integer greater than one. 

2.Cyclically ordered sets. Let ax < a2 < . . . < aN be N real numbers. 
We consider the sets EM /x = 1, 2 . . . k, such that am c EM if and only if m = /x 
(mod k). The finite sets EM are examples of cyclically ordered sets. If 0 < N <k, 
some or all of the sets will be empty. We state without proof some of the pro­
perties of the sets EM. Let E denote UM EM: 

(i) £M H Ex = 4>, X ^ M 

(ii) Any k consecutive elements of E include one from each of the sets £M. 

(iii) If Z(Ex) = 0 for some X, Z(EM) < 1 for all /*. 

(iv) \Z(Ex) ~ Z{E^\ < 1 for all X and fx. 

(v) Between any two elements of Ex there is an element of i£M if X ^ \x. 

(vi) If £% = £M C\ / , where / is a fixed interval and E* = R C\ I = UM£|x*> 
then the sets E% and E* satisfy (i)-(v). 
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These properties are not independent. For example, (iii) is a consequence 
of either (iv) or (v). On the other hand (i), (ii), and (iii) imply (iv), (v), and 
(vi). We now formulate the following definition: 

Definition. We say that the k sets Eu E>2, . . . Ek are cyclically ordered (C-O) 
if and only if they satisfy the following conditions 

CI : Ex H EM = </>, X ̂  ii. 

C2: Zj(E\) < ZJ(Etl) + 1 for all X, M and an arbitrary interval J. 

THEOREM 1. Let Eu E2, . . . , Ek be C-O. Let £% = EM C\ J where J is a 
fixed interval. Then E*u E*2, . . • , E*k are C-O. 

Proof. CI is satisfied since E*x H E*M = E\ C\ Ep H\ J. 

C2 is satisfied since Zr(E*\) = Z7*(E\) where for an arbitrary inter­
val, I, I* = I r\J. 

THEOREM 2. A necessary and sufficient condition that the sets Eu E2, . . . , Ek 

be C-O, is that each pair of sets E\, £M (X 9e M) be C-O. 

Proof. The proof is immediate since CI and C2 are required to hold for all 
pairs of sets E\, E„. 

THEOREM 3. Let Eu E», . . . , Ek be C-O and let E = UM E„. Then 

Zr(E) < fe=>Z7(£M) < 1, 

J or all n. In particular Z^E) = k, ==»Z7(EM) = 1 for all /JL. 

Proof. By CI, 

Zj{E) = E ZjiEj . Zj(Ex) > 1 => ZT(E») > 1 
M 

for all M by C2. Hence Zj(£x) > 1=»Z 7 (£ ) > k and thus Z7(£) < k^Zr(E^) 
< 1, all /*. 

Further, if Z7(£\) = 0 for some X, Z^E) < k. Hence Z 7 (JE) = & =^Z 7 ( JE M ) 

= 1 for all M-

3. The principal theorem. Historically, cyclically ordered sets have been 
studied only in the case, k = 2 (except for the theorem of Bôcher-Porter), in 
which case the sets involved are said to be separated. In many cases the sets 
are zeros of appropriate continuous functions which are related by a linear 
difference equation of the second order. The functional equation is used to 
determine the sign of the functions at critical points and the Darboux property 
of continuous functions is then invoked to show that one function vanishes 
in some interval. It is rather curious that in such cases the method is used 
only to show that pairs of sets are C-O, since it can usually be used to show 
that three sets are C-O. This can be generalized to the case of certain &th 
order linear difference equations in which case k + 1 sets will be C-O. 
More precisely we have Theorem 4. 
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Definition. Let f{x) be a continuous function in a < x < b. We say that 
£ is an odd zero of f(x) in (a,b) if a < £ < b and 

l imsgn/(f + ft) s g n / ( £ - * ) = - 1. 

THEOREM 4. Let {fn(x)} (n = 0, 1, 2, . . .) be a sequence of functions defined 
in an open interval (a,b). Let En, Fn be the sets of odd zeros and zeros of fn(x), 
respectively. The functions fn(x), and the sets En, Fn satisfy for n = 0, 1, 2, . . . : 

(1) fn+k(x) = an(x) fn+k-!(x) - bn(x)fn(x). 
(2) fn(x) is continuous in (a,b). 
(3) Z{Fn) < [»/ft] s M ( « ) . 
(4) lim sgn/n(*0 = + 1. 

(5) lim sgn/K(x) = ( - 1)<•<">. 
x-*a+ 

(6) an(x), 6n(x) are continuous and positive in (a,b). 

Then: 
(a) n > m > k => max {isM.} > max {£,„}. 
(b) Z(£n) = M(«). 
(c) £n , En+1, . . . , £W+A: are C-0 for n = 0, 1, 2, . . . . 

Pnw/. For 0 < TV < &, Z(£n) < Z ( F J - 0. Since FN is empty, / v (x) > 0 
in (a,b). By (2), (4), and (5), £(£*) > 1 and hence by (3) Z(Ek) = 1. There­
fore (a), (b), and (c) are satisfied by the sets E0, E\, . . . , Ek. We complete 
the proof by induction. 

We adopt the notation x(n,j) for the elements of En (whenever En is non­
empty) with x(n,l) > x(n,2) > . . . . 

Let us assume that for some TV > k, 

(a*) x(n,l) > x(m,l) for k < m < n < N, 
(b*) Z(£n) - M(») for 0 < n < TV, 
(c*) £n , En+U • • • , £»+* are C-O, for 0 < « < TV - k. 

To complete the proof we must show that: 
(a') x(N+ 1,1) > x(TV, 1), 
(b') Z{EN+l) = M ( ^ + 1), 
(c ) EN-.k+i, EN-k+2, . . . , EN+i are C-O. 

From (1) we obtain sgnfN+i(x(N,l)) = — sgn/^/ .+i^TV,!)) . But from (2), 
(4), (6), and (a*) we have sgnfN-k+i(x(N,l)) = + 1. Hence sgn/v+i(x(TV,l)) 
= - 1, and by (2) and (4) x(N + 1, 1) > x(N,l), which proves (a'). 

In the remainder of the proof, m will denote an integer for which 
TV — k < m < TV. The symbol I(j) will denote the smallest interval (possibly 
empty or a single point) which contains x(m,j) for all such m. I(j) is closed. 
Let j be the smallest integer for which I(j) and I(j + 1) are not disjoint. Then 
there are two distinct values of m, say mf and m", for which x(mf,j + 1) 
> x(mf/,j). But this is impossible since the sets Em>} Em>> are C-0 by (c*) 
and Theorem 2 and if x(m',j + 1) = x(mff,j), CI is violated and if 
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x{m',j + 1) > x(tn",j), C2 is violated in the closed interval [x(m',j + 1 ) , 
x(m\ 1)]. Hence the intervals I(j)(j = 1, 2, . . .) are mutually disjoint. 

For fixed j , the points x(rn,j) are monotonie with respect to m. Specifically 
%(N,j) > x(N — 1, j) > . . . . This is clearly so for j = 1, by (a*). For 
j > 1, it is a consequence of Theorem 3 applied to the C-O sets {Em\. 

Let F denote [}mEm. If kj < N the set F n I(j) has exactly k elements. 
The set I(tx(N + 1)) has (N + 1) - kn(N + 1) elements. 

Since by ( c ^ E ^ a n d EN+i-k are C-O, it follows thatsgn fN(x(N — k-\-lj)) 
takes the values of + 1 alternately as j assumes consecutive integer values. 
This is because all the zeros of fN(x) are odd zeros and there is precisely one 
zero of fN(x) between consecutive zeros of fN_k+i(x). We also know that 
sgnfN(x(N — k + 1, 1)) = — 1. Hence we obtain sgnfN(x(N — k + l , i ) 
= (— l)7'. Similarly, sgnfN_k+1(x(N,j)) = (— l)j+1. Using (1) we then obtain 
sgnfN(x(N,j) = sgn (x(N — k + 1, j)) = (— l)j. This means that at the 
extreme points of I(j), sgnfN+i(x) = (— 1)̂  for j = 1, 2, . . . , n(N). But the 
sets are disjoint. Hence between each consecutive pair of non-empty sets 
/ ( j ) , fN+i(x) must have an odd zero. Also there is an odd zero between 1(1) 
and b. Thus/iv+i(x) has at least n(N) zeros to the right of I(n(N)). We have 
already seen that I(j) is non-empty for j < n(N). If n(N) = n(N + 1) then 
by (3), Z(EN+i) = n(N + 1). If n(N) ^ »(N + 1), then the signs of 
fN+i(x) at the extreme points of I(n(N)) and at (a + 0) are different and 
hence there is another odd zero between a and I(IJL(N)). Hence again 
Z(EN+\) — /JL(N + 1)- Thus (b') is proved and also since EN+i and I(j) is 
disjoint for every j , we have that CI is satisfied by Em and EN+i for all m in 
TV - jfe < m < iV. 

To prove (cO it suffices because of Theorem 2 to show that Em and EN+\ 
are C-O. We have already established CI for these sets and it remains 
only to establish C2. 

If C2 is not satisfied by Em and JE^+I, there is some interval, J, in which 
\Zj(Em) — Zj(EN+i)\ > 1. Hence there must be a subinterval J' in which 
one of Zj'(Em) and Zj>(EN+i) is 0 and the other is 2. 

If Zj>(Em) = 2, J' must intersect 1(f) for two values of j . But we have 
seen that between consecutive intervals I(j) there is a point of EN+i and if 
Zj'(Eivr+i) = 2, J ; must contain an interval I(j), since between consecutive 
intervals I(j) there is precisely one point of EN+i by (3). 

Hence C2 is satisfied by EN+i, and Em for N — k < m < N and thus (c') 
is proved. 

4. Applications of the principal theorem. Let {pn(x)\ denote 
sequence of orthonormal polynomials in an interval symmetric about th e 

origin, with respect to an even non-negative weight function. We call such 
sequences "Symmetric orthonormal polynomials." Then the well-known 
recurrence formula (4) specializes to 

pn+i(x) = Anxpn(x) - Bnpn-i(x) (n > 1) 
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where A„, Bn are positive constants. For k = 2, the polynomials \pn{x)\ 
satisfy the hypotheses of Theorem 5 in the interval (0, °°). To see this we 
note that (1) is satisfied since they satisfy the recursion formula. Since they 
are polynomials, they are continuous and (2) is satisfied. Condition 3 is 
satisfied since the zeros are symmetric about the origin. They satisfy (4) 
since the normalization which asserts that An > 0, implies that the coefficient 
of xn in pn(x) is positive. To show that (5) is satisfied we note that for n odd, 
sgn£w+i(0) = — sgn£w_i(0) ^ 0 and for n even 

Pn+l(x) 
sgn 

Pn-lW 
= - sgn *—— 

z=0 x 

Hence it is only necessary to verify (5) for n = 0, 1. But po(x) is a positive 
constant and p\{x) = ax where a > 0. 

Hence Theorem 4 applies and we have the following result: 

THEOREM 5. Let {pn(x) \ be a sequence of symmetric orthonormal polynomials. 
Let P„ denote the set of positive zeros of pn{x). Then P/n P„.+ u Pn+2 are C-0 
for n = 0, 1, 2, . . . . 

l^heorem 5 supplements the well-known fact that EH, En+i are C-0 where 
En denotes the set of zeros of ptl(x). We cannot expect E,n En+i, En+2 to be 
C-O, since C2 would be violated. Similarly we cannot expect Pn, Pn+\, 
Pn+2, P n + 3 to be C-0. 

We mention here without proof that Theorem 5 could be proved independ­
ently of Theorem 4, by using only the following well-known properties of 
symmetric orthonormal polynomials (4). 

(1) En, £ n + i are C-0. 

(2) If n > m, there is a point of En in any open interval bounded by points 
of Em. 

(3) En is symmetric about zero. 

(4) Z(En) = n. 

We now consider another example. Let pn(t, k) = pn = p„.(t) be defined 
by the generating function : 

(4.1) F(x,t) = exp(^ + tx:) = X Pn(t;k)x"\ 

As usual, k denotes some integer > 1. Differentiating both sides of (4.1) 
with respect to x we obtain 

(4.2) (1 + ktx*-l)Z PnXn = Ë npy~l . 

If we equate coeftficients we obtain 

(4.3) mpm = pm_i + ktpm-k : m > k . 

WTe wish to apply Theorem 4 to the sequence \pn{t)} in the interval (— «>, 0). 
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Now exp (x + txk) = exp (x) exp (txk) and hence 

(44) *•«> S,., s s 
where the summation is extended over all non-negative integers m, g satisfying 
the indicated condition. 

This shows that pn{f) is a polynomial of precise degree [n/k] with all 
coefficients positive. Hence conditions (2), (3), (4), (5) of Theorem 4 are 
satisfied. 

We use the following consequences of (4.4) in showing conditions (4) and 
(5) are satisfied. 

Pnip) = -7 n\ 
An Ik] 

Pn{t) _ _ ^ . _ _ _ _ _ a s |,| _ œ . 

Hence if Em denotes the set of zeros of pm{t\k) which are negative, the 
sets En, En+i , . . . En+k are C-0. 

When k = 2, this result can be interpreted in terms of the Hermite poly­
nomials, Hn(x) defined by 

/A K \ ^ 71 V 7 71 / iT\ -£ \ 

(4.5) 2 j i—w = e xP (2xw — w ). 

H ence 

ffB(s) = 2 ^ n ( - ^ 5 , 2J . S» 

and if yi} y2 , . . • are zeros of £w(;y) then 

z , = 2Vi/yj 
are positive zeros of Hn(x). Hence the sets of positive zeros of nn(x), Hn+i(x), 
Hn+2(x) are C-0. This was obtained earlier as a special case of the result 
concerning symmetric orthogonal polynomials. 

5. Further examples. We have already seen that the sets of three con­
secutive Legendre polynomials are C-0. For fixed n > 2, let Q, Qf, Q" 
denote the sets of positive zeros of Pn{x), P'n(x), P"n(x) respectively. We 
shall show that Q, Qf, Q" are C-0. The Legendre polynomials satisfy two 
important functional equations: 

(5.1) (n + l)P,+ i(*) - (2n + l)Pn(x) + nPn-iix) = 0; 
and 
(5.2) (1 - x2)P"n{x) - 2xP'n (x) + n(n + l)Pn(x) = 0. 

In Theorem 4, we used (5.1) to deduce sgn Pn+i(x) at various critical 
points. Similarly, we mav use (5.2) to deduce sgn Pv(x) at the zeros of P'„(x) 
and P"n(x). 
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For x G Q, sgn P'n(x) = sgn P"n (x). 

For x e Q', sgn P„(x) = - sgn P"n (x). 

For x£Q", sgn P n (x) = sgn P'n(x). 

Also since Q C (0,1), we have by the standard normalization, 

sgnP n ( l ) = sgnP'n(x) = sgnP"w ( l ) = 1. 

From (5.2) and the simplicity of the zeros of Pn(x) it is clear that Q and Q" 
are disjoint. It remains only to verify C2. 

Let us assume an interval / for which Zj(Q) > Zj(Q") + 1. Then there 
is an interval I C J, such that 

Zj(Q) = 2 , Z,{Q") = 0. 

Since Q, Q' are C-O, there is precisely one point of Q' in / . Let xu x2 be 
the two points of Q in / . Then sgn P'n(xi) = — sgn Pf

n.(x2), and hence 
sgn P"n(xi) = — sgnP / /

w(x2), and thus Zr(Q") > 1. But this is a contra­
diction. Hence there is no interval J in which Zj(Q) > Zj(Qrr) + 1. Similarly 
there is no interval / in which Zj(Q") > Zj(Q) + 1. Hence C2 is satisfied 
and Q, Q" are C-O. 
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