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On the two-variable Iwasawa main conjecture

Tadashi Ochiai

ABSTRACT

This paper is a continuation of the author’s previous work, where we studied one of the
inequalities between the characteristic ideal of the Selmer group and the ideal of the p-adic
L-function predicted by the two-variable Iwasawa main conjecture for a nearly ordinary
Hida deformation 7. In this paper, we study several properties of the Selmer group and
the p-adic L-function solving some of the open questions raised in the author’s previous
work. As applications, we have an infinite family of elliptic cuspforms where the cyclotomic
Iwasawa main conjecture holds for every cuspform in the family.
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1. Introduction

This paper is a continuation of the work on the Iwasawa theory for two-variable nearly ordinary
modular Galois deformations [Och01, Och03, Och05]. By improving some of the author’s previous
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results, we establish one of the inequalities of the two-variable Iwasawa main conjecture (IMC) and
its corollaries in this paper.

In this section, we present a very brief plan of our research including future perspectives before
stating a detailed description of our theory and our results in the next section. Our interest is to
formulate a generalization of the IMC and to solve it for plenty of examples. The setting we consider
is a pair (7, P) as follows.

(1) 7 is a free R-module of finite rank, where R is a local Noetherian algebra which is finite flat
over a several-variable Iwasawa algebra Z,[[X1, ..., X ]| with a fixed prime p.

(2) There exists a finite number Bf primes Y containing {p, oo} such that we have a continuous
R-linear action of Gg = Gal(Q/Q) on 7 which is unramified outside X.

(3) There exists a certain dense subset P of Spec(R) which consists of the kernels of various
specializations R — Q such that the specialization of 7 at k € P is a Gg-stable lattice of
the p-adic étale realization of M, for a critical motive M.

We call a pair (7, P) satisfying the above conditions a geometric pair. Given a geometric pair (7, P),
we would like to study the following objects:

(A) the analytic p-adic L-function L;nal(T) € Frac(R) such that the evaluation at every x € P of
Lgnal(T) is related to the special value of the Hasse-Weil L-function L(M,,0);

(B) the algebraic p-adic L-function Lglg(’f ) € Frac(R), which is defined to be a generator of the
characteristic ideal of the Pontryagin dual Sel¥ of the Selmer group Selr.

The existence of such L;nal(T) and Lglg(T) as non-zero elements in Frac(R) is expected only when
(T, P) satisfies a certain local condition called ‘nearly ordinary’ or ‘admissible’ as well as certain
minor extra conditions. We omit the precise definition of the notion ‘nearly ordinary’ or ‘admissible’
and we only refer the reader to [Gre94| (the notion called Panchishkin type in [Gre94] is very close
to ‘admissible’).

(C) Assuming admissibility of (7', P), we expect equality (L;lg(’f ) = (Lg“al(’f )) of fractional ideals
of R, once they are well-defined as non-zero ideals in R. This will be a generalization of the
IMC which contains almost all known examples of the IMC.

A certain class of deformations called the cyclotomic deformations are rather classical examples
in our program of ‘the Iwasawa theory for Galois deformations’. Let O be a discrete valuation ring
which is finite flat over Z, and let T" be a free O-module of finite rank d which is the p-adic étale
realization of a critical motive over Q. Let I" be the Galois group Gal(Q./Q) of the cyclotomic Z,-
extension Qn,/Q of the rational number field Q. We denote by Y the universal cyclotomic character
Go — I' — Z,[[I']]* and Zpy[[[')](X) is a free Z,[[I']]-module of rank one on which Gg acts via
the character Y. If we consider 7 = T®z,Z,[[I]](X) and R = Z,[[I']], T is free of rank d over
R and Gg acts on 7 diagonally. It is known by Serre that Z,[[I']] is non-canonically isomorphic
to Zp[[X]]. Thus, by choosing P to be a suitable set of primes in R = Z,[[I']] corresponding to
Dirichlet characters of p-power conductor, (7, P) satisfies our previous conditions. If T" is ordinary
at p in the sense of Greenberg [Gre87], (7, P) is ‘admissible’. When T is a representation of rank one
associated to a Dirichlet motive, study of (A), (B) and (C) is nothing but the Iwasawa theory for
ideal class groups on a cyclotomic tower initiated by Iwasawa. When T is a representation of rank
two isomorphic to the p-adic Tate module T, E of an elliptic curve E over Q ordinary at p, study
of (A), (B) and (C) corresponds to the study of the Iwasawa theory for elliptic curves proposed by
Mazur and developed by various people (cf. [Gre99]). The conjecture for existence of the analytic
p-adic L-function (the subject for (A)) for all ordinary cyclotomic deformations is well-formulated
by [CP89] and it is solved for class groups, elliptic modular forms and a few other examples. On the
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other hand, the Selmer group Sely related to the algebraic p-adic L-function (the subject for (B))
has been defined and actively studied by Greenberg [Gre87] for ordinary cyclotomic deformations.
Selr is defined to be a subgroup of a Galois cohomology with coefficient A = 7 @ R". In order
that the algebraic p-adic L-function is non-trivial, we need to assume the conjecture that Sel¥ is a
torsion R-module which is proved for only a few examples of critical motives.

To summarize, we can say that the conjectural framework of the Iwasawa main conjecture for
ordinary cyclotomic deformations is rather established, although it is far from being proved except
for a few examples.

Now, we remark that the category of ordinary cyclotomic deformations is naturally extended to
the category of admissible geometric pairs as follows:

{ordinary cyclotomic deformations} C {admissible geometric pairs}.

A generalization of Iwasawa theory to the category of all admissible pairs was first proposed by
Greenberg [Gre94]. However, in spite of work by several others who follow it, even a conjectural
framework has not been well-understood because of the many new phenomena which do not happen
for cyclotomic deformations. The two-variable nearly ordinary modular deformation constructed by
Hida is an admissible geometric pair which is not an ordinary cyclotomic deformation. It seems
to be the first step which we have to study toward our goal to understand the framework of the
generalized Iwasawa theory which covers all admissible geometric pairs.

The work in this paper has thus been motivated. We close this section by emphasizing several
important contributions made in this paper and motivating the inclusion of some technical sections
such as §§2, 3 and 6, so that the reader will not mistake the paper for a long review of previous
results.

(1) For analytic p-adic L-functions in our two-variable deformation (the subject for (A)), there
are several different constructions by Kitagawa, Greenberg and Stevens, Ochiai, Panchishkin
and Fukaya. The first two are based on the method of modular symbols and the last three are
based on the use of the Eisenstein series and the method of Shimura and Rankin—Selberg. The
analytic p-adic L-function in this case is roughly a function in two variables j, k as below:

Ly (T3, k) <p<j—1> )C“’) (- _wl—j<p>p0@>e<w1_j) L(fi, ', )
o, \a(f) ap(fr) @rv/=Tpa

where ¢(j) = ord,Cond(w'™7). Although we cannot explain all the notation in the above
equation, which will be given in §§ 2 and 6, we insist that the differences of several constructions
listed at the beginning of this paragraph appear only in the difference of p-adic error terms
C+ and complex periods Q+ koo when k varies. In the method of modular symbols, Q+ is
a perlod integral associated to the modular form fr depending on a certain (non- canonlcal)
choice of a basis of the module of modular symbols. In the latter method, Q+ is replaced by
the period in the sense of Shimura which is obtained by a Rankin—Selberg mtegral depending
on a choice of an Kisenstein series.

To compare these two essentially different constructions and to choose the best candidate for
(A) seems to be an important problem to establish the Iwasawa theory in this particular case
and it also seems important for our future perspectives. However, such a problem has not been
studied previously. As we will see in § 6, the best candidate for (A) seems to be that constructed
by Kitagawa, since it is a good match for the generalized Birch and Swinnerton-Dyer conjecture.
On the other hand, the construction of the analytic p-adic L-function using the method of
Shimura and Rankin—Selberg has the advantage that it is more easily related to the algebraic
p-adic L-function by applying the Euler system theory thanks to Kato’s construction [Kat04].

(1)
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We have obtained an inequality as follows by combining [Och03] and [Och05]:
(Ly(T)) € (L3E(T)), (2)

where LS(T) is an analytic p-adic L-function constructed in [Och03] from the Euler system
obtained by Beilinson-Kato elements and LI(,) (7) is essentially the same as those constructed
by Panchishkin and Fukaya. Owing to the difference of terms C’,: » and Q: ~ by multiplication
of algebraic numbers at each & of the interpolation (1), we have a relation (L](D) (7)) C (LF(T))
and these two can be different in general. Our observation through our work is that we can
modify our Euler system by taking a certain linear combination and a certain projective limit
so that the p-adic L-function obtained from the modified Euler system coincides with L]IDG(T )
(cf. §6). By applying our Euler system theory [Och05] to the modified Euler system, we obtain
the inequality as follows which improves (2):

(Ly (7)) C (Ly(T)).

For this reason, we have to give a rather detailed description of the theory, a part of which
might seem to be a review of our previous results contrary to our intension.

(2) For algebraic p-adic L-functions in our two-variable deformation (the subject for (B)), we have

a similar problem to compare different Selmer groups such as those defined by Greenberg or
Bloch—Kato. For cyclotomic deformations, the difference is rather well-known. In the case of
the cyclotomic deformation of an ordinary elliptic curve E, the algebraic p-adic L-function
defined by Greenberg’s Selmer group is equal to that defined by Bloch—Kato’s Selmer group
(cf. [BK90, §4]) when E is not a Tate curve at p and these two L-functions differ by a factor
which comes from ‘trivial zero’ when F is a Tate curve at p. Since the analytic p-adic L-function
of a Tate curve also has a factor of ‘trivial zero’, Greenberg’s Selmer group is the one according
to the analytic p-adic L-function in view of the IMC (the subject for (C)).
Not only is it useful for finding the best candidate for a Selmer group in accordance with the
Iwasawa main conjecture; the comparison of different Selmer groups seems to be an important
problem in itself. Thus, we compare two different Selmer groups defined by Greenberg’s method
and by Bloch—Kato’s method for large Galois representations over the two-variable nearly
ordinary algebra in §4 of this paper.

We believe that we have taken a step forward to ‘the Iwasawa theory for Galois deformations’
through our detailed study in this paper for two-variable nearly ordinary deformations.

Notation

For an integer r, we denote by u, the group of rth roots of unity and denote by Q(u,) the field
obtained by adjoining fp, to the rational number field Q. We often denote by Q(pup~) the field
obtained by adjoining all p-power roots of unity to the rational number field Q. For any Galois
extension L/Q and a prime number ¢ which is unramified in L/Q, we denote by Frob, € Gal(L/Q)
(respectively ¢, € Gal(L/Q)) (a conjugate class of) a geometric (respectively arithmetic) Frobenius
element at gq.

2. Overview of our program in the case of nearly ordinary Hida deformations

In this section, we introduce our results for the Iwasawa theory on Hida deformations obtained in
[Och03] and [Och05]. We will also give a slight modification (see Theorem 2 and Remark 2.5) of our
Euler system theory to give an application in §9.

To introduce our results, let us recall briefly Hida’s nearly ordinary modular deformations.
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We fix a prime number p > 3 and a norm compatible system {(yn }>1 of primitive p"th roots of
unity throughout the paper. Let I" be the Galois group Gal(Q«/Q) of the cyclotomic Z,-extension
Qoo/Q of the rational number field Q. We denote by I the group of diamond operators for the
tower of modular curves {Y;(p')};>1. We have the canonical isomorphisms:

~ X /7~ X
D514 pZ, C 2y, T/ 1492, C 75

Fix a topological generator « (respectively ') of T' (respectively I'). For later convenience, we
choose v and 7/ so that x(v) = k(7). From now on, we fix an embedding of an algebraic closure Q
into the field C of complex numbers and an embedding of Q into a fixed algebraic closure @p of the
field Q, of p-adic numbers simultaneously. We also fix a natural number N prime to p.

Let H‘}rd be the quotient of the universal ordinary Hecke algebra H%goo with tame conductor N,

which corresponds to a certain A-adic eigen-cuspform F. The algebra H‘}rd is a local domain, finite
flat over Z,[[I"]]. Then (the F-component of) Hida’s nearly ordinary Hecke algebra H'° is defined
to be the formal tensor product of H¥¢ and the cyclotomic Iwasawa algebra Z,[[I']]. By this, H%°
is isomorphic to HEI[[T']] and is a local domain, finite flat over Z,[[[' x I']]. Let ¥ be the finite

set of places of Q consisting of {oco} and the primes dividing Np. In his celebrated paper [Hid86b],
Hida constructs a large continuous Galois representation p : Gg — AutHr}o(Tf(o)) unramified
outside of X, where 7, }0) is a finitely generated torsion-free module of generic rank two over H'%:°.
The representation Tf(o) is presented as T‘}rd(@ZP[[F]](%), where ']T‘}rd is a finitely generated torsion-
free module of generic rank two over Hofrd with continuous Gg-action. The trace of the Frobenius

element Fr; € Gg acting on ’]I‘Ofrd is equal to the Fourier coefficient A;(F) of F for every prime
[ ¢ ¥. Let 9 be the maximal ideal of H'+° and let F be a finite residue field H»°/9. The residual

representation of 7. F(O) is defined to be a rank-two F-module with semi-simple Gg-action where the
trace of Fr; is congruent to A;(F) modulo 9 for every prime [ ¢ ¥. Such residual representation
of T]go) is always known to exist by Hida (cf. [MW86, §9]) and is unique up to isomorphism by
the Chebotarev density theorem. Throughout the paper, we always assume the following condition
unless otherwise stated.

)

CoNDITION (Ir). The residual representation of Tf(o is an irreducible Gg-module.

Condition (Ir) implies that T¥? (respectively Tf(o)) is free of rank two over H¥Y (respectively
H’:°). Let us recall the following definition.

DEFINITION 2.1. Let w be an integer. A point J € Homg, (Hofrd,@p) is called an arithmetic point of
weight w if there exists an open subgroup U of I such that the restriction J|y : U — Z,[[I"]]*
(HgEd)* =, @; sends u to k¥ (u) for any u € U. We denote by Xitn(HFE?) the set of arithmetic

points of Hofrd. For an arithmetic point J of HE4, we will denote by w(J) the weight of 3. We define
a subset :{arith(H%d)>0 C %arith(Hofrd) to be :{arith(Hoj_—rd)>0 = {j € %arith(Hofrd)‘w(j) > O}

—

We briefly recall the properties of 7, F(O) (cf. [Hid86b, Wil88]).

. . . . (0)
Basic property of nearly ordinary Hida deformations 7
Assume Condition (Ir). The deformation 7, ]S_o) (respectively T%4) has the following properties.

(1) For each J € Xuth(HE?)>0, there exists a normalized eigen-cuspform f5 of weight w(J) +
2 and the quotient T°/Ker(3)T34 = OF? with Oy := H$4/Ker(J) is isomorphic to T,
where T, is the unique lattice of Deligne’s Galois representation associated to f5 (cf. [Del69]).
Thus, Tf(o)/ (Ker(3),vy — x’ (fy))’ff(o) is isomorphic to Tf, ® x’ for each j € Z and each J €
Xarith (HEY) >0.
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2) As a representation of the decomposition group Gg, C Gg at p, 7. O has a filtration 0 —
Qp Q F

F+Tf(0) — Tf(o) — F T F(O) — 0 such that the graded pieces F+Tf(0) and F_Tf(o) are free of
rank one over H':°.

(3) Further, F+Tf(0) is isomorphic to Z,[[I'])(¥)®z, HEY(@) as a Gg,-module, where & is an unram-
ified character Gg, — (H$¥)* such that A,(F) = a(Frob,) € HEY satisfies an interpolation
property J(A,(F)) = a,(fy) for each T € Xapien(HEY) 50 and HE (@) is a rank-one free HE-
module on which Gg, acts via the character a.

Let w be the Teichmiiller character. We will study the twist Tf(i) = T}‘” ® W' for a fixed integer

0 < i < p—2, which we call a nearly ordinary deformation. From now on, we will denote Tf(z) by T
if this causes no possibility of confusion. We would like to study ‘the Iwasawa theory for 7°. The
space of p-adic characters of H'z° is naturally viewed as a rigid analytic space, finite flat over a two-
dimensional open unit ball in (szv' Hence, 7 corresponds to a family of Galois representations over a
two-dimensional rigid space. Each ‘hypersurface’” of the space of characters of H'%:° is a rigid space
of dimension one, which also interests us from a view point of ‘the Iwasawa theory for deformation
spaces’. Among infinitely many hypersurfaces, we study the following four types of hypersurfaces
Ty =T /JT for height one primes J of H'x° in particular.

(a) Cyclotomic deformations of ordinary cuspforms. We have 71 = Ty g ®z, Zp[[I']](X) for a
cuspform fy5 ® w' of weight & = w(J) + 2, which is free of rank two over Oj[[I']]. Here,
Je %arith(Hofrd)>o and [ is a height-one ideal Ker(J)H:® of H%°. This is the case called
‘the cyclotomic deformation” and has been developed by many people since Mazur [Maz72]
started the Iwasawa theory for the cyclotomic deformation of an ordinary elliptic curve (see,
for example, [Gre87, Gre99, MTT86]).

(b) Ordinary deformation twisted by x. We have, 7(,_(y)) = ’]T‘}_—rd ® xw', which is free of rank two
over H‘}rd. For each J € %arlth(H%d)m, T(y—x (7)) /Ker(3)T(y—y(y)) is isomorphic to Ty, ® xw'.
Hence, 7(y_y()) is the interpolation of the Z p(1)-twists of the Galois representations for fy ®

w1 when J varies in :{arlth(H}‘ )>0-

(c) Ordinary deformation twisted by Zy[[T))(X)®x. We have 7'(7: wv)y) = TEd ®z, (] Zp[T(x)®
xw’, which is free of rank two over H%Y. Note that 7 = T34®y, Z,[[T]](X)®w’ and that the ten-
sor product is taken through the canonical isomorphism I' — I". For each J € Xith (H‘}rdbo,
Tiy—n(y)y)/ Ker(3)T(y—y(y1)yr) 18 isomorphic to Ty, @ O+, Hencg, T(“Y—f(v/) is the inter-
polation of Z(1)®“’(3)+1—twis‘cs of the Galois representations of fy ® w'~1=%()
%arith (H(}-'rd)EO-

(d) One-variable deformation at the diagonal line. We have

~1 i
Toe-r2ryyy = T @z, 00 Zpl[TN(R2) @ X',

which is free of rank two over Hord Similarly as above, 7(,2_,2(,),) is the interpolation of

v')
when J varies in

Z(1)® k(3)/2_twists of the Galois representations of fy®w' *(@)/2 when J runs arithmetic points
of H¥! with k(J) € 2Z>0, where k(J) = w(J) + 2 is the weight of the cuspform f. Note that
the representations with the above twist correspond to the special value of L(f5 ® wi—k()/2, s)
at the center of the functional equations when J varies.

Some of the Iwasawa theoretic properties of 7; are deduced by the method of ‘specialization’
from those of 7 (see §5 for such a technique and also § 7 for results and conjectures in these cases).

To introduce our main result, we recall the definition of the Euler system in our situation.

DEFINITION 2.2. Let 7*(1) be the Kummer dual Homg.o (7', H3°) ®z, Z,(1) of 7. An Euler system
for 7%(1) is a collection of cohomology classes {C(r) € H YQ(pr), T*(1))} where 7 runs the set of
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all square-free natural numbers prime to the tame conductor /N such that the following properties
are satisfied.
(1) The element C(r) is unramified outside primes dividing N.

(2) The norm Normgy,,,)/Q(u.)C(rq) is equal to P (Frob,)C(r), where P,(X) € H%°[X] is a poly-
nomial det(1 —Frob,X;7) and Frob, is a (conjugacy class of) geometric Frobenius element at
q in the Galois group Gal(Q(u,)/Q).

In the rest of this section, we will recall the results for the IMC for 7 and the specializations
of 7. One of the results in this paper is Theorem 6.11 where we give an Euler system {Z¥i(r) €
HY(Q(ur), T*(1))}, which is an ‘optimal’ modification of Beilinson-Kato elements. On the other
hand, we constructed the Coleman map Z; : H/lf(Qp,T*(l)) — H%° (cf. [Och03, Theorem 3.13])
which is recalled in this paper at Theorem 6.3. Combining these results, we have the following result
(see §6 for some of the notation).

THEOREM 1 (Corollary 6.17). Let i be an integer such that 0 < i < p — 2. We assume Condition
(Ir) for a nearly ordinary deformation T = T}”. Assume also the following condition.

ConpIiTION (Nor). H':° is integrally closed in its fraction field Frac(H'%°).
We have the Euler system {ZX\(r) € HY(Q(u,),T*(1))} whose first layer ZXi(1) satisfies the
equality
lengthyp.e (H ] (Qp, T*(1)) /loc; (25 (1)) HE): = ordi( Ly (7))
for each height-one prime [ C H%°, where L;fi(T ) is Kitagawa’s two-variable p-adic L-function (see

[Kit94] and also Theorem 6.7 for the interpolation property of Kitagawa’s p-adic L-function) and
H“f"[ is the discrete valuation ring obtained by localizing H'z° at [.

Remark 2.3. In the above theorem, the condition that H'° is integrally closed is necessary only to
assure that the image of Z; is contained in H’+°. Without this condition, the image of Z4 is in the
fraction field Frac(H%®) of H%® and the localization Z4(C); of Z4(C) is contained in H% for each
height-one prime [ C H%°. All interpolation properties as above hold without this condition (see
the arguments in [Och03, §5]).

On the other hand, we associate the Selmer group Sely to 7. Let
A=T ®HrJAT-o HOIHZP( %0, Qp/Zp).

We define Selr as a subgroup of H*(Qyx/Q, A) (see §4.3 for the precise definition). The Pontryagin
dual (Sel7)Y of Selr is a finitely generated torsion H:°-module (cf. Proposition 4.9). We propose
the following conjecture.

CONJECTURE 2.4 (Two-variable IMC). We assume Condition (Ir). We have the equality
leng‘chHr%oI(SelT)[v = ord[(Lgi(T))
for each height-one prime [ of H°.

In [Och05], we proved that the ideal associated to the (localization of the) Beilinson-Kato
element for 7 is contained in the characteristic ideal of (Sely)Y. We restate the result, but with
slight modification of the assumptions (see Remark 2.5 below).

THEOREM 2. We assume that H'%° is isomorphic to a two-variable power series algebra O[[X, X5]]
over the ring of the integers O of a certain finite extension of Q. Let us assume Condition (Ir) for

T = ’Z}g) and the existence of the elements T € Go(u,.) and 7' € Gq which satisfy the following
properties.
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(i) The image of T under the representation Gg — Aut(7) = GLy(H%°) has a presentation

(é 1? ) under certain choice of basis T = (H:°)®2, where P; is a non-zero element of H'%°.

(ii) The element 7" € Gg acts on T /INT via the multiplication by —1.
Then there exists an integer m > 0 such that we have the following inequality for each height-one
prime [ of Hz°:

lengthHr}ﬁ(Sely);’ < lengthH%(H/f(ijT*(l))/loc/f(Z)H}O)[ + ord((P/").

Remark 2.5. In [Och05], we assumed the following condition (ii’) in place of the above condition (ii):
(ii') The element 7" € G acts on 7 via the multiplication by —1.

However, conditions (ii) and (ii’) are equivalent to each other by the following lemma.

LEMMA 2.6. Let R be a complete Noetherian local ring whose residue field R/9 is a finite field
of characteristic p > 2 and let G be a subgroup of GLa(R). We denote by G C GLa(R/9M) the
image of G under the reduction map GLa(R) — GLo(R/9M). Then G contains a scalar matrix of
multiplication by —1 if and only if G contains the multiplication by —1.

We omit the proof of this rather elementary lemma, but we remark that condition (ii) is easier
to check than condition (ii’) (cf. §9 and Claim 9.11).

Finally, our results combining Theorems 1 and 2 are summarized as follows.

THEOREM 3. Let us assume Condition (Ir). Assume further that H'%° is isomorphic to a two-variable
power series algebra O[[ X1, Xs]]. Then the following hold.

(i) The Pontryagin dual (Sely)" of Selr is a finitely generated torsion H'x°-module.

(ii) Suppose that we have elements T € Gg;,,) and 7' € Gq satisfying conditions (i) and (ii) in
Theorem 2. Then, there exists an integer m such that we have the following inequality for each
height-one prime [ of H':°:

lengthH%o[(SelT)P/ < ordHr}ﬁ(L?i(T)) + ord((P").

So far, we have given results on the two-variable IMC for nearly ordinary deformations 7. The
above results are applied to the Iwasawa theory for one-variable specializations 7 /J7 for various
height-one ideals J of H':° as cases (a), (b), (c) and (d) given earlier in this section. In §4.2,
the Selmer group for 7 /J7 is studied using Bloch-Kato’s method or Greenberg’s method and we
compare two different definitions. A technique of specialization from two variables to one variable
is discussed in §5.1. Based on these preparations, we discuss the one-variable Iwasawa theory for
the deformations (a), (b), (¢) and (d) above. For example, by applying Lemma 7.2 to case (a), we
have the following corollary to Theorem 3 (see Corollary 7.5).

COROLLARY 2.7. Assume the same conditions as those in Theorem 2 (and certain technical
assumptions given in Corollary 7.5). Then, the following statements are equivalent.

(1) The two-variable IMC holds for T .

(2) The cyclotomic IMC (cf. Conjecture 7.4) formulated by Mazur—Tate-Teitelbaum holds for
every specialization fy of F with J € Z{arith(H‘)frd) >0-

(3) There exists an Jy € %arith(HOfrd)go such that the cyclotomic IMC holds for f,.

We do not give the proof of this corollary in this section, but it will be given in § 7. Suppose that

Fand T =T, F(i) satisfy the assumption for the corollary (see Remark 7.6 for some of the explicit
sufficient conditions for 7 to satisfy the condition). By applying the implication (3) = (2) of
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Corollary 2.7, we show that Conjecture 7.4 holds for every specialization fy of F with w(J) > 0
once the cyclotomic IMC holds for a certain specialization f3, in F with w(Jp) > 0. Thus, we have
an infinite family of modular forms { fj}jexarith(Hofrd)>O where the cyclotomic IMC holds for every
member of the family. A recent paper [EPWO06] also proves a similar result that the cyclotomic IMC
holds for a family of infinite { fj}jexarith(Hofrd)>O obtained as specializations of a Hida deformation.
Their method of the proof is not related to the two-variable IMC as in this paper, but they apply a
clever use of the congruence developed by Greenberg and Vatsal [GV00]. For this reason, they assume
that the vanishing of the cyclotomic Iwasawa p-invariant p(fs,) is zero for a certain specialization
f3,- The advantage of our result in Corollary 2.7 is that we do not have to assume the condition
N(f 30) = 0.

Another thing we should remark on is that Skinner and Urban recently announced the cyclotomic
IMC for ordinary eigen-cuspforms f with certain technical conditions, assuming the conjecture on
the existence of Galois representations for modular forms on U(2,2). By combining their result with
the implication (3) == (1) of Corollary 2.7, we prove the two-variable IMC (cf. Conjecture 2.4)
under certain conditions.

As far as we know, the one-variable IMC in cases (b), (¢) and (d) is not known and has not been
formulated previously. Based on the preparation in §§4, 5 and 6, we formulate these conjectures in
§ 7. We refer the reader to §7 for the formulation of the conjectures and our results.

Since only a few things are known about the two-variable Iwasawa theory, we would like explicit
examples which help us to develop our future perspective. As an attempt, we study the case of
Ramanujan’s cuspform A = ¢[[,-,(1 - q")** € S12(SLy(Z)). For each prime number p such that
ptap(A), we have a unique A-adic newform F(A) which contains A at weight 12. For each integer

i with 0 <7 < p— 2, we have a nearly ordinary deformation Tf(i()A).

PROPOSITION 2.8. Let p > 11 be a prime number with p { a,(A). Assume that 1 < ¢ < 11 and

» <10000. Let T be T}"()A).
(1

Except for (p,i) = (11,1), (23,1) and (691,1), we have Sel;r = 0 and L}fi(’f) is a unit.
(2) When p = 11 and i = 1, Sely is isomorphic to Zy[[l' x I']]/(v? — k?(7/)y) and we have the
equality of ideal (v* — k*(v')Y') = (Ly{(T)).

Remark 2.9. Thus, in particular, the two-variable IMC of A holds for all p < 10000 and 0 <7 < 10
except for (p,i) = (23,1) and (p,7) = (691, 1). For (p,i) = (23, 1), it is easy to see that L;fi(’f) is not
a unit by the interpolation property in Theorem 6.7 since a,(A) — 1 = 0 modulo 23. The image of
modulo 23 representation for A is dihedral and thus condition (ii) in Theorem 2 is not satisfied. It is
our future project to generalize the results in [Och05] so that Theorem 2 is true in the case p = 23.
For p = 691, the residual representation is no longer irreducible (Condition (Ir) is not satisfied) and
the choice of lattice 7 is not unique for a given F. We will treat the IMC for residually reducible
deformations in a forthcoming paper.

)
)

3. Local monodromy on ']I“j’,f-“d

For later use in §§4, 5 and 7, we study the action pz of the inertia group I, at primes v|N acting
on the Hida deformation ']I‘%d associated to a A-adic newform F of tame conductor N introduced
in §2. We will keep the notation of the previous section. Throughout the paper, we denote by X
the set of primes of Q which consists of finite primes dividing Np and the infinite prime {oco}. The
result of this section is summarized in Theorem 3.3. The reader who is mainly interested in the
Selmer group or in the p-adic L-function can skip this section by admitting Theorem 3.3.

We prepare the following lemma.
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LEMMA 3.1. Let G C AutHofrd (']T‘}rd) be a finite subgroup. For each J € %arith(H%d)go, G is mapped
into Aute, (T't,) under the specialization AutH?,_fd (T%Y) — Auto, (T}, ).

Proof. By fixing a basis of ']I“}rd, we have isomorphisms ']I‘%d o (]HI‘}rd)692 and Ty, = (O5)®2. Suppose
that there exists an element g € G which is mapped to a trivial element on Autp, (T,) = GL2(O5).
Since the order of g is finite, by extending the coefficients of ]H[O}-rd if necessary, we may assume that
g is conjugate to a diagonal matrix (3 3/) € GLQ(HOfrd) with v and v’ roots of unity. This completes

the proof since the roots of unity in (H%4)* are disjoint from Ker[(HE)* — (O05)*]. O

Since v € ¥\ {p, 00}, the action of I, on ’]T‘}_-rd is non-trivial. By the above lemma, we consider
the following case.

(A) The image pr(I,) in AutH?,_fd (T%4) is a finite subgroup.

In this case, the action of I, on (T$¥4)* = Homyora (T%4, H%Y) also factors through a finite quotient

of I,,. Hence there exist a finite flat extension O of Z, contained in Hofrd and a finite type O-module

M with rankg,.0) (M @0 Frac(O)) < 1 such that the coinvariant quotient ((T%4)*)y, is isomorphic
to M ®o Hofrd.

Next, we discuss the following case.
(B) The image pr(I,) in AutH?,_fd (T%4) is an infinite subgroup.

In this case, it is not difficult to see that there exists an arithmetic point J € %arith(Hg_fd) >0 such
that the action of I, on T, = T¢I /Ker(J)T%? does not factor through a finite quotient of I,,. Let
us fix one such Jy € %arith(Hg_fd) >0 for a while. We note that the action of I, on Tfﬁo can be infinite
only when the local automorphic representation m,(Jg) of GL2(Q,) associated to f5, is a special
representation. Hence the local Galois representation Gg, — GL2(Oj3) for fs, is represented by
a matrix (g ;/) such that x|7, = x'|r, and x’x~' = | |*, where | | is the absolute value character
Gg, — G&E — QF — | |- Since a finite-order character of G, is always the localization of a
finite-order character of Gg, we have a Dirichlet character 79 with v-primary conductor such that
the action of I, on Tfﬂo XNy = Tfﬂo @no 1S unipotent. Let us now recall the structure on the inertia
group I,. The group I, has the filtration P C @ C I, such that P is the maximal pro-v subgroup
of I, and I,,/Q is isomorphic to Z,. Since @}/P is isomorphic to Hl;«év,p Z;, @ has no non-trivial
p-primary subquotient. This immediately implies the following lemma.

LEMMA 3.2. Let v € ¥\ {p, o0}.
(1) The image pr(Q) is a finite subgroup of AutHo]__rd (T%9).

(2) For each J € Xapien(H¥Y)>0, the group pr(Q) is mapped into Auto,(Ty,) under the special-
ization AutH?;d (T%Y) — Auto, (T}, ).

Proof. For the proof, we note that the prime-to-p part of AutHofrd (']I“}rd) is finite and that the kernel
of AutH?;d (T%4) — Auto, (T},) is a pro-p group. O

Since the action of I, on T}, gy, is unipotent, the subgroup @ acts trivially on T, gy,. By
Lemma 3.2, @ acts trivially on ’]T‘}_—rd ®@Mny = Tofr%m, where F ® 1 is the A-adic newform obtained as
the twist of F by 1. Let  be a topological generator of I,,/Q = Z,. By assumption, the action of v on

T}, @n, is represented by a non-trivial unipotent matrix. Let (T%4®1n0)* be the semi-simplification

as an [,-module. Then, the action of v on (’]I‘O]_-r(%m)SS = (T%4 ® 10)* is represented by a matrix

(8 C?/) with a,a’ € (Hofrd)x. If a or a’ is not a root of unity, there exists J € Z{arith(Hoj_—rd)>0 such that

the action of I, on (’]I‘O]_-r(dmo)SS /Ker(ﬁ)(’]1“‘)]_5((18770)SS = (T't,)® is of infinite order. It is impossible for a
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representation of I, associated to a cuspform. Hence, a and a’ are roots of unity. Since a and a’ are
congruent to 1 modulo Ker(Jy), we show that a = o’ = 1 by a similar discussion as in Lemma 3.1 for

(']I“}r%n )*. Thus, the action of v on ']I‘Ofr%no is represented by a unipotent matrix (%) € GLy(H%EY).

Recall that the v-order of the tame conductor of f3g,, is constant when J varies in %arith(Hofrd)>o
by applying [Hid86a, Corollary 3.7] to F ® ng. Thus, J(b) are not zero for every J € X, itn (H‘}rdbo.
We conclude that ((T%4)*);, is isomorphic to HE/(1 — u) & HEY/(b, 1 — u), where u is a root of
unity which generates the group of the values of 7.

Summarizing the above argument, we have the following theorem.

THEOREM 3.3. Let v € ¥\ {p, 0}.

(1) If the image of I,, on AutHo}_rd (T%4) is finite, there exist a finite flat extension O of Z,, contained
in Hofrd and a finite type O-module M with rankp,co)(M ®0 Frac(O)) < 1 such that the
coinvariant quotient ((T$9)*);, is isomorphic to M @ HEI.

(2) If the image of I, on AutHord (T%Y) is infinite, ((T#9)*)s, is isomorphic to HE/(1 — u) &
HY4/(b,1 — u) where b is an element in HFY such that J(b) # 0 for every J € Xapien(HEY) >0
and u is a certain root of unity in (HE?)* (u = 1 is possible).

The following remark explains Theorem 3.3 from the theory of admissible representations and
the local Langlands correspondence for GLo.

Remark 3.4. In case (A) of this section, the admissible representation m,(J) of GL2(Q),) correspond-

ing to f5 is a supercuspidal representation or a principal series at each J € %arith(H%d)go. Further, if

7 (J) is a supercuspidal representation (respectively a principal series) at one of J € Z{arlth(Hg_fd) >0,
7 (J) are supercuspidal representations (respectively a principal serles) at every J € Xpien (H ]_fd)>0.
In case (B), m,(J) is a special representation at each J € Z{amh(H}- )>0-

4. Selmer groups for Galois deformations

In this section, we review the definition of Selmer groups for a two-variable nearly ordinary defor-

mation 7 = 7. ]@ and for its various specializations 7 /A7 by ideals 2 C H'%°. We also give some
fundamental properties on these Selmer groups.

Let A be the discrete Galois representation 7 ®pm.c Homg, (H%°, Qp/Zp). We denote by Qx; the
maximal Galois extension of Q which is unramified outside .

4.1 Selmer groups over discrete valuation rings

T
ﬁk—2(,ylp ))
be a height-two ideal of H’z°. We denote by A(J *) the Ag]; )_torsion part A[A S )] of A, which is
identified with (7°/ Agtk T) ®z, Qp/Zy. Note the following.

Let (j, k) be a pair of integers satisfying 1 < j < k—1 and let A(J k)~ = (" —xI(v""),~"? P

(1) T/A MIT is free of finite rank over Ly,.

(2) The p-adic representation (T/A(] k) T)®z,Qyp is isomorphic to P (Vs xw") @z, Zp[L /TP|(X),
where f runs ordinary eigen-cuspforms of weight & for I'y (Np ) such that the residual Tepresen-
tation for f are isomorphic to that of 7 ®@ w™. Here, Z,[I'/TP"](X) is a free Z,[I'/T?° ]-module
of rank one on which Gg acts via the tautological character Y : Gg —» ['/T?" «— Z,[['/TP"]*

We recall that i is a fixed integer which is implicitly contained in the definition of 7 = 7. }”.
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For any Gal(Qyx;/Q)-module T" which is free of finite rank over Z,, Selmer groups are defined as a
subgroup of H'(Qx/Q, A), where A = T ®z, Qp/Zy. Once we fix a local condition H}(Q,,A) C
HY(Q,, A) at each v € £\ {oc}, we define a Selmer group Sel% as follows (? is BK (Bloch-Kato) or
Gr (Greenberg)):

1
Sel. = Ker | HY(Qx/Q, A) — H%]. (3)
vex 7 v

For v € ¥\ {p, 00}, one of the local conditions is given by the unramified part
Hyy(Qu, A) = Ker[H' (Qu, A) — H' (L, A)),
where [, is the inertia subgroup at v. Let V =T ®z, Q,. We define ‘the finite part’:
H(Qu, A) = pr(Hy (Qu, V),

where pr : H'(Q,,V) — H'(Q,, A) is the map induced by the projection map V —» A = V/T of
Gg,-modules and H. (Q,,V) = Ker[H'(Q,,V) — H(1,,V)].

We also give local conditions at p.
(1) Greenberg’s local condition H{, (Q,, A) C H'(Q,, A) is defined as
H(l}r(Qp’A) = Ker[Hl(Qp, A) — Hl(Iva_A)],
where F~ A is a Gg,-module which is defined to be the quotient A/F*A.
(2) Bloch-Kato defined H}(QP,A), called ‘the finite part’, as H}(Qp, A) = pr(H}(Qp, V), where
H}(Qp, V) = Ker[H'(Qp, V) — H'(Q, V ® Barys)),
by using the ring of p-adic periods Beys defined by Fontaine (cf. [Fon94]).

Selmer groups Sel?X and Sel$" according to [BK90] and [Gre87] are defined by the following condi-
tion (cf. (3)).

SelZK Sel$r
H}(Qy, A) for ve X\ {p,oo} H} H}
H3(Qyp, A) Hp(Qp, A)  HE,(Qp, A)

Recall that we have the following proposition (cf. [Och03, §4]).

PROPOSITION 4.1. Let us assume that 1 < j < k— 1. Then H}(Qp,Agﬁk)) is the maximal divisible
subgroup of H{, (Qp, Ag{;k)) for each pair of integers (s,t) > (0,0).

We have the following corollary of Proposition 4.1.
)

COROLLARY 4.2. Let us assume that 1 < j < k — 1. We denote by Ts(]tk the representation

T/Ag{;k)’f, which is free of finite rank over Z,, for each (s,t) > (0,0). Then Selggyk) is a subgroup
s,t

of Selgfj,k) with finite index.
s,t

Remark 4.3. Let T' be a Gg-module which is a quotient 7 /J7 by a height-two ideal (not necessarily
a prime ideal) J C H’%°. Assume that there is a pair (j, k) with 1 < j < k—1 such that 7" is dominated

by T, S(th) for sufficiently large s,t. Since T is free of finite rank over Z,, we define SequwK as in the

previous subsection. We also define Sel$* by means of the Gg,-stable filtration F*T induced from
F*7. Then, the same results as Proposition 4.1 and Corollary 4.2 hold.
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4.2 Selmer groups over one-variable Iwasawa algebras
In this subsection, we give Selmer groups for specializations 7y = 7 /J7T at height-one primes J of
H’:° in cases (a), (b), (c¢) and (d) in §2. Recall that J is given as follows in each case:

(a) Jis I = Ker(J)H%® for J € Xanith (HEY)>0;

(b) Jis (v = x(7)) € HF®;

(c) Jis (v — (y)y) C HE®

(d) Jis (v = £*(7)y) € HE®.
In case (a), H%°/JH%® is isomorphic to O3[[I']]. In cases (b), (c) and (d), H}°/JH%° is isomorphic
to H‘}rd. The Greenberg-type Selmer group Sel?’r for 77 is defined by

(G E A oy H(QuAl)

Gr __ er 1 — oL (O. AL
Sely" = Ker| H (Qx/Q, A[J]) HL (Q,, F-A[J]) }H&r(@U’A[J])

veEX\{p,00
In each of the above four cases, let us take a system of height-one ideals (not necessarily prime
ideals) {H, C H}°}y>10f H° with the following properties.

(1) We have H, D H, 4 for each u > 1 and ﬂu>1 H,=0.

(2) H%°/(J, H,) is finite flat over Z, for each u > 1.
For each u > 1, Sel%uHu)T is defined as in §4.1 by using the filtration F*(7/(J, H,)T) :=
F*7/(J, H,)F*T. Further, Sel?’r is isomorphic to li_n>1u>1 Sel%;(LLHu)T by definition. On the other
hand, the Bloch—-Kato-type Selmer group for 77 is defined via a certain system of height-one ideals

{H, C H}°},>1 in H%° and might depend on the choice a priori. For a fixed natural number, we
will make the following choice of a system {H, },>1 of height-one ideals:

{{Hs}b’>l = {(I)gj) = (’ypi_ Xj(’yps))}tb’?l in case (a),
{Hibisr = {0 = (/7" — kF2("))}io1 in case (b), () or (d).

We define the Bloch—Kato-type Selmer group as follows:

Sel?K’(j )= @sse@/{( Je9)T in case (a),
BK,(k . 1
Selj * = hi>ntSel'];)};(J,\I/,gk))'Z’ mn case (b)v (C) or (d)

(In case (a), we assume that 1 < j < w(J) + 1.)

Let Div(M) be the maximal divisible subgroup for an abelian group M. We have the following
proposition.

PROPOSITION 4.4. We assume Condition (Ir) for T = Tf(i) with 0 < ¢ < p—2. Let J be a height-one

ideal of H%° determined at the beginning of § 4.2 according to which of the cases (a), (b), (c) and

(d) we consider. Then, we have the following.

(1) Sel]jK’(l) is a Hi°-submodule of Sel§" (I stands for j or k depending on which J we take). The
Pontryagin dual (Sel§")Y of Sel§" is a finitely generated H}°/.J-module. (Sel§*) is torsion

over H'%°/J except in case (d) (cf. Remark 4.5).
(2) In case (a) with J = Ker(J)H’:°, we have

(O5)Y if F A £ 0 and a,(f5) =1,

Sel?r/SeI?K’(j) = .
0 if - AP =0 or ay(fy) # 1.
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We have
self,;r/Sel]?K’(k) ~ 1Y, in cases (b) and (c),
Sel?r/Sel]?K’(k) — Wy in cases (d),

where

1 (k)
Wy = tim, Gl ALY Doy (771050 g )
DlV(HGr(Qpa -A[Ja \Ilt ])) veX\{p,00}

Further, the component of Wj at each prime is given as follows.

(i) For each v € ¥\ {p, <}, we have
(((T$Y*) 1, © x~tw )% in case (b),
(T7)r,) % = ¢ (TEY)1, @z, 10 Zp[[F]](i_ll) ®x w9 in case (c),
((TE)*) 1, @z,qrm Zp[[TN(X2) © x'w ™) in case (d).

(ii) We have

i (@ AL )
' Div(HE, QAL )
When i # 1 is satisfied or when ay(fy) # 1 are satisfied for every J € %arith(H(}.‘rd)>0; we

— Hy (Qp, A[J]).-

have
1 (k)
iy, e B ALE D o ) (g, B )
DlV(HGr(QpaA[tL\Pt 1)
We have
(B2 (+/ = D)[Ap(F) = 1))"  in cases (b) and (d)
H(Qp FALT)) with - A[]’> # 0,
0 otherwise.
Remark 4.5.

(1)
(2)

In case (d), (Sel§")Y is not necessarily a torsion H¥4-module. We refer the reader to §7 for

more information.

Let us note that a,(fy) = 1 happens only when w(J) = 0 (we show this by studying the
complex absolute value of a,(f3); see, for example, [Ogg69]). In case (a), the difference in the
second statement is well-known to the experts as ‘trivial zero’ phenomena, at least when f5 is
associated to an elliptic curve.

The group (((7)r, )@ )Hofrd_tor is shown to be zero if certain conditions are satisfied in case (B)
of §3. In fact, we have an extension as follows in case (B):

0 — HE (R xw) — (TF)")s, — HEUR M)/ (6B RM2) — 0,
where 1 is a Dirichlet character and b € Hofrd is a non-zero element such that the ideal (b) is

prime to every height-one ideal @i’“) when k£ > 2 and ¢ > 0 varies. Hence, we have

(HERV2x pw™) /(0 HEFU (XX pw )% in case (b),
((TF)r) % Dpggpa_gor = 4 (HFA (X 2x " pw™) /(D) HE (X 2x 1w ™))% in case (o),
(HF (™ pw ™) /(0)HGE (x yw ™)) 5o in case (d).

We see that (((77)1,)% )H?_fd_tor is trivial when 1) = 1 and case (c) is satisfied or when case (d)

is satisfied. We expect that (((7}) IU)G@U)HO;d_tor is trivial in other cases.
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Proof of Proposition 4.4. Recall that (Selg’r)v is known to be a finitely generated torsion module
over O3[[I']] in case (a) by results of Kato and Rubin (cf. [Kat04, Rub91]). In cases (b) and (c),

it is not difficult to see that Sel;;_; vy Sel?r[\llgk)] has finite kernel and cokernel for k > 3

(see Proposition 5.5 and Remark 5.6 and note that k& = w(J) + 2 there). If & > 3, Selg’_;(mwﬁ is
»Et

finite by Kato and Rubin. These facts imply that (Selg;r)v/\ﬂgk)(Sel?r)v is finite. Thus, (Sel§")Y is a
torsion H'%:°/J = Hofrd—module. This completes the proof of the first assertion.

For the proof of the second and the third assertions, the following commutative diagram will
play an important role.

locS¥ . Hl(@v, AlJ, Hy))
- lim
oD BT, AL L)

QA Q.. AL)
Hér(@?’ A[']]) veEX\{p,00} H&r(vi'A[J])

As we will see in Theorem 4.10, the map loc5® is surjective in cases (a), (b) and (c). By the snake
lemma, we have

0 —=Sel 7 — H'(Qs/Q, ALJ])

0 Sel§" H'(Qs/Q, AlJ]) —

(4)

Sel?r/Selle’(k) — Ker(yy) in case (d).
Let us denote Ker(v;) by W;. By Proposition 4.1,

H (@, AT, H) L HL(Qu AL L)
U Div(H}; (Qu, AL, Hu]))

{Sel?r/Sel]jK’(k) = Ker(ys) in cases (a), (b) and (c),

veEX\{p,00}

~ Jim H(l}r(vaA[‘]? Hu]) ® @ lim (A[Jv HU]IU)GQu
~ uDiv(HE,(Qp, A[J, Hy))) —uDiv((A[J, Hu)")Gq, )

veX\{p,00}

From (4), it suffices to calculate W in each of cases (a), (b), (¢) and (d). For the rest of the proof
of Proposition 4.4, we restrict ourselves only to case (a). We believe that this restriction is better
to keep the proof at a reasonable length. The proof is basically the same in the other cases (b),
(c) and (d). So we will also avoid unnecessarily complicated notation caused by unified treatment
which covers every case.

In case (a), with J = Ker(J)H%°, v and H, correspond to s and oY) respectively for j a fixed
number with 1 < j < w(J) 4 1). The Pontryagin dual of

(AL, 29 7) g,
1m A
U Div((AL, 891 gy, )

in the term of W outside p is @S(((Tj)lv/q)gj)(Tj)IU)G@v )Z,-tor at each v € ¥\ {p,o00}, where
(+)Z,-tor means the torsion-part as a Z,-module and 7 = Hoerﬁo 17(T5, %/ J). We have

(T7) 1) @ge sy sor = (TF,)1) 20000 @2, Zp[[TN(XTH) (5)

since 77 is isomorphic to T} ®z, Zp|[T]N(X™1), where T}, means Homg, (Ty,,Zy). In (5),

((T},)1,)z,-tor 1s a finite abelian group and the action of Gg, on Zp/(PM)[IT])(X™1) is not finite
for any n. Hence, (((77)1,) @, J)_tor)G@v must be zero. The proof for the contribution of local
terms outside p in case (a) is completed. In cases (b), (¢) and (d), we also calculate the contribution

outside p by using results in § 3, but we omit the proof for the reason mentioned earlier and we only
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refer the reader to Theorem 3.3 for the structure of (7)z, (note that (7;)z, has an isomorphism
with ((T°)*);, over HE which is not necessarily compatible as a Gg,-module).

Next, we discuss the group
b HE(Qo AL 2P
Div(H, (Qp, Al Y)))
which is the p-part of W;. By definition, we have the exact sequence

O - H(l}r(QpaA[J7 q)g])]) - Hl(@paA[J7 q)g])]) . Hl(IpaF A[ (I)(] ])G@p’

where the latter map a, is decomposed as follows for each s:
HY(Q,p, AL, 09)]) 25 HYQ,, F~A[J, @V)]) 25 HY(1,, F~A[J, ®)]) %,
Hence, we have the following extension:

lim Ker(al) o lim HL (Qp, A[J, @gj)]) o lim Ker(a) NIm(al)
DN Ker(@) i (1 (0, A,V e Div(Ker(a?) 1 Im(al))

The first group

Ker(a})
Div(Ker(a’,))
is a quotient of
HY(Q,, F+A[J,89))
Div(H(Q,, F+A[J, 8))))

and we have
H'(Q, Ft A7, 9¢)
Div(H!(Q,, F+A[J,d]))

=~ HA(Qp, F* T /Y F 7))z, tor

= ((FT5(=1))aq, /Y (FTT5(=1))g, )z,tor-
In case (a) with J = Ker(J)H°, we have
FTT5(=1) = O5[[I]J(«" ' X7 'X) @0, Ox(az),

where O5[[I']](w""'x7'X) is a free O3[[I']]-module of rank one on which Gg, acts via w'~tx "1y
and Oy(ay) is a free Oz-module of rank one on which G, acts via the unramified character ay :
Gq, — OF given by as(Frob,) = ap(f5). Since I, acts on FFT;(—1)/MFtT;(—1) via w'~t, we
have

(F+7J(_1))GQP/q>g{>(F+TJ(—1))GQP —0 i#1,

(FHT5(~1))aq, /2 (FH T (~1))ay, = O5/(ap(fs) = 1) i=1.

We recall the following lemma.

LEMMA 4.6. Let M be a finite H':°/.J-module. Then we have lim (M/@gj)M) = 0 (note that H%°/J
—u
is isomorphic to O3[[[']]).

We omit the proof of Lemma 4.6 and we only refer the reader to [Och03, Lemma 4.7]. We prove
a similar result for modules over a two-variable Iwasawa algebra there, but the proof is the same as
the case of a one-variable Iwasawa algebra in Lemma 4.6. By Lemma 4.6, we have

lim_((F75(~1))gq, /29 (F T5(~1))6g, Jzp-tor = 0.
1172

https://doi.org/10.1112/50010437X06002223 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002223

ON THE TWO-VARIABLE I[WASAWA MAIN CONJECTURE

Hence,
lim .Ker(a’s)
—sDiv(Ker(al))
in (6) is trivial.
For the proof of Proposition 4.4, we need to show that
. Ker(a?) NIm(al)
im
—sDiv(Ker(a”) N Im(al))

We have the following claims.

= Hy, (@, FALT]). (7)

CrAM 4.7. The module Ker(a”) N Im(a)) is finite for every s.
CLAIM 4.8. For any height-one ideal I C H%°, H'(Q,, A[I]) N HY(Qp, F~ A[I]) is surjective.
We will finish the proof of Proposition 4.4 by using these claims. By Claim 4.7, we have

lim Ker(a?) NIm(al)
—sDiv(Ker(a”) N Im(al))

= h_H)lsKer(a;’) N Im(al).

By Claim 4.8, we have
lim_ Ker(a!) 1 Tm(a) = lim Ker(a?) = H2,(Qy, F~ALJ)).
This completes the proof of (7). Let us finally calculate the group H}.(Q,, F~A[J]). In case (a) with
J = Ker(J)H%°, we have
(05)Y if F~A)» #£0,

F-A[J)P =
] {0 if F~ A =0,

on which Frob, € Gg, /I, acts via multiplication by a,(f3)".
In the rest of the proof, we finish the proof of the two claims above.

Proof of Claim 4.7. In case (a) with J = Ker(J)H'z°, it suffices to show that
Im[HY(Qp, V, y0) — H'(Qp, FV, 16)] N Hy(Qp, F7V ) = 0 (8)

for every s, since we have

Vo0 = (Vi @ Xw') ®z, Zp[T/TP")(X),

—1—w(7J)

by definition and since the inertia group I, acts on F~Vp, ®x’w' via the character x’ modulo

a finite character. Thus, we have

cp - ~ _ iNIp _
-V, o)1 = {o if j £ w(3) +1 or (F-AM] @ wi)lr =0,

Ky(a5')  otherwise,

where Kj(ay 1) is a vector space of rank one over K3 = O3 ®z, Q, on which Gg, acts via o ! This
implies that HL (Qp, F_VJ@@) = ((F_Vj’q)gj))lp)G@p = 0if a,(f3) # 1 and our proof is completed in
this case. Now, let us suppose that a,(f3) = 1. This happens only when w(J) = 0 (cf. Remark 4.5(2)).
Note that w(J) = 0 implies j = 1 and Vy, C H, élt(Bj ®q Q,Q)) for certain abelian variety By over
Q. Let Q¢, be a finite extension of Q obtained by adjoining all Fourier coefficients a,,(f5) of f5. The
field Ky is naturally identified with a direct-summand of Qz, ®g Q. Since a,(fy) = 1, there exists
an abelian variety BY over Q, with the following properties.

(1) Bj is isogenious to a sub-abelian variety of By ® Q, of dimension d = [K3 : Q,] over Q.

(2) Bj has totally multiplicative reduction over Q.

(3) H} (B} ®q, Q,,Qp) is isomorphic to V, as a Gg,-module.
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By the third property, Vi, ® xw = Vp(Bgt) = Tp(Bgt) ®z, Qp, where Bgt is the dual abelian variety
of By and T,(B") is the p-Tate module lim BS! (Q,)[p"]. Since B has totally multiplicative

reduction over Q,, Bgt(@p) is isomorphic to (@; )¢/ P as Gg,-module using Tate’s uniformization
of By when d = 1 or its generalization by Mumford (cf. [FC90, Appendix]) when d > 1, where P
is subgroup of (@X)d which is mapped into a free Z-module of rank d in Q%? via the composite

P— (Qp )¥ — Q%4 Since a,(f5) = 1, ay is a trivial character. Hence, P is contained in Q) )% and
FTV,(BS") i= (FTVy, @xw)NV,(B5") (respectively F~V,(B5") := V,(B5")/F+V,(B4")) is isomorphic
to Qp(xw)@d (respectively and). By Shapiro’s lemma on induced Galois representations, we have:
m[Hl(@p7 VJ (I)(l)) - Hl(@p7 F_VJ7(I>S) )] N H&r(@m F_VJ7(I>S))
= Im[Hl(me Vi( /t)) - Hl(Qp,SaF_Vp( /jt))] N H&r(@me_V}D(BSt))

where Q, s is the unique Galois extension of Q, contained in Q) (pps+1) with Gal(Q,,s/Q,) = Z/(p*).
By the properties of P mentioned above, we have P = nghgd q% C (Q, )4 with ord,(gp) > 0 for
each 1 < i < d. Via the identification

H' Qs FV,(B5Y) = HY(Qy5, Q0% = @ Hom(Gg, .. Qp),

1<h<d

the image of H'(Q,,V, (B%t)) — HYQp s, F7V, (B’t)) is equal to:
P Hom(Gal(FL)/Qy.0). Q) € P Hom(Gy, .. Qy),

1<h<d 1<h<d

4 ordp

where Fé!} )8 / Qp,s is the Galois extension of Q, s characterized as follows.

(1) Gal( 50 S/Qp s) 1s isomorphic to Z,.
(2) The universal norm ﬂQp o Normpg/q, ,(F*) coincides with g1 - gz c Qs

Since we have

( P Hom(Gal(Fgﬁg/@p,s),@p)> N Hy(Qp,s, QF7)

1<h<d
P Hom(Gal(F /@p,s),@p)> N Hom(Gal(QY,/Qp,s), Q54 =0
1<h<d

we have completed the proof in case (a). O

Proof of Claim 4.8. The cokernel of a is a submodule of H?(Q,, F*.A[J]), which is the Pontryagin
dual of ((F*T)*(—1)),)%%. Since ((F+T)*(—1))GQP has support whose codimension is greater than

or equal to two, (((F+7)*(—1));)%% must be zero for any height-one prime J C H:°. Consequently,
the map a is surjective. This completes the proof of Claim 4.8. ]

This completes the proof of Proposition 4.4 ]

4.3 Selmer groups over the two-variable Iwasawa algebra

For each j, k with 1 < j < k—1, we define SelG'r C H'(Qx/Q, A) in the same way as above by using

the filtration F*.A. We define SelBK ) t6 be SelBK ) = = lim SelB(] ) Where TS(]t ) and SelB(] %)
5 t

K,(j,k)

are as given in §4.1. A priori, SelT might depend on the choice of (7, k). However, we have the

following proposition.
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PROPOSITION 4.9. Assume Condition (Ir) above. We have the following statements.

(1) Selmer groups Sel and Sel KGR are equal as subgroups of H*(Qx/Q, A). In particular, the
definition of SelBK (] k)

(2) The Pontryagin dual of (Sel$*)Y is a torsion module over H°.

does not depend on the choice of (j, k) as above.

Proof. The first statement is implicitly proved in [Och03]. We recall briefly how to use the result in
[Och03]. Recall the following diagram.

(Jk
i, 1(@m (]k))
veX\{oo} H (QU,ASt )

|

(@A) H'(Qy, A)
He(Qp A) 7 e (poo) Hie(Qu, A)

0 —> SelBKUR) — H1(Qz/Q, A)

0 ——=Sel¥ —— H'(Qx/Q, A) —

For v € ¥\ {p,o0}, lim_ Hl(Qv, ’k)) is a subgroup of H! (Q,,A) by definition. We have

H!(Q,,A) = HY Q¥ /QU,AIU) by the inflation-restriction sequence. By Shapiro’s lemma,
H'(QY/Q,, A™) is isomorphic to HY Q¥ /Qy 00, (A[y—1])!*). Here Qu,00 is the unique sub-extension
of Qy(pp=)/Qy such that Gal(Qy,00/Qy) = Zp,. Note that Gal(Qy"/Qu,e0) is isomorphic to [, Z

and that (A[y — 1])’ is a p-torsion group. Hence, we have h_H)l&t H}(QU, Agt )) = H! (Q,,A) =0

for any v € ¥\ {p,00}. On the other hand, h_r)ns’t H}(Qp,Ag;k)) = HL.(Q,, A) by [Och03, Corol-
lary 4.13]. This completes the proof of the first assertion.

The proof of the second assertion is basically the same as that of Proposition 4.4(1). We apply
Proposition 5.2 to compare (Sel$")Y/J(Sel$*)Y with (Sel§)Y and we apply inductively the result
obtained in Proposition 4.4(1) that (Sel§")" is a torsion H}:°/.J-module. Thus, we show that (Sel")Y
is a torsion H'z°-module. ]

Remark on the notation. By Proposition 4.9(1), Selg’—r and Sel?K coincide with each other for a
two-variable nearly ordinary deformation 7. Hence, we denote the Selmer group for 7 by Sely from
now on. For various specializations 7; of 7, we mainly study Selg’r rather than Sel];K because of the
simplicity of the definition of Sel?r. We denote Sel?’r by Sel; for brevity if this causes no confusion
(note that Sel§" and Sel3¥ are different in general).

4.4 Surjectivity of localization maps

In this subsection, we give the surjectivity of localization maps from semi-global Galois cohomologies
to certain local Galois cohomologies at decomposition groups (Theorem 4.10 and Corollary 4.12).
The result in this section was used before in §§4.1-4.3 and will be used in §§5, 7 and 8.

Let R be a ‘deformation ring’ and let M be a rank-two Galois representation over R. In this
subsection, we will study the following situations:

(1) R=H%" and M =T;

(2) R = O5[[[]] and M = T; where I = Ker(J)H}° for 3 € Xamitn(HEY)so (the one-variable
deformation case (a) introduced in §2);

(3) R=H%Y and M = T(, () or M =T, (case (b) or (c) introduced in §2).

Let R and M be in one of the above three situations and let H be an ideal of R such that R/H
is finite flat over Z, (hence, H is of height-two in case (1) and H is of height-one in cases (2)

y=r(v")7")
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and (3)). Since M @ RY[H] is of cofinite type over Z,, the subgroups H}(QU,M ®@r RY[H]) of
HY(Q,, M @ RY[H]) are defined as in §4.1. When we have a system of such ideals S = {H C R}
such that @R/ H =R, we would like to discuss whether the natural localization map

@ hmHl(@U, M ®r RY[H])

1 \Y
o P H}Qu M r RYH))

H'(Qs/Q,M @g RY) —

is surjective. The following theorem is obtained from a variant of the global duality theorem in our
situation.

THEOREM 4.10. Let us consider the following cases.
(A) R and M are as in case (1) and H runs height-two ideals Aﬁ{;’“) for s,t > 0 with fixed j, k.

(B) R and M are as in case (2) and H runs height-one ideals oY) O3[[]] for s = 0 with fixed
J=z1
an are as in case (3) an runs height-one ideals C or t > 0 with fixe
C) R and M i 3) and H heigh ideals W\F) < Hgd f 0 with fixed
k> 2.

The localization map

1 \Y
Hl M R\/ 1 (QU?M ®RR [H])
Q/QMEnR) = D G, Men R

is surjective in each of cases (A), (B) or (C).

Proof. By the global duality theorem, we have the following exact sequence

00— lIi{LQSel%/E(Hmp)M e h?H)lHl(QE/Q) M ®R R\/ [H])

'(Qu, M @ RY[H]) ( BK >v
— lim E— thele H.om ;
ueze\?oo}ﬁHl(Q”’M ®r RY[H]) E (1)[H,p"]

where Sel?fv(l)[ Hopn] is defined as

HY(Qy, MY(1)[H, p"])
87 (Qv,Mv(l)[Hm”])}

1

f
Note that the local condition H l(Qv,M V(1)[H,p"]) € HYQ,, MY (1)[H,p"]) for a finite Galois
module M"Y (1)[H,p"] is defined to be the pull-back of H;(Q,, M"(1)[H]) C HI(QU,MV( )[H]) via
the natural map H'(Q,, MV (1)[H,p"]) — H(Q,, M (1)[H]).

Since we assume Condition (Ir), R is a Gorenstein algebra in each case (1), (2) or (3). Hence,
we have an involution ¢ : R — R, which coincides with the canonical involution g — ¢~' of
Zp[[l' x I']] € R (respectively Z,[[[']] C R, Zy[[I']] C R) for g € ' x I (respectively g € T,
g € T") in case (1) (respectively (2), (3)). Let us denote by M" a free R-module of rank two

liLnHm MV (1)[H,p"]. By Condition (Ir), the natural restriction map Sel%ﬁ(l)w,pn} — SelBR[H, p"]

is injective, where Sel?}f = lim o Sel%}f J(Hpr )M Thus, it suffices to show that lim o Sel%}f [H,p"]
is zero in order to have the desired surjectivity.

We refer the reader to [Och03, §5] for the above facts and the following lemma.

SOB 1)y = Ker [H%@z/@, MY(1)[H,p")) —
veX\{oo}

LEMMA 4.11. We have the following R-linear isomorphism:
SelBle [Ha pn] = HomR/(H,p") ((SelBle)V/(H7 pn)(selBle)V7 R/(Ha pn))L

where (-)" means the twist of an R-module structure via the involution ¢.
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By taking the projective limit of this isomorphism, we have:

gin Self/[Kv(l)[H@n] = HomR((Sel%}f)v7 R)

Since (Sel5F)Y is a torsion R-module, by Proposition 4.9(2) and its proof, the proof is completed. [

COROLLARY 4.12. Let R and M be one of the pairs given in this subsection. Then the localization
map
HY(Qp, M ®@r RY) @ HY(Q,,M ®r RY)

1 Vy
H (Qs/Q,M ®r RY) HL (Q,, M @r RY) H!(Qy,, M ®@r RY)

veX\{p,00}
is surjective.

Proof. The corollary is a consequence of Theorem 4.10 because lim H}(QU,M ®@r RY[H]) is
contained in H}, (Qp, M ®r RY) (respectively Hl.(Q,, M ®g RY)) when v = p (respectively
v e X\ {p,o0}). O

5. Control theorem for Greenberg’s Selmer groups

For a Galois representation M = R% of G and a prime ideal J of R, we have the natural restriction

map between Selmer groups Selys, sy % Selps[J] (if they are defined). What we call the control

theorem is the type of problems (or theorems) where we study the kernel and the cokernel of res;
(or equivalently its Pontryagin dual (Sely)Y/J(Selar)” — (Selps/yar)Y). For a family M over a
one-variable algebra R and its specialization to a zero-variable algebra (i.e. a discrete valuation
ring) R/J, the control theorem has already been studied in [OchO01].

In this section, we study the control theorem for a nearly ordinary deformation 7 or quotient
representations of 7. Throughout the section, we denote by N; the quotient N/JN for an H'°-
module N and an ideal J of H':° for short. We will always assume Condition (Ir) throughout
the section. The assertions on Coker(resy) hold without Condition (Ir). However, the assertion on
Ker(ress) might be modified if we replace Condition (Ir) with a weaker condition. Although it is
not difficult, we decided not to do this in order to avoid an unnecessarily complicated description.
We refer the reader to [Och01] for the idea of such an argument in the case without Condition (Ir).

5.1 From two variables to one variable

First, we discuss the specialization of the two-variable Sel7 to some of the important one-variable
deformations.

PROPOSITION 5.1. Assume Condition (Ir) for T = Tf(i). Let J be a height-one prime ideal of Hz°
and let res; be the restriction map Sel; — Selr[J]|, where Sel; = Se].T/JT. Then the map resy is
injective. Coker(resy) is a sub-quotient of the following group L :

(F Al — (V)W) @ @ ((Al))% if FT AP #0,
Ly = veX\{p,00}
@  ((Al),)Ca if F~AM]» =0,

veX\{p,00}
where M; means M/JM for an H°-module M. Further, if we have the surjectivity of the local-
ization map
HY(Qp, A[J]) s @D H'(Qy, AlJ))
H(l;r(@P7 A[']]) Hulr (QIH A[J]) ’

then the cokernel of resy is isomorphic to L ;.

HY(Qu/Q, ALJ]) 2%

veX\{p,00}
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Proof. Let us recall a diagram as follows:

0 Sel, HYQx/Q, AlJ]) 55> Y7

- B

0 —Sel7[J] —= H'(Qz/Q, A)[J] —= Y [J]

where
v = QAT oy QA

a H(l}r(Qp7A[']]) UEE\{p,oo}H&r(QU’A[J])

H'(Qp, A) H'(Qy, A)
Y=—-—""— —_—.
H(l}r(QZ”A) v @ }H&r((@vw/l)

vEX\{p,00

By Condition (Ir), the map «a is injective. Consequently, resy is injective. By the snake lemma and
by the injectivity of «j, Coker(resy) is isomorphic to a submodule of Ker(3;). Further, we have
Coker(resy) = Ker(3y) if locy is surjective. Hence, we only have to show that Ker((3;) is isomorphic
to L. By the inflation—restriction sequence, it is easy to see that the kernel of

HYQuAL) QA

Hi(Qu, Al])  H(Qu, A)
is ((A%) )00 at each v € ¥\ {p,00}. In the rest of the proof, we will concentrate on the map 37
restricted to the p-part. Let us consider the exact sequence:

0 — Hey(Qp, AL)) — H(Qp, ALJ]) — H' (I, F~ALJ]) %
Note that the second map H'(Q,, A[J]) — H(I,,F~A[J])°% decomposes as

HY(Q,, A[J)) - HY(Q,, F~A[J]) - HY(I,,F~ A[J])%e.

The map a is surjective as is shown in Claim 4.8 and the map b is surjective since the cohomological
dimension of Gg, /I, is one. Thus, we have

H(Qp, ALJ))
Hcl}r(@P7 ‘A[']])

By a similar argument, we have

> [ (I, F~ A[J])“%.

HY(Qp A) BNe:
WZH (Ip,F A) Qp,
This gives

H\(QuAJ)  H'(QyA)
HE (Qp, ALT]) He, (@, A)

We complete the proof since

Ker[ ] ~ (F~A) ) J(F~A)l)Co.

F-Aly —w(y')Y] if FZA[)" #0,

F-A)fr =
EA {0 if F~ A% = 0. O

We will apply Proposition 5.1 to obtain the following.

PROPOSITION 5.2. Assume Condition (Ir) for T = ’T]@

as follows in the following cases:
(a) Jis I =Ker(J)HE° for T € Xaith(HEY)>0;
(b) Jis (v = x(v)) € HE%;

. Let us consider height-one primes J C H%°
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(©) J 15 (= k(1)) s
(d) Jis (v* = *(7)Y) C HE®.

Then, the restriction map resy : Sel; — Selr[J] is injective in every case and we have:

Coker(resy) = (Uy)Y in case (a) with J = Ker(7J),
Coker(res;) & (HEY)V[A,(F) — 1]  in case (c) with F~ A[D)» # 0,
Coker(resy) =0 otherwise,

where

U= @ ((TFY)r,[Ker(3)] ®2z, Z,[[(X ) @ w™) 5.
veX\{p,00}

Remark 5.3. For each v € ¥\ {p, 00}, ((T¥4)*)r,[Ker(J)] is always finite and is trivial except in
certain special cases (cf. Theorem 3.3).

Proof. By Proposition 5.1, resy is injective and we have

(FAly — k(v )7])» & E@ }((Afv)J)G@v if B~ A £ 0,
ve p,00
D ((AM)) if F~ Al = 0.

veX\{p,00}

Coker(resy) =

Except in case (¢), F~A[y — k(7')7/]s is zero. In case (¢), F~Aly — k(v)¥]; = F Ay — 6(v)7] is
a cofree Hofrd—module of rank one with unramified Gg,-action on which Frob, acts via the multipli-
cation of A,(F) (see §2 for A,(F)). Hence, we have (F~ Ay — k(v )y'],) "% = (HEYV[AL(F) — 1]
in this case.

Next, we discuss local terms at v € ¥\ {p, 0o}. Recall that
A2 (T$8z,Z,[[T))(X) © ) @y Homgz, (HE, Qp/Zy)
(see the beginning of §2 for T%4). Since I, acts trivially on Z,[[T]](X) ® w’, we have
(((A™))%e)Y = ((TF)) 1,82, Zp [T @ w™) [,
In cases (b), (c) and (d), (T, ®z,Z,[[TI(X 1) ® w™))[J] is clearly zero. In case (a) for J =
Ker(J)H:° with certain J € Xaith (H‘}rdbo, we have
(TF))1,82,Zp[[TNX ™) @ w ™)) = (TF)")1, [Ker(D)]&z, Z, [T (X1 @ w™.

This completes the proof. ]

5.2 From one variable to the discrete valuation case

In [Och01], we studied control theorems of the Selmer groups for one-variable Galois deformations
when they are specialized into various representations over discrete valuation rings. In this subsec-
tion, we restrict ourselves to one-variable deformations inside Hida deformations in order to have
more precise and complete results. By applying the fundamental diagram and the snake lemma as
in §5.1, we also prove the control theorem in this case.

PROPOSITION 5.4. Assume condition (Ir) for T = Tf(i). Let J and J' be two different height-
one prime ideals of Hz° and let res;; be the restriction map Sely .y — Sels[J'], where
Sel; = Sely,;r. Then, the map res; is injective and Coker(resy) is a sub-quotient of the
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following group L ;:

(F-A)2) ) @ @ (A[J)) )G if F- A £ 0,
L, = ve\{p,oo}

D (A[J)) )G if F- A =o0.

veX\{p,00}

By calculating the term L in each case, we have the following proposition.
PROPOSITION 5.5. Assume Condition (Ir) for T = Tf(i). We consider the four cases (a), (b), (¢) and
(d) with the same J as Proposition 5.2. We consider another height-one ideal J':
g (v — X/ (7)) for a certain j with 1 < j < w(J)+1 in case (a),
Ker(J)H° for certain 3 € Xapign (HEY) >0 in cases (b), (c) and (d).
The kernels and the cokernels of vesy: : Sely(; yy7 — Sels[J'] are given as follows.
(1) The restriction map resy is injective in each of (a), (b), (c) and (d).
(2) In cases (a), (b), (c) and (d) with F~ A[9N]!» = 0, Coker(res;/) is a sub-quotient of a finite

group D given as follows:

D (T%Y*);, [Ker(3)])V in cases (b), (c) and (d),
D = ( veX\{p,00}

0 in case (a).
In cases (a), (b), (c) and (d) with F~ A[9N]% # 0, Coker(res ) is a sub-quotient of the following
group:
(O2)V[1 = ay(f>)] @ D in cases (a), (b) and (d),
D in case (c).
Remark 5.6.

(1) Note that 7/(J,.J')T is isomorphic to T, ® x/w’ (respectively T, ® xw', T, ® A
Ty, @ x*/2H147) in case (a) (respectively (b), (c), (d)). Hence, in every case, Sely/(g.0)T 18
the Selmer group associated to a twist of a cuspform f5.

(2) In cases (b), (c) and (d), the group D is a Pontryagin dual of (A[J]!*) ;. Theorem 3.3 imme-
diately implies that D is finite.

(3) The group (O5)Y[1—ay(f5)] is finite when w(J) # 0 by applying Remark 4.5(2). Thus, the ker-
nels and the cokernels of res : Sely (s yy7 — Sely[J ' are finite if we choose J (respectively
J') so that w(J) # 0 in case (a) (respectively in cases (b) and (d)).

(4) The control theorem in case (a) was studied in various references (e.g. [Gre99]) when f5 is
associated to an elliptic curve E. Note that there has been a contribution of the local Tamagawa
number of E at every v € 3\ {p,o0} to Coker(res;s) in the above-mentioned references (e.g.
[Gre99]), whereas there is no such contribution in our result. This is because Selej@)Xw is
isomorphic to the classical Selmer group for E only after being divided by a finite abelian
group whose order is related to the local Tamagawa number of E at v.

6. Two-variable p-adic L-function

In this section, we discuss the two-variable p-adic L-function for a nearly ordinary deformation
7T through Beilinson-Kato elements. The construction will be done by using the two-variable
Coleman map (Theorem 6.3), which translates a norm compatible elements to a measure.
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The key to this section is an optimization of the two-variable Beilinson-Kato element given in
Theorem 6.11. The results of this section make clear the relation between Kitagawa’s two-variable
p-adic L-function (see [Kit94]) and our Euler system construction, modifying previous constructions
by [Och03] and [Fuk03] which were not well-optimized in general.

6.1 Review of the work of [Och03]

In order to introduce Beilinson—Kato elements, we need to prepare notation. For a normalized eigen-
cuspform f =" _an(f)q" of weight k& > 2, we denote by Qy a finite extension of Q obtained by
adjoining all Fourier coefficients of f to Q. We denote by f = > _,an(f)7¢" the dual modular
form of f where ¢ is a complex conjugation. The dual modular form f is known to be a Hecke
eigen-cuspform of weight k with Neben character dual of that of f. The field Qy is equal to QT' We
associate the de Rham realization Vyr(f) to f. The de Rham realization Vg (f) has the following
properties.

(1) Var(f) is a two-dimensional vector space over Qy and is equipped with a de Rham filtration
Fil'Var (f) C Var(f), which is a decreasing filtration of Q-vector spaces.

(2) We have Fil'Vir(f) = Var(f) and Fil*Vgr(f) = {0}. For each j such that 1 < j < k — 1,
Fil/Vgr(f) is naturally identified with the one-dimensional Q¢-vector space Qg - f.

(3) Let J be an arithmetic point of weight w(J) > 0. For each j such that 1 < j < k — 1,
Fil*7Var (F5) ®0 s, K73 is naturally identified with FilODdR(VJZ"j ® x!Fwl™?), where Ky is the
p-adic completion of Q, with respect to the fixed embedding Q, C Q= @p, Vi is T, ®2,Qp
and * means the Qp-linear dual here. Recall that Dgr is the de Rham functor defined by

Fontaine, which is a functor from the category of p-adic representations of G, to the category
of filtered modules over Q,, (cf. [Fon94]).

For each 1 < j < w(J)+1, we denote by gglR the Qy,-basis of Fil*@)+2=7 Vg (F5) sent to f5 under the
natural identification Fil*@*2=IV i (F5) = Qy, - f5. Let D be an H¥4-module (H%d(&)(@ZpZ;r)GQP
and let dg, (1) be the inverse image of 1 € Q,, via the isomorphism Dgr(Q,(1)) — Qp determined by
a fixed norm compatible system {(» }r>1 of p™th roots of unity. We recall the following properties
(see [Och03, § 3] for the proof).
LEMMA 6.1. We have the following properties.
(i) D is a free H¥%-module of rank one.

(ii) D/Ker(J)D is the canonical lattice of Dar (FTV¢,) = Derys(FTVy,) for each T € Xapien (HE) 0.
(iii) For each (j,J) such that 1 < j < w(J) + 1, we have the canonical isomorphism Dar(FTVy, ®

ijz) = DdR(ij & X]wz)/FﬂODdR(ij & x]wz).
(iv) The fixed norm compatible system {(yn},>1 induces the following isomorphism:

Dar(F*Vy,) —— Dar(F"Vy, ® x’w’) 2 Dar(FVy, @ x/w'),
Do)
where 0 <1 < p— 2.

DEFINITION 6.2. Fix an Hofrd—basis d of D. For each J € %arith(Hofrd)>o, we define a de Rham p-adic
error term C), 54 € Q, to be

—<dR i
Cppa= (05 +dy ® 0] 1))ar.p (9)
where j is an integer satisfying 1 < j < w(3J) + 1, (,)ar,p is the pairing
(- )arp : FiI’Dar(V, @ X' w!™) x Dar(F"Vp, ® x/w') — Dar(Qp(1)) ® K3 = K3 (10)
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induced by the identification of Lemma 6.1(3) and the de Rham pairing:
Fil'Dar (V7 @ X' 7w'™") x Dar(Vy, ® x’w') /Fil’"Dar(Vy, @ x’w') — Dar(Qy(1)) © K3,
and dy € Dgr(F*V},) is the specialization modulo Ker(J) of d € D (cf. Lemma 6.1(2)).

The p-adic error term C), 54 does not depend on j and depends only on d and a fixed norm
compatible system {(yn }n>1 of p™th roots of unity.

For a free Z,-module with continuous Gg,-action T', we denote by H /1 f(Qp, T') the quotient mod-
ule Hl(Qp,T)/H}(@p,T). We have the dual exponential map exp* : H/lf((@p,T) — Fil’Dggr (V)
introduced by Kato [Kat93] where V' = T ®z, Qp. In [Och03], we introduced a certain quotient
H/l £(@Qp, 77(1)) of H 1(Qp, T*(1)) for the two-variable Hida deformation 7. We do not recall the

definition here since it is not essential for later explanation. We only remark that H} #(@p, T7(1))

interpolates H/1 £ (@Qp. TE (1) ® (winx?)™!) when J € Xapien(HEY), n and j vary. We recall our result
on the interpolation of the dual exponential maps as follows.

THEOREM 6.3 [Och03, Theorem 3.13]. Let i be an integer such that 0 < i < p—2. We assume Condi-
tion (Ir) for a nearly ordinary deformation 7 = Tf(i). Assume, further, that H%° is integrally closed
in its fraction field Frac(Hx°). Fix an H¥4-basis d of D = (Hofrd(&)égzngr)G@P (Lemma 6.1(1)).
Then we have a map =4 : H/lf(Qp, T7*(1)) — H%° which has the following properties.
(i) The map Z4 is an H'z°-linear pseudo-isomorphism.
(ii) Let C € H/lf((@p,’f*(l)). For each (j,J) such that 1 < j < w(J) + 1 and for each finite order
character n of ', (x?n 0 J3)(Z4(C)) is equal to

(1- L2002y () b))

i1 a(i,j,n) o ' y
. (ap(fj)> G ') (exp* (1 © I)(C)), dy @ 657 1) )ar s

where (x/1n07)(C) € H/lf((@p, T; (1)@ (winx?)~1Y) is the specialization of C via x’ o3, q(i, j,n)

is the p-order of the conductor of w’~'n and G(w’~'n) is the Gauss sum for w/~.

6.2 p-adic error terms at weight two

In this subsection, we study the p-adic error terms C, 5 4 in the special cases where w(J) = 0. We
fix an Hofrd—basis d of D throughout this subsection. The main result of this subsection is as follows.

PROPOSITION 6.4. Let 7 = T]g) be a nearly ordinary deformation. Then, C), 5 4 is a p-adic unit for
every J € Z{arith(Hg_fd) with w(J) = 0.

Proof. For an arithmetic point J € %arith(Hofrd) with w(J) = 0, let By be the abelian variety
associated to the normalized eigen-cuspform fr of weight two. By is an abelian variety of dimension
g = [Qf, : Q] over Q and we have an injection Qf, — Endg(Bj3) ® Q. Since fy is ordinary at p,
there exists an abelian variety B over Q, with the following properties (see [Wil86, §2.2]).

(1) Bj is isogenious to a subabelian variety of By ® Q, with d = dim(B%) = [K5 : Q)] over Q,,.
(2) Bj has totally multiplicative reduction or good ordinary reduction over Q.
(3) H} (B} ®q, Q,,Qp) is isomorphic to V, as a Gg,-module.
Let Bgt be the dual abelian variety of Bj. We denote by B the p-divisible group over Q, associated
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to Bgt with its connected part B°. We see that
Fil’Dyg (V7 @ x' Jw' ™) = Fil’Dar (H4(BS' @, Q. Q)
=~ Fil' Hig (B') = D(B°),
where H(B4") means the de Rham cohomology of B5" and D(BY) is the Dieudonee module for
B°. Since f5 is ordinary, we see that
Fil'Dyr (V, ® x' 9w ™) 2 Dgr(F~Vf, @ x' Hw!™)
= Dyr(Ks(a™)).

By Definition 6.2, C} 5 4 is a p-adic unit if and onl}L if the K5-basis of D(BY) induced by ng gives an
integral basis of Dar (K3(a™!)) = (K3(a™!) ®q, Qgr)G@P with respect to the lattice (O3(a™!) ®z,
Z}‘;r)GQP. This is clear since B° is of multiplicative type. U

6.3 Beilinson—Kato element

Let HL(Y1(M)c,Sym*~2(R'p.A)) be a Betti cohomology and let Hé7C(Y1(M)C,Symk_2(R1p*A))
be the Betti cohomology with compact support, where p : £ — Y7 (M) is the universal elliptic curve
over the affine modular curve Y7 (M) and A is a submodule of C. To each normalized eigen-newform
f € Sk(T'1(M)) of weight k > 2, we associate the Betti realization Vp(f). The realization Vi(f)
is defined as HE(Y1(M)c, Sym" 2(R'p.Qy))[If] (respectively Hé7C(Y1(M)C, Sym*2(Rp.Q))[If]),
where Iy = N(T; — a;(f)) when T} runs the Hecke operators T; € Endg, (Sy(I'1(M); Qy)) for all
primes [. The Betti realization V(f) has the following properties.

(1) VB(f) is a two-dimensional vector space over Q; equipped with natural action of complex
conjugate o, whose F-eigenspace Vg (f)* is one-dimensional over Q.

(2) We have the period maps (cf. [Del79])
Pert : FiVVir(f) ®o, C — Va(f)* @q, C
Per™ : (Var(f)/FiVVar(f)) ®g, C — VB(f)~ ®q, C
foreach 1 <j <k —1.

Let us denote by H the local system on Y;(M)c whose fiber Hy at s € Yi(M)c is H1(Es,Z).
Let ¢ : 9 — Y7(M)c be the uniformization map. The stalk of H at s = ¢(yi) € Yi(M)c is
identified with H1(C/(Z + Zyi),Z) = 7 + Zyi for any y € (0,00). We denote by 3 be the element
of T'((0,i00), = 1(H)) which corresponds to 1 € Z.

DEFINITION 6.5. Let f be an eigen-cuspform of level N and weight w + 2.

1 et 0y’ e the element o 1 C;1CuUsSps f, Dym which represents a pat , 00
i) Let 65 be the el f HB(Yy(M Sym"(H)) which h (0
and £". By abuse of notation, we denote by (5]03 " the image via the map

HF(YI(M)(Ca {CUSpS}, Symw(HQf)) - Hé,c(YI(M)(Ca Symw(Rlp*Qf)) - VB(f)

(ii) Let VB(f) x VB(f) tole Qs be the pairing induced from the Poincaré duality:
HY(Vi(M)e, Sym® (R'p,Qy)) x H (Vi (M)c, Sym® (R'p.Qy)) — H3(Vi(M)e, Q) = Q.

Let (-,-)B,0c be the extension of (-,-)p as follows:

VB(f) ®q, C x Vi(f) @g, C ~22=, .
We have

(Pert(f3), 65 o = /O F(V=Ty) dy
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by definition, which makes sense since f5 is a cuspform. The integration

/OOO H(V=1y)dy

is equal to L(f5,1)/ — 2mv/—1 by calculation.

In [Kit94], Kitagawa constructed modules of A-adic modular symbols B+, which have the fol-
lowing properties.

(1) BT is a finitely generated Hofrd—modules whose generic ranks are one.

(2) For each J € %arith(Hofrd)>o, BF /Ker(3)B™ is a lattice of Vi (/f5) ®aqy, @fj.

DEFINITION 6.6. Let J € %arith(H(])-‘rd)EO- Then f5 is a newform in Sy, 5y42(I'1(M)) for a certain

multiple M of N. Let Oy, be the ring of integers of Q,. Choose an Oy, -basis (5:1? % of the natural
Oy,-lattice HL (Y1(M)c, Sym“ @ (R'p,Oy,)) N Va(f3)* of Va(f2)E.

(1) We define a complex period Q= w3 € C to be 0= od = = (Pert(6gR), 5B F) B co-

)

(2) Let (-,-)B,p be the extension of (-,-)p as follows:

VB(fj) ®Qf Qp X VB(fJ) ®ij Qp —P> @p'

We define a p-adic period CF b € Qp as C;Ej b= <b§c, (53B’i>B,p.

THEOREM 6.7 [Kit94, Theorem 1.1]. Let us fix an H%%-basis b of BCY"" . Then we have a two-
variable p-adic L-function LKi(T) € H':° with the following interpolation properties:

(x¥n 0 3)(LE(T))/ ,532

_ Wi ]77 )p]_1>< pil >q(z‘,jﬂ7)G P L(f5, w9, 5)
(- (1= S (2 Y

where q(i, j,n) is the p-order of the conductor of w~'n~! and G(w'~'n~') is the Gauss sum for

wl—in~t,

Remark 6.8.

(1) In general, the complex period is defined to be the determinant of the comparison isomorphism
obtained by de Rham’s theorem between the Betti realization and the de Rham realization. In
our case, the comparison isomorphism Per® for the motive associated to fy is an isomorphism
between one-dimensional vector spaces. On the side of the de Rham realization, we have the
canonical basis obtained by f3. On the other hand, the Betti realization does not have a
canonical basis and our complex period depends on the choice of Oy -basis (5;3 %, To make

the dependence of the complex period Qéco 5 on the choice of 5]33 o+ clear, it should have been

denoted Qi (5B i) However, we usually denote it by Qiﬁo 5 to avoid the complicated notation.
(2) In the 1nterpolat10n property of Lﬁ})(T), the p-adic error term C’;'fj’b also depends on the choice
of 5]33 % When we take another choice of basis &’ ? ’i, we have
+ B+ + By _ % B,+ + B+
Op,j,b(53 )/Cp,j,b(dlﬁ ) - Qoo,ﬁ(dﬁ )/900,3(5/3 )

Since the left-hand side and the right-hand side of the equation in Theorem 6.7 behave in the
same way when we change 5? ’i, the interpolation is well-defined in spite of the ambiguity of

the basis 5]33 o+
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PROPOSITION 6.9 [Kat04]. Assume Condition (Ir). Let us fix an H¥4-basis b of BCY and an
Hofrd—basis d of D. Fix an arithmetic point J € %arith(Hofrd) with w(J) = 0. Then we have an Euler
system {Z5(r) € HY(Q(u,)s/Q(pr), T*(1);)} whose first layer Z5 = Z5(1) satisfies the following
properties.

(1) For each finite order character n of I', (exp* o IOC/f)(T](Zj)) is contained in FiIIVdR(Tj ®
wi=in=h ¢ FilODdR(VJZk:t ®@w!=n~1), where loc,s is the localization map:
Eﬂ(@g/@,Tg(1)®uﬂ_%f4)—»EFOQWJ?41)®uﬂ_%fJ)—»Eﬁf&ghf%(ncawL4n_U.
(2) Further,
—1)i—1 -
Cé,s,ﬁ Ly (f3,07 ', 1) _ar
’  (—1yi-1 Y7 -

(We denote by Q(ur)s. the maximal Galois extension of Q(u,) unramified outside primes over X.)

(exp™ oloc,¢)(n(Z5)) =

Remark 6.10. By taking the projective limit of the elements in Galois cohomology groups obtained
via the Chern character from Beilinson-Kato elements in the Ks-group of Y1(Np) ® Q(prps), we
have an Euler system {Z50(r) € H'(Q(u)s/Q(ur), 7*(1)3)} where r runs square-free natural
numbers prime to p. The above Euler system Z5(r) is optimally normalized at J and is obtained
as a summation ceZ5.0(r)¢ multiplied by Cp54/Cp5.4, Where Z50(r) is the twist of Z50(r) by
§ € SLp(Z) and c¢ are rational integers. For such an optimal normalization for a fixed fy, we refer
the reader to [Kat04, §12].

We give the following optimization of the two-variable Beilinson-Kato element.

THEOREM 6.11. Let us fix an Hofrd-basis b of BEY' and an H‘}rd—basis d of D. Then we have
an Euler system {Z¥i(r) € HY(Q(u,)s/Q(ur), 7*(1))} in the sense of Definition 2.2 such that the
specialization of the first layer ZX = ZXi(1) at each arithmetic point J € Xapitn (HEY) with w(J) = 0
and at each finite order character n of I' satisfies the following properties:

(1) (exp*olocs)((noJ)(Z251)) is contained in Fil'Var (f3 @ w71 € FilODdR(Vf*j ®@w!=in™h);
(2) further,
o=V i—1

pas  Lep(faw ,1) <R

T o
Coaa  (2ny/~D)0 Y

n,s) is the w'~n-twist of the Hecke L—funcmon for fy whose p-factor is

(exp*oloc,;)((n07)(2M)) =

i—1

where L, (fy,w
removed.

Remark 6.12.

(1) The construction of Z¥i(r) will be done by ‘gluing’ of the elements Z5(r) given in Proposi-
tion 6.9 for various J € %arith(HOfrd) with w(J) = 0 by using Lemma 6.13 below.

(2) Although the interpolation property is given only for J € Xapien (HFE?) with w(J) = 0, (exp* o
loc/¢)((noJ)(2Z)) is related to an optimal L-value even when w(J) > 0.

Proof of Theorem 6.11. Let & = {I = Ker(J)H}° | J € Xaith (HF?), w(J) = 0}. We denote by 2 a

subset of the set of height-one ideals of H:* as follows:

ﬂ:{J:ﬂEgWSCGJS<m}

Note that J N J' € A for any J, J' € 2 and that the intersection [ J for infinitely many J € 2 is
zZero.
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LEMMA 6.13. For each natural number r and for each J,J' € 2, we have the exact sequence
0— HY(T*()yny) — H(T* (1)) @ H(T*(1) ) — HY(T*(1) 130),
where H' (M) is H*(Q(pr)s/Q(u), M) in the above sequence.

In the following, we only construct Z¥i = 2ZKi(1) ¢ H'(Qx/Q,7*(1)) with the two desired
properties stated in Theorem 6.11. The construction for general r is done in basically the same way
using Lemma 6.13. We need the following claim for the proof.

Cramm 6.14. Let J € 2. Then there exists an element Z; such that (exp® oloc,f)((n o J)(Z)))
satisfy the two properties stated in Theorem 6.11 for all arithmetic points J € X.in( Ord) with
Ker(J)H%° D J and for all finite order characters 7 of I.

In fact, Z is obtained as lim ,_ Z; € H'(Qg/Q,T*(1)) when J runs a directed subset A C 2
such that ;.4 J = 0. Hence, we will prove the above claim in the rest of the proof. The proof
proceeds by induction with respect to the numbers of arithmetic points J € %arith(Hg_fd) with
Ker(J3)H%:° O J. By Proposition 6.9 the claim holds when J = Ker(J)H}° for an arithmetic point
Je %arith(Hoj_—rd). Now we take arbitrary ideal J € 21 at which Claim 6.14 is true. We will prove
Claim 6.14 for J N I where I = Ker(J)H%° for an arithmetic point J € %arith(H(}-‘rd) such that
w(J) = 0 and J ¢ I. Let us denote 7*/(J,Ker(n))7™ by 17, and let us denote the continuous
Galois cohomology H'(Qs/Q, M) by H(M) for short. Then, we have the following diagram for
each finite order character n of I':

0 ——HNT*(Wons) w77 HU(T*(1)g) & HN(T*(1)1) —= H(T*(1) 1+1)

ar.J br,g
nl ”l ln
HY (T (1) —= H'(T},(1) & H'(T (1)) — H' (T}, 5, (1))

where ay y sends x € HY(T*(1) 1) to 2y @ xr € HY(T*(1);) ® HY(7*(1);) and by j sends x © y €
HYT*() )@ HY(T*(1);) to xyv1—yser € HY(T*(1) 41). Let us consider the following morphism:

oc (Q ) ( )) (d, )aroexp*
I T 1 loc, ¢ P f:r®77
(QE/Q fj®17( )) H (Qp, fj®77( )) (

The element (o J)(Z;) € HI(QE/Q,TE@U(U) (respectively n(Zr) € HI(QZ/Q,TJZ}@n(l))) is
mapped to

3)(HE?). (11)

(=1t
Coah Lpy(fa,m,1)

Cpy.d (27r\/—_1)Qf;13),271
when J C Ker(J')H% (respectively J = 7). The following lemma is obtained by the Euler system
argument using the Beilinson—Kato element and by a result of Rohrlich (cf. [Kat04]).

Uj/,,7 =

LEMMA 6.15. Under Condition (Ir), the map in (11) is injective when the conductor of 1 is suffi-
ciently large.

In fact, since H'(Qx/Q, T}, o,(1)) has no non-zero torsion by Condition (Ir), the kernel of (11)
is non-zero if and only if SelT; o) is an infinite abelian group. This happens only for finitely many
5O

n by Kato-Rubin and Rohrlich.

Since values vy , and vy, are congruent to each other modulo (Ker(J') 4+ Ker(3"), Ker(n)),
nobr (25 @ Zr) is zero for each finite order character 1 of I with sufficiently large conductor.
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LEMMA 6.16. Let I be a height-one ideal of H'%° generated by a height-one ideal of Hofrd. Then
the intersection (1), Ker(n) C HY(Qx/Q,T*(1);) is trivial when n runs infinitely many finite order
characters of T.

Since Z; @ Z7 is mapped to zero via by, ; by Lemmas 6.15 and 6.16, we have an element Z;n; €
HY(Qx/Q,T*(1)jnr) such that as j(Z5nr) = 27 @ Z;. By construction, Z;n; satisfies the desired
properties for Claim 6.14. This completes the proof. O

COROLLARY 6.17. Let us fix an Hofrd—basis b of BV and an Hofrd—basis d of D. Then we have an
Euler system {Zg’{lii(r) € H' (Q(pr)2/Q(pr), T*(1))} such that Ed(Zgiii(l)) € H%° is equal to the

two-variable p-adic L-function L]I;ib(T) of Kitagawa.

7. IMCs for various specializations of 7T

In this section, we formulate and discuss the IMC for various one-variable specializations 7; of 7.
In particular, we will discuss how to obtain a result on the one-variable Iwasawa theory on 7; from
the two-variable Iwasawa theory on 7 and wice versa. Recall the following definition.

DEFINITION 7.1. Let R be a Noetherian local domain such that R is integrally closed in the fraction
field Frac(R) of R. A finitely generated torsion R-module M is called pseudo-nullif lengthp (M) = 0
for every height-one prime [ in R or, equivalently, Suppp(M) has codimension greater than one in
Spec(R). For a finitely generated R-module M, we denote by My, the largest pseudo-null R-
submodule of M.

The difference between Sel7[J] and Selz, is an obstruction to the study of the relation between
the two-variable IMC for 7 and the one-variable IMC for each 7;. Thus, we prepare the following
lemma which ensures that the term (Selr)),/J(Selr), which causes the above obstruction is
trivial in our case.

LEMMA 7.2. Assume Conditions (Ir) and (Nor) for T = ’Tf(i). Let us consider height-one primes
J C H':° in one of the following three cases:

(a) J is equal to I = Ker(J)H%® for certain 3 € Xapien (HEY) >0
(b) J is equal to (y — x(v)) C H};
(c) J is equal to (v — k(v)y') C H%°.

In case (a), we assume that the module Uy in Proposition 5.2 is trivial (we do not need an assumption
in the other cases).

Then, (Selr)y/J(Selr) )y is a pseudo-null H¥°/J-module.

Proof. Let us consider the following diagram:

0 Sely HY(Qy/Q, A) —%>y —0
le lxj LXJ
0 Sel HY(Qs/Q, A) —%X>y —0

where
HY QA HY(Q,, A)
Y = _—
HGr(@p7 ) ® @ }Hulr(vaA)

veX\{p,
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The cokernel of the middle vertical map is a subgroup of H?(Qyx/Q,.A[J]), which is zero since
Selz ;7 is a cotorsion Oj[[I']]-module. By the snake lemma, we have

(Sely)/J(Sely) = Coker | H(Qx/Q, A)[J]
We compare Coker(loc[.J]) with the cokernel of
H'(Qs/Q, ALT) =% Y

=y

where
HY(Qyp, AJ)) mH(Qy, A[J))
v- BC@AD) gy H(QuAU)
HGr(QP’ [J]) vex\{p, }Hur (QU7 A[‘]D
By Corollary 4.12, Coker(locy) is zero in cases (a), (b) and (c). Let us admit the following claim for
a while.

CrAmM 7.3. The natural map sy : Yy — Y[J] is surjective.

Let us consider the following diagram.

locy

0 —Selr/y7 — H'(Qs/Q, A[J]) Yy 0

| | |-

0 —— Selr[J] —= H'(Qs/Q, A)lJ) o Y1)

Since sy o locy is surjective by Claim 7.3, loc[J] has to be surjective. We have shown that
(Selz)/J(Selr) is zero or, equivalently, we have shown that (Sely)Y[J] is zero by taking the Pontrya-
gin dual. This implies (Sely)y,;[J] = 0. By [Och05, Lemma 3.1], M/JM is a pseudo-null H}°/.J-
module if and only if M[J] is a pseudo-null H%°/J-module for every pseudo-null H°-module M.
Hence, (Sel7)y./J(Selr)y; must be a pseudo-null H°/J-module.

We will show Claim 7.3 in the rest of the proof. We have the following exact sequence by using
the snake lemma:

o o o, HY(Qp A)
0 — He(Qp A — H Q@ AL 5 =57

Since Hér(Qp,A)V has no torsion H'%:°-submodule, the map ¢, must be surjective. Similarly, we
have the following exact sequence for every v € ¥\ {p, co}:

1 1 ty Hl(@?ﬂ A)
0 — Huy(Qu AJ) — H'(Qu A == ™

The Pontryagin dual of the last term is Uy in case (a). Hence, t, is surjective for every v € X\ {p, 0o}
by the assumption of Lemma 7.2. In cases (b) and (c), ¢, is surjective for every v € X\ {p, oo} without
any assumption. Finally, we have the following commutative diagram.

H@ Ao @& H'@QA____y,

veX\{p,00}

l .

Hl(@pr)[J]@ SY H&r(@vaA)[J]_>Y[J]_>O

veX\{p,c0} ty

[J] — Hg(Qp, A)/THE, (Qp, A).

[J] — Hy(Qu, A)/T Hyp (Qo, A).

The bottom horizontal map ¢; is equal to 7, ® @Uez\ {p,oo} tv> which is surjective as shown above.
The left vertical map is surjective by definition. Since the square in the diagram is commutative,
s7 must be surjective. This completes the proof of Claim 7.3. ]
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(a) IMC for 77
Let I = Ker(J)H%° with J € %arith(Hofrd)>o. The specialization of 7 at [ is the cyclotomic de-
formation of f5 as we saw in § 1. By Mazur—Tate-Teitelbaum, we have L%YITT(T[) € H:°/1 which
has the following interpolation property for each finite order character n of I' and for each integer
1<j<w@)+1:

(wz’—jn)(p)pj—1>< Pl >q(i,j,n)G(wj_in) L(f5, w79, j)
ay(fa) ay(fa) (2my/ =10 ;7
where C;to ~ is a complex period given by Definition 6.6. Note that the ideal (L;\,/ITT(TI)) is well-

defined since Cfo 5 is unique up to multiplication by a unit in Of;. Recall that Sel/ is a cotorsion
H’%°/I-module (cf. §4.2).

CONJECTURE 7.4. Let I = Ker(J)H:° with J € %arith(H%dbo. We have the following equality:
length gn.o 1y, (Sely )i = ordi(Ly"" (T1)),

V(I (1)) = (1 -

for each height-one prime [ of H+°/I.

As a corollary of Theorem 3 in §2, we have the following result.

COROLLARY 7.5. Let I = Ker(J)Hz° with J € %arith(H%d)go. Assume the same conditions as those
in Theorem 2. Suppose further that P, which appeared in condition (i) of Theorem 2 is a unit in
H%° and that ((T%4)*)y, [Ker(J)] is trivial for every J € Xapitn(HEY) >0 and for every v € £\ {p, 00}.
Then, the following statements are equivalent.

(1) The two-variable IMC holds for T .

(2) The cyclotomic IMC (cf. Conjecture 7.4) formulated by Mazur—Tate-Teitelbaum holds for

every specialization fy of F with J € Z{arith(Hg_fd) >0-

(3) There exists an Jy € %arith(Hofrd)>o where the cyclotomic IMC holds for fs,.

Remark 7.6. Concerning the condition that ((T%¥4)*), [Ker(J)] is trivial for v € ¥\ {p, 0o}, we refer
to Theorem 3.3 for detailed information on when it is trivial (cf. Remark 4.5). For example, it is
not difficult to see that ((T%4)*)y, [Ker(J)] is trivial when ord,(N) < 1 of the image of the local
monodromy at v is finite, where IV is the tame conductor of F. The condition on P, also holds in
fairly general situations thanks to the study of the local Galois image by Serre and others (see also
the discussion for a concrete example given in §9). We expect that the conclusion of Corollary 7.5
holds without any assumption. However, we cannot prove it at the moment.

Proof of Corollary 7.5. The restriction map Sel; — Sel7[I] is an isomorphism by Proposition 5.2
and by the assumption of Corollary 7.5. Hence, we have

lengthgn.o ), ((Selr)¥)r = lengthgm.o 1), ((Selr)”/I(Selr)"): (12)

for every height-one prime [ of H%°/I. Let [ be a height-one prime of H%°/I and [ be a height-one
prime of H'+° which is the pre-image of [ via H'%® — H'°/I. Then, we have

length(H;o/I)[((Sely)v/I(SelT)v)[ = length(H;o)Y((SelT)v)f (13)

by Lemma 7.2. On the other hand, since the p-adic period C), 5 is known to be a p-adic unit by
Kitagawa’s construction, we have

Ord(H%o/I)[ (LIZ:/ITT (IZ-[)) = ord(H%o/I)[ (LEI(T) mod I) (14.)

for every height-one prime [ of H'°/I. Thus, we have proved the implication 1 = 2. The
implication 2 = 3 is trivial. Finally, we prove the implication 3 = 1. We have the inequality

length .oy (Selr )y < ordgye) (Ly (7)) (15)
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for every height-one prime~[of H%° by Theorem 3 in § 2. By the assumption of the third assertion,
we have the following equality:

length gy 1), ((Sel)" /To(Selr) ")t = ordgmo 1), (L (7)) (16)

for every height-one prime [ of H'%°/Iy, where Iy = Ker(Jo)H%°. For each height-one prime 1 of
H%°, it is not difficult to see that we have the equality

length(Hr%o)T(Selq—)%/ = ord(H;o)T(L;{i(T))
by combining the inequality (15) and the equality (16) for a height-one prime [ of H':°/Iy so that 1

is the pre-image of [ via H%® — H':°/I. Thus, we complete the proof. O

(b) IMC for T(y_x())

Following §4.2, Sel., (), is a cotorsion H#%-module. On the other hand, we define Ly(Ty—y(y))) to
be the image of L;fi(T ) in H%°/(y — x(7)) = HE4. The one-variable IMC is formulated as follows.

CONJECTURE 7.7. We have the following equality:
length(Hofrd)[(Sel?/%x(m)[ = ordi(Lp(T(y—y (1))
for each height-one prime [ of H"frd.
We have the following corollary of Theorem 3 in §2.

COROLLARY 7.8. We have the following.

(1) The two-variable main conjecture (Conjecture 2.4) implies Conjecture 7.7.

(2) Assume further the conditions listed in Theorem 2 in § 2. with P, a unit in H+°. Then Con-
jecture 7.7 implies the two-variable IMC (Conjecture 2.4).

This is proved in the same manner as case (a) above by using Lemma 7.2.

(C) IMC for 7’(7_,{(7/)7/)
Following §4.2, Sel,_, ./, is a cotorsion Hofrd—module. On the other hand, we define Lp(’Z'(V_,{(V/)V,))
to be the image of L;{i(’f) in HE°/((v — k(7)Y")) = HE.
CONJECTURE 7.9. Let 7 = ’Tf(i). We have the following equality:
length(Hofrd)[ (Selz{y_n(,\//)wl))[ +e = ord[(Lp(’T(V_,{(V/)V/))),

for each height-one prime [ of Hofrd, where

o ord(1 — Ay(F)) if F- AP £ 0,
"o if F~ A = 0.
A corollary of Theorem 3 in §2 is given as follows.

COROLLARY 7.10. We have the following.

(i) The two-variable main conjecture (Conjecture 2.4) implies Conjecture 7.9.

(i) Assume further the conditions listed in Theorem 2 of § 2 with P; a unit in H'+°. Then Conjec-
ture 7.9 implies the two-variable IMC (Conjecture 2.4).

This is proved in the same manner as cases (a) and (b) by using Lemma 7.2.
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(d) IMC conjecture for T(,2_,2(4/)y1

The Selmer group for the diagonal specialization 7(,2_,2( /), is not a cotorsion H‘}rd-module in
general.

CONJECTURE 7.11. We have the following.

(1) Let T = ’Z}@. The group (Sel2_,2.,/,/,)" has rank one or zero as an H¥4-module.
-/

(2) Assume that Ty®w" is isomorphic to its Kummer dual (T ®w” )*(1) with certain 0 < i/ < p—2,
where T := T(y2_2(y)y) /(Y = )T (2 _2(y1)y)- In this case, we have

rankHofrd (Sel2_,

ar )Y = 1 if e(l) = —1 for every [ > 0,
o0 0 ife(l) =1 for every | > 0,

where €(1) is the sign of the functional equation of L-function for a specialization of F ® w1

as explained in the following remark.

Remark 7.12.

(1) Suppose that Ty ® w? is isomorphic to the Kummer dual of itself. For each [, we put P, =
v — kD (') for each integer I > 0 with a(l) := 2(i' — i) + 2l(p — 1). For each | > 0, T /(P)T
is isomorphic to the Tate-twist T, (a(l)/2 + 1) of Deligne’s Galois representation T}, for an

eigen-cuspform f; of weight 2 + a(l). The sign €(l) = £1 is the sign of the functional equation
A(f1,8) = e()A(f1,2 + a(l) — s) where A(f;, s) is the Hecke L-function for f; with its T'-factor.

(2) The phenomena for the generic rank on the line (y2—#2(y')y") was first studied and conjectured
at least under the condition as in part (1) (see, for example, [NP0O, §0]). We believe that such
phenomena are always true even in the case without the functional equation.

Suppose that (Sel2_,z2.,,)" is a torsion HE%-module. We define Ly(Tr2—2(y)y)) € HE to
be the specialization of the two-variable p-adic L-function Lj(7) € H}° via Hj® — H3/(7? —
K%(7')y') =2 HFY, in this case.

CONJECTURE 7.13. Suppose that (Sel_2_,2,.)" is a torsion H%d—module. Then, we have the
following equality:

length(Hofrd)[(Sel?ggwg(v,h,))[ = ord[(Lp(']E,y_X(,y)))),
for each height-one prime [ of H‘}rd.

COROLLARY 7.14. Suppose that (Sel _2_,2. /)" is a torsion H%d-module.

(v —r
(1) The two-variable IMC (Conjecture 2.4) implies Conjecture 7.13.

(2) Assume further the conditions listed in Theorem 2 of § 2 with P; a unit in H'»°. Then Conjec-
ture 7.13 implies the two-variable IMC (Conjecture 2.4).

Finally, in a general case where (Sel(%w?ww))v is not necessarily a torsion ]H[O]_-rd—module, we
propose the following IMC.

CONJECTURE 7.15. Suppose that (Sel 2_,2./.)" is an Hofrd—module with generic rank

— di v d
r= dlmFraC(Hofrd)(Sel(WQ_HQ(WI),YI)) Bpgora Frac(HZ“).

Let X be the Hofrd—torsion part of the Hofrd—module (Sel2_.2(,/),,)". Then the following statements
hold.
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(1) The order ord(y2_u2(y)y)(Lp(T)) is equal to 7.

(2) For every height-one prime [ of H%Y, we have
length(Hofrd)[(%)[ = Ol"d[(Lp('T(ﬂ/Q_ﬁ(ﬂ/h/))),

where Lp(7(y2_2(y)y)) 18 defined to be the image of Ly(T)/(v* — 62(¥)Y)" via H}® —
32/ (72 — K2(7')y') = HE

8. Pseudo-null submodule

In this section, we give a sufficient condition (Proposition 8.1) for (Selr)Y to have no non-trivial
pseudo-null submodule. Our proof relies on the method in Greenberg’s paper [Gre87] (see also
Remark 8.2). The result in this section is used in §9 in order to study examples where we can
determine the structure of the Selmer group. In this section, we do not necessarily assume Condition
(Ir). Instead of Condition (Ir), we will assume the following condition.

ConbpITION (Fr). Tofrd (respectively 7. ]SZ)) is free of rank two over ]H[O}-rd (respectively H':°).

As remarked in §2, Condition (Ir) implies Condition (Fr). Since we could find no reference for
the pseudo-null submodule of the Selmer group for a Galois deformation, we decide to assume only
a weaker condition (Fr) in this section for our later use. Our main proposition here is as follows.

PROPOSITION 8.1. Let 7 = Tf(i) be a nearly ordinary deformation satisfying Condition (Fr) and let
Y. be the set of ramified places for T (see § 2 for the notation). Assume the following conditions:

(1) H’%° is a regular local ring;
(2) X consists only of {p,c0}.

Then (Sel7)Y has no non-trivial pseudo-null H}°-submodule.

Remark 8.2. Under similar assumptions, Greenberg [Gre87, Proposition 5] has proved that the
Pontryagin dual of the Selmer group for the cyclotomic deformation of an ordinary p-adic repre-
sentation T 2 Z¢ has no pseudo-null Z,[[I']]-submodule when T is unramified outside {p, c0}. Our
proof follows the idea of [Gre87, Proposition 5]. Since we treat the two-variable case, it is sometimes
technically difficult to imitate his argument over the cyclotomic (one-variable) Iwasawa algebra, as
is seen in our proof below.

Before giving the proof, we prepare several lemmas. Although our main proposition stated above
only treats the case where ¥ consists only of {p, 00}, we allow X to contain primes other than p in
most of this section unless we state otherwise.

First, we prove the following lemma known as the weak Leopoldt conjecture for 7.

LEMMA 8.3. We have H*(Qx/Q, A) = 0.

Proof. Note that H?(Qx/Q, A) is equal to the inductive limit h_H)lsi H?(Qyx/Q, Ag{;k)) for any pair
(j, k) with 1 < j < k—1, where Ag;k) is the module defined in §4.1. From now on we assume further
that 2j # k. It suffices to show that H?(Qyx/Q, Ag{;k)) = 0 for every s,t under this condition. Since

the Galois group Gal(Qyx/Q) has cohomological dimension two, H3(Qs/Q, Ag;k) [p]) is zero. By the
natural exact sequence

H(Qs/Q, AYP ) — H2(Qx/Q, AVP) 22 H2(Q5/Q, AVP) — H3(Qs/Q, AVP[p]) — -,
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H?(Qx /Q,Ag{;k)) must be a p-divisible abelian group. On the other hand, by Kato’s result
[Kat04, §14], H%Qg/@,Aﬁﬁk)) is finite for each s,¢ under the above assumption on (j, k). Hence,
H?(Qyx/Q, Ag{;k)) must be zero. O

LEMMA 8.4. Assume that H': is regular and that H':° satisfies Condition (Fr). H'(Qx/Q, A)Y has
no non-trivial pseudo-null H%°-submodule.

Proof. Let N be the largest pseudo-null submodule of H'(Qyx/Q,.A)V. Let h be an arbitrary irre-
ducible element of H'+°. By taking the short exact sequence:

0— AR — A A — 0,
and by using Lemma 8.3, we have

H'(Qs/Q, A)/(hH' (Qs/Q, A) = H*(Qs/Q, Alhl). (17)

By a similar argument as that used in the proof of Lemma 8.3 depending on the Galois cohomolog-
ical dimension of Gal(Qx/Q), H*(Qx/Q, A[R])V is shown to be torsion-free over the local domain
HZ%°/(h). Consequently, H'(Qs/Q, A)Y[h] must be a torsion-free H%:°/(h)-module by taking the
Pontryagin dual of (17). The torsion part N[h] is also a torsion-free H'%°/(h)-module since N[h] is
a sub H%°/(h)-module of H*(Qy;/Q, A)"[h]. On the other hand, the torsion part N|[h] of N for the
height-one prime (h) is a torsion H':°/(h)-module because N is a pseudo-null Hz°-module. Thus,
N1h] is zero for any irreducible element h € H':°. This completes the proof for N = 0. O

A finitely generated H'’z°-module V is called reflezive if the canonical homomorphism V' —
V** := Hompp.o (Hompn.o (V, Hz°), H%®) is an isomorphism. We have the following lemma.

LEMMA 8.5. Assume that H%° is a regular local ring. Then, H'(Q,,F~A)" is a reflexive H':°-
module.

Proof. First, we show that H 1(Qp, F~A)Y is torsion-free over H'}:°. By taking the Pontryagin dual,
it is equivalent to the statement that H'(Q,,F~.A) is a divisible H%°-module. Consider the long
exact sequence of the Gg,-cohomology of

0— F AR — F AL P-4 — 0,

for an irreducible element h € H%°, H'(Q,,F~A)/(h)H' (Q,,F~A) is a H%°-submodule of
H%*(Q,,F~A[h]). By the local Tate duality theorem, H*(Q,,F~.A[h]) is the Pontryagin dual of
H2(Qyp, (F~A(-1))Y/(R)(F~A(~1))¥). This group must be zero, because ((F~A(~1))")g,, has
support whose codimension is equal to or greater than two. Hence, H 1(Q]D, F~A) is a divisible H'x-
module. Since the Pontryagin dual H* (Qp, F~A)Y has no non-trivial H'°-torsion submodule, the
structure theorem of finitely generated H':°-modules (cf. Proposition 5.17 and Proposition 5.1.8 in
[NSWO00]) gives us an exact sequence

0— HYQ,,F A)Y —V —Z—0,

where V is a reflexive H'3°-module and Z is a pseudo-null H3°-module. Let i/ € H'}° be an arbitrary
non-zero irreducible element and let us consider the snake lemma in the following commutative

diagram.
00— H'(Q,,F-A)Y 1% Z 0
xh’l Lxh’ Lxh’
00— H'(Q,,F~A)Y 1% Z 0
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By applying the snake lemma to the above diagram, we have an injection
Z[hl] - (Hl (QP7 F_'A) [hl]v)H}‘o/(h/)—tor'
Since H'(Q,,F~A)[W']" is naturally an H%°/(h')-submodule of H'(Q,,F~.A[h/])Y, this also gives

us an injection

Z[h/] — H' (@pa F_A[hl])]l\glrfo/(h’)—tor‘
By a similar argument as above, we show that H'(Q,, F~A[h/])" is a torsion-free H':°/(h')-module

by condition (2) of the lemma. Hence, Z must be zero. This completes the proof. O

LEMMA 8.6. Assume the three conditions stated in Proposition 8.1. Then, we have the following
exact sequence:
loc

0 — Sely — H'(Qqpo0}/Q, A) = H(Q,,F~A) — 0.

Proof. By Corollary 4.12, we have the following exact sequence:

1
0 — Sely — H'(Qqp001/Q, A) doe, H(Qp A) — 0.

H(l}r (va 'A)
Since the restriction map H*(Q,, F~A) — H(I,, F‘A)GQP is an isomorphism, we have an exact
sequence
HH(Qp, A)
Hér(@p? 'A)
Note that H 2(Qp,F+A) is zero by the same argument as the proof of Claim 4.8. This completes
the proof of the lemma. O

0 —s — HY(Q,,F~A) — H*(Q,,FTA).

LEMMA 8.7. Let R be a Noetherian complete regular local ring and let M be an R-module which
has the following presentation

00— W —U-—M—0,

where U is a finitely generated R-module which has no non-trivial pseudo-null R-submodule and
W is a reflexive R-module. Then M has no non-trivial pseudo-null R-submodule.

Proof. Suppose that the largest pseudo-null R-submodule M1 of M is non-trivial. We denote by
Uy C U the inverse image of M, via the natural projection U — M. Since U has no non-trivial
pseudo-null R-submodule, Uy also has no non-trivial pseudo-null R-submodule. By the structure
theorem of finitely generated R-modules, we have the following exact sequence:

0—Uy—EoW — Z—0,

where F is an elementary torsion R-module, W’ is a reflexive R-module and Z is a pseudo-null
R-module. Thus, we also have the following exact sequence:

0—W —EeW —Z —0,

where Z' is an extension of Z by M. In particular, Z’ is a non-trivial pseudo-null R-module.
Since W is reflexive and Z’ is pseudo-null, £ must be trivial. Thus, we have an injection W <
W’ whose cokernel is a non-trivial pseudo-null R-module. Note that Exth(W’/W, R) is zero since
W'/W is pseudo-null (see [OV02, Proposition 3.4] for example). The injection W — W’ induces
an isomorphism Hompg(W’, R) — Hompg(W, R). Hence, W < W' must be an isomorphism since
W and W' are reflexive R-modules. This contradicts the assumption that M, is non-trivial. The
proof is complete. O

Finally we give the proof of Proposition 8.1.
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Proof of Proposition 8.1. By Lemma 8.6, we have the following exact sequence:
0— H'(Qp,F~A)Y — H'(Qp,00}/Q, F~A)Y — (Sel7)” — 0.

The module H'(Q,,F~A)" is reflexive over H}}° by Lemma 8.5. The H}°-module H'(Qy, »}/Q,
F~.A)Y has no non-trivial pseudo-null H%°-submodule by Lemma 8.4. Thus, we complete the proof
by applying Lemma 8.7. O

9. Examples

In this section, we study examples of two-variable nearly ordinary deformations where we can
determine the structure of the Selmer group or we prove the equality in addition to the inequality
result proved by using Beilinson—Kato elements.

First, we prepare some preliminary results.

PROPOSITION 9.1 [Gre87, Theorem 2]. Let T be a Gal(Qyx/Q)-module which is free of finite rank
over Z,. Suppose that T is ordinary and critical at p. Then we have

lengthy, 0y, (Selzgg, () )t = lengthz, ry, (Sely- 1)ez, iy )i

for every height-one prime [ in 7Z,[[I']]; where ¢ is the canonical involution of Z,[[I']] induced by
gr— gt forgeTl.

We recall the following lemma.

LEMMA 9.2. Let R be a Noetherian complete regular local ring of Krull dimension n > 2 and let N
be a pseudo-null R-module. Let I be a height-one prime of R such that R/I is a regular local ring
of Krull dimension n — 1. Then, we have the following equality for every height-one prime ideal in

R/I:
length(R/I)[(N[I][) = length(R/I)[(N/IN)[
In particular, N[I] is a pseudo-null R/I-module if and only if N/IN is a pseudo-null R/I-module.

Although this lemma might be known to the experts, we refer the reader to [Och05, Lemma 3.1]
for the proof if necessary.

LEMMA 9.3. Let R be a Noetherian complete regular local ring of Krull dimension greater than or
equal to two. Let M (respectively N ) be a torsion R-module R/(f) (respectively R/(g)) with f € R
(respectively g € R). Suppose that we have a family {J;}1<i<oo 0f non-zero elements of R satisfying
the following properties.

(1) We have an injection M — [[,¢joo M/ M.

(2) For each i, R/J; is a regular local ring.

(3) The modules M/J;M and N/JN are torsion over R/J;.

(4) We have charg,;, (M/J;M) D charg,; (N/J;N) for each | > 1.
Then, we have charg(M) D charg(N).

Proof. 1t suffices to show that the image of g via R — M is zero. By conditions (3) and (4), the
image of g via R — M /J;M is zero for any [. This completes the proof by condition (1). O

9.1 IMC for Ramanujan’s cuspform

Let A € S12(SLa(Z)) be the unique eigen-cuspform of level 1 and weight 12, whose g-expansion is
equal to qugn@o(l — ¢™)?*. The only known non-ordinary primes for A are p = 2,3,5,7,2411
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at the moment. For all other primes p, we have the ordinary A-adic newform F(A) € Zy[[I']][[q]]
such that the specialization of F under Zy[[I"]|[[q]] — Zy[[d]], ¥ — k'°(7) coincides with the
g-expansion of the p-stabilization A®) of A (we omit the prime p in the notation F(A) unless
there is a possibility of confusion). See [Hid93, §7.6] for the explanation on the Hida family for A.
Condition (Nor) is always satisfied. The two-variable Iwasawa theory for 7 = TJEZ()A) at p is of our
interest.

Question 9.4. For which ordinary prime p of A and for Which integer ¢ with 0 < ¢ < p — 2 is the

)V or the ideal (L,(T

characteristic ideal charHr%o(Sel A

70 ))) non-trivial?
(&)

Recall that the value L(A,]')/(27T\/—_1)]'9;711‘71 is equal to 23-3%.5-7/691, 2.3, 2.7, 52, 32, 22.5

when j =1,...,6. We have
L(A, j) _ L(A,12 — )
ery=IpalY ry=Tal

by the functional equation. In particular, the value L(A,j)/(2m/—1)j§2;2j_l is a p-adic unit for
every j with 1 < j <11 and for p > 11 with p #£ 691.

Let p be an ordinary prime of A where Condition (Ir) is satisfied (in particular, p # 691). For
1 < i <11, we have

i—1 ;
. G p L(A®P) 4)
(XZ © KIO)L;(I(,T]S()A)) = <1 - > . —1)i—1
ap(AP) /) (2my—T)i10 Y

(-t (- e

For i # 1, this is a p-adic unit, hence we have Lgi(T]g()A)) € Zp|[' x I"]]*. For i = 1, Lgi(Tf(?A))
is a unit if and only if a,(A) # 1 modulo p. As for the structure of the Selmer group, we have the

following result.

LEMMA 9.5. The Selmer group (Sel7)Y has no non-trivial pseudo-null A®)-submodule for T =

(4)
T F(A):
Proof. It suffices to see that our nearly ordinary deformation 7 associated to A satisfies the two
conditions in Proposition 8.1. Condition (1) is deduced by observing the dimension of the space of
weight 12 cuspforms (cf. [Hid93, § 7.6]). Condition (2) is clear since A has level one. This completes

the proof. O

We summarize our argument above in the following proposition.

PROPOSITION 9.6. Let p be an ordinary prime of A where Condition (Ir) is satisfied.

1) When 2 <i <11, LK(TY Y is trivial and Sel_ = 0.
(1) en i o ( ]_.(A)) is trivial and Se 79,
(2) When i =1, L?i(T}?A)) is non-trivial if and only if a,(A) = 1 modulo p.
Remark 9.7.
(1) For i =0 or for 12 < i < p — 2, we do not have a precise conjecture about when or how often
Lgi(T]SZ()A)) is non-trivial.

(2) The primes where a,(A) = 1 modulo p are called anomalous primes for A. Among smaller
primes, p = 11 and 23 are known to be anomalous. We do not know how many other anomalous
primes for A exist.
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According to the above remark, we will investigate the case p = 11 in the next subsection.

9.2 Ramanujan’s cuspform at p = 11
In this subsection, we discuss the two-variable Iwasawa theory for F(A) at p = 11, where we have

a Hida family 7 = Tf(t)ﬁ) > 7,[[T x T')]%2 such that:

(1) the specialization 7 /®12)T is isomorphic to the p-Tate module of X(11);
(2) T/®U12)T is a lattice of the representation Ta () @ w' ™7, where T = Zgﬂ is the p-adic Galois
representation associated to A by Deligne.

From now on, we shall denote Z,[[I" x I"]] by A for short. Our results on the Twasawa theory for
7 in this section are as follows.

RESULTS ON THE IWASAWA THEORY FOR 7. Let T = T}?A) with p = 11.

(1) We have lengthAEQ) (Sel¥); = ord[(LZIfi(T)) for every height-one prime [ in A,
(2) We have (Sel7)Y = A®) /(42 — k2(v')7)).
We will show statement (2) first and the equality in statement (1) will be proved later. Let us

take an infinite family of elements {P, € A®} ;oo given by P, = o/ — %P~ (+/). Then we have
the following claim.

CrLamM 9.8. Let us denote by 1; the representation associated to the ordinary eigen-cuspform
foro(p—1) of weight 2+ 2[(p — 1) in the Hida family for A.

(i) 7/(P)T is the cyclotomic deformation of 7T; ® w.

11 e natural restriction map (Selr 1) (Selr )Y — dely/py7 18 an 1somorphism.

ii) Th 1 icti Selr)Y /() (Selr)Y Sl/(l)' i hi
(iii) We have the isomorphism Sely/p)7 = Zp[[I']]/ (v — X HE=D ().

Proof. Statement (1) is nothing but the definition of 7. We have H°(Q, A) = 0 by [Ser72, 5.5.2]
and by an argument using Nakayama’s lemma (cf. the proof of Claim 9.11), where A = 7 ®, (2
Homyz, (A®),Q,/Z,). By definition, the set of ramified primes ¥ for 7 is {p,c0}. Hence, state-
ment (2) is a corollary of Proposition 5.2. Let us show the statement (3) in the remainder. For
any [ > 0, Sely/p, p)7 is isomorphic to Selr,(p, )7 by the congruence property. On the other
hand, 7 /(Py,p)7 is the cyclotomic deformation Xo(11)[11] ®z, Zy[[I']](X) of the group of 11-torsion
elements X(11)[11] of the modular elliptic curve Xo(11). Hence, by [Gre91], Selzp, )7 is isomor-
phic to Z,[[I']]/(v — 1,p) = Z/pZ. By the control theorem for modulo-(p) reduction which can be
proved in the same manner as those in § 5, we have an isomorphism (Selz /p)7)"/(p)(Selr(p)7)" =
(Selr(ppy7)" = Z/pZ. Since (Sely/pyr)" has no finite Z,[[I']]-submodule (cf. [Gre94, Proposition
10]), (Sels /(PZ)T)\/ must be a free Z,-module of rank one for any [ > 0. Finally, let us denote the
action of I' on (Selr,(py7)". Recall that (T} ® w) ® P is Kummer-dual to itself via Weil
pairing. By Proposition 9.1 and statement (1), (Selz/(p)7)" Qx 1-ip—1) (Sel(T/(PL)T)®X1+l(p—1))V
is a free rank-one Z,-module with trivial I'-action. Hence, we have (Selz /p)7)" = Z,(x =D for
every [ > 1, where Zp(xl+l(p_1)) is a free rank-one Z,-module on which I' acts via ! THP=1 | This
completes the proof of statement (3) and hence Claim 9.8. O

Let us prove the following claim.

CramM 9.9. We have length  2) (Sel¥); < ordi(v2 — k2(7')y') for every height-one prime [ in A,
[

Proof. Let g be an element of A such that (g) = char (2 (Sel7)". Since (Sel7)" has no non-trivial
pseudo-null A®)-submodule, we have an injection (Sel7)¥ — A(?)/(g) with a pseudo-null cokernel.
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We may replace (Sel7)Y by A® /(g) to prove the claim. Let us apply Lemma 9.3 for R = A®),
M = A® /(42 = k2(y)y) and N = A®)/(g). Let P, = 4/ — 2P~ (4/) € A® as above. Note that
each P is contained in Z,[[I"]]. Since P, are relatively prime to each other, we have an injection

Z(M') = [ Z['/(R). (18)

1<l<o

On the other hand, M is finite flat of degree two over Z,[[I"]]. Hence, by applying the base extension
®z,(rM to (18), we have an injection M — [[, <, M/(FP)M. Thus, we have shown condition
(1) of Lemma 9.3. Condition 2 is satisfied since P, are polynomials of degree one. O

Cram 9.10. We have length ) (Sel¥ ) = ord((v? — k2(y')Y') for every height-one prime [ in A®).
[

Proof. Let us consider the specialization at k = 2. The image of the two ideals (v2 —£2(y)y) ¢ A®
and (g) € A® in A® /(v — 1) = Z,[[T"]] are both equal to (y — 1). O

Hence, (Sel7)Y is a torsion A®)-module whose characteristic ideal is (v* — k2(y')y'). By Green-
berg,

(Selr)"/(Po)(Selr)" = (Selr, gz, ()"
is isomorphic to Z,. In particular, (Sely)Y/(Py)(Selr)Y is a cyclic module over Z,[[I']] = Zy[[I" x
I'"]]/(Fy). By Nakayama’s lemma, (Sel7)" has to be a cyclic module over Z,[[I" x I"']]. Consequently,
we have (Sel7)Y 2 A®) /(42 — k2(y)7)).
Next, we shall study IMC for this 7. Theorems 1 and Theorem 2 given in § 2 imply the following
claim.

CramM 9.11. We have length () (Sely); < ord((Ly(T)) for every height-one prime [ in A3,
[

Proof. We shall check conditions (i) and (ii) of Theorem 2 for 7. By the nearly ordinary condition
of 7, the image of GQ;r(“poo) is contained in the group {((1) ’{) € GLQ(A(Q))}. Let us consider also
pyoe) 00 T /MT = FP? which is contained in the group {(§7) € GLa(F,)}.
Recall that the residual representation 7 /97 is isomorphic to the group of 11-torsion points of
Xo(11) by properties of 7 introduced at the beginning of §9.2. Since X(11) has split multiplicative

the action of GQ;r(

reduction at 11, we have a Gg,-equivariant isomorphism Xo(ll)(@p) = @; /q” with q € pZy by the
uniformization theory by Tate. Hence, we have

0 — pp —>’Z'/EITI’Z'—>qZ/q%Z — 0.

We find 7 € Ggur(y,0) such that the image (ép{) of 7 in Aut(7 /MMT) = GLy(F),) satisfies p; # 0

1P,

01 ) under certain choice of basis

because ¢ = 11°u with u € Z7,. Thus, 7 is presented as (
Aut(7) = GLy(A®), where P is a unit of A,

For condition (ii), Gg — Aut(7 /97 ) contains an element (_01 _01) by the surjectivity of the
representation of Gg on the group of 11-torsion points of Xy(11) shown in [Ser72, 5.5.2]. This

completes the proof by Theorem 2. O

Since we already have an inequality as in Claim 9.11, it suffices to see that char,)(Selr)Y
modulo (7' — 1) is equal to the ideal of Z,[[I']] generated by L,(7) modulo 1" — 1. By Claim 9.10,
the ideal char ) (Sel7)" modulo (7' — 1) of Z,[[]] is equal to (y* — 1) = (y — 1) (note that v + 1
is a unit in Z,[[I']]). On the other hand, by the interpolation property given in Theorem 1, L;fi(’f)
modulo 7/ — 1 is equal to Cpa x LMTT(fy) € Zy[[[]], where LYTT(fy) € Zy[[I]] is the p-adic L-
function by Mazur, Tate and Teitelbaum [MTT86]. Since C) 2 is a p-adic unit by Proposition 6.4,
it suffices to prove the following claim to have the equality of the IMC for 7.
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CrAmm 9.12. We have the equality (LgATT(fg)) = (v — x(v)) in Z,[[I']].

Proof. We denote by g € Zp[[I']] the quotient LM (fy)/(y — x(7)). We would like to show that
g is a unit in Z,[[I']]. For any element h € Z,[[I']], we regard h to be the function on Z, by
setting h(s) = x*(h) for s € Z,. The trivial zero conjecture [MTT86], which was already proved by
Greenberg and Stevens [GS93], gives us an equality as follows:

L(f2,1)

LMTT
p + )
Qoo,2

(f2)(8) [s=1 = x(M)log, (x (7)) x g(s)]s=1 = Lp X (19)
where £, € Q, is the L-invariant defined to be log,(g)/ord,(g) by using the Tate period ¢ for the
Tate curve Xo(11) q,- By numerical calculation, we have ord,(L£,) = 1 = ord,(x(v)log,(x(7))) for
Xo(11) (cf. [MTTS86, §13]). Consequently, g(s)|s=1 € Z, is a unit. By the Weierstrass preparation
theorem, g € Z,[[I']] must be a unit. This completes the proof of Claim 9.12. O
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