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On the two-variable Iwasawa main conjecture

Tadashi Ochiai

Abstract

This paper is a continuation of the author’s previous work, where we studied one of the
inequalities between the characteristic ideal of the Selmer group and the ideal of the p-adic
L-function predicted by the two-variable Iwasawa main conjecture for a nearly ordinary
Hida deformation T . In this paper, we study several properties of the Selmer group and
the p-adic L-function solving some of the open questions raised in the author’s previous
work. As applications, we have an infinite family of elliptic cuspforms where the cyclotomic
Iwasawa main conjecture holds for every cuspform in the family.
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1. Introduction

This paper is a continuation of the work on the Iwasawa theory for two-variable nearly ordinary
modular Galois deformations [Och01, Och03, Och05]. By improving some of the author’s previous

Received 19 April 2005, accepted in final form 4 April 2006.
2000 Mathematics Subject Classification 11F33, 11F80, 11G40, 11R23, 11R34.
Keywords: Iwasawa main conjecture, Selmer group, p-adic L-function, Hida theory.

The author is supported by the Japan Society for the Promotion of Science.
This journal is c© Foundation Compositio Mathematica 2006.

https://doi.org/10.1112/S0010437X06002223 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X06002223


T. Ochiai

results, we establish one of the inequalities of the two-variable Iwasawa main conjecture (IMC) and
its corollaries in this paper.

In this section, we present a very brief plan of our research including future perspectives before
stating a detailed description of our theory and our results in the next section. Our interest is to
formulate a generalization of the IMC and to solve it for plenty of examples. The setting we consider
is a pair (T , P ) as follows.

(1) T is a free R-module of finite rank, where R is a local Noetherian algebra which is finite flat
over a several-variable Iwasawa algebra Zp[[X1, . . . ,Xg]] with a fixed prime p.

(2) There exists a finite number of primes Σ containing {p,∞} such that we have a continuous
R-linear action of GQ = Gal(Q/Q) on T which is unramified outside Σ.

(3) There exists a certain dense subset P of Spec(R) which consists of the kernels of various
specializations R −→ Q such that the specialization of T at κ ∈ P is a GQ-stable lattice of
the p-adic étale realization of Mκ for a critical motive Mκ.

We call a pair (T , P ) satisfying the above conditions a geometric pair. Given a geometric pair (T , P ),
we would like to study the following objects:

(A) the analytic p-adic L-function Lanal
p (T ) ∈ Frac(R) such that the evaluation at every κ ∈ P of

Lanal
p (T ) is related to the special value of the Hasse–Weil L-function L(Mκ, 0);

(B) the algebraic p-adic L-function Lalg
p (T ) ∈ Frac(R), which is defined to be a generator of the

characteristic ideal of the Pontryagin dual Sel∨T of the Selmer group SelT .

The existence of such Lanal
p (T ) and Lalg

p (T ) as non-zero elements in Frac(R) is expected only when
(T , P ) satisfies a certain local condition called ‘nearly ordinary’ or ‘admissible’ as well as certain
minor extra conditions. We omit the precise definition of the notion ‘nearly ordinary’ or ‘admissible’
and we only refer the reader to [Gre94] (the notion called Panchishkin type in [Gre94] is very close
to ‘admissible’).

(C) Assuming admissibility of (T , P ), we expect equality (Lalg
p (T )) = (Lanal

p (T )) of fractional ideals
of R, once they are well-defined as non-zero ideals in R. This will be a generalization of the
IMC which contains almost all known examples of the IMC.

A certain class of deformations called the cyclotomic deformations are rather classical examples
in our program of ‘the Iwasawa theory for Galois deformations’. Let O be a discrete valuation ring
which is finite flat over Zp and let T be a free O-module of finite rank d which is the p-adic étale
realization of a critical motive over Q. Let Γ be the Galois group Gal(Q∞/Q) of the cyclotomic Zp-
extension Q∞/Q of the rational number field Q. We denote by χ̃ the universal cyclotomic character
GQ � Γ ↪→ Zp[[Γ]]× and Zp[[Γ]](χ̃) is a free Zp[[Γ]]-module of rank one on which GQ acts via
the character χ̃. If we consider T = T ⊗̂ZpZp[[Γ]](χ̃) and R = Zp[[Γ]], T is free of rank d over
R and GQ acts on T diagonally. It is known by Serre that Zp[[Γ]] is non-canonically isomorphic
to Zp[[X]]. Thus, by choosing P to be a suitable set of primes in R = Zp[[Γ]] corresponding to
Dirichlet characters of p-power conductor, (T , P ) satisfies our previous conditions. If T is ordinary
at p in the sense of Greenberg [Gre87], (T , P ) is ‘admissible’. When T is a representation of rank one
associated to a Dirichlet motive, study of (A), (B) and (C) is nothing but the Iwasawa theory for
ideal class groups on a cyclotomic tower initiated by Iwasawa. When T is a representation of rank
two isomorphic to the p-adic Tate module TpE of an elliptic curve E over Q ordinary at p, study
of (A), (B) and (C) corresponds to the study of the Iwasawa theory for elliptic curves proposed by
Mazur and developed by various people (cf. [Gre99]). The conjecture for existence of the analytic
p-adic L-function (the subject for (A)) for all ordinary cyclotomic deformations is well-formulated
by [CP89] and it is solved for class groups, elliptic modular forms and a few other examples. On the
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other hand, the Selmer group SelT related to the algebraic p-adic L-function (the subject for (B))
has been defined and actively studied by Greenberg [Gre87] for ordinary cyclotomic deformations.
SelT is defined to be a subgroup of a Galois cohomology with coefficient A = T ⊗R R∨. In order
that the algebraic p-adic L-function is non-trivial, we need to assume the conjecture that Sel∨T is a
torsion R-module which is proved for only a few examples of critical motives.

To summarize, we can say that the conjectural framework of the Iwasawa main conjecture for
ordinary cyclotomic deformations is rather established, although it is far from being proved except
for a few examples.

Now, we remark that the category of ordinary cyclotomic deformations is naturally extended to
the category of admissible geometric pairs as follows:

{ordinary cyclotomic deformations} ⊂ {admissible geometric pairs}.

A generalization of Iwasawa theory to the category of all admissible pairs was first proposed by
Greenberg [Gre94]. However, in spite of work by several others who follow it, even a conjectural
framework has not been well-understood because of the many new phenomena which do not happen
for cyclotomic deformations. The two-variable nearly ordinary modular deformation constructed by
Hida is an admissible geometric pair which is not an ordinary cyclotomic deformation. It seems
to be the first step which we have to study toward our goal to understand the framework of the
generalized Iwasawa theory which covers all admissible geometric pairs.

The work in this paper has thus been motivated. We close this section by emphasizing several
important contributions made in this paper and motivating the inclusion of some technical sections
such as §§ 2, 3 and 6, so that the reader will not mistake the paper for a long review of previous
results.

(1) For analytic p-adic L-functions in our two-variable deformation (the subject for (A)), there
are several different constructions by Kitagawa, Greenberg and Stevens, Ochiai, Panchishkin
and Fukaya. The first two are based on the method of modular symbols and the last three are
based on the use of the Eisenstein series and the method of Shimura and Rankin–Selberg. The
analytic p-adic L-function in this case is roughly a function in two variables j, k as below:

Lanal
p (T )(j, k)

C+
k,p

=
(
p(j−1)

ap(fk)

)c(j)(
1− ω1−j(p)pc(j)

ap(fk)

)
G(ω1−j)

L(fk, ω
1−j , j)

(2π
√
−1)jΩ+

k,∞
, (1)

where c(j) = ordpCond(ω1−j). Although we cannot explain all the notation in the above
equation, which will be given in §§ 2 and 6, we insist that the differences of several constructions
listed at the beginning of this paragraph appear only in the difference of p-adic error terms
C+

k,p and complex periods Ω+
k,∞ when k varies. In the method of modular symbols, Ω+

k,∞ is
a period integral associated to the modular form fk depending on a certain (non-canonical)
choice of a basis of the module of modular symbols. In the latter method, Ω+

k,∞ is replaced by
the period in the sense of Shimura which is obtained by a Rankin–Selberg integral depending
on a choice of an Eisenstein series.
To compare these two essentially different constructions and to choose the best candidate for
(A) seems to be an important problem to establish the Iwasawa theory in this particular case
and it also seems important for our future perspectives. However, such a problem has not been
studied previously. As we will see in § 6, the best candidate for (A) seems to be that constructed
by Kitagawa, since it is a good match for the generalized Birch and Swinnerton-Dyer conjecture.
On the other hand, the construction of the analytic p-adic L-function using the method of
Shimura and Rankin–Selberg has the advantage that it is more easily related to the algebraic
p-adic L-function by applying the Euler system theory thanks to Kato’s construction [Kat04].
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We have obtained an inequality as follows by combining [Och03] and [Och05]:

(LO
p (T )) ⊂ (Lalg

p (T )), (2)

where LO
p (T ) is an analytic p-adic L-function constructed in [Och03] from the Euler system

obtained by Beilinson–Kato elements and LO
p (T ) is essentially the same as those constructed

by Panchishkin and Fukaya. Owing to the difference of terms C+
k,p and Ω+

k,∞ by multiplication
of algebraic numbers at each k of the interpolation (1), we have a relation (LO

p (T )) ⊂ (LKi
p (T ))

and these two can be different in general. Our observation through our work is that we can
modify our Euler system by taking a certain linear combination and a certain projective limit
so that the p-adic L-function obtained from the modified Euler system coincides with LKi

p (T )
(cf. § 6). By applying our Euler system theory [Och05] to the modified Euler system, we obtain
the inequality as follows which improves (2):

(LKi
p (T )) ⊂ (Lalg

p (T )).

For this reason, we have to give a rather detailed description of the theory, a part of which
might seem to be a review of our previous results contrary to our intension.

(2) For algebraic p-adic L-functions in our two-variable deformation (the subject for (B)), we have
a similar problem to compare different Selmer groups such as those defined by Greenberg or
Bloch–Kato. For cyclotomic deformations, the difference is rather well-known. In the case of
the cyclotomic deformation of an ordinary elliptic curve E, the algebraic p-adic L-function
defined by Greenberg’s Selmer group is equal to that defined by Bloch–Kato’s Selmer group
(cf. [BK90, § 4]) when E is not a Tate curve at p and these two L-functions differ by a factor
which comes from ‘trivial zero’ when E is a Tate curve at p. Since the analytic p-adic L-function
of a Tate curve also has a factor of ‘trivial zero’, Greenberg’s Selmer group is the one according
to the analytic p-adic L-function in view of the IMC (the subject for (C)).
Not only is it useful for finding the best candidate for a Selmer group in accordance with the
Iwasawa main conjecture; the comparison of different Selmer groups seems to be an important
problem in itself. Thus, we compare two different Selmer groups defined by Greenberg’s method
and by Bloch–Kato’s method for large Galois representations over the two-variable nearly
ordinary algebra in § 4 of this paper.

We believe that we have taken a step forward to ‘the Iwasawa theory for Galois deformations’
through our detailed study in this paper for two-variable nearly ordinary deformations.

Notation

For an integer r, we denote by µr the group of rth roots of unity and denote by Q(µr) the field
obtained by adjoining µr to the rational number field Q. We often denote by Q(µp∞) the field
obtained by adjoining all p-power roots of unity to the rational number field Q. For any Galois
extension L/Q and a prime number q which is unramified in L/Q, we denote by Frobq ∈ Gal(L/Q)
(respectively ϕq ∈ Gal(L/Q)) (a conjugate class of) a geometric (respectively arithmetic) Frobenius
element at q.

2. Overview of our program in the case of nearly ordinary Hida deformations

In this section, we introduce our results for the Iwasawa theory on Hida deformations obtained in
[Och03] and [Och05]. We will also give a slight modification (see Theorem 2 and Remark 2.5) of our
Euler system theory to give an application in § 9.

To introduce our results, let us recall briefly Hida’s nearly ordinary modular deformations.
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We fix a prime number p � 3 and a norm compatible system {ζpn}n�1 of primitive pnth roots of
unity throughout the paper. Let Γ be the Galois group Gal(Q∞/Q) of the cyclotomic Zp-extension
Q∞/Q of the rational number field Q. We denote by Γ′ the group of diamond operators for the
tower of modular curves {Y1(pt)}t�1. We have the canonical isomorphisms:

Γ ∼−→
χ

1 + pZp ⊂ Z×
p , Γ′ ∼−→

κ
1 + pZp ⊂ Z×

p .

Fix a topological generator γ (respectively γ′) of Γ (respectively Γ′). For later convenience, we
choose γ and γ′ so that χ(γ) = κ(γ′). From now on, we fix an embedding of an algebraic closure Q
into the field C of complex numbers and an embedding of Q into a fixed algebraic closure Qp of the
field Qp of p-adic numbers simultaneously. We also fix a natural number N prime to p.

Let Hord
F be the quotient of the universal ordinary Hecke algebra Hord

Np∞ with tame conductor N ,
which corresponds to a certain Λ-adic eigen-cuspform F . The algebra Hord

F is a local domain, finite
flat over Zp[[Γ′]]. Then (the F-component of) Hida’s nearly ordinary Hecke algebra Hn.o

F is defined
to be the formal tensor product of Hord

F and the cyclotomic Iwasawa algebra Zp[[Γ]]. By this, Hn.o
F

is isomorphic to Hord
F [[Γ]] and is a local domain, finite flat over Zp[[Γ × Γ′]]. Let Σ be the finite

set of places of Q consisting of {∞} and the primes dividing Np. In his celebrated paper [Hid86b],
Hida constructs a large continuous Galois representation ρ : GQ −→ AutHn.o

F (T (0)
F ) unramified

outside of Σ, where T (0)
F is a finitely generated torsion-free module of generic rank two over Hn.o

F .
The representation T (0)

F is presented as Tord
F ⊗̂Zp[[Γ]](χ̃), where Tord

F is a finitely generated torsion-
free module of generic rank two over Hord

F with continuous GQ-action. The trace of the Frobenius
element Frl ∈ GQ acting on Tord

F is equal to the Fourier coefficient Al(F) of F for every prime
l �∈ Σ. Let M be the maximal ideal of Hn.o

F and let F be a finite residue field Hn.o
F /M. The residual

representation of T (0)
F is defined to be a rank-two F-module with semi-simple GQ-action where the

trace of Frl is congruent to Al(F) modulo M for every prime l �∈ Σ. Such residual representation
of T (0)

F is always known to exist by Hida (cf. [MW86, § 9]) and is unique up to isomorphism by
the Chebotarev density theorem. Throughout the paper, we always assume the following condition
unless otherwise stated.

Condition (Ir). The residual representation of T (0)
F is an irreducible GQ-module.

Condition (Ir) implies that Tord
F (respectively T (0)

F ) is free of rank two over Hord
F (respectively

Hn.o
F ). Let us recall the following definition.

Definition 2.1. Let w be an integer. A point I ∈ HomZp(Hord
F ,Qp) is called an arithmetic point of

weight w if there exists an open subgroup U of Γ′ such that the restriction I|U : U ↪→ Zp[[Γ′]]× ↪→
(Hord

F )× I−→ Q
×
p sends u to κw(u) for any u ∈ U . We denote by Xarith(Hord

F ) the set of arithmetic
points of Hord

F . For an arithmetic point I of Hord
F , we will denote by w(I) the weight of I. We define

a subset Xarith(Hord
F )�0 ⊂ Xarith(Hord

F ) to be Xarith(Hord
F )�0 = {I ∈ Xarith(Hord

F )|w(I) � 0}.

We briefly recall the properties of T (0)
F (cf. [Hid86b, Wil88]).

Basic property of nearly ordinary Hida deformations T (0)
F

Assume Condition (Ir). The deformation T (0)
F (respectively Tord

F ) has the following properties.

(1) For each I ∈ Xarith(Hord
F )�0, there exists a normalized eigen-cuspform fI of weight w(I) +

2 and the quotient Tord/Ker(I)Tord
F
∼= O⊕2

I with OI := Hord
F /Ker(I) is isomorphic to TfI ,

where TfI is the unique lattice of Deligne’s Galois representation associated to fI (cf. [Del69]).
Thus, T (0)

F /(Ker(I), γ − χj(γ))T (0)
F is isomorphic to TfI ⊗ χj for each j ∈ Z and each I ∈

Xarith(Hord
F )�0.
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(2) As a representation of the decomposition group GQp ⊂ GQ at p, T (0)
F has a filtration 0 −→

F+T (0)
F −→ T (0)

F −→ F−T (0)
F −→ 0 such that the graded pieces F+T (0)

F and F−T (0)
F are free of

rank one over Hn.o
F .

(3) Further, F+T (0)
F is isomorphic to Zp[[Γ]](χ̃)⊗̂ZpHord

F (α̃) as a GQp-module, where α̃ is an unram-
ified character GQp −→ (Hord

F )× such that Ap(F) = α̃(Frobp) ∈ Hord
F satisfies an interpolation

property I(Ap(F)) = ap(fI) for each I ∈ Xarith(Hord
F )�0 and Hord

F (α̃) is a rank-one free Hord
F -

module on which GQp acts via the character α̃.

Let ω be the Teichmüller character. We will study the twist T (i)
F = T (0)

F ⊗ ωi for a fixed integer
0 � i � p− 2, which we call a nearly ordinary deformation. From now on, we will denote T (i)

F by T
if this causes no possibility of confusion. We would like to study ‘the Iwasawa theory for T ’. The
space of p-adic characters of Hn.o

F is naturally viewed as a rigid analytic space, finite flat over a two-
dimensional open unit ball in C2

p. Hence, T corresponds to a family of Galois representations over a
two-dimensional rigid space. Each ‘hypersurface’ of the space of characters of Hn.o

F is a rigid space
of dimension one, which also interests us from a view point of ‘the Iwasawa theory for deformation
spaces’. Among infinitely many hypersurfaces, we study the following four types of hypersurfaces
TJ = T /JT for height one primes J of Hn.o

F in particular.

(a) Cyclotomic deformations of ordinary cuspforms. We have TI = TfI⊗ωi ⊗Zp Zp[[Γ]](χ̃) for a
cuspform fI ⊗ ωi of weight k = w(I) + 2, which is free of rank two over OI[[Γ]]. Here,
I ∈ Xarith(Hord

F )�0 and I is a height-one ideal Ker(I)Hn.o
F of Hn.o

F . This is the case called
‘the cyclotomic deformation’ and has been developed by many people since Mazur [Maz72]
started the Iwasawa theory for the cyclotomic deformation of an ordinary elliptic curve (see,
for example, [Gre87, Gre99, MTT86]).

(b) Ordinary deformation twisted by χ. We have, T(γ−χ(γ)) = Tord
F ⊗χωi, which is free of rank two

over Hord
F . For each I ∈ Xarith(Hord

F )�0, T(γ−χ(γ))/Ker(I)T(γ−χ(γ)) is isomorphic to TfI ⊗ χωi.
Hence, T(γ−χ(γ)) is the interpolation of the Zp(1)-twists of the Galois representations for fI ⊗
ωi−1 when I varies in Xarith(Hord

F )�0.
(c) Ordinary deformation twisted by Zp[[Γ]](χ̃)⊗χ. We have T(γ−κ(γ′)γ′) = Tord

F ⊗Zp[[Γ′]]Zp[[Γ]](χ̃)⊗
χωi, which is free of rank two over Hord

F . Note that T = Tord
F ⊗̂ZpZp[[Γ]](χ̃)⊗ωi and that the ten-

sor product is taken through the canonical isomorphism Γ ∼−→ Γ′. For each I ∈ Xarith(Hord
F )�0,

T(γ−κ(γ′)γ′)/Ker(I)T(γ−κ(γ′)γ′) is isomorphic to TfI ⊗χw(I)+1ωi. Hence, T(γ−κ(γ′)γ′) is the inter-
polation of Z(1)⊗w(I)+1-twists of the Galois representations of fI⊗ωi−1−w(I) when I varies in
Xarith(Hord

F )�0.
(d) One-variable deformation at the diagonal line. We have

T(γ2−κ2(γ′)γ′) = Tord
F ⊗Zp[[Γ′]] Zp[[Γ]](χ̃

1
2 )⊗ χωi,

which is free of rank two over Hord
F . Similarly as above, T(γ2−κ2(γ′)γ′) is the interpolation of

Z(1)⊗k(I)/2-twists of the Galois representations of fI⊗ωi−k(I)/2 when I runs arithmetic points
of Hord

F with k(I) ∈ 2Z�0, where k(I) = w(I) + 2 is the weight of the cuspform fI. Note that
the representations with the above twist correspond to the special value of L(fI⊗ωi−k(I)/2, s)
at the center of the functional equations when I varies.

Some of the Iwasawa theoretic properties of TJ are deduced by the method of ‘specialization’
from those of T (see § 5 for such a technique and also § 7 for results and conjectures in these cases).

To introduce our main result, we recall the definition of the Euler system in our situation.

Definition 2.2. Let T ∗(1) be the Kummer dual HomHn.o
F (T ,Hn.o

F )⊗Zp Zp(1) of T . An Euler system
for T ∗(1) is a collection of cohomology classes {C(r) ∈ H1(Q(µr),T ∗(1))} where r runs the set of
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all square-free natural numbers prime to the tame conductor N such that the following properties
are satisfied.

(1) The element C(r) is unramified outside primes dividing N .
(2) The norm NormQ(µrq)/Q(µr)C(rq) is equal to Pq(Frobq)C(r), where Pq(X) ∈ Hn.o

F [X] is a poly-
nomial det(1−FrobqX;T ) and Frobq is a (conjugacy class of) geometric Frobenius element at
q in the Galois group Gal(Q(µr)/Q).

In the rest of this section, we will recall the results for the IMC for T and the specializations
of T . One of the results in this paper is Theorem 6.11 where we give an Euler system {ZKi(r) ∈
H1(Q(µr),T ∗(1))}, which is an ‘optimal’ modification of Beilinson–Kato elements. On the other
hand, we constructed the Coleman map Ξd : H1

/f (Qp,T ∗(1)) −→ Hn.o
F (cf. [Och03, Theorem 3.13])

which is recalled in this paper at Theorem 6.3. Combining these results, we have the following result
(see § 6 for some of the notation).

Theorem 1 (Corollary 6.17). Let i be an integer such that 0 � i � p − 2. We assume Condition

(Ir) for a nearly ordinary deformation T = T (i)
F . Assume also the following condition.

Condition (Nor). Hn.o
F is integrally closed in its fraction field Frac(Hn.o

F ).

We have the Euler system {ZKi(r) ∈ H1(Q(µr),T ∗(1))} whose first layer ZKi(1) satisfies the
equality

lengthHn.o
F,l

(H1
/f (Qp,T ∗(1))

/
loc/f (ZKi(1))Hn.o

F )l = ordl(LKi
p (T ))

for each height-one prime l ⊂ Hn.o
F , where LKi

p (T ) is Kitagawa’s two-variable p-adic L-function (see
[Kit94] and also Theorem 6.7 for the interpolation property of Kitagawa’s p-adic L-function) and
Hn.o

F ,l is the discrete valuation ring obtained by localizing Hn.o
F at l.

Remark 2.3. In the above theorem, the condition that Hn.o
F is integrally closed is necessary only to

assure that the image of Ξd is contained in Hn.o
F . Without this condition, the image of Ξd is in the

fraction field Frac(Hn.o
F ) of Hn.o

F and the localization Ξd(C)l of Ξd(C) is contained in Hn.o
F ,l for each

height-one prime l ⊂ Hn.o
F . All interpolation properties as above hold without this condition (see

the arguments in [Och03, § 5]).

On the other hand, we associate the Selmer group SelT to T . Let

A = T ⊗Hn.o
F HomZp(H

n.o
F ,Qp/Zp).

We define SelT as a subgroup of H1(QΣ/Q,A) (see § 4.3 for the precise definition). The Pontryagin
dual (SelT )∨ of SelT is a finitely generated torsion Hn.o

F -module (cf. Proposition 4.9). We propose
the following conjecture.

Conjecture 2.4 (Two-variable IMC). We assume Condition (Ir). We have the equality

lengthHn.o
F,l

(SelT )∨l = ordl(LKi
p (T ))

for each height-one prime l of Hn.o
F .

In [Och05], we proved that the ideal associated to the (localization of the) Beilinson–Kato
element for T is contained in the characteristic ideal of (SelT )∨. We restate the result, but with
slight modification of the assumptions (see Remark 2.5 below).

Theorem 2. We assume that Hn.o
F is isomorphic to a two-variable power series algebra O[[X1,X2]]

over the ring of the integers O of a certain finite extension of Qp. Let us assume Condition (Ir) for

T = T (i)
F and the existence of the elements τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ which satisfy the following

properties.
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(i) The image of τ under the representation GQ −→ Aut(T ) ∼= GL2(Hn.o
F ) has a presentation(

1 Pτ
0 1

)
under certain choice of basis T ∼= (Hn.o

F )⊕2, where Pτ is a non-zero element of Hn.o
F .

(ii) The element τ ′ ∈ GQ acts on T /MT via the multiplication by −1.

Then there exists an integer m � 0 such that we have the following inequality for each height-one
prime l of Hn.o

F :

lengthHn.o
F,l

(SelT )∨l � lengthHn.o
F,l

(H/f (Qp,T ∗(1))/loc/f (Z)Hn.o
F )l + ordl(Pm

τ ).

Remark 2.5. In [Och05], we assumed the following condition (ii′) in place of the above condition (ii):

(ii′) The element τ ′ ∈ GQ acts on T via the multiplication by −1.

However, conditions (ii) and (ii′) are equivalent to each other by the following lemma.

Lemma 2.6. Let R be a complete Noetherian local ring whose residue field R/M is a finite field
of characteristic p > 2 and let G be a subgroup of GL2(R). We denote by G ⊂ GL2(R/M) the
image of G under the reduction map GL2(R) −→ GL2(R/M). Then G contains a scalar matrix of
multiplication by −1 if and only if G contains the multiplication by −1.

We omit the proof of this rather elementary lemma, but we remark that condition (ii) is easier
to check than condition (ii′) (cf. § 9 and Claim 9.11).

Finally, our results combining Theorems 1 and 2 are summarized as follows.

Theorem 3. Let us assume Condition (Ir). Assume further that Hn.o
F is isomorphic to a two-variable

power series algebra O[[X1,X2]]. Then the following hold.

(i) The Pontryagin dual (SelT )∨ of SelT is a finitely generated torsion Hn.o
F -module.

(ii) Suppose that we have elements τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ satisfying conditions (i) and (ii) in
Theorem 2. Then, there exists an integer m such that we have the following inequality for each
height-one prime l of Hn.o

F :

lengthHn.o
F,l

(SelT )∨l � ordHn.o
F,l

(LKi
p (T )) + ordl(Pm

τ ).

So far, we have given results on the two-variable IMC for nearly ordinary deformations T . The
above results are applied to the Iwasawa theory for one-variable specializations T /JT for various
height-one ideals J of Hn.o

F as cases (a), (b), (c) and (d) given earlier in this section. In § 4.2,
the Selmer group for T /JT is studied using Bloch–Kato’s method or Greenberg’s method and we
compare two different definitions. A technique of specialization from two variables to one variable
is discussed in § 5.1. Based on these preparations, we discuss the one-variable Iwasawa theory for
the deformations (a), (b), (c) and (d) above. For example, by applying Lemma 7.2 to case (a), we
have the following corollary to Theorem 3 (see Corollary 7.5).

Corollary 2.7. Assume the same conditions as those in Theorem 2 (and certain technical
assumptions given in Corollary 7.5). Then, the following statements are equivalent.

(1) The two-variable IMC holds for T .

(2) The cyclotomic IMC (cf. Conjecture 7.4) formulated by Mazur–Tate–Teitelbaum holds for
every specialization fI of F with I ∈ Xarith(Hord

F )�0.

(3) There exists an I0 ∈ Xarith(Hord
F )�0 such that the cyclotomic IMC holds for fI0.

We do not give the proof of this corollary in this section, but it will be given in § 7. Suppose that
F and T = T (i)

F satisfy the assumption for the corollary (see Remark 7.6 for some of the explicit
sufficient conditions for T to satisfy the condition). By applying the implication (3) =⇒ (2) of
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Corollary 2.7, we show that Conjecture 7.4 holds for every specialization fI of F with w(I) � 0
once the cyclotomic IMC holds for a certain specialization fI0 in F with w(I0) � 0. Thus, we have
an infinite family of modular forms {fI}I∈Xarith(Hord

F )�0
where the cyclotomic IMC holds for every

member of the family. A recent paper [EPW06] also proves a similar result that the cyclotomic IMC
holds for a family of infinite {fI}I∈Xarith(Hord

F )�0
obtained as specializations of a Hida deformation.

Their method of the proof is not related to the two-variable IMC as in this paper, but they apply a
clever use of the congruence developed by Greenberg and Vatsal [GV00]. For this reason, they assume
that the vanishing of the cyclotomic Iwasawa µ-invariant µ(fI0) is zero for a certain specialization
fI0. The advantage of our result in Corollary 2.7 is that we do not have to assume the condition
µ(fI0) = 0.

Another thing we should remark on is that Skinner and Urban recently announced the cyclotomic
IMC for ordinary eigen-cuspforms f with certain technical conditions, assuming the conjecture on
the existence of Galois representations for modular forms on U(2, 2). By combining their result with
the implication (3) =⇒ (1) of Corollary 2.7, we prove the two-variable IMC (cf. Conjecture 2.4)
under certain conditions.

As far as we know, the one-variable IMC in cases (b), (c) and (d) is not known and has not been
formulated previously. Based on the preparation in §§ 4, 5 and 6, we formulate these conjectures in
§ 7. We refer the reader to § 7 for the formulation of the conjectures and our results.

Since only a few things are known about the two-variable Iwasawa theory, we would like explicit
examples which help us to develop our future perspective. As an attempt, we study the case of
Ramanujan’s cuspform ∆ = q

∏
n�1(1 − qn)24 ∈ S12(SL2(Z)). For each prime number p such that

p � ap(∆), we have a unique Λ-adic newform F(∆) which contains ∆ at weight 12. For each integer
i with 0 � i � p− 2, we have a nearly ordinary deformation T (i)

F(∆).

Proposition 2.8. Let p � 11 be a prime number with p � ap(∆). Assume that 1 � i � 11 and

p � 10 000. Let T be T (i)
F(∆)

.

(1) Except for (p, i) = (11, 1), (23, 1) and (691, 1), we have SelT = 0 and LKi
p (T ) is a unit.

(2) When p = 11 and i = 1, Sel∨T is isomorphic to Zp[[Γ × Γ′]]/(γ2 − κ2(γ′)γ′) and we have the
equality of ideal (γ2 − κ2(γ′)γ′) = (LKi

p (T )).

Remark 2.9. Thus, in particular, the two-variable IMC of ∆ holds for all p � 10 000 and 0 � i � 10
except for (p, i) = (23, 1) and (p, i) = (691, 1). For (p, i) = (23, 1), it is easy to see that LKi

p (T ) is not
a unit by the interpolation property in Theorem 6.7 since ap(∆)− 1 ≡ 0 modulo 23. The image of
modulo 23 representation for ∆ is dihedral and thus condition (ii) in Theorem 2 is not satisfied. It is
our future project to generalize the results in [Och05] so that Theorem 2 is true in the case p = 23.
For p = 691, the residual representation is no longer irreducible (Condition (Ir) is not satisfied) and
the choice of lattice T is not unique for a given F . We will treat the IMC for residually reducible
deformations in a forthcoming paper.

3. Local monodromy on Tord
F

For later use in §§ 4, 5 and 7, we study the action ρF of the inertia group Iv at primes v|N acting
on the Hida deformation Tord

F associated to a Λ-adic newform F of tame conductor N introduced
in § 2. We will keep the notation of the previous section. Throughout the paper, we denote by Σ
the set of primes of Q which consists of finite primes dividing Np and the infinite prime {∞}. The
result of this section is summarized in Theorem 3.3. The reader who is mainly interested in the
Selmer group or in the p-adic L-function can skip this section by admitting Theorem 3.3.

We prepare the following lemma.
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Lemma 3.1. Let G ⊂ AutHord
F

(Tord
F ) be a finite subgroup. For each I ∈ Xarith(Hord

F )�0, G is mapped

into AutOI(TfI) under the specialization AutHord
F

(Tord
F ) � AutOI(TfI).

Proof. By fixing a basis of Tord
F , we have isomorphisms Tord

F
∼= (Hord

F )⊕2 and TfI
∼= (OI)⊕2. Suppose

that there exists an element g ∈ G which is mapped to a trivial element on AutOI(TfI) ∼= GL2(OI).
Since the order of g is finite, by extending the coefficients of Hord

F if necessary, we may assume that
g is conjugate to a diagonal matrix

(
u 0
0 u′

)
∈ GL2(Hord

F ) with u and u′ roots of unity. This completes
the proof since the roots of unity in (Hord

F )× are disjoint from Ker[(Hord
F )× � (OI)×].

Since v ∈ Σ \ {p,∞}, the action of Iv on Tord
F is non-trivial. By the above lemma, we consider

the following case.

(A) The image ρF (Iv) in AutHord
F

(Tord
F ) is a finite subgroup.

In this case, the action of Iv on (Tord
F )∗ = HomHord

F
(Tord

F ,Hord
F ) also factors through a finite quotient

of Iv. Hence there exist a finite flat extension O of Zp contained in Hord
F and a finite type O-module

M with rankFrac(O)(M ⊗O Frac(O)) � 1 such that the coinvariant quotient ((Tord
F )∗)Iv is isomorphic

to M ⊗O Hord
F .

Next, we discuss the following case.

(B) The image ρF (Iv) in AutHord
F

(Tord
F ) is an infinite subgroup.

In this case, it is not difficult to see that there exists an arithmetic point I ∈ Xarith(Hord
F )�0 such

that the action of Iv on TfI
∼= Tord

F /Ker(I)Tord
F does not factor through a finite quotient of Iv. Let

us fix one such I0 ∈ Xarith(Hord
F )�0 for a while. We note that the action of Iv on TfI0

can be infinite
only when the local automorphic representation πv(I0) of GL2(Qv) associated to fI0 is a special
representation. Hence the local Galois representation GQv −→ GL2(OI) for fI0 is represented by
a matrix

( χ ∗
0 χ′

)
such that χ|Iv = χ′|Iv and χ′χ−1 = | |±, where | | is the absolute value character

GQv −→ Gab
Qv

∼−→ Q×
v −→ | |v. Since a finite-order character of GQv is always the localization of a

finite-order character of GQ, we have a Dirichlet character η0 with v-primary conductor such that
the action of Iv on TfI0

⊗ η0 = TfI0⊗η0 is unipotent. Let us now recall the structure on the inertia
group Iv. The group Iv has the filtration P ⊂ Q ⊂ Iv such that P is the maximal pro-v subgroup
of Iv and Iv/Q is isomorphic to Zp. Since Q/P is isomorphic to

∏
l 	=v,p Zl, Q has no non-trivial

p-primary subquotient. This immediately implies the following lemma.

Lemma 3.2. Let v ∈ Σ \ {p,∞}.
(1) The image ρF (Q) is a finite subgroup of AutHord

F
(Tord

F ).

(2) For each I ∈ Xarith(Hord
F )�0, the group ρF (Q) is mapped into AutOI(TfI) under the special-

ization AutHord
F

(Tord
F ) � AutOI(TfI).

Proof. For the proof, we note that the prime-to-p part of AutHord
F

(Tord
F ) is finite and that the kernel

of AutHord
F

(Tord
F ) � AutOI(TfI) is a pro-p group.

Since the action of Iv on TfI⊗η0 is unipotent, the subgroup Q acts trivially on TfI⊗η0 . By
Lemma 3.2, Q acts trivially on Tord

F ⊗ η0 = Tord
F⊗η0

, where F ⊗ η0 is the Λ-adic newform obtained as
the twist of F by η0. Let γ be a topological generator of Iv/Q ∼= Zp. By assumption, the action of γ on
TfI0⊗η0 is represented by a non-trivial unipotent matrix. Let (Tord

F ⊗η0)ss be the semi-simplification
as an Iv-module. Then, the action of γ on (Tord

F⊗η0
)ss = (Tord

F ⊗ η0)ss is represented by a matrix(
a 0
0 a′

)
with a, a′ ∈ (Hord

F )×. If a or a′ is not a root of unity, there exists I ∈ Xarith(Hord
F )�0 such that

the action of Iv on (Tord
F⊗η0

)ss/Ker(I)(Tord
F⊗η0

)ss = (TfI)
ss is of infinite order. It is impossible for a
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representation of Iv associated to a cuspform. Hence, a and a′ are roots of unity. Since a and a′ are
congruent to 1 modulo Ker(I0), we show that a = a′ = 1 by a similar discussion as in Lemma 3.1 for
(Tord

F⊗η0
)ss. Thus, the action of γ on Tord

F⊗η0
is represented by a unipotent matrix

(
1 b
0 1

)
∈ GL2(Hord

F ).
Recall that the v-order of the tame conductor of fI⊗η0 is constant when I varies in Xarith(Hord

F )�0

by applying [Hid86a, Corollary 3.7] to F ⊗ η0. Thus, I(b) are not zero for every I ∈ Xarith(Hord
F )�0.

We conclude that ((Tord
F )∗)Iv is isomorphic to Hord

F /(1 − u) ⊕ Hord
F /(b, 1 − u), where u is a root of

unity which generates the group of the values of η0.

Summarizing the above argument, we have the following theorem.

Theorem 3.3. Let v ∈ Σ \ {p,∞}.

(1) If the image of Iv on AutHord
F

(Tord
F ) is finite, there exist a finite flat extension O of Zp contained

in Hord
F and a finite type O-module M with rankFrac(O)(M ⊗O Frac(O)) � 1 such that the

coinvariant quotient ((Tord
F )∗)Iv is isomorphic to M ⊗O Hord

F .

(2) If the image of Iv on AutHord
F

(Tord
F ) is infinite, ((Tord

F )∗)Iv is isomorphic to Hord
F /(1 − u) ⊕

Hord
F /(b, 1 − u) where b is an element in Hord

F such that I(b) �= 0 for every I ∈ Xarith(Hord
F )�0

and u is a certain root of unity in (Hord
F )× (u = 1 is possible).

The following remark explains Theorem 3.3 from the theory of admissible representations and
the local Langlands correspondence for GL2.

Remark 3.4. In case (A) of this section, the admissible representation πv(I) of GL2(Qp) correspond-
ing to fI is a supercuspidal representation or a principal series at each I ∈ Xarith(Hord

F )�0. Further, if
πv(I) is a supercuspidal representation (respectively a principal series) at one of I ∈ Xarith(Hord

F )�0,
πv(I) are supercuspidal representations (respectively a principal series) at every I ∈ Xarith(Hord

F )�0.
In case (B), πv(I) is a special representation at each I ∈ Xarith(Hord

F )�0.

4. Selmer groups for Galois deformations

In this section, we review the definition of Selmer groups for a two-variable nearly ordinary defor-
mation T = T (i)

F and for its various specializations T /AT by ideals A ⊂ Hn.o
F . We also give some

fundamental properties on these Selmer groups.

Let A be the discrete Galois representation T ⊗Hn.o
F HomZp(Hn.o

F ,Qp/Zp). We denote by QΣ the
maximal Galois extension of Q which is unramified outside Σ.

4.1 Selmer groups over discrete valuation rings

Let (j, k) be a pair of integers satisfying 1 � j � k−1 and let ∆(j,k)
s,t = (γps−χj(γps

), γ′p
t

−κk−2(γ′p
t

))

be a height-two ideal of Hn.o
F . We denote by A

(j,k)
s,t the ∆(j,k)

s,t -torsion part A[∆(j,k)
s,t ] of A, which is

identified with (T /∆(j,k)
s,t T )⊗Zp Qp/Zp. Note the following.

(1) T /∆(j,k)
s,t T is free of finite rank over Zp.

(2) The p-adic representation (T /∆(j,k)
s,t T )⊗Zp Qp is isomorphic to

⊕
f (Vf⊗χjωi)⊗Zp Zp[Γ/Γps

](χ̃),
where f runs ordinary eigen-cuspforms of weight k for Γ1(Npt) such that the residual represen-
tation for f are isomorphic to that of T ⊗ ω−i. Here, Zp[Γ/Γps

](χ̃) is a free Zp[Γ/Γps
]-module

of rank one on which GQ acts via the tautological character χ̃ : GQ � Γ/Γps
↪→ Zp[Γ/Γps

]×.
We recall that i is a fixed integer which is implicitly contained in the definition of T = T (i)

F .
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For any Gal(QΣ/Q)-module T which is free of finite rank over Zp, Selmer groups are defined as a
subgroup of H1(QΣ/Q, A), where A = T ⊗Zp Qp/Zp. Once we fix a local condition H1

? (Qv, A) ⊂
H1(Qv, A) at each v ∈ Σ \ {∞}, we define a Selmer group Sel?T as follows (? is BK (Bloch–Kato) or
Gr (Greenberg)):

Sel?T = Ker
[
H1(QΣ/Q, A) −→

∏
v∈Σ

H1(Qv, A)
H1

? (Qv, A)

]
. (3)

For v ∈ Σ \ {p,∞}, one of the local conditions is given by the unramified part

H1
ur(Qv, A) = Ker[H1(Qv, A) −→ H1(Iv , A)],

where Iv is the inertia subgroup at v. Let V = T ⊗Zp Qp. We define ‘the finite part’:

H1
f (Qv, A) = pr(H1

ur(Qv, V )),

where pr : H1(Qv, V ) −→ H1(Qv, A) is the map induced by the projection map V � A = V/T of
GQv -modules and H1

ur(Qv, V ) = Ker[H1(Qv, V ) −→ H1(Iv, V )].
We also give local conditions at p.

(1) Greenberg’s local condition H1
Gr(Qp, A) ⊂ H1(Qp, A) is defined as

H1
Gr(Qp, A) = Ker[H1(Qp, A) −→ H1(Ip,F−A)],

where F−A is a GQp-module which is defined to be the quotient A/F+A.

(2) Bloch–Kato defined H1
f (Qp, A), called ‘the finite part’, as H1

f (Qp, A) = pr(H1
f (Qp, V )), where

H1
f (Qp, V ) = Ker[H1(Qp, V ) −→ H1(Qp, V ⊗Bcrys)],

by using the ring of p-adic periods Bcrys defined by Fontaine (cf. [Fon94]).

Selmer groups SelBK
T and SelGr

T according to [BK90] and [Gre87] are defined by the following condi-
tion (cf. (3)).

SelBK
T SelGr

T

H1
? (Qv, A) for v ∈ Σ \ {p,∞} H1

f H1
ur

H1
? (Qp, A) H1

f (Qp, A) H1
Gr(Qp, A)

Recall that we have the following proposition (cf. [Och03, § 4]).

Proposition 4.1. Let us assume that 1 � j � k − 1. Then H1
f (Qp, A

(j,k)
s,t ) is the maximal divisible

subgroup of H1
Gr(Qp, A

(j,k)
s,t ) for each pair of integers (s, t) � (0, 0).

We have the following corollary of Proposition 4.1.

Corollary 4.2. Let us assume that 1 � j � k − 1. We denote by T
(j,k)
s,t the representation

T /∆(j,k)
s,t T , which is free of finite rank over Zp for each (s, t) � (0, 0). Then SelBK

T
(j,k)
s,t

is a subgroup

of SelGr

T
(j,k)
s,t

with finite index.

Remark 4.3. Let T be a GQ-module which is a quotient T /JT by a height-two ideal (not necessarily
a prime ideal) J ⊂ Hn.o

F . Assume that there is a pair (j, k) with 1 � j � k−1 such that T is dominated
by T

(j,k)
s,t for sufficiently large s, t. Since T is free of finite rank over Zp, we define SelBK

T as in the
previous subsection. We also define SelGr

T by means of the GQp-stable filtration F+T induced from
F+T . Then, the same results as Proposition 4.1 and Corollary 4.2 hold.
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4.2 Selmer groups over one-variable Iwasawa algebras

In this subsection, we give Selmer groups for specializations TJ = T /JT at height-one primes J of
Hn.o

F in cases (a), (b), (c) and (d) in § 2. Recall that J is given as follows in each case:

(a) J is I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )�0;

(b) J is (γ − χ(γ)) ⊂ Hn.o
F ;

(c) J is (γ − κ(γ′)γ′) ⊂ Hn.o
F ;

(d) J is (γ2 − κ2(γ′)γ′) ⊂ Hn.o
F .

In case (a), Hn.o
F /JHn.o

F is isomorphic to OI[[Γ]]. In cases (b), (c) and (d), Hn.o
F /JHn.o

F is isomorphic
to Hord

F . The Greenberg-type Selmer group SelGr
J for TJ is defined by

SelGr
J = Ker

[
H1(QΣ/Q,A[J ]) −→ H1(Qp,F−A[J ])

H1
Gr(Qp,F−A[J ])

⊕
⊕

v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])

]
.

In each of the above four cases, let us take a system of height-one ideals (not necessarily prime
ideals) {Hu ⊂ Hn.o

F }u�1of Hn.o
F with the following properties.

(1) We have Hu ⊃ Hu+1 for each u � 1 and
⋂

u�1Hu = 0.

(2) Hn.o
F /(J,Hu) is finite flat over Zp for each u � 1.

For each u � 1, SelGr
T /(J,Hu)T is defined as in § 4.1 by using the filtration F±(T /(J,Hu)T ) :=

F±T /(J,Hu)F±T . Further, SelGr
J is isomorphic to lim−→u�1

SelGr
T /(J,Hu)T by definition. On the other

hand, the Bloch–Kato-type Selmer group for TJ is defined via a certain system of height-one ideals
{Hu ⊂ Hn.o

F }u�1 in Hn.o
F and might depend on the choice a priori. For a fixed natural number, we

will make the following choice of a system {Hu}u�1 of height-one ideals:{
{Hs}s�1 = {Φ(j)

s = (γps − χj(γps
))}s�1 in case (a),

{Ht}t�1 = {Ψ(k)
t = (γ′p

t

− κk−2(γ′p
t

))}t�1 in case (b), (c) or (d).

We define the Bloch–Kato-type Selmer group as follows:SelBK,(j)
J = lim−→s

SelBK

T /(J,Φ
(j)
s )T

in case (a),

SelBK,(k)
J = lim−→t

SelBK

T /(J,Ψ
(k)
t )T

in case (b), (c) or (d).

(In case (a), we assume that 1 � j � w(I) + 1.)

Let Div(M) be the maximal divisible subgroup for an abelian group M . We have the following
proposition.

Proposition 4.4. We assume Condition (Ir) for T = T (i)
F with 0 � i � p−2. Let J be a height-one

ideal of Hn.o
F determined at the beginning of § 4.2 according to which of the cases (a), (b), (c) and

(d) we consider. Then, we have the following.

(1) SelBK,(l)
J is a Hn.o

F -submodule of SelGr
J (l stands for j or k depending on which J we take). The

Pontryagin dual (SelGr
J )∨ of SelGr

J is a finitely generated Hn.o
F /J-module. (SelGr

J )∨ is torsion
over Hn.o

F /J except in case (d) (cf. Remark 4.5).

(2) In case (a) with J = Ker(I)Hn.o
F , we have

SelGr
J /SelBK,(j)

J
∼=

{
(OI)∨ if F−A[M]Ip �= 0 and ap(fI) = 1,
0 if F−A[M]Ip = 0 or ap(fI) �= 1.
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(3) We have {
SelGr

J /SelBK,(k)
J

∼= WJ in cases (b) and (c),

SelGr
J /SelBK,(k)

J ↪→WJ in cases (d),

where

WJ = lim−→t

H1
Gr(Qp,A[J,Ψ(k)

t ])

Div(H1
Gr(Qp,A[J,Ψ(k)

t ]))
⊕

⊕
v∈Σ\{p,∞}

((((T ∗
J )Iv)

GQv )Hord
F -tor)

∨.

Further, the component of WJ at each prime is given as follows.

(i) For each v ∈ Σ \ {p,∞}, we have

((T ∗
J )Iv)

GQv ∼=


(((Tord

F )∗)Iv ⊗ χ−1ω−i)GQv in case (b),

(((Tord
F )∗)Iv ⊗Zp[[Γ′]] Zp[[Γ]](χ̃−1)⊗ χ−1ω−i)GQv in case (c),

(((Tord
F )∗)Iv ⊗Zp[[Γ′]] Zp[[Γ]](χ̃− 1

2 )⊗ χ−1ω−i)GQv in case (d).

(ii) We have

lim−→t

H1
Gr(Qp,A[J,Ψ(k)

t ])

Div(H1
Gr(Qp,A[J,Ψ(k)

t ]))
� H1

ur(Qp,A[J ]).

When i �= 1 is satisfied or when ap(fI) �= 1 are satisfied for every I ∈ Xarith(Hord
F )�0, we

have

lim−→t

H1
Gr(Qp,A[J,Ψ(k)

t ])

Div(H1
Gr(Qp,A[J,Ψ(k)

t ]))
∼= H1

ur(Qp,F−A[J ]).

We have

H1
ur(Qp,F−A[J ]) ∼=


(((Hord

F /(γ′ − 1))[Ap(F)− 1])∨ in cases (b) and (d)

with F−A[M]Ip �= 0,
0 otherwise.

Remark 4.5.

(1) In case (d), (SelGr
J )∨ is not necessarily a torsion Hord

F -module. We refer the reader to § 7 for
more information.

(2) Let us note that ap(fI) = 1 happens only when w(I) = 0 (we show this by studying the
complex absolute value of ap(fI); see, for example, [Ogg69]). In case (a), the difference in the
second statement is well-known to the experts as ‘trivial zero’ phenomena, at least when fI is
associated to an elliptic curve.

(3) The group (((T ∗
J )Iv)GQv )Hord

F -tor is shown to be zero if certain conditions are satisfied in case (B)
of § 3. In fact, we have an extension as follows in case (B):

0 −→ Hord
F (χ̃1/2χωψ) −→ ((Tord

F )∗)Iv −→ Hord
F (χ̃1/2ψ)/(b)Hord

F (χ̃1/2ψ) −→ 0,

where ψ is a Dirichlet character and b ∈ Hord
F is a non-zero element such that the ideal (b) is

prime to every height-one ideal Φ(k)
t when k � 2 and t � 0 varies. Hence, we have

(((T ∗
J )Iv)

GQv )Hord
F -tor

∼=


(Hord

F (χ̃1/2χ−1ψω−i)/(b)Hord
F (χ̃1/2χ−1ψω−i))GQv in case (b),

(Hord
F (χ̃−1/2χ−1ψω−i)/(b)Hord

F (χ̃−1/2χ−1ψω−i))GQv in case (c),
(Hord

F (χ−1ψω−i)/(b)Hord
F (χ−1ψω−i))GQv in case (d).

We see that (((T ∗
J )Iv )GQv )Hord

F -tor is trivial when ψ = 1 and case (c) is satisfied or when case (d)
is satisfied. We expect that (((T ∗

J )Iv)GQv )Hord
F -tor is trivial in other cases.
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Proof of Proposition 4.4. Recall that (SelGr
J )∨ is known to be a finitely generated torsion module

over OI[[Γ]] in case (a) by results of Kato and Rubin (cf. [Kat04, Rub91]). In cases (b) and (c),
it is not difficult to see that SelGr

T /(J,Ψ
(k)
t )T

−→ SelGr
J [Ψ(k)

t ] has finite kernel and cokernel for k � 3

(see Proposition 5.5 and Remark 5.6 and note that k = w(I) + 2 there). If k � 3, SelGr

T /(J,Ψ
(k)
t )T

is

finite by Kato and Rubin. These facts imply that (SelGr
J )∨/Ψ(k)

t (SelGr
J )∨ is finite. Thus, (SelGr

J )∨ is a
torsion Hn.o

F /J ∼= Hord
F -module. This completes the proof of the first assertion.

For the proof of the second and the third assertions, the following commutative diagram will
play an important role.

0 �� SelBK,(?)
J

��

��

H1(QΣ/Q,A[J ])
locBK

J ��
⊕

v∈Σ\{∞}
lim−→u

H1(Qv,A[J,Hu])
H1

f (Qv,A[J,Hu])

γJ

��

0 �� SelGr
J

�� H1(QΣ/Q,A[J ]) ��
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])

As we will see in Theorem 4.10, the map locBK
J is surjective in cases (a), (b) and (c). By the snake

lemma, we have {
SelGr

J /SelBK,(k)
J

∼= Ker(γJ) in cases (a), (b) and (c),

SelGr
J /SelBK,(k)

J ↪→ Ker(γJ ) in case (d).
(4)

Let us denote Ker(γJ ) by WJ . By Proposition 4.1,

WJ
∼= lim−→u

H1
Gr(Qp,A[J,Hu])

Div(H1
Gr(Qp,A[J,Hu]))

⊕
⊕

v∈Σ\{p,∞}
lim−→u

H1
ur(Qv,A[J,Hu])

Div(H1
ur(Qv,A[J,Hu]))

∼= lim−→u

H1
Gr(Qp,A[J,Hu])

Div(H1
Gr(Qp,A[J,Hu]))

⊕
⊕

v∈Σ\{p,∞}
lim−→u

(A[J,Hu]Iv)GQv

Div((A[J,Hu]Iv)GQv
)
.

From (4), it suffices to calculate WJ in each of cases (a), (b), (c) and (d). For the rest of the proof
of Proposition 4.4, we restrict ourselves only to case (a). We believe that this restriction is better
to keep the proof at a reasonable length. The proof is basically the same in the other cases (b),
(c) and (d). So we will also avoid unnecessarily complicated notation caused by unified treatment
which covers every case.

In case (a), with J = Ker(I)Hn.o
F , u and Hu correspond to s and Φ(j)

s respectively for j a fixed
number with 1 � j � w(I) + 1). The Pontryagin dual of

lim−→s

(A[J,Φ(j)
s ]Iv)GQv

Div((A[J,Φ(j)
s ]Iv)GQv

)

in the term of WJ outside p is lim←−s
(((T ∗

J )Iv/Φ
(j)
s (T ∗

J )Iv)GQv )Zp-tor at each v ∈ Σ \ {p,∞}, where
(·)Zp-tor means the torsion-part as a Zp-module and T ∗

J = HomHn.o
F /J (TJ ,Hn.o

F /J). We have

((T ∗
J )Iv)(Hn.o

F /J)-tor
∼= ((T ∗

fI
)Iv)Zp-tor ⊗Zp Zp[[Γ]](χ̃−1) (5)

since T ∗
J is isomorphic to T ∗

fI
⊗Zp Zp[[Γ]](χ̃−1), where T ∗

fI
means HomZp(TfI ,Zp). In (5),

((T ∗
fI

)Iv)Zp-tor is a finite abelian group and the action of GQv on Zp/(pn)[[Γ]](χ̃−1) is not finite
for any n. Hence, (((T ∗

J )Iv)(Hn.o
F /J)-tor)GQv must be zero. The proof for the contribution of local

terms outside p in case (a) is completed. In cases (b), (c) and (d), we also calculate the contribution
outside p by using results in § 3, but we omit the proof for the reason mentioned earlier and we only
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refer the reader to Theorem 3.3 for the structure of (T ∗
J )Iv (note that (T ∗

J )Iv has an isomorphism
with ((Tord)∗)Iv over Hord

F which is not necessarily compatible as a GQv -module).
Next, we discuss the group

lim−→s

H1
Gr(Qp,A[J,Φ(j)

s ])

Div(H1
Gr(Qp,A[J,Φ(j)

s ]))
,

which is the p-part of WJ . By definition, we have the exact sequence

0 −→ H1
Gr(Qp,A[J,Φ(j)

s ]) −→ H1(Qp,A[J,Φ(j)
s ]) as−→ H1(Ip,F−A[J,Φ(j)

s ])GQp ,

where the latter map as is decomposed as follows for each s:

H1(Qp,A[J,Φ(j)
s ])

a′
s−→ H1(Qp,F−A[J,Φ(j)

s ])
a′′

s−→ H1(Ip,F−A[J,Φ(j)
s ])GQp .

Hence, we have the following extension:

lim−→s

Ker(a′s)
Div(Ker(a′s))

−→ lim−→s

H1
Gr(Qp,A[J,Φ(j)

s ])

Div(H1
Gr(Qp,A[J,Φ(j)

s ]))
−→ lim−→s

Ker(a′′s) ∩ Im(a′s)
Div(Ker(a′′s) ∩ Im(a′s))

−→ 0. (6)

The first group
Ker(a′s)

Div(Ker(a′s))
is a quotient of

H1(Qp,F+A[J,Φ(j)
s ])

Div(H1(Qp,F+A[J,Φ(j)
s ]))

and we have

H1(Qp,F+A[J,Φ(j)
s ])

Div(H1(Qp,F+A[J,Φ(j)
s ]))

∼= H2(Qp,F+TJ/Φ(j)
s F+TJ)Zp-tor

∼= ((F+TJ(−1))GQp
/Φ(j)

s (F+TJ(−1))GQp
)Zp-tor.

In case (a) with J = Ker(I)Hn.o
F , we have

F+TJ(−1) ∼= OI[[Γ]](ωi−1χ−1χ̃)⊗OI OI(αI),

where OI[[Γ]](ωi−1χ−1χ̃) is a free OI[[Γ]]-module of rank one on which GQp acts via ωi−1χ−1χ̃
and OI(αI) is a free OI-module of rank one on which GQp acts via the unramified character αI :
GQp −→ O×

I given by αI(Frobp) = ap(fI). Since Ip acts on F+TJ(−1)/MF+TJ(−1) via ωi−1, we
have {

(F+TJ(−1))GQp
/Φ(j)

s (F+TJ(−1))GQp
= 0 i �= 1,

(F+TJ(−1))GQp
/Φ(j)

s (F+TJ(−1))GQp
∼= OI/(ap(fI)− 1) i = 1.

We recall the following lemma.

Lemma 4.6. Let M be a finite Hn.o
F /J-module. Then we have lim−→u

(M/Φ(j)
s M) = 0 (note that Hn.o

F /J
is isomorphic to OI[[Γ]]).

We omit the proof of Lemma 4.6 and we only refer the reader to [Och03, Lemma 4.7]. We prove
a similar result for modules over a two-variable Iwasawa algebra there, but the proof is the same as
the case of a one-variable Iwasawa algebra in Lemma 4.6. By Lemma 4.6, we have

lim−→s
((F+TJ(−1))GQp

/Φ(j)
s (F+TJ(−1))GQp

)Zp-tor = 0.
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Hence,

lim−→s

Ker(a′s)
Div(Ker(a′s))

in (6) is trivial.
For the proof of Proposition 4.4, we need to show that

lim−→s

Ker(a′′s) ∩ Im(a′s)
Div(Ker(a′′s) ∩ Im(a′s))

∼= H1
ur(Qp,F−A[J ]). (7)

We have the following claims.

Claim 4.7. The module Ker(a′′s) ∩ Im(a′s) is finite for every s.

Claim 4.8. For any height-one ideal I ⊂ Hn.o
F , H1(Qp,A[I]) a−→ H1(Qp,F−A[I]) is surjective.

We will finish the proof of Proposition 4.4 by using these claims. By Claim 4.7, we have

lim−→s

Ker(a′′s) ∩ Im(a′s)
Div(Ker(a′′s) ∩ Im(a′s))

∼= lim−→s
Ker(a′′s) ∩ Im(a′s).

By Claim 4.8, we have

lim−→s
Ker(a′′s) ∩ Im(a′s) ∼= lim−→s

Ker(a′′s) ∼= H1
ur(Qp,F−A[J ]).

This completes the proof of (7). Let us finally calculate the group H1
ur(Qp,F−A[J ]). In case (a) with

J = Ker(I)Hn.o
F , we have

F−A[J ]Ip ∼=
{

(OI)∨ if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0,

on which Frobp ∈ GQp/Ip acts via multiplication by ap(fI)−1.
In the rest of the proof, we finish the proof of the two claims above.

Proof of Claim 4.7. In case (a) with J = Ker(I)Hn.o
F , it suffices to show that

Im[H1(Qp, VJ,Φ
(j)
s

) −→ H1(Qp,F−V
J,Φ

(j)
s

)] ∩H1
ur(Qp,F−V

J,Φ
(j)
s

) = 0 (8)

for every s, since we have

V
J,Φ

(j)
s

= (VfI ⊗ χjωi)⊗Zp Zp[Γ/Γps
](χ̃),

by definition and since the inertia group Ip acts on F−VfI⊗χjωi via the character χj−1−w(I) modulo
a finite character. Thus, we have

(F−V
J,Φ

(j)
s

)Ip =

{
0 if j �= w(I) + 1 or (F−A[M]⊗ ωi)Ip = 0,
KI(α−1

I ) otherwise,

where KI(α−1
I ) is a vector space of rank one over KI = OI⊗Zp Qp on which GQp acts via α−1

I . This
implies that H1

ur(Qp,F−V
J,Φ

(j)
s

) = ((F−V
J,Φ

(j)
s

)Ip)GQp
= 0 if ap(fI) �= 1 and our proof is completed in

this case. Now, let us suppose that ap(fI) = 1. This happens only when w(I) = 0 (cf. Remark 4.5(2)).
Note that w(I) = 0 implies j = 1 and VfI ⊂ H1

ét(BI ⊗Q Q,Qp) for certain abelian variety BI over
Q. Let QfI be a finite extension of Q obtained by adjoining all Fourier coefficients an(fI) of fI. The
field KI is naturally identified with a direct-summand of QfI ⊗Q Qp. Since ap(fI) = 1, there exists
an abelian variety B′

I over Qp with the following properties.

(1) B′
I is isogenious to a sub-abelian variety of BI ⊗Qp of dimension d = [KI : Qp] over Qp.

(2) B′
I has totally multiplicative reduction over Qp.

(3) H1
ét(B

′
I ⊗Qp Qp,Qp) is isomorphic to VfI as a GQp-module.
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By the third property, VfI⊗χω ∼= Vp(B′
I
t) := Tp(B′

I
t)⊗Zp Qp, where B′

I
t is the dual abelian variety

of B′
I and Tp(B′

I
t) is the p-Tate module lim←−n

B′
I
t(Qp)[pn]. Since B′

I
t has totally multiplicative

reduction over Qp, B′
I
t(Qp) is isomorphic to (Q×

p )d/P as GQp-module using Tate’s uniformization
of B′

I when d = 1 or its generalization by Mumford (cf. [FC90, Appendix]) when d > 1, where P
is subgroup of (Q×

p )d which is mapped into a free Z-module of rank d in Q⊕d via the composite

P ↪→ (Q×
p )d

ordp−→ Q⊕d. Since ap(fI) = 1, αI is a trivial character. Hence, P is contained in (Q×
p )d and

F+Vp(B′
I
t) := (F+VfI⊗χω)∩Vp(B′

I
t) (respectively F−Vp(B′

I
t) := Vp(B′

I
t)/F+Vp(B′

I
t)) is isomorphic

to Qp(χω)⊕d (respectively Q⊕d
p ). By Shapiro’s lemma on induced Galois representations, we have:

Im[H1(Qp, VJ,Φ
(1)
s

) −→ H1(Qp,F−V
J,Φ

(1)
s

)] ∩H1
ur(Qp,F−V

J,Φ
(1)
s

)

= Im[H1(Qp,s, Vp(B′
I
t)) −→ H1(Qp,s,F−Vp(B′

I
t))] ∩H1

ur(Qp,s,F−Vp(B′
I
t))

where Qp,s is the unique Galois extension of Qp contained in Qp(µps+1) with Gal(Qp,s/Qp) ∼= Z/(ps).
By the properties of P mentioned above, we have P ∼=

∏
1�h�d q

Z
h ⊂ (Q×

p )d with ordp(qh) > 0 for
each 1 � i � d. Via the identification

H1(Qp,s,F−Vp(B′
I
t)) ∼= H1(Qp,s,Q

⊕d
p ) ∼=

⊕
1�h�d

Hom(GQp,s ,Qp),

the image of H1(Qp,s, Vp(B′
I
t)) −→ H1(Qp,s,F−Vp(B′

I
t)) is equal to:⊕

1�h�d

Hom(Gal(F (h)
∞,s/Qp,s),Qp) ⊂

⊕
1�h�d

Hom(GQp,s ,Qp),

where F (h)
∞,s/Qp,s is the Galois extension of Qp,s characterized as follows.

(1) Gal(F (h)
∞,s/Qp,s) is isomorphic to Zp.

(2) The universal norm
⋂
Qp,s⊂F⊂F

(h)
∞,s

NormF/Qp,s
(F×) coincides with µp−1 · qZh ⊂ Q×

p,s.

Since we have( ⊕
1�h�d

Hom(Gal(F (h)
∞,s/Qp,s),Qp)

)
∩H1

ur(Qp,s,Q
⊕d
p )

=
( ⊕

1�h�d

Hom(Gal(F (h)
∞,s/Qp,s),Qp)

)
∩Hom(Gal(Qur

p,s/Qp,s),Q⊕d
p ) = 0,

we have completed the proof in case (a).

Proof of Claim 4.8. The cokernel of a is a submodule of H2(Qp,F+A[J ]), which is the Pontryagin
dual of (((F+T )∗(−1))J )GQp . Since ((F+T )∗(−1))GQp

has support whose codimension is greater than
or equal to two, (((F+T )∗(−1))J )GQp must be zero for any height-one prime J ⊂ Hn.o

F . Consequently,
the map a is surjective. This completes the proof of Claim 4.8.

This completes the proof of Proposition 4.4

4.3 Selmer groups over the two-variable Iwasawa algebra
For each j, k with 1 � j � k−1, we define SelGr

T ⊂ H1(QΣ/Q,A) in the same way as above by using
the filtration F+A. We define SelBK,(j,k)

T to be SelBK,(j,k)
T = lim−→s,t

SelBK

T
(j,k)
s,t

where T (j,k)
s,t and SelBK

T
(j,k)
s,t

are as given in § 4.1. A priori, SelBK,(j,k)
T might depend on the choice of (j, k). However, we have the

following proposition.
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Proposition 4.9. Assume Condition (Ir) above. We have the following statements.

(1) Selmer groups SelGr
T and SelBK,(j,k)

T are equal as subgroups of H1(QΣ/Q,A). In particular, the

definition of SelBK,(j,k)
T does not depend on the choice of (j, k) as above.

(2) The Pontryagin dual of (SelGr
T )∨ is a torsion module over Hn.o

F .

Proof. The first statement is implicitly proved in [Och03]. We recall briefly how to use the result in
[Och03]. Recall the following diagram.

0 �� SelBK,(j,k)
T

��

��

H1(QΣ/Q,A) ��
⊕

v∈Σ\{∞}
lim−→s,t

H1(Qv, A
(j,k)
s,t )

H1
f (Qv, A

(j,k)
s,t )

��

0 �� SelGr
T

�� H1(QΣ/Q,A) ��
H1(Qp,A)
H1

Gr(Qp,A)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)

For v ∈ Σ \ {p,∞}, lim−→s,t
H1

f (Qv, A
(j,k)
s,t ) is a subgroup of H1

ur(Qv,A) by definition. We have

H1
ur(Qv,A) ∼= H1(Qur

v /Qv,AIv) by the inflation–restriction sequence. By Shapiro’s lemma,
H1(Qur

v /Qv,AIv) is isomorphic toH1(Qur
v /Qv,∞, (A[γ−1])Iv ). Here Qv,∞ is the unique sub-extension

of Qv(µp∞)/Qv such that Gal(Qv,∞/Qv) ∼= Zp. Note that Gal(Qur
v /Qv,∞) is isomorphic to

∏
l 	=p Zl

and that (A[γ − 1])Iv is a p-torsion group. Hence, we have lim−→s,t
H1

f (Qv, A
(j,k)
s,t ) = H1

ur(Qv,A) = 0

for any v ∈ Σ \ {p,∞}. On the other hand, lim−→s,t
H1

f (Qp, A
(j,k)
s,t ) = H1

Gr(Qp,A) by [Och03, Corol-
lary 4.13]. This completes the proof of the first assertion.

The proof of the second assertion is basically the same as that of Proposition 4.4(1). We apply
Proposition 5.2 to compare (SelGr

T )∨/J(SelGr
T )∨ with (SelGr

J )∨ and we apply inductively the result
obtained in Proposition 4.4(1) that (SelGr

J )∨ is a torsion Hn.o
F /J-module. Thus, we show that (SelGr

T )∨

is a torsion Hn.o
F -module.

Remark on the notation. By Proposition 4.9(1), SelGr
T and SelBK

T coincide with each other for a
two-variable nearly ordinary deformation T . Hence, we denote the Selmer group for T by SelT from
now on. For various specializations TJ of T , we mainly study SelGr

J rather than SelBK
J because of the

simplicity of the definition of SelGr
J . We denote SelGr

J by SelJ for brevity if this causes no confusion
(note that SelGr

J and SelBK
J are different in general).

4.4 Surjectivity of localization maps
In this subsection, we give the surjectivity of localization maps from semi-global Galois cohomologies
to certain local Galois cohomologies at decomposition groups (Theorem 4.10 and Corollary 4.12).
The result in this section was used before in §§ 4.1–4.3 and will be used in §§ 5, 7 and 8.

Let R be a ‘deformation ring’ and let M be a rank-two Galois representation over R. In this
subsection, we will study the following situations:

(1) R = Hn.o
F and M = T ;

(2) R = OI[[Γ]] and M = TI where I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )�0 (the one-variable
deformation case (a) introduced in § 2);

(3) R = Hord
F and M = T(γ−χ(γ)) or M = T(γ−κ(γ′)γ′) (case (b) or (c) introduced in § 2).

Let R and M be in one of the above three situations and let H be an ideal of R such that R/H
is finite flat over Zp (hence, H is of height-two in case (1) and H is of height-one in cases (2)
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and (3)). Since M ⊗R R∨[H] is of cofinite type over Zp, the subgroups H1
f (Qv,M ⊗R R∨[H]) of

H1(Qv,M ⊗R R∨[H]) are defined as in § 4.1. When we have a system of such ideals S = {H ⊂ R}
such that lim←−R/H = R, we would like to discuss whether the natural localization map

H1(QΣ/Q,M ⊗R R∨) −→
⊕

v∈Σ\{∞}
lim−→
H

H1(Qv,M ⊗R R∨[H])
H1

f (Qv,M ⊗R R∨[H])

is surjective. The following theorem is obtained from a variant of the global duality theorem in our
situation.

Theorem 4.10. Let us consider the following cases.

(A) R and M are as in case (1) and H runs height-two ideals ∆(j,k)
s,t for s, t � 0 with fixed j, k.

(B) R and M are as in case (2) and H runs height-one ideals Φ(j)
s ⊂ OI[[Γ]] for s � 0 with fixed

j � 1.

(C) R and M are as in case (3) and H runs height-one ideals Ψ(k)
t ⊂ Hord

F for t � 0 with fixed
k � 2.

The localization map

H1(QΣ/Q,M ⊗R R∨) −→
⊕

v∈Σ\{∞}
lim−→
H

H1(Qv,M ⊗R R∨[H])
H1

f (Qv,M ⊗R R∨[H])

is surjective in each of cases (A), (B) or (C).

Proof. By the global duality theorem, we have the following exact sequence

0 −→ lim−→
H,n

SelBK
M/(H,pp)M −→ lim−→

H

H1(QΣ/Q,M ⊗R R∨[H])

−→
⊕

v∈Σ\{∞}
lim−→
H,n

H1(Qv,M ⊗R R∨[H])
H1

f (Qv,M ⊗R R∨[H])
−→

(
lim←−
H,n

SelBK
M∨(1)[H,pn]

)∨
,

where SelBK
M∨(1)[H,pn] is defined as

SelBK
M∨(1)[H,pn] = Ker

[
H1(QΣ/Q,M

∨(1)[H, pn]) −→
⊕

v∈Σ\{∞}

H1(Qv,M
∨(1)[H, pn])

H1
f (Qv,M∨(1)[H, pn])

]
.

Note that the local condition H1
f (Qv,M

∨(1)[H, pn]) ⊂ H1(Qv,M
∨(1)[H, pn]) for a finite Galois

module M∨(1)[H, pn] is defined to be the pull-back of H1
f (Qv,M

∨(1)[H]) ⊂ H1(Qv,M
∨(1)[H]) via

the natural map H1(Qv,M
∨(1)[H, pn]) −→ H1(Qv,M

∨(1)[H]).
Since we assume Condition (Ir), R is a Gorenstein algebra in each case (1), (2) or (3). Hence,

we have an involution ι : R −→ R, which coincides with the canonical involution g �→ g−1 of
Zp[[Γ × Γ′]] ⊂ R (respectively Zp[[Γ]] ⊂ R, Zp[[Γ′]] ⊂ R) for g ∈ Γ × Γ′ (respectively g ∈ Γ,
g ∈ Γ′) in case (1) (respectively (2), (3)). Let us denote by M ι a free R-module of rank two
lim←−H,n

M∨(1)[H, pn]. By Condition (Ir), the natural restriction map SelBK
M∨(1)[H,pn] −→ SelBK

M ι [H, pn]

is injective, where SelBK
M ι = lim−→H,n

SelBK
M ι/(H,pn)M ι . Thus, it suffices to show that lim←−H,n

SelBK
M ι [H, pn]

is zero in order to have the desired surjectivity.
We refer the reader to [Och03, § 5] for the above facts and the following lemma.

Lemma 4.11. We have the following R-linear isomorphism:

SelBK
M ι [H, pn] ∼= HomR/(H,pn)((SelBK

M ι)∨/(H, pn)(SelBK
M ι )∨,R/(H, pn))ι

where (·)ι means the twist of an R-module structure via the involution ι.
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By taking the projective limit of this isomorphism, we have:

lim←−
H,n

SelBK
M∨(1)[H,pn]

∼= HomR((SelBK
M ι )∨,R).

Since (SelBK
M ι )∨ is a torsionR-module, by Proposition 4.9(2) and its proof, the proof is completed.

Corollary 4.12. Let R and M be one of the pairs given in this subsection. Then the localization
map

H1(QΣ/Q,M ⊗R R∨) −→ H1(Qp,M ⊗R R∨)
H1

Gr(Qp,M ⊗R R∨)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,M ⊗R R∨)
H1

ur(Qv,M ⊗R R∨)

is surjective.

Proof. The corollary is a consequence of Theorem 4.10 because lim−→H
H1

f (Qv,M ⊗R R∨[H]) is
contained in H1

Gr(Qp,M ⊗R R∨) (respectively H1
ur(Qv,M ⊗R R∨)) when v = p (respectively

v ∈ Σ \ {p,∞}).

5. Control theorem for Greenberg’s Selmer groups

For a Galois representation M ∼= Rd of GQ and a prime ideal J of R, we have the natural restriction
map between Selmer groups SelM/JM

resJ−→ SelM [J ] (if they are defined). What we call the control
theorem is the type of problems (or theorems) where we study the kernel and the cokernel of resJ

(or equivalently its Pontryagin dual (SelM )∨/J(SelM )∨ −→ (SelM/JM )∨). For a family M over a
one-variable algebra R and its specialization to a zero-variable algebra (i.e. a discrete valuation
ring) R/J , the control theorem has already been studied in [Och01].

In this section, we study the control theorem for a nearly ordinary deformation T or quotient
representations of T . Throughout the section, we denote by NJ the quotient N/JN for an Hn.o

F -
module N and an ideal J of Hn.o

F for short. We will always assume Condition (Ir) throughout
the section. The assertions on Coker(resJ) hold without Condition (Ir). However, the assertion on
Ker(resJ) might be modified if we replace Condition (Ir) with a weaker condition. Although it is
not difficult, we decided not to do this in order to avoid an unnecessarily complicated description.
We refer the reader to [Och01] for the idea of such an argument in the case without Condition (Ir).

5.1 From two variables to one variable
First, we discuss the specialization of the two-variable SelT to some of the important one-variable
deformations.

Proposition 5.1. Assume Condition (Ir) for T = T (i)
F . Let J be a height-one prime ideal of Hn.o

F
and let resJ be the restriction map SelJ −→ SelT [J ], where SelJ = SelT /JT . Then the map resJ is
injective. Coker(resJ) is a sub-quotient of the following group LJ :

LJ =


(F−A[γ − κ(γ′)γ′]J )GQp ⊕

⊕
v∈Σ\{p,∞}

((AIv)J)GQv if F−A[M]Ip �= 0,⊕
v∈Σ\{p,∞}

((AIv)J)GQv if F−A[M]Ip = 0,

where MJ means M/JM for an Hn.o
F -module M . Further, if we have the surjectivity of the local-

ization map

H1(QΣ/Q,A[J ]) locJ−→ H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
,

then the cokernel of resJ is isomorphic to LJ .

1177

https://doi.org/10.1112/S0010437X06002223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002223


T. Ochiai

Proof. Let us recall a diagram as follows:

0 �� SelJ

resJ

��

�� H1(QΣ/Q,A[J ])

αJ

��

locJ

�� YJ

βJ

��
0 �� SelT [J ] �� H1(QΣ/Q,A)[J ] �� Y [J ]

where

YJ =
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])

Y =
H1(Qp,A)
H1

Gr(Qp,A)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
.

By Condition (Ir), the map αJ is injective. Consequently, resJ is injective. By the snake lemma and
by the injectivity of αJ , Coker(resJ) is isomorphic to a submodule of Ker(βJ). Further, we have
Coker(resJ) ∼= Ker(βJ) if locJ is surjective. Hence, we only have to show that Ker(βJ ) is isomorphic
to LJ . By the inflation–restriction sequence, it is easy to see that the kernel of

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
−→ H1(Qv,A)

H1
ur(Qv,A)

is ((AIv)J )GQv at each v ∈ Σ \ {p,∞}. In the rest of the proof, we will concentrate on the map βJ

restricted to the p-part. Let us consider the exact sequence:

0 −→ H1
Gr(Qp,A[J ]) −→ H1(Qp,A[J ]) −→ H1(Ip,F−A[J ])GQp .

Note that the second map H1(Qp,A[J ]) −→ H1(Ip,F−A[J ])GQp decomposes as

H1(Qp,A[J ]) a−→ H1(Qp,F−A[J ]) b−→ H1(Ip,F−A[J ])GQp .

The map a is surjective as is shown in Claim 4.8 and the map b is surjective since the cohomological
dimension of GQp/Ip is one. Thus, we have

H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
∼= H1(Ip,F−A[J ])GQp .

By a similar argument, we have

H1(Qp,A)
H1

Gr(Qp,A)
∼= H1(Ip,F−A)GQp .

This gives

Ker
[
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
−→ H1(Qp,A)

H1
Gr(Qp,A)

]
∼= ((F−A)Ip/J(F−A)Ip)GQp .

We complete the proof since

(F−A)Ip ∼=
{

F−A[γ − κ(γ′)γ′] if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0.

We will apply Proposition 5.1 to obtain the following.

Proposition 5.2. Assume Condition (Ir) for T = T (i)
F . Let us consider height-one primes J ⊂ Hn.o

F
as follows in the following cases:

(a) J is I = Ker(I)Hn.o
F for I ∈ Xarith(Hord

F )�0;

(b) J is (γ − χ(γ)) ⊂ Hn.o
F ;
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(c) J is (γ − κ(γ′)γ′) ⊂ Hn.o
F ;

(d) J is (γ2 − κ2(γ′)γ′) ⊂ Hn.o
F .

Then, the restriction map resJ : SelJ −→ SelT [J ] is injective in every case and we have:
Coker(resJ) ∼= (UI)∨ in case (a) with J = Ker(I),
Coker(resJ) ∼= (Hord

F )∨[Ap(F)− 1] in case (c) with F−A[M]Ip �= 0,
Coker(resJ) = 0 otherwise,

where

UI =
⊕

v∈Σ\{p,∞}
(((Tord

F )∗)Iv [Ker(I)] ⊗Zp Zp[[Γ]](χ̃−1)⊗ ω−i)GQp .

Remark 5.3. For each v ∈ Σ \ {p,∞}, ((Tord
F )∗)Iv [Ker(I)] is always finite and is trivial except in

certain special cases (cf. Theorem 3.3).

Proof. By Proposition 5.1, resJ is injective and we have

Coker(resJ) =


(F−A[γ − κ(γ′)γ′]J )GQp ⊕

⊕
v∈Σ\{p,∞}

((AIv)J)GQv if F−A[M]Ip �= 0,⊕
v∈Σ\{p,∞}

((AIv)J)GQv if F−A[M]Ip = 0.

Except in case (c), F−A[γ − κ(γ′)γ′]J is zero. In case (c), F−A[γ − κ(γ′)γ′]J = F−A[γ − κ(γ′)γ′] is
a cofree Hord

F -module of rank one with unramified GQp-action on which Frobp acts via the multipli-
cation of Ap(F) (see § 2 for Ap(F)). Hence, we have (F−A[γ − κ(γ′)γ′]J)GQp ∼= (Hord

F )∨[Ap(F) − 1]
in this case.

Next, we discuss local terms at v ∈ Σ \ {p,∞}. Recall that

A ∼= (Tord
F ⊗̂ZpZp[[Γ]](χ̃)⊗ ωi)⊗Hn.o

F HomZp(H
n.o
F ,Qp/Zp)

(see the beginning of § 2 for Tord
F ). Since Iv acts trivially on Zp[[Γ]](χ̃)⊗ ωi, we have

(((AIv)J )GQv )∨ ∼= ((((Tord
F )∗)Iv⊗̂ZpZp[[Γ]](χ̃−1)⊗ ω−i)[J ])GQv

.

In cases (b), (c) and (d), (((Tord
F )∗)Iv⊗̂ZpZp[[Γ]](χ̃−1) ⊗ ω−i)[J ] is clearly zero. In case (a) for J =

Ker(I)Hn.o
F with certain I ∈ Xarith(Hord

F )�0, we have

(((Tord
F )∗)Iv⊗̂ZpZp[[Γ]](χ̃−1)⊗ ω−i)[J ] = ((Tord

F )∗)Iv [Ker(I)]⊗̂ZpZp[[Γ]](χ̃−1)⊗ ω−i.

This completes the proof.

5.2 From one variable to the discrete valuation case

In [Och01], we studied control theorems of the Selmer groups for one-variable Galois deformations
when they are specialized into various representations over discrete valuation rings. In this subsec-
tion, we restrict ourselves to one-variable deformations inside Hida deformations in order to have
more precise and complete results. By applying the fundamental diagram and the snake lemma as
in § 5.1, we also prove the control theorem in this case.

Proposition 5.4. Assume condition (Ir) for T = T (i)
F . Let J and J ′ be two different height-

one prime ideals of Hn.o
F and let resJ ′ be the restriction map SelT /(J,J ′)T ′ −→ SelJ [J ′], where

SelJ = SelT /JT . Then, the map resJ ′ is injective and Coker(resJ ′) is a sub-quotient of the
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following group LJ :

LJ =


((F−A[J ]Ip)J ′)GQp ⊕

⊕
v∈Σ\{p,∞}

((A[J ]Iv )J ′)GQv if F−A[M]Ip �= 0,⊕
v∈Σ\{p,∞}

((A[J ]Iv)J ′)GQv if F−A[M]Ip = 0.

By calculating the term LJ in each case, we have the following proposition.

Proposition 5.5. Assume Condition (Ir) for T = T (i)
F . We consider the four cases (a), (b), (c) and

(d) with the same J as Proposition 5.2. We consider another height-one ideal J ′:

J ′ =

{
(γ − χj(γ)) for a certain j with 1 � j � w(I) + 1 in case (a),

Ker(I)Hn.o
F for certain I ∈ Xarith(Hord

F )�0 in cases (b), (c) and (d).

The kernels and the cokernels of resJ ′ : SelT /(J,J ′)T −→ SelJ [J ′] are given as follows.

(1) The restriction map resJ ′ is injective in each of (a), (b), (c) and (d).

(2) In cases (a), (b), (c) and (d) with F−A[M]Ip = 0, Coker(resJ ′) is a sub-quotient of a finite
group D given as follows:

D =


⊕

v∈Σ\{p,∞}
(((Tord

F )∗)Iv [Ker(I)])∨ in cases (b), (c) and (d),

0 in case (a).

In cases (a), (b), (c) and (d) with F−A[M]Ip �= 0, Coker(resJ ′) is a sub-quotient of the following
group: {

(OI)∨[1− ap(fI)]⊕D in cases (a), (b) and (d),

D in case (c).

Remark 5.6.

(1) Note that T /(J, J ′)T is isomorphic to TfI ⊗ χjωi (respectively TfI ⊗ χωi, TfI ⊗ χw(I)+1ωi,
TfI ⊗ χw(I)/2+1ωi) in case (a) (respectively (b), (c), (d)). Hence, in every case, SelT /(J,J ′)T is
the Selmer group associated to a twist of a cuspform fI.

(2) In cases (b), (c) and (d), the group D is a Pontryagin dual of (A[J ]Iv )J ′ . Theorem 3.3 imme-
diately implies that D is finite.

(3) The group (OI)∨[1−ap(fI)] is finite when w(I) �= 0 by applying Remark 4.5(2). Thus, the ker-
nels and the cokernels of resJ ′ : SelT /(J,J ′)T −→ SelJ [J ′] are finite if we choose J (respectively
J ′) so that w(I) �= 0 in case (a) (respectively in cases (b) and (d)).

(4) The control theorem in case (a) was studied in various references (e.g. [Gre99]) when fI is
associated to an elliptic curve E. Note that there has been a contribution of the local Tamagawa
number of E at every v ∈ Σ \ {p,∞} to Coker(resJ ′) in the above-mentioned references (e.g.
[Gre99]), whereas there is no such contribution in our result. This is because SelTfI

⊗χω is
isomorphic to the classical Selmer group for E only after being divided by a finite abelian
group whose order is related to the local Tamagawa number of E at v.

6. Two-variable p-adic L-function

In this section, we discuss the two-variable p-adic L-function for a nearly ordinary deformation
T through Beilinson–Kato elements. The construction will be done by using the two-variable
Coleman map (Theorem 6.3), which translates a norm compatible elements to a measure.
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The key to this section is an optimization of the two-variable Beilinson–Kato element given in
Theorem 6.11. The results of this section make clear the relation between Kitagawa’s two-variable
p-adic L-function (see [Kit94]) and our Euler system construction, modifying previous constructions
by [Och03] and [Fuk03] which were not well-optimized in general.

6.1 Review of the work of [Och03]
In order to introduce Beilinson–Kato elements, we need to prepare notation. For a normalized eigen-
cuspform f =

∑
n>0 an(f)qn of weight k � 2, we denote by Qf a finite extension of Q obtained by

adjoining all Fourier coefficients of f to Q. We denote by f =
∑

n>0 an(f)σqn the dual modular
form of f where σ is a complex conjugation. The dual modular form f is known to be a Hecke
eigen-cuspform of weight k with Neben character dual of that of f . The field Qf is equal to Qf . We
associate the de Rham realization VdR(f) to f . The de Rham realization VdR(f) has the following
properties.

(1) VdR(f) is a two-dimensional vector space over Qf and is equipped with a de Rham filtration
FiliVdR(f) ⊂ VdR(f), which is a decreasing filtration of Qf -vector spaces.

(2) We have Fil0VdR(f) = VdR(f) and FilkVdR(f) = {0}. For each j such that 1 � j � k − 1,
FiljVdR(f) is naturally identified with the one-dimensional Qf -vector space Qf · f .

(3) Let I be an arithmetic point of weight w(I) � 0. For each j such that 1 � j � k − 1,
Filk−jVdR(fI) ⊗QfI

KI is naturally identified with Fil0DdR(V ∗
fI
⊗ χ1−jω1−i), where KI is the

p-adic completion of QfI with respect to the fixed embedding QfI ⊂ Q ↪→ Qp, VfI is TfI⊗Zp Qp

and ∗ means the Qp-linear dual here. Recall that DdR is the de Rham functor defined by
Fontaine, which is a functor from the category of p-adic representations of GQp to the category
of filtered modules over Qp (cf. [Fon94]).

For each 1 � j � w(I)+1, we denote by δdR
I the QfI-basis of Filw(I)+2−jVdR(fI) sent to fI under the

natural identification Filw(I)+2−jVdR(fI) = QfI · fI. Let D be an Hord
F -module (Hord

F (α̃)⊗̂ZpẐur
p )GQp

and let δQp(1) be the inverse image of 1 ∈ Qp via the isomorphism DdR(Qp(1))
∼−→ Qp determined by

a fixed norm compatible system {ζpn}n�1 of pnth roots of unity. We recall the following properties
(see [Och03, § 3] for the proof).

Lemma 6.1. We have the following properties.

(i) D is a free Hord
F -module of rank one.

(ii) D/Ker(I)D is the canonical lattice of DdR(F+VfI) = Dcrys(F+VfI) for each I ∈ Xarith(Hord
F )�0.

(iii) For each (j,I) such that 1 � j � w(I) + 1, we have the canonical isomorphism DdR(F+VfI ⊗
χjωi) ∼= DdR(VfI ⊗ χjωi)/Fil0DdR(VfI ⊗ χjωi).

(iv) The fixed norm compatible system {ζpn}n�1 induces the following isomorphism:

DdR(F+VfI)
∼−−−−−→

⊗δ⊗j
Qp(1)

DdR(F+VfI ⊗ χjωj) ∼= DdR(F+VfI ⊗ χjωi),

where 0 � i � p− 2.

Definition 6.2. Fix an Hord
F -basis d of D. For each I ∈ Xarith(Hord

F )�0, we define a de Rham p-adic
error term Cp,I,d ∈ Qp to be

Cp,I,d = 〈δdR
I , dI ⊗ δ⊗j

Qp(1)〉dR,p (9)

where j is an integer satisfying 1 � j � w(I) + 1, 〈·, ·〉dR,p is the pairing

〈·, ·〉dR,p : Fil0DdR(V ∗
fI
⊗ χ1−jω1−i)×DdR(F+VfI ⊗ χjωi) −→ DdR(Qp(1))⊗KI ∼= KI (10)
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induced by the identification of Lemma 6.1(3) and the de Rham pairing:

Fil0DdR(V ∗
fI
⊗ χ1−jω1−i)×DdR(VfI ⊗ χjωi)/Fil0DdR(VfI ⊗ χjωi) −→ DdR(Qp(1)) ⊗KI,

and dI ∈ DdR(F+VfI) is the specialization modulo Ker(I) of d ∈ D (cf. Lemma 6.1(2)).

The p-adic error term Cp,I,d does not depend on j and depends only on d and a fixed norm
compatible system {ζpn}n�1 of pnth roots of unity.

For a free Zp-module with continuous GQp-action T , we denote by H1
/f (Qp, T ) the quotient mod-

ule H1(Qp, T )/H1
f (Qp, T ). We have the dual exponential map exp∗ : H1

/f (Qp, T ) −→ Fil0DdR(V )
introduced by Kato [Kat93] where V = T ⊗Zp Qp. In [Och03], we introduced a certain quotient
H1

/f (Qp,T ∗(1)) of H1(Qp,T ∗(1)) for the two-variable Hida deformation T . We do not recall the
definition here since it is not essential for later explanation. We only remark that H1

/f (Qp,T ∗(1))
interpolates H1

/f (Qp, T
∗
fI

(1)⊗ (ωiηχj)−1) when I ∈ Xarith(Hord
F ), η and j vary. We recall our result

on the interpolation of the dual exponential maps as follows.

Theorem 6.3 [Och03, Theorem 3.13]. Let i be an integer such that 0 � i � p−2. We assume Condi-

tion (Ir) for a nearly ordinary deformation T = T (i)
F . Assume, further, that Hn.o

F is integrally closed

in its fraction field Frac(Hn.o
F ). Fix an Hord

F -basis d of D = (Hord
F (α̃)⊗̂ZpẐur

p )GQp (Lemma 6.1(1)).
Then we have a map Ξd : H1

/f (Qp,T ∗(1)) −→ Hn.o
F which has the following properties.

(i) The map Ξd is an Hn.o
F -linear pseudo-isomorphism.

(ii) Let C ∈ H1
/f (Qp,T ∗(1)). For each (j,I) such that 1 � j � w(I) + 1 and for each finite order

character η of Γ, (χjη ◦ I)(Ξd(C)) is equal to(
1− (ωi−jη)(p)pj−1

ap(fI)

)(
1− (ωi−jη−1)(p)ap(fI)

pj

)−1

×
(
pj−1

ap(fI)

)q(i,j,η)

G(ωj−iη)〈exp∗((χjη ◦ I)(C)), dI ⊗ δ⊗j
Qp(1)〉dR,p,

where (χjη ◦ I)(C) ∈ H1
/f (Qp, T

∗
fI

(1)⊗ (ωiηχj)−1) is the specialization of C via χj ◦ I, q(i, j, η)
is the p-order of the conductor of ωj−iη and G(ωj−iη) is the Gauss sum for ωj−iη.

6.2 p-adic error terms at weight two
In this subsection, we study the p-adic error terms Cp,I,d in the special cases where w(I) = 0. We
fix an Hord

F -basis d of D throughout this subsection. The main result of this subsection is as follows.

Proposition 6.4. Let T = T (i)
F be a nearly ordinary deformation. Then, Cp,I,d is a p-adic unit for

every I ∈ Xarith(Hord
F ) with w(I) = 0.

Proof. For an arithmetic point I ∈ Xarith(Hord
F ) with w(I) = 0, let BI be the abelian variety

associated to the normalized eigen-cuspform fI of weight two. BI is an abelian variety of dimension
g = [QfI : Q] over Q and we have an injection QfI ↪→ EndQ(BI) ⊗ Q. Since fI is ordinary at p,
there exists an abelian variety B′

I over Qp with the following properties (see [Wi186, § 2.2]).

(1) B′
I is isogenious to a subabelian variety of BI ⊗Qp with d = dim(B′

I) = [KI : Qp] over Qp.

(2) B′
I has totally multiplicative reduction or good ordinary reduction over Qp.

(3) H1
ét(B

′
I ⊗Qp Qp,Qp) is isomorphic to VfI as a GQp-module.

Let B′
I
t be the dual abelian variety of B′

I. We denote by B the p-divisible group over Qp associated
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to B′
I
t with its connected part B0. We see that

Fil0DdR(V ∗
fI
⊗ χ1−jω1−i) ∼= Fil0DdR(H1

ét(B
′
I
t ⊗Qp Qp,Qp))

∼= Fil1H1
dR(B′

I
t) ∼= D(B0),

where H1
dR(B′

I
t) means the de Rham cohomology of B′

I
t and D(B0) is the Dieudonee module for

B0. Since fI is ordinary, we see that

Fil0DdR(V ∗
fI
⊗ χ1−jω1−i) ∼= DdR(F−V ∗

fI
⊗ χ1−jω1−i)

∼= DdR(KI(α−1)).

By Definition 6.2, Cp,I,d is a p-adic unit if and only if the KI-basis of D(B0) induced by δdR
I gives an

integral basis of DdR(KI(α−1)) = (KI(α−1) ⊗Qp Q̂ur
p )GQp with respect to the lattice (OI(α−1) ⊗Zp

Ẑur
p )GQp . This is clear since B0 is of multiplicative type.

6.3 Beilinson–Kato element
Let H1

B(Y1(M)C,Symk−2(R1p∗A)) be a Betti cohomology and let H1
B,c(Y1(M)C,Symk−2(R1p∗A))

be the Betti cohomology with compact support, where p : E → Y1(M) is the universal elliptic curve
over the affine modular curve Y1(M) and A is a submodule of C. To each normalized eigen-newform
f ∈ Sk(Γ1(M)) of weight k � 2, we associate the Betti realization VB(f). The realization VB(f)
is defined as H1

B(Y1(M)C,Symk−2(R1p∗Qf ))[If ] (respectively H1
B,c(Y1(M)C,Symk−2(R1p∗Qf ))[If ]),

where If = ∩(Tl − al(f)) when Tl runs the Hecke operators Tl ∈ EndQf
(Sk(Γ1(M); Qf )) for all

primes l. The Betti realization VB(f) has the following properties.

(1) VB(f) is a two-dimensional vector space over Qf equipped with natural action of complex
conjugate σ, whose ±-eigenspace VB(f)± is one-dimensional over Qf .

(2) We have the period maps (cf. [Del79])

Per+ : FiljVdR(f)⊗Qf
C

∼−→ VB(f)+ ⊗Qf
C

Per− : (VdR(f)/FiljVdR(f))⊗Qf
C

∼−→ VB(f)− ⊗Qf
C

for each 1 � j � k − 1.

Let us denote by H the local system on Y1(M)C whose fiber Hs at s ∈ Y1(M)C is H1(Es,Z).
Let ϕ : H −→ Y1(M)C be the uniformization map. The stalk of H at s = ϕ(yi) ∈ Y1(M)C is
identified with H1(C/(Z + Zyi),Z) = Z + Zyi for any y ∈ (0,∞). We denote by β be the element
of Γ((0, i∞), ϕ−1(H)) which corresponds to 1 ∈ Z.

Definition 6.5. Let f be an eigen-cuspform of level N and weight w + 2.

(i) Let δB,w
0 be the element of HB

1 (Y1(M)C; {cusps},Symw(H)) which represents a path (0,∞)
and βw. By abuse of notation, we denote by δB,w

0 the image via the map

HB
1 (Y1(M)C; {cusps},Symw(HQf

)) ∼−→ H1
B,c(Y1(M)C,Symw(R1p∗Qf )) � VB(f).

(ii) Let VB(f)× VB(f)
〈·,·〉B−→ Qf be the pairing induced from the Poincaré duality:

H1
B(Y1(M)C,Symw(R1p∗Qf ))×H1

B,c(Y1(M)C,Symw(R1p∗Qf )) −→ H2
B,c(Y1(M)C,Qf ) ∼= Qf .

Let 〈·, ·〉B,∞ be the extension of 〈·, ·〉B as follows:

VB(f)⊗Qf
C× VB(f)⊗Qf

C
〈·,·〉B,∞−−−−−→ C.

We have

〈Per+(fI), δ
B,w(I)
0 〉B,∞ =

∫ ∞

0
fI(
√
−1y) dy
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by definition, which makes sense since fI is a cuspform. The integration∫ ∞

0
fI(
√
−1y) dy

is equal to L(fI, 1)/ − 2π
√
−1 by calculation.

In [Kit94], Kitagawa constructed modules of Λ-adic modular symbols B±, which have the fol-
lowing properties.

(1) B± is a finitely generated Hord
F -modules whose generic ranks are one.

(2) For each I ∈ Xarith(Hord
F )�0, B±/Ker(I)B± is a lattice of VB(fI)⊗QfI

Q̂fI .

Definition 6.6. Let I ∈ Xarith(Hord
F )�0. Then fI is a newform in Sw(I)+2(Γ1(M)) for a certain

multiple M of N . Let OfI be the ring of integers of QfI. Choose an OfI-basis δB,±
I of the natural

OfI-lattice H
1
B,c(Y1(M)C,Symw(I)(R1p∗OfI)) ∩ VB(fI)± of VB(fI)±.

(1) We define a complex period Ω±
∞,I ∈ C to be Ω±

∞,I = 〈Per±(δdR
I ), δB,±

I 〉B,∞.

(2) Let 〈·, ·〉B,p be the extension of 〈·, ·〉B as follows:

VB(fI)⊗QfI
Qp × VB(fI)⊗QfI

Qp
〈·,·〉B,p−−−−→ Qp.

We define a p-adic period C±
p,I,b ∈ Qp as C±

p,I,b = 〈b±I , δ
B,±
I 〉B,p.

Theorem 6.7 [Kit94, Theorem 1.1]. Let us fix an Hord
F -basis b of B(−1)i−1

. Then we have a two-
variable p-adic L-function LKi

p (T ) ∈ Hn.o
F with the following interpolation properties:

(χjη ◦ I)(LKi
p,b(T ))/C(−1)i−1

p,I,b

= (−1)j−1(j − 1)!
(

1− (ωi−jη)(p)pj−1

ap(fI)

)(
pj−1

ap(fI)

)q(i,j,η)

G(ωj−iη−1)
L(fI, ωi−jη, j)

(2π
√
−1)jΩ(−1)i−1

∞,I

,

where q(i, j, η) is the p-order of the conductor of ωj−iη−1 and G(ωj−iη−1) is the Gauss sum for
ωj−iη−1.

Remark 6.8.

(1) In general, the complex period is defined to be the determinant of the comparison isomorphism
obtained by de Rham’s theorem between the Betti realization and the de Rham realization. In
our case, the comparison isomorphism Per± for the motive associated to fI is an isomorphism
between one-dimensional vector spaces. On the side of the de Rham realization, we have the
canonical basis obtained by fI. On the other hand, the Betti realization does not have a
canonical basis and our complex period depends on the choice of OfI-basis δB,±

I . To make
the dependence of the complex period Ω±

∞,I on the choice of δB,±
I clear, it should have been

denoted Ω±
∞,I(δ

B,±
I ). However, we usually denote it by Ω±

∞,I to avoid the complicated notation.

(2) In the interpolation property of LKi
p,b(T ), the p-adic error term C±

p,I,b also depends on the choice

of δB,±
I . When we take another choice of basis δ′B,±

I , we have

C±
p,I,b(δ

B,±
I )/C±

p,I,b(δ
′B,±
I ) = Ω±

∞,I(δ
B,±
I )/Ω±

∞,I(δ
′B,±
I ).

Since the left-hand side and the right-hand side of the equation in Theorem 6.7 behave in the
same way when we change δB,±

I , the interpolation is well-defined in spite of the ambiguity of
the basis δB,±

I .
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Proposition 6.9 [Kat04]. Assume Condition (Ir). Let us fix an Hord
F -basis b of B(−1)i−1

and an
Hord

F -basis d of D. Fix an arithmetic point I ∈ Xarith(Hord
F ) with w(I) = 0. Then we have an Euler

system {ZI(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1)I)} whose first layer ZI = ZI(1) satisfies the following
properties.

(1) For each finite order character η of Γ, (exp∗ ◦ loc/f )(η(ZI)) is contained in Fil1VdR(fI ⊗
ω1−iη−1) ⊂ Fil0DdR(V ∗

fI
⊗ ω1−iη−1), where loc/f is the localization map:

H1(QΣ/Q, T
∗
fI

(1)⊗ ω1−iη−1)→ H1(Qp, T
∗
fI

(1)⊗ ω1−iη−1) � H1
/f (Qp, T

∗
fI

(1) ⊗ ω1−iη−1).

(2) Further,

(exp∗ ◦ loc/f )(η(ZI)) =
C

(−1)i−1

p,I,b

Cp,I,d
·
L(p)(fI, ωi−1η, 1)

(2π
√
−1)jΩ(−1)i−1

∞,I

· δdR
I .

(We denote by Q(µr)Σ the maximal Galois extension of Q(µr) unramified outside primes over Σ.)

Remark 6.10. By taking the projective limit of the elements in Galois cohomology groups obtained
via the Chern character from Beilinson–Kato elements in the K2-group of Y1(Np) ⊗ Q(µrps), we
have an Euler system {ZI,0(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1)I)} where r runs square-free natural
numbers prime to p. The above Euler system ZI(r) is optimally normalized at I and is obtained
as a summation

∑
ξ cξZI,0(r)ξ multiplied by Cp,I,b/Cp,I,d, where ZI,0(r)ξ is the twist of ZI,0(r) by

ξ ∈ SL2(Z) and cξ are rational integers. For such an optimal normalization for a fixed fI, we refer
the reader to [Kat04, § 12].

We give the following optimization of the two-variable Beilinson–Kato element.

Theorem 6.11. Let us fix an Hord
F -basis b of B(−1)i

and an Hord
F -basis d of D. Then we have

an Euler system {ZKi(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1))} in the sense of Definition 2.2 such that the
specialization of the first layer ZKi = ZKi(1) at each arithmetic point I ∈ Xarith(Hord

F ) with w(I) = 0
and at each finite order character η of Γ satisfies the following properties:

(1) (exp∗ ◦ loc/f )((η ◦ I)(ZKi)) is contained in Fil1VdR(fI ⊗ ω1−iη−1) ⊂ Fil0DdR(V ∗
fI
⊗ ω1−iη−1);

(2) further,

(exp∗ ◦ loc/f )((η ◦ I)(ZKi)) =
C

(−1)i−1

p,I,b

Cp,I,d
·
L(p)(fI, ωi−1η, 1)

(2π
√
−1)Ω(−1)i−1

∞,I

· δdR
I ,

where L(p)(fI, ωi−1η, s) is the ωi−1η-twist of the Hecke L-function for fI whose p-factor is
removed.

Remark 6.12.

(1) The construction of ZKi(r) will be done by ‘gluing’ of the elements ZI(r) given in Proposi-
tion 6.9 for various I ∈ Xarith(Hord

F ) with w(I) = 0 by using Lemma 6.13 below.
(2) Although the interpolation property is given only for I ∈ Xarith(Hord

F ) with w(I) = 0, (exp∗ ◦
loc/f )((η ◦ I)(Z)) is related to an optimal L-value even when w(I) > 0.

Proof of Theorem 6.11. Let S = {I = Ker(I)Hn.o
F | I ∈ Xarith(Hord

F ), w(I) = 0}. We denote by A a
subset of the set of height-one ideals of Hn.o

F as follows:

A =
{
J =

⋂
I∈S

I

∣∣∣∣ S ⊂ S, �S <∞
}
.

Note that J ∩ J ′ ∈ A for any J, J ′ ∈ A and that the intersection
⋂
J for infinitely many J ∈ A is

zero.
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Lemma 6.13. For each natural number r and for each J, J ′ ∈ A, we have the exact sequence

0 −→ H1(T ∗(1)J∩J ′) −→ H1(T ∗(1)J )⊕H1(T ∗(1)J ′) −→ H1(T ∗(1)J+J ′),

where H1(M) is H1(Q(µr)Σ/Q(µr),M) in the above sequence.

In the following, we only construct ZKi = ZKi(1) ∈ H1(QΣ/Q,T ∗(1)) with the two desired
properties stated in Theorem 6.11. The construction for general r is done in basically the same way
using Lemma 6.13. We need the following claim for the proof.

Claim 6.14. Let J ∈ A. Then there exists an element ZJ such that (exp∗ ◦ loc/f )((η ◦ I)(ZJ ))
satisfy the two properties stated in Theorem 6.11 for all arithmetic points I ∈ Xarith(Hord

F ) with
Ker(I)Hn.o

F ⊃ J and for all finite order characters η of Γ.

In fact, Z is obtained as lim←−J∈A
ZJ ∈ H1(QΣ/Q,T ∗(1)) when J runs a directed subset A ⊂ A

such that
⋂

J∈A J = 0. Hence, we will prove the above claim in the rest of the proof. The proof
proceeds by induction with respect to the numbers of arithmetic points I ∈ Xarith(Hord

F ) with
Ker(I)Hn.o

F ⊃ J . By Proposition 6.9 the claim holds when J = Ker(I)Hn.o
F for an arithmetic point

I ∈ Xarith(Hord
F ). Now we take arbitrary ideal J ∈ A at which Claim 6.14 is true. We will prove

Claim 6.14 for J ∩ I where I = Ker(I)Hn.o
F for an arithmetic point I ∈ Xarith(Hord

F ) such that
w(I) = 0 and J �⊂ I. Let us denote T ∗/(J,Ker(η))T ∗ by T ∗

J,η and let us denote the continuous
Galois cohomology H1(QΣ/Q,M) by H1(M) for short. Then, we have the following diagram for
each finite order character η of Γ:

0 �� H1(T ∗(1)J∩I)

η

��

aI,J

�� H1(T ∗(1)J )⊕H1(T ∗(1)I)

η

��

bI,J

�� H1(T ∗(1)J+I)

η

��
H1(T ∗

J∩I,η(1)) �� H1(T ∗
J,η(1)) ⊕H1(T ∗

I,η(1)) �� H1(T ∗
fI⊗η(1)J )

where aI,J sends x ∈ H1(T ∗(1)J∩I) to xJ ⊕ xI ∈ H1(T ∗(1)J )⊕H1(T ∗(1)I) and bI,J sends x⊕ y ∈
H1(T ∗(1)J )⊕H1(T ∗(1)I ) to xJ+I−yJ+I ∈ H1(T ∗(1)J+I). Let us consider the following morphism:

H1(QΣ/Q, T
∗
fI⊗η(1))

loc/f−−−→
H1(Qp, T

∗
fI⊗η(1))

H1
f (Qp, T ∗

fI⊗η(1))
〈d, 〉dR◦exp∗
−−−−−−−−→ (η ◦ I)(Hn.o

F ). (11)

The element (η ◦ I′)(ZJ ) ∈ H1(QΣ/Q, T
∗
fI′⊗η(1)) (respectively η(ZI) ∈ H1(QΣ/Q, T

∗
fI⊗η(1))) is

mapped to

vI′,η :=
C

(−1)i−1

p,I′,b

Cp,I′,d

L(p)(fI′ , η, 1)

(2π
√
−1)Ω(−1)i−1

∞,I′

when J ⊂ Ker(I′)Hn.o
F (respectively I = I′). The following lemma is obtained by the Euler system

argument using the Beilinson–Kato element and by a result of Rohrlich (cf. [Kat04]).

Lemma 6.15. Under Condition (Ir), the map in (11) is injective when the conductor of η is suffi-
ciently large.

In fact, since H1(QΣ/Q, T
∗
fI⊗η(1)) has no non-zero torsion by Condition (Ir), the kernel of (11)

is non-zero if and only if SelT ∗
fI⊗η(1) is an infinite abelian group. This happens only for finitely many

η by Kato–Rubin and Rohrlich.
Since values vI′,η and vI′′,η are congruent to each other modulo (Ker(I′) + Ker(I′′),Ker(η)),

η ◦ bI,J(ZJ ⊕ZI) is zero for each finite order character η of Γ with sufficiently large conductor.
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Lemma 6.16. Let I be a height-one ideal of Hn.o
F generated by a height-one ideal of Hord

F . Then
the intersection

⋂
η Ker(η) ⊂ H1(QΣ/Q,T ∗(1)I) is trivial when η runs infinitely many finite order

characters of Γ.

Since ZJ ⊕ZI is mapped to zero via bI,J by Lemmas 6.15 and 6.16, we have an element ZJ∩I ∈
H1(QΣ/Q,T ∗(1)J∩I) such that aI,J(ZJ∩I) = ZJ ⊕ ZI . By construction, ZJ∩I satisfies the desired
properties for Claim 6.14. This completes the proof.

Corollary 6.17. Let us fix an Hord
F -basis b of B(−1)i

and an Hord
F -basis d of D. Then we have an

Euler system {ZKi
b,d(r) ∈ H1(Q(µr)Σ/Q(µr),T ∗(1))} such that Ξd(ZKi

b,d(1)) ∈ Hn.o
F is equal to the

two-variable p-adic L-function LKi
p,b(T ) of Kitagawa.

7. IMCs for various specializations of T

In this section, we formulate and discuss the IMC for various one-variable specializations TJ of T .
In particular, we will discuss how to obtain a result on the one-variable Iwasawa theory on TJ from
the two-variable Iwasawa theory on T and vice versa. Recall the following definition.

Definition 7.1. Let R be a Noetherian local domain such that R is integrally closed in the fraction
field Frac(R) of R. A finitely generated torsion R-moduleM is called pseudo-null if lengthRl(Ml) = 0
for every height-one prime l in R or, equivalently, SuppR(M) has codimension greater than one in
Spec(R). For a finitely generated R-module M , we denote by Mnull the largest pseudo-null R-
submodule of M .

The difference between SelT [J ] and SelTJ
is an obstruction to the study of the relation between

the two-variable IMC for T and the one-variable IMC for each TJ . Thus, we prepare the following
lemma which ensures that the term (SelT )∨null/J(SelT )∨null which causes the above obstruction is
trivial in our case.

Lemma 7.2. Assume Conditions (Ir) and (Nor) for T = T (i)
F . Let us consider height-one primes

J ⊂ Hn.o
F in one of the following three cases:

(a) J is equal to I = Ker(I)Hn.o
F for certain I ∈ Xarith(Hord

F )�0;

(b) J is equal to (γ − χ(γ)) ⊂ Hn.o
F ;

(c) J is equal to (γ − κ(γ′)γ′) ⊂ Hn.o
F .

In case (a), we assume that the module UI in Proposition 5.2 is trivial (we do not need an assumption
in the other cases).

Then, (SelT )∨null/J(SelT )∨null is a pseudo-null Hn.o
F /J-module.

Proof. Let us consider the following diagram:

0 �� SelT

×J

��

�� H1(QΣ/Q,A)

×J
��

loc �� Y

×J

��

�� 0

0 �� SelT �� H1(QΣ/Q,A) loc �� Y �� 0

where

Y =
H1(Qp,A)
H1

Gr(Qp,A)
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A)
H1

ur(Qv,A)
.

1187

https://doi.org/10.1112/S0010437X06002223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002223


T. Ochiai

The cokernel of the middle vertical map is a subgroup of H2(QΣ/Q,A[J ]), which is zero since
SelT /JT is a cotorsion OI[[Γ]]-module. By the snake lemma, we have

(SelT )/J(SelT ) ∼= Coker
[
H1(QΣ/Q,A)[J ]

loc[J ]−−−→ Y [J ]
]
.

We compare Coker(loc[J ]) with the cokernel of

H1(QΣ/Q,A[J ]) locJ−−→ YJ

where

YJ =
H1(Qp,A[J ])
H1

Gr(Qp,A[J ])
⊕

⊕
v∈Σ\{p,∞}

H1(Qv,A[J ])
H1

ur(Qv,A[J ])
.

By Corollary 4.12, Coker(locJ) is zero in cases (a), (b) and (c). Let us admit the following claim for
a while.

Claim 7.3. The natural map sJ : YJ −→ Y [J ] is surjective.

Let us consider the following diagram.

0 �� SelT /JT ��

��

H1(QΣ/Q,A[J ])
locJ ��

��

YJ
��

sJ

��

0

0 �� SelT [J ] �� H1(QΣ/Q,A)[J ]
loc[J ]

�� Y [J ]

Since sJ ◦ locJ is surjective by Claim 7.3, loc[J ] has to be surjective. We have shown that
(SelT )/J(SelT ) is zero or, equivalently, we have shown that (SelT )∨[J ] is zero by taking the Pontrya-
gin dual. This implies (SelT )∨null[J ] = 0. By [Och05, Lemma 3.1], M/JM is a pseudo-null Hn.o

F /J-
module if and only if M [J ] is a pseudo-null Hn.o

F /J-module for every pseudo-null Hn.o
F -module M .

Hence, (SelT )∨null/J(SelT )∨null must be a pseudo-null Hn.o
F /J-module.

We will show Claim 7.3 in the rest of the proof. We have the following exact sequence by using
the snake lemma:

0 −→ H1
Gr(Qp,A)[J ] −→ H1(Qp,A)[J ]

tp−→ H1(Qp,A)
H1

Gr(Qp,A)
[J ] −→ H1

Gr(Qp,A)/JH1
Gr(Qp,A).

Since H1
Gr(Qp,A)∨ has no torsion Hn.o

F -submodule, the map tp must be surjective. Similarly, we
have the following exact sequence for every v ∈ Σ \ {p,∞}:

0 −→ H1
ur(Qv,A)[J ] −→ H1(Qv,A)[J ] tv−→ H1(Qv,A)

H1
ur(Qv,A)

[J ] −→ H1
ur(Qv,A)/JH1

ur(Qv,A).

The Pontryagin dual of the last term is UI in case (a). Hence, tv is surjective for every v ∈ Σ\{p,∞}
by the assumption of Lemma 7.2. In cases (b) and (c), tv is surjective for every v ∈ Σ\{p,∞} without
any assumption. Finally, we have the following commutative diagram.

H1(Qp,A[J ])⊕
⊕

v∈Σ\{p,∞}
H1(Qv,A[J ])

��

�� YJ

sJ

��

�� 0

H1(Qp,A)[J ]⊕
⊕

v∈Σ\{p,∞}
H1

ur(Qv,A)[J ]
tJ

�� Y [J ] �� 0

The bottom horizontal map tJ is equal to tp ⊕
⊕

v∈Σ\{p,∞} tv, which is surjective as shown above.
The left vertical map is surjective by definition. Since the square in the diagram is commutative,
sJ must be surjective. This completes the proof of Claim 7.3.
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(a) IMC for TI
Let I = Ker(I)Hn.o

F with I ∈ Xarith(Hord
F )�0. The specialization of T at I is the cyclotomic de-

formation of fI as we saw in § 1. By Mazur–Tate–Teitelbaum, we have LMTT
p (TI) ∈ Hn.o

F /I which
has the following interpolation property for each finite order character η of Γ and for each integer
1 � j � w(I) + 1:

χjη(LMTT
p (TI)) =

(
1− (ωi−jη)(p)pj−1

ap(fI)

)(
pj−1

ap(fI)

)q(i,j,η)

G(ωj−iη)
L(fI, ωi−j, j)

(2π
√
−1)j−1Ω±

∞,I

,

where C±
∞,I is a complex period given by Definition 6.6. Note that the ideal (LMTT

p (TI)) is well-
defined since C±

∞,I is unique up to multiplication by a unit in OfI . Recall that Sel∨I is a cotorsion
Hn.o

F /I-module (cf. § 4.2).
Conjecture 7.4. Let I = Ker(I)Hn.o

F with I ∈ Xarith(Hord
F )�0. We have the following equality:

length(Hn.o
F /I)l(Sel∨I )l = ordl(LMTT

p (TI)),

for each height-one prime l of Hn.o
F /I.

As a corollary of Theorem 3 in § 2, we have the following result.

Corollary 7.5. Let I = Ker(I)Hn.o
F with I ∈ Xarith(Hord

F )�0. Assume the same conditions as those
in Theorem 2. Suppose further that Pτ which appeared in condition (i) of Theorem 2 is a unit in
Hn.o

F and that ((Tord
F )∗)Iv [Ker(I)] is trivial for every I ∈ Xarith(Hord

F )�0 and for every v ∈ Σ\{p,∞}.
Then, the following statements are equivalent.

(1) The two-variable IMC holds for T .

(2) The cyclotomic IMC (cf. Conjecture 7.4) formulated by Mazur–Tate–Teitelbaum holds for
every specialization fI of F with I ∈ Xarith(Hord

F )�0.

(3) There exists an I0 ∈ Xarith(Hord
F )�0 where the cyclotomic IMC holds for fI0.

Remark 7.6. Concerning the condition that ((Tord
F )∗)Iv [Ker(I)] is trivial for v ∈ Σ\{p,∞}, we refer

to Theorem 3.3 for detailed information on when it is trivial (cf. Remark 4.5). For example, it is
not difficult to see that ((Tord

F )∗)Iv [Ker(I)] is trivial when ordv(N) � 1 of the image of the local
monodromy at v is finite, where N is the tame conductor of F . The condition on Pτ also holds in
fairly general situations thanks to the study of the local Galois image by Serre and others (see also
the discussion for a concrete example given in § 9). We expect that the conclusion of Corollary 7.5
holds without any assumption. However, we cannot prove it at the moment.

Proof of Corollary 7.5. The restriction map SelI −→ SelT [I] is an isomorphism by Proposition 5.2
and by the assumption of Corollary 7.5. Hence, we have

length(Hn.o
F /I)l((SelI)∨)l = length(Hn.o

F /I)l((SelT )∨/I(SelT )∨)l (12)

for every height-one prime l of Hn.o
F /I. Let l be a height-one prime of Hn.o

F /I and l̃ be a height-one
prime of Hn.o

F which is the pre-image of l via Hn.o
F � Hn.o

F /I. Then, we have

length(Hn.o
F /I)l((SelT )∨/I(SelT )∨)l = length(Hn.o

F )̃
l
((SelT )∨)̃

l
(13)

by Lemma 7.2. On the other hand, since the p-adic period Cp,I,b is known to be a p-adic unit by
Kitagawa’s construction, we have

ord(Hn.o
F /I)l(L

MTT
p (TI)) = ord(Hn.o

F /I)l(L
Ki
p (T ) mod I) (14)

for every height-one prime l of Hn.o
F /I. Thus, we have proved the implication 1 =⇒ 2. The

implication 2 =⇒ 3 is trivial. Finally, we prove the implication 3 =⇒ 1. We have the inequality

length(Hn.o
F )̃

l
(SelT )∨

l̃
� ord(Hn.o

F )̃
l
(LKi

p (T )) (15)
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for every height-one prime l̃ of Hn.o
F by Theorem 3 in § 2. By the assumption of the third assertion,

we have the following equality:

length(Hn.o
F /I0)l((SelT )∨/I0(SelT )∨)l = ord(Hn.o

F /I0)l(L
Ki
p (T )) (16)

for every height-one prime l of Hn.o
F /I0, where I0 = Ker(I0)Hn.o

F . For each height-one prime l̃ of
Hn.o

F , it is not difficult to see that we have the equality

length(Hn.o
F )̃

l
(SelT )∨

l̃
= ord(Hn.o

F )̃
l
(LKi

p (T ))

by combining the inequality (15) and the equality (16) for a height-one prime l of Hn.o
F /I0 so that l̃

is the pre-image of l via Hn.o
F � Hn.o

F /I. Thus, we complete the proof.

(b) IMC for T(γ−χ(γ))

Following § 4.2, Sel(γ−χ(γ)) is a cotorsion Hord
F -module. On the other hand, we define Lp(T(γ−χ(γ))) to

be the image of LKi
p (T ) in Hn.o

F /(γ − χ(γ)) = Hord
F . The one-variable IMC is formulated as follows.

Conjecture 7.7. We have the following equality:

length(Hord
F )l

(Sel∨(γ−χ(γ)))l = ordl(Lp(T(γ−χ(γ)))),

for each height-one prime l of Hord
F .

We have the following corollary of Theorem 3 in § 2.

Corollary 7.8. We have the following.

(1) The two-variable main conjecture (Conjecture 2.4) implies Conjecture 7.7.

(2) Assume further the conditions listed in Theorem 2 in § 2. with Pτ a unit in Hn.o
F . Then Con-

jecture 7.7 implies the two-variable IMC (Conjecture 2.4).

This is proved in the same manner as case (a) above by using Lemma 7.2.

(c) IMC for T(γ−κ(γ′)γ′)

Following § 4.2, Sel(γ−κ(γ′)γ′) is a cotorsion Hord
F -module. On the other hand, we define Lp(T(γ−κ(γ′)γ′))

to be the image of LKi
p (T ) in Hn.o

F /((γ − κ(γ′)γ′)) = Hord
F .

Conjecture 7.9. Let T = T (i)
F . We have the following equality:

length(Hord
F )l

(Sel∨
(γ−κ(γ′)γ′))l + el = ordl(Lp(T(γ−κ(γ′)γ′))),

for each height-one prime l of Hord
F , where

el =

{
ordl(1−Ap(F)) if F−A[M]Ip �= 0,
0 if F−A[M]Ip = 0.

A corollary of Theorem 3 in § 2 is given as follows.

Corollary 7.10. We have the following.

(i) The two-variable main conjecture (Conjecture 2.4) implies Conjecture 7.9.

(ii) Assume further the conditions listed in Theorem 2 of § 2 with Pτ a unit in Hn.o
F . Then Conjec-

ture 7.9 implies the two-variable IMC (Conjecture 2.4).

This is proved in the same manner as cases (a) and (b) by using Lemma 7.2.
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(d) IMC conjecture for T(γ2−κ2(γ′)γ′)

The Selmer group for the diagonal specialization T(γ2−κ2(γ′)γ′) is not a cotorsion Hord
F -module in

general.

Conjecture 7.11. We have the following.

(1) Let T = T (i)
F . The group (Sel(γ2−κ2(γ′)γ′))∨ has rank one or zero as an Hord

F -module.

(2) Assume that T0⊗ωi′ is isomorphic to its Kummer dual (T0⊗ωi′)∗(1) with certain 0 � i′ � p−2,
where T0 := T(γ2−κ2(γ′)γ′)/(γ′ − 1)T(γ2−κ2(γ′)γ′). In this case, we have

rankHord
F

(Sel(γ2−κ2(γ′)γ′))
∨ =

{
1 if ε(l) = −1 for every l > 0,
0 if ε(l) = 1 for every l > 0,

where ε(l) is the sign of the functional equation of L-function for a specialization of F ⊗ ωi′−i

as explained in the following remark.

Remark 7.12.

(1) Suppose that T0 ⊗ ωi′ is isomorphic to the Kummer dual of itself. For each l, we put Pl =
γ′ − κa(l)(γ′) for each integer l > 0 with a(l) := 2(i′ − i) + 2l(p − 1). For each l > 0, T /(Pl)T
is isomorphic to the Tate-twist Tfl

(a(l)/2 + 1) of Deligne’s Galois representation Tfl
for an

eigen-cuspform fl of weight 2 + a(l). The sign ε(l) = ±1 is the sign of the functional equation
Λ(fl, s) = ε(l)Λ(fl, 2 + a(l)− s) where Λ(fl, s) is the Hecke L-function for fl with its Γ-factor.

(2) The phenomena for the generic rank on the line (γ2−κ2(γ′)γ′) was first studied and conjectured
at least under the condition as in part (1) (see, for example, [NP00, § 0]). We believe that such
phenomena are always true even in the case without the functional equation.

Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module. We define Lp(T(γ2−κ2(γ′)γ′)) ∈ Hord

F to
be the specialization of the two-variable p-adic L-function LKi

p (T ) ∈ Hn.o
F via Hn.o

F −→ Hn.o
F /(γ2 −

κ2(γ′)γ′) ∼= Hord
F , in this case.

Conjecture 7.13. Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module. Then, we have the

following equality:

length(Hord
F )l

(Sel∨
(γ2−κ2(γ′)γ′))l = ordl(Lp(T(γ−χ(γ)))),

for each height-one prime l of Hord
F .

Corollary 7.14. Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is a torsion Hord
F -module.

(1) The two-variable IMC (Conjecture 2.4) implies Conjecture 7.13.

(2) Assume further the conditions listed in Theorem 2 of § 2 with Pτ a unit in Hn.o
F . Then Conjec-

ture 7.13 implies the two-variable IMC (Conjecture 2.4).

Finally, in a general case where (Sel(γ2−κ2(γ′)γ′))∨ is not necessarily a torsion Hord
F -module, we

propose the following IMC.

Conjecture 7.15. Suppose that (Sel(γ2−κ2(γ′)γ′))∨ is an Hord
F -module with generic rank

r = dimFrac(Hord
F )(Sel(γ2−κ2(γ′)γ′))

∨ ⊗Hord
F

Frac(Hord
F ).

Let X be the Hord
F -torsion part of the Hord

F -module (Sel(γ2−κ2(γ′)γ′))∨. Then the following statements
hold.
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(1) The order ord(γ2−κ2(γ′)γ′)(Lp(T )) is equal to r.

(2) For every height-one prime l of Hord
F , we have

length(Hord
F )l

(X)l = ordl(Lp(T(γ2−κ2(γ′)γ′))),

where Lp(T(γ2−κ2(γ′)γ′)) is defined to be the image of Lp(T )/(γ2 − κ2(γ′)γ′)r via Hn.o
F −→

Hn.o
F /(γ2 − κ2(γ′)γ′) ∼= Hord

F .

8. Pseudo-null submodule

In this section, we give a sufficient condition (Proposition 8.1) for (SelT )∨ to have no non-trivial
pseudo-null submodule. Our proof relies on the method in Greenberg’s paper [Gre87] (see also
Remark 8.2). The result in this section is used in § 9 in order to study examples where we can
determine the structure of the Selmer group. In this section, we do not necessarily assume Condition
(Ir). Instead of Condition (Ir), we will assume the following condition.

Condition (Fr). Tord
F (respectively T (i)

F ) is free of rank two over Hord
F (respectively Hn.o

F ).

As remarked in § 2, Condition (Ir) implies Condition (Fr). Since we could find no reference for
the pseudo-null submodule of the Selmer group for a Galois deformation, we decide to assume only
a weaker condition (Fr) in this section for our later use. Our main proposition here is as follows.

Proposition 8.1. Let T = T (i)
F be a nearly ordinary deformation satisfying Condition (Fr) and let

Σ be the set of ramified places for T (see § 2 for the notation). Assume the following conditions:

(1) Hn.o
F is a regular local ring;

(2) Σ consists only of {p,∞}.
Then (SelT )∨ has no non-trivial pseudo-null Hn.o

F -submodule.

Remark 8.2. Under similar assumptions, Greenberg [Gre87, Proposition 5] has proved that the
Pontryagin dual of the Selmer group for the cyclotomic deformation of an ordinary p-adic repre-
sentation T ∼= Zd

p has no pseudo-null Zp[[Γ]]-submodule when T is unramified outside {p,∞}. Our
proof follows the idea of [Gre87, Proposition 5]. Since we treat the two-variable case, it is sometimes
technically difficult to imitate his argument over the cyclotomic (one-variable) Iwasawa algebra, as
is seen in our proof below.

Before giving the proof, we prepare several lemmas. Although our main proposition stated above
only treats the case where Σ consists only of {p,∞}, we allow Σ to contain primes other than p in
most of this section unless we state otherwise.

First, we prove the following lemma known as the weak Leopoldt conjecture for T .

Lemma 8.3. We have H2(QΣ/Q,A) = 0.

Proof. Note that H2(QΣ/Q,A) is equal to the inductive limit lim−→s,t
H2(QΣ/Q, A

(j,k)
s,t ) for any pair

(j, k) with 1 � j � k−1, where A(j,k)
s,t is the module defined in § 4.1. From now on we assume further

that 2j �= k. It suffices to show that H2(QΣ/Q, A
(j,k)
s,t ) = 0 for every s, t under this condition. Since

the Galois group Gal(QΣ/Q) has cohomological dimension two, H3(QΣ/Q, A
(j,k)
s,t [p]) is zero. By the

natural exact sequence

H2(QΣ/Q, A
(j,k)
s,t [p]) −→ H2(QΣ/Q, A

(j,k)
s,t )

×p−→ H2(QΣ/Q, A
(j,k)
s,t ) −→ H3(QΣ/Q, A

(j,k)
s,t [p]) −→ · · · ,
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H2(QΣ/Q, A
(j,k)
s,t ) must be a p-divisible abelian group. On the other hand, by Kato’s result

[Kat04, § 14], H2(QΣ/Q, A
(j,k)
s,t ) is finite for each s, t under the above assumption on (j, k). Hence,

H2(QΣ/Q, A
(j,k)
s,t ) must be zero.

Lemma 8.4. Assume that Hn.o
F is regular and that Hn.o

F satisfies Condition (Fr). H1(QΣ/Q,A)∨ has
no non-trivial pseudo-null Hn.o

F -submodule.

Proof. Let N be the largest pseudo-null submodule of H1(QΣ/Q,A)∨. Let h be an arbitrary irre-
ducible element of Hn.o

F . By taking the short exact sequence:

0 −→ A[h] −→ A ×h−→ A −→ 0,

and by using Lemma 8.3, we have

H1(QΣ/Q,A)/(h)H1(QΣ/Q,A) ∼= H2(QΣ/Q,A[h]). (17)

By a similar argument as that used in the proof of Lemma 8.3 depending on the Galois cohomolog-
ical dimension of Gal(QΣ/Q), H2(QΣ/Q,A[h])∨ is shown to be torsion-free over the local domain
Hn.o

F /(h). Consequently, H1(QΣ/Q,A)∨[h] must be a torsion-free Hn.o
F /(h)-module by taking the

Pontryagin dual of (17). The torsion part N [h] is also a torsion-free Hn.o
F /(h)-module since N [h] is

a sub Hn.o
F /(h)-module of H1(QΣ/Q,A)∨[h]. On the other hand, the torsion part N [h] of N for the

height-one prime (h) is a torsion Hn.o
F /(h)-module because N is a pseudo-null Hn.o

F -module. Thus,
N [h] is zero for any irreducible element h ∈ Hn.o

F . This completes the proof for N = 0.

A finitely generated Hn.o
F -module V is called reflexive if the canonical homomorphism V −→

V ∗∗ := HomHn.o
F (HomHn.o

F (V,Hn.o
F ),Hn.o

F ) is an isomorphism. We have the following lemma.

Lemma 8.5. Assume that Hn.o
F is a regular local ring. Then, H1(Qp,F−A)∨ is a reflexive Hn.o

F -
module.

Proof. First, we show that H1(Qp,F−A)∨ is torsion-free over Hn.o
F . By taking the Pontryagin dual,

it is equivalent to the statement that H1(Qp,F−A) is a divisible Hn.o
F -module. Consider the long

exact sequence of the GQp-cohomology of

0 −→ F−A[h] −→ F−A ×h−→ F−A −→ 0,

for an irreducible element h ∈ Hn.o
F , H1(Qp,F−A)/(h)H1(Qp,F−A) is a Hn.o

F -submodule of
H2(Qp,F−A[h]). By the local Tate duality theorem, H2(Qp,F−A[h]) is the Pontryagin dual of
H0(Qp, (F−A(−1))∨/(h)(F−A(−1))∨). This group must be zero, because ((F−A(−1))∨)GQp

has
support whose codimension is equal to or greater than two. Hence, H1(Qp,F−A) is a divisible Hn.o

F -
module. Since the Pontryagin dual H1(Qp,F−A)∨ has no non-trivial Hn.o

F -torsion submodule, the
structure theorem of finitely generated Hn.o

F -modules (cf. Proposition 5.17 and Proposition 5.1.8 in
[NSW00]) gives us an exact sequence

0 −→ H1(Qp,F−A)∨ −→ V −→ Z −→ 0,

where V is a reflexive Hn.o
F -module and Z is a pseudo-null Hn.o

F -module. Let h′ ∈ Hn.o
F be an arbitrary

non-zero irreducible element and let us consider the snake lemma in the following commutative
diagram.

0 �� H1(Qp,F−A)∨ ��

×h′
��

V ��

×h′

��

Z

×h′

��

�� 0

0 �� H1(Qp,F−A)∨ �� V �� Z �� 0
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By applying the snake lemma to the above diagram, we have an injection

Z[h′] ↪→ (H1(Qp,F−A)[h′]∨)Hn.o
F /(h′)-tor.

Since H1(Qp,F−A)[h′]∨ is naturally an Hn.o
F /(h′)-submodule of H1(Qp,F−A[h′])∨, this also gives

us an injection

Z[h′] ↪→ H1(Qp,F−A[h′])∨Hn.o
F /(h′)-tor.

By a similar argument as above, we show that H1(Qp,F−A[h′])∨ is a torsion-free Hn.o
F /(h′)-module

by condition (2) of the lemma. Hence, Z must be zero. This completes the proof.

Lemma 8.6. Assume the three conditions stated in Proposition 8.1. Then, we have the following
exact sequence:

0 −→ SelT −→ H1(Q{p,∞}/Q,A) loc−→ H1(Qp,F−A) −→ 0.

Proof. By Corollary 4.12, we have the following exact sequence:

0 −→ SelT −→ H1(Q{p,∞}/Q,A) loc−→ H1(Qp,A)
H1

Gr(Qp,A)
−→ 0.

Since the restriction map H1(Qp,F−A) −→ H1(Ip,F−A)GQp is an isomorphism, we have an exact
sequence

0 −→ H1(Qp,A)
H1

Gr(Qp,A)
−→ H1(Qp,F−A) −→ H2(Qp,F+A).

Note that H2(Qp,F+A) is zero by the same argument as the proof of Claim 4.8. This completes
the proof of the lemma.

Lemma 8.7. Let R be a Noetherian complete regular local ring and let M be an R-module which
has the following presentation

0 −→W −→ U −→M −→ 0,

where U is a finitely generated R-module which has no non-trivial pseudo-null R-submodule and
W is a reflexive R-module. Then M has no non-trivial pseudo-null R-submodule.

Proof. Suppose that the largest pseudo-null R-submodule Mnull of M is non-trivial. We denote by
U0 ⊂ U the inverse image of Mnull via the natural projection U � M . Since U has no non-trivial
pseudo-null R-submodule, U0 also has no non-trivial pseudo-null R-submodule. By the structure
theorem of finitely generated R-modules, we have the following exact sequence:

0 −→ U0 −→ E ⊕W ′ −→ Z −→ 0,

where E is an elementary torsion R-module, W ′ is a reflexive R-module and Z is a pseudo-null
R-module. Thus, we also have the following exact sequence:

0 −→W −→ E ⊕W ′ −→ Z ′ −→ 0,

where Z ′ is an extension of Z by Mnull. In particular, Z ′ is a non-trivial pseudo-null R-module.
Since W is reflexive and Z ′ is pseudo-null, E must be trivial. Thus, we have an injection W ↪→
W ′ whose cokernel is a non-trivial pseudo-null R-module. Note that Ext1R(W ′/W,R) is zero since
W ′/W is pseudo-null (see [OV02, Proposition 3.4] for example). The injection W ↪→ W ′ induces
an isomorphism HomR(W ′, R) ∼−→ HomR(W,R). Hence, W ↪→ W ′ must be an isomorphism since
W and W ′ are reflexive R-modules. This contradicts the assumption that Mnull is non-trivial. The
proof is complete.

Finally we give the proof of Proposition 8.1.
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Proof of Proposition 8.1. By Lemma 8.6, we have the following exact sequence:

0 −→ H1(Qp,F−A)∨ −→ H1(Q{p,∞}/Q,F
−A)∨ −→ (SelT )∨ −→ 0.

The module H1(Qp,F−A)∨ is reflexive over Hn.o
F by Lemma 8.5. The Hn.o

F -module H1(Q{p,∞}/Q,
F−A)∨ has no non-trivial pseudo-null Hn.o

F -submodule by Lemma 8.4. Thus, we complete the proof
by applying Lemma 8.7.

9. Examples

In this section, we study examples of two-variable nearly ordinary deformations where we can
determine the structure of the Selmer group or we prove the equality in addition to the inequality
result proved by using Beilinson–Kato elements.

First, we prepare some preliminary results.

Proposition 9.1 [Gre87, Theorem 2]. Let T be a Gal(QΣ/Q)-module which is free of finite rank
over Zp. Suppose that T is ordinary and critical at p. Then we have

lengthZp[[Γ]]l(Sel∨T⊗Zp[[Γ]](χ̃))l = lengthZp[[Γ]]l(Sel∨T ∗(1)⊗Zp [[Γ]](χ̃))
ι
l ,

for every height-one prime l in Zp[[Γ]]l where ι is the canonical involution of Zp[[Γ]] induced by
g �→ g−1 for g ∈ Γ.

We recall the following lemma.

Lemma 9.2. Let R be a Noetherian complete regular local ring of Krull dimension n � 2 and let N
be a pseudo-null R-module. Let I be a height-one prime of R such that R/I is a regular local ring
of Krull dimension n− 1. Then, we have the following equality for every height-one prime ideal in
R/I:

length(R/I)l(N [I]l) = length(R/I)l(N/IN)l.

In particular, N [I] is a pseudo-null R/I-module if and only if N/IN is a pseudo-null R/I-module.

Although this lemma might be known to the experts, we refer the reader to [Och05, Lemma 3.1]
for the proof if necessary.

Lemma 9.3. Let R be a Noetherian complete regular local ring of Krull dimension greater than or
equal to two. Let M (respectively N) be a torsion R-module R/(f) (respectively R/(g)) with f ∈ R
(respectively g ∈ R). Suppose that we have a family {Jl}1�l<∞ of non-zero elements of R satisfying
the following properties.

(1) We have an injection M ↪→
∏

1�l<∞M/JlM .

(2) For each i, R/Jl is a regular local ring.

(3) The modules M/JlM and N/JlN are torsion over R/Jl.

(4) We have charR/Jl
(M/JlM) ⊃ charR/Jl

(N/JlN) for each l � 1.

Then, we have charR(M) ⊃ charR(N).

Proof. It suffices to show that the image of g via R � M is zero. By conditions (3) and (4), the
image of g via R � M/JlM is zero for any l. This completes the proof by condition (1).

9.1 IMC for Ramanujan’s cuspform
Let ∆ ∈ S12(SL2(Z)) be the unique eigen-cuspform of level 1 and weight 12, whose q-expansion is
equal to q

∏
1�n<∞(1 − qn)24. The only known non-ordinary primes for ∆ are p = 2, 3, 5, 7, 2411
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at the moment. For all other primes p, we have the ordinary Λ-adic newform F(∆) ∈ Zp[[Γ′]][[q]]
such that the specialization of F under Zp[[Γ′]][[q]] −→ Zp[[q]], γ′ �→ κ10(γ′) coincides with the
q-expansion of the p-stabilization ∆(p) of ∆ (we omit the prime p in the notation F(∆) unless
there is a possibility of confusion). See [Hid93, § 7.6] for the explanation on the Hida family for ∆.
Condition (Nor) is always satisfied. The two-variable Iwasawa theory for T = T (i)

F(∆) at p is of our
interest.

Question 9.4. For which ordinary prime p of ∆ and for which integer i with 0 � i � p − 2 is the
characteristic ideal charHn.o

F (SelT (i)
F(∆)

)∨ or the ideal (Lp(T (i)
F(∆))) non-trivial?

Recall that the value L(∆, j)/(2π
√
−1)jΩ(−1)j−1

∞,∆ is equal to 23·34 ·5·7/691, 24·3, 2·7, 52, 32, 22·5
when j = 1, . . . , 6. We have

L(∆, j)

(2π
√
−1)jΩ(−1)j−1

∞,∆

= − L(∆, 12 − j)
(2π
√
−1)jΩ(−1)11−j

∞,∆

by the functional equation. In particular, the value L(∆, j)/(2π
√
−1)jΩ(−1)j−1

∞,∆ is a p-adic unit for
every j with 1 � j � 11 and for p � 11 with p �= 691.

Let p be an ordinary prime of ∆ where Condition (Ir) is satisfied (in particular, p �= 691). For
1 � i � 11, we have

(χi ◦ κ10)LKi
p (T (i)

F(∆)) =
(

1− pi−1

ap(∆(p))

)
L(∆(p), i)

(2π
√
−1)i−1Ω(−1)i−1

∞,∆

=
(

1− pi−1

ap(∆(p))

)(
1− ap(∆)

pi

)
L(∆, i)

(2π
√
−1)i−1Ω(−1)i−1

∞,∆

.

For i �= 1, this is a p-adic unit, hence we have LKi
p (T (i)

F(∆)) ∈ Zp[[Γ × Γ′]]×. For i = 1, LKi
p (T (1)

F(∆))
is a unit if and only if ap(∆) �≡ 1 modulo p. As for the structure of the Selmer group, we have the
following result.

Lemma 9.5. The Selmer group (SelT )∨ has no non-trivial pseudo-null Λ(2)-submodule for T =
T (i)
F(∆).

Proof. It suffices to see that our nearly ordinary deformation T associated to ∆ satisfies the two
conditions in Proposition 8.1. Condition (1) is deduced by observing the dimension of the space of
weight 12 cuspforms (cf. [Hid93, § 7.6]). Condition (2) is clear since ∆ has level one. This completes
the proof.

We summarize our argument above in the following proposition.

Proposition 9.6. Let p be an ordinary prime of ∆ where Condition (Ir) is satisfied.

(1) When 2 � i � 11, LKi
p (T (i)

F(∆)) is trivial and SelT (i)
F(∆)

= 0.

(2) When i = 1, LKi
p (T (1)

F(∆)) is non-trivial if and only if ap(∆) ≡ 1 modulo p.

Remark 9.7.

(1) For i = 0 or for 12 � i � p− 2, we do not have a precise conjecture about when or how often
LKi

p (T (i)
F(∆)) is non-trivial.

(2) The primes where ap(∆) ≡ 1 modulo p are called anomalous primes for ∆. Among smaller
primes, p = 11 and 23 are known to be anomalous. We do not know how many other anomalous
primes for ∆ exist.
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According to the above remark, we will investigate the case p = 11 in the next subsection.

9.2 Ramanujan’s cuspform at p = 11
In this subsection, we discuss the two-variable Iwasawa theory for F(∆) at p = 11, where we have
a Hida family T = T (1)

F(∆)
∼= Zp[[Γ× Γ′]]⊕2 such that:

(1) the specialization T /Φ(1,2)T is isomorphic to the p-Tate module of X0(11);
(2) T /Φ(j,12)T is a lattice of the representation T∆(j)⊗ω1−j , where T∆

∼= Z⊕2
p is the p-adic Galois

representation associated to ∆ by Deligne.

From now on, we shall denote Zp[[Γ× Γ′]] by Λ(2) for short. Our results on the Iwasawa theory for
T in this section are as follows.

Results on the Iwasawa theory for T . Let T = T (1)
F(∆) with p = 11.

(1) We have length
Λ

(2)
l

(Sel∨T )l = ordl(LKi
p (T )) for every height-one prime l in Λ(2).

(2) We have (SelT )∨ ∼= Λ(2)/(γ2 − κ2(γ′)γ′).

We will show statement (2) first and the equality in statement (1) will be proved later. Let us
take an infinite family of elements {Pl ∈ Λ(2)}1�l<∞ given by Pl = γ′ − κ2l(p−1)(γ′). Then we have
the following claim.

Claim 9.8. Let us denote by Tl the representation associated to the ordinary eigen-cuspform
f2+2l(p−1) of weight 2 + 2l(p− 1) in the Hida family for ∆.

(i) T /(Pl)T is the cyclotomic deformation of Tl ⊗ ω.
(ii) The natural restriction map (SelT )∨/(Pl)(SelT )∨ −→ SelT /(Pl)T is an isomorphism.

(iii) We have the isomorphism SelT /(Pl)T
∼= Zp[[Γ]]/(γ − χ1+l(p−1)(γ)).

Proof. Statement (1) is nothing but the definition of T . We have H0(Q,A) = 0 by [Ser72, 5.5.2]
and by an argument using Nakayama’s lemma (cf. the proof of Claim 9.11), where A = T ⊗Λ(2)

HomZp(Λ(2),Qp/Zp). By definition, the set of ramified primes Σ for T is {p,∞}. Hence, state-
ment (2) is a corollary of Proposition 5.2. Let us show the statement (3) in the remainder. For
any l � 0, SelT /(Pl,p)T is isomorphic to SelT /(P0,p)T by the congruence property. On the other
hand, T /(P0, p)T is the cyclotomic deformation X0(11)[11]⊗Zp Zp[[Γ]](χ̃) of the group of 11-torsion
elements X0(11)[11] of the modular elliptic curve X0(11). Hence, by [Gre91], SelT /(P0,p)T is isomor-
phic to Zp[[Γ]]/(γ − 1, p) ∼= Z/pZ. By the control theorem for modulo-(p) reduction which can be
proved in the same manner as those in § 5, we have an isomorphism (SelT /(Pl)T )∨/(p)(SelT /(Pl)T )∨ ∼=
(SelT /(Pl,p)T )∨ ∼= Z/pZ. Since (SelT /(Pl)T )∨ has no finite Zp[[Γ]]-submodule (cf. [Gre94, Proposition
10]), (SelT /(Pl)T )∨ must be a free Zp-module of rank one for any l � 0. Finally, let us denote the
action of Γ on (SelT /(Pl)T )∨. Recall that (Tl ⊗ ω) ⊗ χ1+l(p−1) is Kummer-dual to itself via Weil
pairing. By Proposition 9.1 and statement (1), (SelT /(Pl)T )∨⊗χ−1−l(p−1) ∼= (Sel(T /(Pl)T )⊗χ1+l(p−1))∨

is a free rank-one Zp-module with trivial Γ-action. Hence, we have (SelT /(Pl)T )∨ ∼= Zp(χ1+l(p−1)) for
every l � 1, where Zp(χ1+l(p−1)) is a free rank-one Zp-module on which Γ acts via χ1+l(p−1). This
completes the proof of statement (3) and hence Claim 9.8.

Let us prove the following claim.

Claim 9.9. We have length
Λ

(2)
l

(Sel∨T )l � ordl(γ2 − κ2(γ′)γ′) for every height-one prime l in Λ(2).

Proof. Let g be an element of Λ(2) such that (g) = charΛ(2)(SelT )∨. Since (SelT )∨ has no non-trivial
pseudo-null Λ(2)-submodule, we have an injection (SelT )∨ ↪→ Λ(2)/(g) with a pseudo-null cokernel.
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We may replace (SelT )∨ by Λ(2)/(g) to prove the claim. Let us apply Lemma 9.3 for R = Λ(2),
M = Λ(2)/(γ2 − κ2(γ′)γ′) and N = Λ(2)/(g). Let Pl = γ′ − κ2l(p−1)(γ′) ∈ Λ(2) as above. Note that
each Pl is contained in Zp[[Γ′]]. Since Pl are relatively prime to each other, we have an injection

Zp[[Γ′]] ↪→
∏

1�l<∞
Zp[[Γ′]]/(Pl). (18)

On the other hand, M is finite flat of degree two over Zp[[Γ′]]. Hence, by applying the base extension
⊗Zp[[Γ′]]M to (18), we have an injection M ↪→

∏
1�l<∞M/(Pl)M . Thus, we have shown condition

(1) of Lemma 9.3. Condition 2 is satisfied since Pl are polynomials of degree one.

Claim 9.10. We have length
Λ

(2)
l

(Sel∨T )l = ordl(γ2 − κ2(γ′)γ′) for every height-one prime l in Λ(2).

Proof. Let us consider the specialization at k = 2. The image of the two ideals (γ2−κ2(γ′)γ′) ⊂ Λ(2)

and (g) ⊂ Λ(2) in Λ(2)/(γ′ − 1) = Zp[[Γ]] are both equal to (γ − 1).

Hence, (SelT )∨ is a torsion Λ(2)-module whose characteristic ideal is (γ2 − κ2(γ′)γ′). By Green-
berg,

(SelT )∨/(P0)(SelT )∨ ∼= (SelTf2
⊗Zp[[Γ]](χ̃))

∨

is isomorphic to Zp. In particular, (SelT )∨/(P0)(SelT )∨ is a cyclic module over Zp[[Γ]] ∼= Zp[[Γ ×
Γ′]]/(P0). By Nakayama’s lemma, (SelT )∨ has to be a cyclic module over Zp[[Γ×Γ′]]. Consequently,
we have (SelT )∨ ∼= Λ(2)/(γ2 − κ2(γ′)γ′).

Next, we shall study IMC for this T . Theorems 1 and Theorem 2 given in § 2 imply the following
claim.

Claim 9.11. We have length
Λ

(2)
l

(Sel∨T )l � ordl(LKi
p (T )) for every height-one prime l in Λ(2).

Proof. We shall check conditions (i) and (ii) of Theorem 2 for T . By the nearly ordinary condition
of T , the image of GQur

p (µp∞ ) is contained in the group
{(

1 ∗
0 1

)
∈ GL2(Λ(2))

}
. Let us consider also

the action of GQur
p (µp∞ ) on T /MT ∼= F⊕2

p which is contained in the group
{(

1 ∗
0 1

)
∈ GL2(Fp)

}
.

Recall that the residual representation T /MT is isomorphic to the group of 11-torsion points of
X0(11) by properties of T introduced at the beginning of § 9.2. Since X0(11) has split multiplicative
reduction at 11, we have a GQp-equivariant isomorphism X0(11)(Qp) ∼= Q

×
p /q

Z with q ∈ pZp by the
uniformization theory by Tate. Hence, we have

0 −→ µp −→ T /MT −→ qZ/q
1
p
Z −→ 0.

We find τ ∈ GQur
p (µp∞ ) such that the image

(
1 pτ
0 1

)
of τ in Aut(T /MT ) ∼= GL2(Fp) satisfies pτ �= 0

because q = 115u with u ∈ Z×
11. Thus, τ is presented as

(
1 Pτ
0 1

)
under certain choice of basis

Aut(T ) ∼= GL2(Λ(2)), where Pτ is a unit of Λ(2).
For condition (ii), GQ −→ Aut(T /MT ) contains an element

(−1 0
0 −1

)
by the surjectivity of the

representation of GQ on the group of 11-torsion points of X0(11) shown in [Ser72, 5.5.2]. This
completes the proof by Theorem 2.

Since we already have an inequality as in Claim 9.11, it suffices to see that charΛ(2)(SelT )∨

modulo (γ′ − 1) is equal to the ideal of Zp[[Γ]] generated by Lp(T ) modulo γ′ − 1. By Claim 9.10,
the ideal charΛ(2)(SelT )∨ modulo (γ′ − 1) of Zp[[Γ]] is equal to (γ2 − 1) = (γ − 1) (note that γ + 1
is a unit in Zp[[Γ]]). On the other hand, by the interpolation property given in Theorem 1, LKi

p (T )
modulo γ′ − 1 is equal to Cp,2 × LMTT

p (f2) ∈ Zp[[Γ]], where LMTT
p (f2) ∈ Zp[[Γ]] is the p-adic L-

function by Mazur, Tate and Teitelbaum [MTT86]. Since Cp,2 is a p-adic unit by Proposition 6.4,
it suffices to prove the following claim to have the equality of the IMC for T .

1198

https://doi.org/10.1112/S0010437X06002223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002223


On the two-variable Iwasawa main conjecture

Claim 9.12. We have the equality (LMTT
p (f2)) = (γ − χ(γ)) in Zp[[Γ]].

Proof. We denote by g ∈ Zp[[Γ]] the quotient LMTT
p (f2)/(γ − χ(γ)). We would like to show that

g is a unit in Zp[[Γ]]. For any element h ∈ Zp[[Γ]], we regard h to be the function on Zp by
setting h(s) = χs(h) for s ∈ Zp. The trivial zero conjecture [MTT86], which was already proved by
Greenberg and Stevens [GS93], gives us an equality as follows:

LMTT
p (f2)(s)′|s=1 = χ(γ)logp(χ(γ)) × g(s)|s=1 = Lp ×

L(f2, 1)
Ω+
∞,2

, (19)

where Lp ∈ Qp is the L-invariant defined to be logp(q)/ordp(q) by using the Tate period q for the
Tate curve X0(11)/Qp

. By numerical calculation, we have ordp(Lp) = 1 = ordp(χ(γ)logp(χ(γ))) for
X0(11) (cf. [MTT86, § 13]). Consequently, g(s)|s=1 ∈ Zp is a unit. By the Weierstrass preparation
theorem, g ∈ Zp[[Γ]] must be a unit. This completes the proof of Claim 9.12.
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