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SEPARATING SPLITTING TILTING MODULES AND 
HEREDITARY ALGEBRAS 

BY 

IBRAHIM ASSEM 

ABSTRACT. Let A be a finite-dimensional algebra over an algebraically 
closed field. By module is meant a finitely generated right module. A 
module TA is called a tilting module if Ext2A (7\ - ) = 0 = Ext^ (7\ T) and 
there exists an exact sequence 0 —» AA —> T —» T" —» 0 with 7", 7" direct 
sums of summands of T. Let 5 = End TA-TA is called separating (re­
spectively, splitting) if every indecomposable /^-module M (respectively, 
fl-module N) is such that either HomA(T,M) = 0 or Ext^ (T,M) = 0 
(respectively, N ®« T = 0 or Tor, (N,T) = 0). We prove that A is 
hereditary provided the quiver of A has no oriented cycles and every 
separating tilting module is splitting. 

Introduction. Let k be an algebraically closed field, and A a finite-dimensional 
^-algebra (associative, and with an identity). By a module will always be meant a 
finitely generated right module. Following Happel and Ringel [7], we shall call a 
module TA a tilting module if Ext^ (7\ — ) = 0, Ext^ (T, T) = 0 and there exists a short 
exact sequence 0 —» AA —» 7^ -» 7"'̂  —» 0 with 7' and T" direct sums of summands of 
T. A tilting module TA induces a torsion theory (T,F) in the category mod A of 
A-modules by: 

T= T(TA) = {MA\Ext\(T,M) = 0} 

F = F(TA) = {MA\HomA(T,M) = 0} 

and a torsion theory (X, F) in mod 5, where 5 = End 7^, by: 

x = x(TA) = {yv,|yv0r-o} 

Y= Y(TA) = {NB\Tor°(N,T) = 0} 

The tilting module 7^ is called separating [2] if (T,F) is a splitting torsion theory. 
Examples of separating tilting modules are provided by the APR tilts, introduced by 
Auslander, Platzeck and Reiten in [4]. The tilting module TA is called splitting [1] if 
(X, Y) is a splitting torsion theory. It is well-known that, if A is a hereditary algebra, 
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then every tilting module is splitting [7]. The objective of this article is to show that, 

conversely, if A has no oriented cycles in its ordinary quiver and is such that every 

tilting module is splitting, then A is hereditary. 

1. Preliminaries. In what follows, we shall assume that the algebra A is basic and 

connected, and will denote by QA its ordinary quiver. Recall that a relation on QA is a 

linear combination of paths in QA of length at least two having the same initial and 

terminal vertices. Thus A is isomorphic to the quotient of the quiver algebra kQA by an 

ideal generated by a set of relations on QA which we can assume to be minimal (that 

is, no proper subset generates the ideal) [6]. For each vertex / of QAy we shall denote 

by €j the corresponding primitive idempotent of A, and by S(i) the corresponding 

simple A-module. P(i) (respectively, /( /)) will denote the projective cover (re­

spectively, the injective envelope) of S(i). We shall use freely properties of the 

Auslander—Reiten translations T = D Tr and T ' = Tr D, as in [6], as well as properties 

of tilting modules, for which we refer to [5] and [7]. 

We shall assume that QA has no oriented cycles. In particular, it contains at least one 

sink. A sink / will be called free if it is not the terminal point of a generating relation 

on QA, that is to say, if the canonical inclusion P(i)-> ©,•_»,- P(j) induces, for every 

vertex h =£ /, a vector space isomorphism 

Horn, (/>(/) ,P(/0) = ehAe-x-=+ © ehAe, = © HomA(P(j),P(h)). 

Observe that this is equivalent to saying that / is free if and only if, for every vertex 

h -h i, 

HomA(P(h)J(i))^ © Horn, (P(h),I(j)) 

that is to say, if and only if ©,-_>,- I(j) -=* I(i)/S(i). 

To each sink /, we associate the tilting module: 

T\i\A = T - ' ( M ) © ( 1 - e,)A 

(where 1 denotes the identity of A) called the APR tilt corresponding to / [4]. Every 

APR tilt is a separating tilting module (in fact, the only torsion-free indecomposable 

module is P(i) = etA). It was proved by Hoshino [8] (see also [9]) that T[i] is splitting 

if and only if the injective dimension of the simple projective e,A is one. We shall now 

show: 

LEMMA. The APR tilt T[i] is splitting if and only if i is a free sink. Moreover, in this 

case, the ordinary quiver QB of B = End T[i]A has no oriented cycles and the vertex 

of QB corresponding to i is a source. 

PROOF. It follows from Hoshino's result that T\i] is splitting if and only if S(i) has 

a minimal injective resolution: 

o->s(o->/( / ) -> ©/( . / ) ->o 

and it follows from the previous remarks that this is the case if and only if / is a free 

sink. 
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Let us now assume that / is a free sink. We shall denote by j ' (fory ^ /) the vertex 
of QB corresponding to the indecomposable summand P(j) — e}A of T[i] and by /' the 
vertex corresponding to i~\e,A). We claim that i' is a source. To an arrow h —> / of 
QA through / correspond two irreducible maps P(i)A —» P(h)A and P{h)A —» j~]P(i)A. 
The latter induces, by application of the functor Hoirie (T[/],—), an irreducible map 
P{h')B-> P(i')B in modB and hence an arrow /' —> h' in QB. On the other hand, to 
an arrow/ —» /' in QB would correspond a non-zero homomorphism/: T~]P(i)-> P(j) 
in mod A. Since we have an Auslander-Reiten sequence: 

0 -» />(/) 4* © P(/z) 4 T~]P(i) -> 0 

it follows that/v =/= 0. But (fv)u =f(vu) = 0 and this implies that there exists a (zero-) 
relation on 2,4 of terminal point /, contrary to our hypothesis that the sink / is free. Thus 
/' is a source in QB. 

We shall now prove that QB has no oriented cycle. Indeed, if i'0 <— /[ <— i'2 «- . . . <— 
/,' = /o is such a cycle, we must have /, =£ i for each 0 ^ s < t (because /' is a source). 
Therefore we have a chain of non-zero homomorphisms in modB: P(i'o) —» P(i\) 
- » . . . - > />(//) = P(iô) where P(i') -=» Horn,, (7[/],P(/v)) for each 0 ^ 5 < t. 
Applying the functor —®B T[i], we obtain a chain of non-zero homomorphisms in 
mod A: P(i0)^> />(/,)—» . . .—» P(/,) = P(/0), and this is impossible, because QA has 
no oriented cycles. 

REMARKS. 1. In fact, it is possible to prove that /' is a source if and only if the 
sink / is free. 

2. If / is not free, QB may have oriented cycles. For instance, if A is given by 
the quiver: 

2 

bound by ap = 0, then End T[\]A is given by the quiver: 

v 

bound by (JLV = 0. 

2. The main result. 

THEOREM. Let A be a finite-dimensional k-algebra without oriented cycles in its 
ordinary quiver and such that every separating tilting module is splitting. Then A is 
hereditary. 

PROOF. Let A be such that QA has no oriented cycles. We shall assume that A is not 
hereditary, and construct a separating tilting module which is not splitting. We start by 
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ordering the vertices of QA in an admissible sequence: { 1 , 2 , . . . A?} (that is to say, such 
that e(Aes ± 0 implies s ^ t). If the sink 1 is free, the APR tilt: 

T[\] = T - V , A ) 0 ( 1 - ex)A 

on A = A0 is splitting, its endomorphism algebra A\ = Endr[l]^() has no oriented 
cycles in its ordinary quiver QA[ and 1 becomes a source inQA]. Inductively, if the sink 
j in QA x is free, then the APR tilt: 

T[j] = T > A - I ) © ( 1 - ej)Aj-x 

is splitting, the ordinary quiver QA of A) = EndT[j]Aj , has no oriented cycles, and 
j becomes a source in QA . Since A is not hereditary, its quiver is bound by at least one 
relation and, proceeding as above, we arrive at a first vertex / of QA which is not a free 
sink in QA, r Putting e = ex + e2 + . . . + en we define: 

TA = j-](eA)®(\ - e)A. 

Observe that eA is a hereditary projective: indeed, / is the first vertex of the sequence 
1 ,2 . . . / which is not free, and hence each e,A (j ^ /) is a hereditary projective. This 
implies that HomA (DAyeA) = 0 and so the projective dimension of T 1 (eA) equals 
one. On the other hand, if y ^ i and £ > i, we have: 

Exti (T- 'PO),/>(€)) ^ D Horn, (P((),P(j)) = 0 

and also, if h, j ^ /, we have ExtA(T~]P(j),T~lP(h)) = 0, which gives Extl
A (T,T) 

= 0. Since the number of non-isomorphic indecomposable summands of T equals n, 
T is indeed a tilting module. Let us prove that T is separating. F(TA)is cogenerated by 
iT -^ eA [7] and thus has as only indecomposable modules P(1),P(2), . . . P(i). On 
the other hand, the isomorphisms: 

E\i\ (T,M) -=* D ttomA (M, iT) -=* D HomA (M, eA) 

show that, for an indecomposable module MA, M £ET(TA) if and only if Hom^ (M,eA) 
i= 0, that is to say, if and only if M E F(TA). 

There only remains to show that T is not splitting. Let B = End TA. We claim that 
B^-> Aj. Indeed, the indecomposable summands of TA are torsion in (T(T[\],F(T[\])). 
Put 7 ^ = HomA(T[\],T). Since T(T[\]) -=* Y(T[\]), we have End 7 ^ -=> B. In­
ductively, if y < / — 1, the indecomposable summands of TA

} = H o m ^ , , (T[j], T{'~ ") 
lie in T(T[j + 1 ] ) ^ Y(T[j + 1]) thus, putting T1^ = Horn Aj(T[j + \]),T(,)) we 
have EndT^-^B. Since TA

l~^ = T[i\, we have # ^ End T[i]Ai._, = A , . In other 
words, the effect of the separating tilting module TA on A is equivalent to the successive 
effect of the APR tilts T[\],T[2],. . .T[i]. Now, it follows from the lemma that each 
of the tilting modules T[\],. . . T[i — 1] is splitting, while T[i] is not. Therefore, TA 

is not splitting. 
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EXAMPLE. We now give an example of an algebra which is not self-injective and 
whose only tilting modules are the Morita progenerators (thus are both separating and 
splitting). Let A be the algebra with radical square zero given by the quiver: 

Then every indecomposable non-projective A-module has infinite projective dimension 
and so the stated property is satisfied. Observe also that A is stably hereditary and 
representation-finite, admits oriented cycles in its Auslander-Reiten quiver but no 
short chains (and therefore its indecomposable modules are uniquely determined by 
their dimension-vectors [3]). 

Acknowledgements. The author is grateful to Professor V. Dlab for having brought 
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