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Introduction

This book discusses an approach to the analysis of asymptotic and global

properties of solutions to the equations of Einstein’s theory of general relativity

(the Einstein field equations) based on ideas arising in conformal geometry. This

approach allows a geometric and rigorous formulation of problems and notions

of great physical relevance in the context of general relativity. At the same time,

it provides valuable insights into the properties of the Einstein field equations

under optimal regularity conditions.

Before entering into the subject, it is useful to discuss the motivation behind

this type of endeavour. Accordingly, a brief account of certain aspects of what

can be called mathematical general relativity is necessary.

1.1 On the Einstein field equations

Einstein’s theory of general relativity is the best theory of gravity we have. It

is a relativistic theory of gravity which considers four-dimensional differentiable,

orientable manifolds M̃ endowed with a Lorentzian metric g̃; a discussion of these

differential geometric notions is provided in Chapter 2. The pair (M̃, g̃) is called

a spacetime . Here, and in the rest of this book, quantities associated to the

spacetime (M̃, g̃) will be distinguished by a tilde (̃ ); the motivation behind this

notation will become clear in the following. The gravitational field is described

in general relativity as a manifestation of the curvature of spacetime.

The fundamental equations of general relativity, the Einstein field equa-

tions, describe how matter produces the curvature of spacetime. They are given,

in the abstract index notation discussed in Section 2.2.6, by

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab, (1.1)

where g̃ab is the abstract index version of g̃, and where R̃ab and R̃ denote,

respectively, the Ricci tensor and Ricci scalar of the metric g̃. Moreover, λ is

the so-called cosmological constant and T̃ab denotes the energy–momentum
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tensor of the matter in the spacetime. Precise definitions and conventions for the

curvature tensors are provided in Chapter 2, while a discussion of the energy–

momentum tensors for a range of matter models is provided in Chapter 9. The

energy–momentum tensor satisfies the conservation equation

∇̃aT̃ab = 0,

where ∇̃a denotes the covariant derivative of the metric g̃. TheBianchi identity

satisfied by the Riemann curvature tensor R̃a
bcd of the metric g̃ ensures the

consistency between the conservation equation and the Einstein field equations.

A solution to the Einstein field equations is a pair (M̃, g̃), together with

a g̃-divergence-free tensor T̃ab such that Equation (1.1) holds. In suitable open

subsets of M̃ the metric g̃ is expressed, using some local coordinates (xμ), in

terms of its components (g̃μν); here and in what follows, Greek indices are

used as coordinate indices. In general, several coordinate charts will be needed

to cover the spacetime manifold M̃. Two metrics g̃ and ḡ over M̃ are said

to be isometric if they are related, everywhere on M̃, by some coordinate

transformation.

In the cases where T̃ab = 0, a direct computation shows that Equation (1.1)

implies

R̃ab = λg̃ab. (1.2)

In what follows, the latter will be known as the vacuum Einstein field

equations and a solution thereof as an Einstein spacetime. The full curvature

of a four-dimensional manifold is described by the tensor R̃a
bcd. This tensor

has 20 independent components. By contrast, the Ricci tensor appearing in the

Einstein field Equations (1.1) and (1.2) has only 10 independent components.

Hence, even in the absence of a cosmological constant, where the vacuum field

Equations (1.2) reduce to

R̃ab = 0, (1.3)

it is possible to have solutions with a non-vanishing Riemann tensor. As a

consequence, solutions to the vacuum field equations play a special role in general

relativity, as they describe pure gravitational configurations. Vacuum spacetimes

are often deemed more fundamental, as they exclude potential pathologies which

may arise from the choice of a particular matter model.

General relativity has two main domains of applicability: cosmology and iso-

lated systems. To make use of the Einstein field Equations (1.1) within these two

domains, one requires a number of idealisations. On the one hand, in cosmology it

is usually assumed that the matter content of the universe can be described by a

perfect fluid with an equation of state which depends on a particular cosmological

era. It is a convention in mathematical relativity to refer to spacetimes with

compact spacelike sections as cosmological spacetimes. On the other hand,

isolated systems are convenient idealisations of astrophysical objects for which
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1.2 Exact solutions 3

it is assumed that the cosmological expansion has no influence. The transition

between the regime of isolated systems and the cosmological one is a topic

of fundamental relevance for the understanding of the physical content of the

Einstein field equations; see, for example, Ellis (1984, 2002).

The validity of general relativity has been verified in a number of experiments

covering a wide range of scenarios ranging from the dynamics of the solar system

to cosmological scales; see, for example, Will (2014) for a discussion of the

subject. Surveys of the physical content of general relativity and its various

domains of applicability can be found, for example, in Poisson and Will (2015)

and Shapiro (1999).

Note. In the remainder of this chapter, in order to simplify the presentation, the

discussion will be restricted to Einstein spaces, that is, solutions to the vacuum

Equations (1.2). The inclusion of matter very often requires a case-by-case ana-

lysis.

1.2 Exact solutions

A natural first step to developing an understanding of the properties of solutions

to the Einstein field equations is the construction of exact solutions, that is,

explicit solutions written in terms of elementary functions of some coordinates.

The first non-trivial exact solution to the Einstein field equations ever obtained

is the Schwarzschild solution. It describes a static spherically symmetric vacuum

configuration; see Schwarzschild (1916), an English translation of which can

be found in Schwarzschild (2003). Remarkably, despite the complexity of the

field equations, the literature contains a vast number of exact solutions to

the equations of general relativity; see, for example, Stephani et al. (2003)

for a monograph on the subject. The number of solutions with a physical or

geometric significance is, arguably, much smaller; see, for example, Bičák (2000)

and Griffiths and Podolský (2009).

1.2.1 Construction of exact solutions

The construction of exact solutions to the Einstein field equations requires a

number of assumptions concerning the nature of the solutions. The most natural

assumptions involve the presence of continuous symmetries (Killing vectors) of

some type in the solution, for example, spherical symmetry, axial symmetry,

stationarity (including staticity) and homogeneity. Other types of assumptions

involve the algebraic structure of the curvature tensors of the spacetime (e.g.

the Petrov type of the Weyl tensor). These types of assumptions are harder to

justify on a physical basis.

Exact solutions are usually constructed in a coordinate system adapted to

the assumptions being made. Very often, these natural coordinates cover only a

portion of the whole spacetime manifold. Thus, one needs to find new coordinate

systems (charts) for the exact solution which allow one to uncover a full maximal
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analytic extension of the spacetime. This maximal extension usually paves the

way to the interpretation of the exact solution and gives access to its global

properties.

1.2.2 The limitations of exact solutions

Several of the well-known consequences of general relativity have been developed

through the analysis of exact solutions, for example, the notion of a black

hole. Thus, the study of exact solutions to the Einstein field equations helps to

develop a physical and geometric intuition which, in turn, can lead to questions

concerning more generic solutions. However, despite the valuable insights they

provide, the construction of exact solutions is not a systematic approach to

explore the space of solutions of the theory. In particular, this approach leaves

open the question of whether certain properties of a solution are generic, that

is, satisfied by a broader class of spacetimes. Moreover, exact solutions do not

lend themselves to the analysis of dynamic situations such as, for example, the

description of the gravitational radiation produced by an isolated system. Thus,

it is not possible to address issues involving stability just by means of exact

solutions. In order to analyse the above issues one has to consider whether it is

possible to formulate an initial value problem for the Einstein field equations by

means of which large classes of solutions can be constructed.

1.3 The Cauchy problem in general relativity

As in the case of many other physical theories, general relativity admits the

formulation of an initial value problem (Cauchy problem). This aspect of the

theory is obscured by both the tensorial character of the Einstein field equations

and the absence of a background geometry in the theory ; it is a priori not clear

that the field equations give rise to a system of partial differential equations

(PDEs) of a recognisable type.

Classical physical theories are expected to satisfy a causality principle:

the future of an event in spacetime cannot influence its past, and, moreover,

signals must propagate at finite speed . Among the three main types of PDEs

(elliptic, hyperbolic and parabolic), hyperbolic differential equations are the only

ones compatible with the causality principle. This observation suggests it should

be possible to extract from the Einstein field equations a system of evolution

equations with hyperbolic properties.

1.3.1 Hyperbolic reductions

The seminal work of Fourès-Bruhat (1952) has shown that the hyperbolic

properties of the Einstein field equations can be made manifest by means of

a suitable choice of coordinates. Following modern terminology, a choice of

coordinates is a particular example of gauge choice. Indeed, by choosing the

https://doi.org/10.1017/9781009291347.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.002


1.3 The Cauchy problem in general relativity 5

spacetime coordinates (xμ) in such a way that they satisfy the wave equation

associated with the metric g̃, the Einstein field equations can be shown to

imply a system of quasilinear wave equations for the components (g̃μν) of the

(a priori unknown) metric g̃ with respect to the wave coordinates. For quasilinear

wave differential equations there exists a developed theory which allows the

formulation of a well-posed Cauchy problem. The use of wave coordinates is not

the only way of bringing to the fore the hyperbolic aspects of the Einstein field

equations. In this book, it will be shown that the Einstein field equations can

be reformulated in such a way that after a suitable gauge choice they imply a

so-called (first order) symmetric hyperbolic evolution system – a class of PDEs

with properties similar to those of wave equations and for which a comparable

theory is available. The procedure of extracting suitable hyperbolic evolution

equations through a particular reformulation of the Einstein field equations

and a suitable gauge choice is known as a hyperbolic reduction ; hyperbolic

reductions are further discussed in Chapter 13. Besides its natural relevance

in mathematical relativity, the construction of hyperbolic reductions for the

Einstein field equations is of fundamental importance for numerical relativity;

see, for example, Alcubierre (2008) and Baumgarte and Shapiro (2010).

In the same way that the Einstein field equations are geometric in nature,

a proper formulation of the Cauchy problem in general relativity must also be

done in a geometric way; see, for example, Choquet-Bruhat (2007). This idea

is, in principle, in conflict with the discussion of hyperbolicity properties of the

Einstein field equations, as the associated procedure of gauge fixing breaks the

spacetime covariance of the field equations. As will be seen in the following, this

tension can be resolved in a satisfactory manner.

1.3.2 Initial data and the constraint equations

The formulation of an initial value problem for the Einstein field equations

requires the prescription of suitable initial data for the evolution equations on

a three-dimensional manifold S̃. This manifold will be later interpreted as a

hypersurface of the spacetime (M̃, g̃). An important feature of general relativity

is that the initial data for the evolution equations implied by the Einstein field

equations are constrained. The constraint equations of general relativity

(Einstein constraints) can be formulated as a set of equations intrinsic to the

initial hypersurface S̃ for a pair of symmetric tensors h̃ and K̃ describing,

respectively, the intrinsic geometry of the hypersurface (intrinsic metric or

first fundamental form) and the way the initial hypersurface is curved

within the spacetime (M̃, g̃) – the so-called extrinsic curvature or second

fundamental form. A priori, it is not clear what the freely specifiable data for

these constraint equations consist of, or whether, given a particular choice of

free data, the equations can be solved. The systematic analysis of the constraint

equations has shown that under suitable assumptions, they can be recast as a set

of elliptic partial differential equations ; see, for example, Bartnik and Isenberg
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(2004). For this type of equation a theory is available to discuss the existence

and uniqueness of solutions.

The constraint equations play a fundamental role in the theory and ensure that

the solution of the evolution equations is, in fact, a solution to the Einstein field

equations; this type of analysis is often called the propagation of the constraints.

The constraint equations of general relativity will be discussed in Chapter 11.

1.3.3 The well-posedness of the Cauchy problem in general relativity

The formulation of the Cauchy problem in general relativity ensures, at least

locally, the existence of a solution to the Einstein field equations which is

consistent with the prescribed initial data. More precisely, one has the following

result first proven in Fourès-Bruhat (1952).

Theorem 1.1 (local existence of solutions to the initial value problem)

Given a solution (h̃, K̃) to the Einstein constraint equations on a three-

dimensional manifold S̃ there exists a vacuum spacetime (M̃, g̃) such that S̃
is a spacelike hypersurface of M̃, h̃ is the intrinsic metric induced by g̃ on S̃
and K̃ is the associated extrinsic curvature.

The spacetime (M̃, g̃) obtained as a result of Theorem 1.1 is called a

development of the initial data set (S̃, h̃, K̃). Not every spacetime can

be globally constructed from an initial value problem. Those which can be

constructed in this way are said to be globally hyperbolic. There are important

examples of spacetimes which do not possess this property – most noticeably,

the anti-de Sitter spacetime. A general result concerning globally hyperbolic

spacetimes states that their topology is that of R×S̃ with each slice S̃t ≡ {t}×S̃
being intersected only once by each timelike curve in the spacetime. The slices

S̃t are known as Cauchy surfaces. The above points will be further discussed

in Chapter 14.

The Cauchy problem for the Einstein field equations provides an appropriate

setting for the discussion of dynamics. In particular, it allows one to investigate

whether a given solution of the Einstein field equations is stable, that is, whether

its essential features are retained if the initial data set is perturbed. Moreover,

it also allows one to analyse whether a given property of a solution is generic,

that is, whether the property holds for all solutions in an open set in the space

of initial data.

1.3.4 Geometric uniqueness and the maximal globally hyperbolic

development

An important observation concerning Theorem 1.1 is that it does not ensure

the uniqueness of the development (M̃, g̃) of the initial data set (S̃, h̃, K̃):

a different hyperbolic reduction procedure will, in general, give rise to an

alternative development (M̃′, g̃′). From the point of view of the Cauchy problem
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of general relativity, the solution manifold is not known a priori. Instead, it is

obtained as a part of the evolution process.

Given that an initial data set for the Einstein field equations gives rise to

an infinite number of developments (one for each reasonable gauge choice), it is

natural to ask whether it is possible to combine these various developments to

obtain a maximal development. This question is answered in the positive by the

following fundamental result; see Choquet-Bruhat and Geroch (1969).

Theorem 1.2 (existence of a maximal development) Given an initial data

set for the Einstein field equations (S̃, h̃, K̃), there exists a unique maximal

development (M̃, g̃), that is, a development such that if (M̃′, g̃′) is another

development, then M̃′ ⊆ M̃ and on M̃′ the metrics g̃ and g̃′ are isometric.

The maximal development (M̃, g̃) is also known as the maximal globally

hyperbolic development of the data (S̃, h̃, K̃). Theorem 1.2 clarifies the sense in

which one can expect uniqueness from the Cauchy problem in general relativity;

this idea is known as geometric uniqueness.

One can think of the maximal development of an initial data set as the largest

spacetime that can be uniquely constructed out of an initial value problem. The

boundary of this maximal development, if any at all, sets the limits of predictabil-

ity of the data – accordingly, one has a close link with the notion of classical

determinism. In certain spacetimes, it is possible to extend the maximal devel-

opment of a hypersurface to obtain a maximal extension. Accordingly, in general,

maximal developments and maximal extensions do not coincide. A further

discussion of the Cauchy problem in general relativity is provided in Chapter 14.

1.3.5 Construction of maximal developments and global existence

of solutions

Given some initial data set (S̃, h̃, K̃), it is natural to ask, How can one

construct its maximal development (M̃, g̃)? In general, this is a very difficult

task, as it requires controlling the evolution dictated by the Einstein field

equations under very general circumstances – something for which the required

mathematical technology is not yet available. There are, nevertheless, some

conjectures concerning the global behaviour of maximal developments. The origin

of these conjectures goes back to Penrose (1969) – see Penrose (2002) for a

reprint – and are usually known by the name cosmic censorship. In particular,

the so-called strong cosmic censorship states that the maximal development of

generic initial data for the Einstein field equations cannot be extended as a

Lorentzian manifold.

Given an exact solution to the Einstein equations, if one knows its maximal

extension, one can determine the maximal development (M̃, g̃) of one of its

(Cauchy) hypersurfaces, say, S̃. In what follows, let (h̃, K̃) denote the initial data

implied on S̃ by the spacetime metric g̃. The explicit knowledge of the maximal

development allows one to provide a physical interpretation of the solution and
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to analyse its global structure in some detail. One can now ask whether certain

aspects of (M̃, g̃) – say, its basic global structure – are shared by a wider class

of solutions to the Einstein field equations. A strategy to address this question

within the framework of the Cauchy problem in general relativity is to consider

initial data sets (S̃, h̄, K̄) which are, in some sense, close to the initial data for the

exact solution. One can then try to show that the associated maximal globally

hyperbolic development (M̄, ḡ) has the desired global properties. If this is the

case, one has obtained a statement about the stability of the solution and the

genericity of the property one is interested in. The standard convention, to be

used in this book, is to call (M̃, g̃) and (S̃, h̃, K̃), respectively, the background

spacetime and the background initial data set and (M̄, ḡ) and (S̃, h̄, K̄) the

perturbed spacetime and perturbed initial data set, respectively. In prac-

tice, the notion of closeness between initial data sets is dictated by the require-

ments of the PDE theory used to prove the existence of solutions to the evolution

equations. In the previous discussion it has been assumed that the 3-manifolds

on which the background and perturbed initial data are prescribed are the same.

The stability analysis allows one to conclude that the spacetime manifolds M̃
and M̄ are the same – they are, however, endowed with different metrics.

In analysing the stability of the background solution (M̃, g̃) one needs to show

that the solutions to the evolution equations with perturbed initial data exist

as long as the background solution. The expectation is that the assumption of

having initial data close to data for an exact solution whose global structure is

well understood will ease this task. In the following sections a strategy to exploit

this assumption will be discussed.

1.4 Conformal geometry and general relativity

Special relativity provides a framework for the discussion of the notion of

causality – that is, the relation between cause and effect – which is consistent

with the principle of relativity. The causal structure of special relativity is

determined by the light cones associated with the Minkowski metric η̃. It allows

the determination of whether a signal travelling not faster than the speed of light

can be sent between two events – if this is the case, then the two events are said

to be causally related. More generally, one can talk of Lorentzian causality :

any Lorentzian metric g̃ gives rise to a causal structure determined by the light

cones associated to g̃. Thus, general relativity provides a natural generalisation

of the notions of causality of special relativity – one in which the light cones

vary from event to event in spacetime. Crucially, however, in general relativity

the causal structure is a basic unknown of the theory.

The theory of hyperbolic differential equations provides notions of causality

which, in principle, are independent from the notions of Lorentzian causality.

It is, nevertheless, a remarkable feature of general relativity that locally, the

propagation of fields dictated by the Einstein field equations is governed by

the structure of the light cones of the solutions – the so-called characteristic
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surfaces of the evolution equations. Thus, the notions of Lorentzian and PDE

causality coincide. This aspect of the Einstein field equations is further discussed

in Chapter 14.

1.4.1 Conformal transformations and conformal geometry

Locally, a light cone can be described (away from its vertex) in terms of a

condition of the form φ(xμ) = constant where φ : M̃ → R is such that

g̃μν∂μφ∂νφ = 0. (1.4)

The structure of the light cones of a spacetime (M̃, g̃) is preserved by conformal

rescalings, that is, transformations of the spacetime metric of the form

g̃ �→ g ≡ Ξ2g̃, Ξ > 0 (1.5)

where Ξ is a smooth function on M̃ – the so-called conformal factor.

Throughout this book, the metrics g̃ and g will be called the physical metric

and the unphysical metric, respectively. The rescaling (1.5) gives rise to

a conformal transformation of (M̃, g̃) to (M̃, g). Precise definitions and

further discussion of these notions are provided in Chapter 5. In elementary

geometry, conformal transformations are usually described as transformations

preserving the angle between vectors. In Lorentzian geometry, they preserve the

light cones; from (1.4) it follows that gμν∂μφ∂νφ = 0, so that the condition

φ(xμ) = constant also describes the light cones of the metric g.

One key aspect of conformal rescalings is that they allow one to introduce

conformal extensions of the spacetime (M̃, g̃); see Figure 1.1. In a Riemannian

setting, the most basic example of conformal extensions of manifolds is the so-

called conformal completion of the Euclidean plane R2 into the 2-sphere S2 by

(M,g)

∂M

(M, g)˜ ˜
g=Ξ2g̃

Figure 1.1 Schematic representation of the conformal extension of a manifold.
The physical manifold (M̃, g̃) has infinite extension, while the unphysical
(extended) manifold (M, g) is compact with boundary ∂M. The boundary
∂M corresponds to the points for which Ξ = 0. Further details can be found
in Chapter 5. Adapted from Penrose (1964).
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I+
(a) (b) (c)

I−

I

I+

I−

Figure 1.2 Penrose diagrams of the three spacetimes of constant curvature: (a)
the de Sitter spacetime; (b) the anti-de Sitter spacetime; (c) the Minkowski
spacetime. Details of these constructions can be found in Chapter 6.

means of stereographic coordinates. By suitably choosing the conformal factor Ξ,

the metric g given by the rescaling (1.5) may be well defined even at the points

where Ξ = 0. If this is the case, it can be verified that the set of points ∂M for

which Ξ = 0 corresponds to ideal points at infinity for the spacetime (M̃, g̃) and

is called the conformal boundary . The pair (M, g) where M is the extended

manifold obtained from attaching to M̃ its conformal boundary is usually known

as the unphysical spacetime. Of particular interest are the portions of the

conformal boundary which are hypersurfaces of the manifold M – these sets

are characterised by the additional requirement of dΞ �= 0, so that they have a

well-defined normal. This part of the conformal boundary is denoted by I .

Explicit calculations show that the three spacetimes of constant curvature –

the Minkowski, de Sitter and anti-de Sitter spacetimes – can be conformally

extended. The details of these constructions are described in Chapter 6. These

conformal extensions are conveniently represented in terms of Penrose diagrams ;

see Figure 1.2. A discussion of the construction of Penrose diagrams can also

be found in Chapter 6. The insights provided by the conformal extensions of

these solutions are, in great measure, the fundamental justification for the use

of conformal methods in general relativity.

1.4.2 Conformal geometry

The study of properties which are invariant under conformal transformations of

a manifold is known as conformal geometry . Associated to the metric g of

the unphysical spacetime (M, g) one has its covariant derivative (connection) ∇a

and its curvature tensors, say, Ra
bcd, Rab, R. These objects can be related to the

corresponding objects associated to the physical metric g̃ (∇̃a, R̃
a
bcd, R̃ab and R̃)

and the conformal factor Ξ and its derivatives. Their transformation laws show,

in particular, that the Riemann tensor, the Ricci tensor and the Ricci scalar are

not conformal invariants. There is, however, another part of the curvature which
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1.4 Conformal geometry and general relativity 11

is conformally invariant. It is described by theWeyl tensor, for which it holds that

C̃a
bcd = Ca

bcd, on M̃.

In view of the above, one can regard the Weyl tensor as a property of the

collection of metrics conformally related to g̃ – the conformal class [g̃]. If the

vacuum Einstein field Equations (1.3) hold, the Bianchi identities imply that

∇̃aC̃
a
bcd = 0 (1.6)

irrespectively of the value of the cosmological constant.

1.4.3 Conformal invariance of equations of physics

A number of equations in physics have nice conformal properties. The prototyp-

ical example is given by the source-free Maxwell equations

∇̃aF̃ab = 0, ∇̃[aF̃bc] = 0, (1.7)

where F̃ab denotes the Faraday tensor. One can introduce an unphysical

Faraday tensor Fab by requiring it to coincide with F̃ab on M̃. Using the

transformation properties relating the covariant derivatives ∇̃a and∇a, it follows

that the Maxwell equations are conformally invariant ; that is, one has that

∇aFab = 0, ∇[aFbc] = 0.

The above equations are well defined everywhere on the unphysical spacetime

manifold M, in particular at the conformal boundary. These equations allow

the extension of the definition of the unphysical field Fab to the conformal

boundary ∂M.

In contrast to the Maxwell equations, the vacuum Einstein field Equations

(1.2) are not conformally invariant. The transformation law for the Ricci tensor

under the rescaling (1.5) implies the equation

Rab = − 2

Ξ
∇a∇bΞ− gabg

cd

(
1

Ξ
∇c∇dΞ− 3

Ξ2
∇cΞ∇dΞ

)
. (1.8)

The above equation is, at least formally, singular at the points where Ξ = 0.

Thus, it does not provide a good equation for the analysis of the evolution of the

unphysical metric g on M. Nevertheless, as pointed out by Penrose (1963) the

Bianchi identity (1.6) has a nice conformal covariance property. More precisely,

one has that

∇̃a

(
Ξ−1C̃a

bcd

)
= 0.

The above equation suggests defining the rescaled Weyl tensor dabcd ≡
Ξ−1C̃a

bcd. Under certain assumptions, the Weyl tensor can be shown to vanish at

I so that the rescaled Weyl tensor is well defined at this portion of the conformal

boundary – this important result is analysed in detail in Chapter 10. The rescaled
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Weyl tensor is not a conformal invariant; it transforms in a homogeneous fashion

under the rescaling (1.5). The above discussion leads to the equation

∇̃ad
a
bcd = 0, (1.9)

the so-called Bianchi equation. In addition, in view of the symmetries of the

Weyl tensor it can be shown that

∇̃[ed
a
|b|cd] = 0. (1.10)

Note the similarity between Equations (1.9) and (1.10) and the Maxwell

Equations (1.7). In particular, the equations are regular even at the conformal

boundary. These equations are full of physical significance, as the Weyl tensor can

be thought of as describing the free gravitational field, that is, a gravitational

analogue of the Faraday tensor. Chapter 8 provides a detailed derivation and

discussion of the equations presented in this section.

1.4.4 Asymptotics of the gravitational field and asymptotic

simplicity

One of the basic predictions of general relativity is the existence of gravitational

waves propagating at the speed of light across the fabric of spacetime. As

a dynamical process governed by the Einstein field equations, gravitational

radiation is closely related to the structure of the light cones of spacetime –

thus, if one wants to analyse gravitational radiation one has to examine the

propagation of the gravitational field along null directions. This analysis is

complicated by the absence of a background geometry so that, a priori, it is not

clear what the asymptotic behaviour of the gravitational field should be. This

concern lies at the heart of the subject of the asymptotics of spacetime – that

is, the study of the limit behaviour of fields at large distances and large times

and the characterisation of spacetimes by data obtained by taking such limits.

In theories which describe fields on a given background, one can discuss limits

at infinity in a meaningful way in terms of the background geometry. The

situation is radically different in general relativity, where the spacetime (M̃, g̃)

– with respect to which the limits of fields derived from g̃ are to be formulated –

is the central objects of study. Accordingly, making sense of limiting procedures

in general relativity is a delicate process and requires a careful analysis of the

geometry and the way it is determined by the Einstein field equations. An

approach to this analysis is provided by Penrose’s suggestion that the close

relation between the propagation of the gravitational field and the structure

of null cones which holds locally is also preserved at large scales and that the

asymptotic behaviour of the gravitational field can be conveniently analysed in

terms of conformal extensions of the spacetime; see Penrose (1963, 1964) and

Penrose (2011) for a reprint of the latter reference. With this idea in mind,

Penrose introduced the notion of asymptotically simple spacetimes, namely,

spacetimes admitting a smooth conformal extension which is similar to that
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1.4 Conformal geometry and general relativity 13

of one of the three constant curvature spacetimes. Proceeding in this manner,

one attempts to single out a class of sufficiently well-behaved spacetimes for

which it is possible to relate the structure of the light cones in spacetime to the

structure of the field equations and the large-scale behaviour of their solutions.

For asymptotically simple spacetimes the causal character of I is determined

by the sign of the cosmological constant; moreover, as already seen, the Weyl

tensor vanishes on the conformal boundary – the latter is the basic observation

in a collection of results known generically as peeling.

Minkowski-like spacetimes, that is, those asymptotically simple spacetimes

for which λ = 0, are of particular relevance in the study of asymptotics with

regard to their connection to the notion of isolated systems in general relativity;

compare the discussion at the end of Section 1.1. For this type of spacetime I is

a null hypersurface describing idealised observers at infinity. Penrose’s original

insight was to use the notion of asymptotic simplicity as a way of characterising

isolated systems in general relativity – this idea has been called Penrose’s

proposal by Friedrich (2002). One of the appealing features of this approach to

the study of isolated systems is that it provides a general framework in which

notions of physical interest such as gravitational radiation and the associated

mass/momentum-loss can be rigorously formulated and analysed. A substantial

amount of work has been invested in pursuing these ideas, as attested by the

sprawling literature on the subject. An exposition of the notion of asymptotic

simplicity, some of its basic consequences and Penrose’s proposal is given in

Chapters 7 and 10.

1.4.5 The conformal Einstein field equations

In view of Penrose’s ideas on the relation between general relativity and

conformal geometry one can ask: to what extent is it possible to draw conclusions

about the global structure of spacetimes from an analysis of the behaviour, under

conformal rescalings, of the Einstein field equations? As will be seen in this book,

by considering this question one is led to analyse the behaviour of solutions to

the Einstein field equations under optimal regularity conditions. To address the

above question one needs a suitable set of equations to work with. As already

observed, the direct transcription of the Einstein field equations as an equation

for the unphysical metric g does not provide a set of equations which are adequate

from the point of view of PDE theory.

An alternative set of field equations, the so-called conformal Einstein field

equations, has been constructed in the seminal work by Friedrich (1981a,b,

1983). The construction of this conformal representation of the equations begins

with a revised reading of the singular Equation (1.8) not as an equation for the

unphysical metric (or alternatively, its Ricci tensor) but for the derivatives of the

conformal factor Ξ. To complete this alternative point of view one upgrades the

curvature tensors to the level of unknowns and, accordingly, provides equations

for them. The required equations are supplied by the Bianchi identities in a way
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which is consistent with the Einstein field equations satisfied by the physical

metric g̃. The resulting system consists of equations for the conformal factor

and its first- and second-order derivatives, the unphysical metric g (through the

definition of its Ricci tensor), the unphysical Ricci tensor Rab and the rescaled

Weyl tensor dabcd – the equation for the latter field is Equation (1.9). The

equations derived by Friedrich have two key properties: (i) they are formally

regular even at the points where Ξ = 0 and (ii) whenever Ξ �= 0, they imply

a solution to the Einstein field equations. The considerations leading to the

conformal Einstein field equations will be discussed in Chapter 8.

The equations described in the previous paragraph are usually known as

the metric conformal field equations. One can extend the basic construction to

incorporate more gauge freedom so as to obtain a more flexible set of equations.

A natural first step in this direction consists of rewriting the field equations in

a frame formalism. This leads, in turn, in an almost direct way to the spinorial

version of the equations; see below. A more extreme generalisation consists of a

reformulation of the field equations in terms of a covariant derivative ∇̂a which

is not the Levi-Civita connection of a metric, but which nevertheless respects the

structure of the conformal class [g̃], a so-called Weyl connection. The resulting

equations are known as the extended conformal Einstein field equations. As will

be seen below, this particular formulation of the equations allows the use of

gauges with conformally privileged properties.

Friedrich’s conformal Einstein equations are not the only possible type of

conformal representation of the Einstein field equations; see, for example, Mason

(1995) and Anderson (2005a). In any case, they are the ones which have been

studied in a more systematic manner in the literature.

1.4.6 Gauge conditions and conformal geodesics

As already mentioned, the procedure of hyperbolic reduction requires the

specification of a gauge in terms of which the evolution equations are to be

expressed. Earlier in this chapter, the notion of a gauge choice had been restricted

to a specification of coordinates. For the conformal field equations, the gauge

specification involves three aspects: a coordinate, a frame and a conformal aspect.

The precise choice of these three aspects of the gauge depends on the particulars

of the problem at hand. A discussion of the gauge freedom contained in the

conformal field equations is given in Chapter 13.

The presence of a conformal gauge freedom – that is, the freedom to specify

the representative in the conformal class one wants to work with – is one of the

most attractive aspects of the conformal field equations. Given the bewildering

freedom one has in this respect, the use of conformal gauges related to conformal

invariants is a natural choice. Conformal geodesics are a good example of the type

of invariants one can consider. These curves are defined through a set of equations

which are invariant under conformal rescalings. In general, the conformal class

[g̃] does not contain a metric for which the conformal geodesics can be recast
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as standard (metric) geodesics. However, there is always a Weyl connection for

which they are affine geodesics. Conformal geodesics can be used to construct

conformal Gaussian gauge systems for which coordinates and an adapted frame

are propagated off an initial hypersurface. Conformal geodesics allow one to

specify a privileged unphysical metric g = Θ2g̃ where Θ is a conformal factor

determined through the conformal geodesic equations. Crucially, for solutions

to the vacuum field equations (1.2), the conformal factor Θ can be determined

explicitly from the initial data for a congruence of these curves – it turns out to be

a quadratic polynomial of a suitable parameter of the curves in the congruence.

To fully exploit the advantages provided by conformal Gaussian systems, it is

necessary to express the conformal field equations in terms of Weyl connections –

these considerations lead to the already mentioned extended conformal field

equations. Conformal geodesics and their properties are analysed in Chapter 5.

1.4.7 Spinors

This book adopts an approach to the extraction of information from the

conformal Einstein field equations which makes systematic use of a formalism

based on the so-called 2-spinors. The use of spinors to carry out this analysis is

not essential to the purposes of the book, but it has the advantage of simplifying

certain algebraic aspects of the discussion.

Spinors are the most basic objects subject to Lorentz transformations. To

every tensor and tensorial operation there exists a spinorial counterpart. More

precisely, to every tensor of rank k there corresponds a spinor of rank 2k. In some

particular cases – for example, null vectors or the Weyl tensor – by exploiting

symmetries one can associate to the tensor a spinor of the same rank k.

Spinors are well adapted to the discussion of the geometry of null hypersur-

faces. Thus, it is not surprising that they are a valuable tool in the discussion of

the Einstein field equations. In this book, spinorial representations of the confor-

mal field equations are systematically used as a part of the hyperbolic reduction

procedure. In particular, a 2-spinor formalism usually known as the space spinor

formalism, which can be regarded as a spinorial analogue of the 1+3 formalism

for tensors, provides an almost completely algorithmic approach to the decompo-

sition of the field equations into (symmetric hyperbolic) evolution equations and

constraint equations. The basic spinorial formalism used in this book is described

in Chapter 3, while the space spinor formalism is dealt with in Chapter 4.

1.5 Existence of asymptotically simple spacetimes

The conformal field equations provide a powerful tool for the analysis and

construction of asymptotically simple spacetimes. In broad terms, they allow

the reformulation of problems involving unbounded domains in the physical

spacetime (M̃, g̃) as problems on bounded domains of the unphysical spacetime

(M, g). From the point of view of PDE theory, problems involving a finite
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existence time are simpler to analyse than global existence questions. Under

the appropriate conditions, the existence of solutions to hyperbolic differential

equations on a fixed finite time interval can be shown by invoking the property

of Cauchy stability ; this and other basic notions of PDE theory are discussed

in Chapter 12 where a brief account of basic existence results for symmetric

hyperbolic systems is given. Prior to its use with the conformal Einstein field

equations, the technique for the analysis of evolution equations based on a

combination of conformal techniques and Cauchy stability had been used to show

the existence of global solutions of the Yang-Mills equations on the Minkowski

and de Sitter spacetimes; see Choquet-Bruhat and Christodoulou (1981).

The remainder of this section provides a brief survey of some of the existence

results for asymptotically simple spacetimes which have been obtained using the

conformal Einstein equations. These results will be elaborated in Part IV of this

book.

1.5.1 Characteristic initial value problems

Characteristic problems are a particular type of initial value problem where

data are prescribed on null initial hypersurfaces. Typically, these data are

prescribed on two intersecting null hypersurfaces N1 and N2. The relevant PDE

theory then allows one to conclude the existence and uniqueness of solutions on

neighbourhoods of N1 ∩N2 which are either to the future or to the past of their

intersection. In a different type of characteristic problem one prescribes initial

data on a null cone N , including its vertex, and one endeavours to obtain a

solution inside the cone – at least in a neighbourhood of the vertex. Conformal

methods allow the formulation of characteristic problems for which initial data

are prescribed on a null conformal boundary – in this case one talks of an

asymptotic characteristic initial value problem ; see Friedrich (1981a,b,

1982, 1986c). An attractive feature of characteristic initial value problems is that

the field equations, expressed in an adapted gauge, have structural properties

which simplify their analysis. In particular, the constraint equations on the initial

null hypersurfaces reduce to ordinary differential equations.

Asymptotic characteristic problems allow the aspects of the theory of the

asymptotics of isolated systems to be set on a rigorous footing. The basic

theory of characteristic problems for hyperbolic equations is discussed in Chapter

12. Applications of this theory to the conformal field equations are given in

Chapter 18.

1.5.2 De Sitter-like spacetimes

The simplest type of standard (i.e. non-characteristic) initial value problem for

the conformal Einstein field equations involves the construction of de Sitter-like

spacetimes. In this case one considers compact initial hypersurfaces S which are

diffeomorphic to the 3-sphere S3. One has the following concise statement first

proved in Friedrich (1986b).
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1.5 Existence of asymptotically simple spacetimes 17

Theorem 1.3 (global existence and stability of de Sitter-like space-

times) Solutions to the Einstein field Equations (1.2) with a de Sitter-like value

of the cosmological constant arising from Cauchy initial data close to data for

the de Sitter spacetime are asymptotically simple.

The proof of this result relies on the fact that a conformal representation of the

exact de Sitter spacetime can be recast as a solution of the conformal Einstein

field equations which extends beyond the conformal boundary. It follows from

the general theory of hyperbolic equations that the solution of the evolution

equations for an initial data set which is close to initial data for the background

solution will give rise, in its development, to a spacelike hypersurface on which

the conformal factor vanishes. This hypersurface can then be interpreted as the

conformal boundary of the perturbed spacetime. Thus, the resulting perturbed

spacetime has the same global structure as the de Sitter spacetime, and one can

say that, in this case, the notion of asymptotic simplicity is stable. Remarkably,

a variation of Theorem 1.3 allows for the possibility of prescribing initial data

on the conformal boundary.

Theorem 1.3 can be extended to include the coupling of the gravitational field

with various types of trace-free matter. A detailed discussion of the proof of

Theorem 1.3 is given in Chapter 15.

1.5.3 Anti-de Sitter-like spacetimes

As already mentioned, the anti-de Sitter spacetime provides one of the basic

examples of non-globally hyperbolic spacetimes. This peculiarity of the spacetime

can be attributed to the timelike nature of its conformal boundary; this is further

discussed in Chapter 14. As a consequence of the above, spacetimes with a global

structure which is similar to that of the anti-de Sitter spacetime cannot be

constructed using a standard initial value problem, and the initial data have

to be supplemented by suitable boundary data on the hypothetic conformal

boundary. This type of setting was first analysed in Friedrich (1995) and requires

the identification of initial data which can be described as anti-de Sitter-like

and appropriate boundary data for the conformal Einstein field equations on

a timelike hypersurface representing the conformal boundary. It turns out that

initial data sets (S̃, h̃, K̃) for anti-de Sitter-like spacetimes are characterised by

the fact that they admit a conformal extension (S,h,K) such that S has a

boundary ∂S with the topology of the 2-sphere S2. Based on the example of the

exact anti-de Sitter spacetime one expects the conformal boundary to intersect S
on ∂S and be of the form Ic = (−c, c)×∂S for some c > 0. A detailed analysis of

the conformal evolution equations on Ic reveals that suitable boundary data for

the conformal field equations consists of a three-dimensional Lorentzian metric


. In order to ensure the smoothness of solutions, the underlying PDE theory

requires certain compatibility conditions (corner conditions) between the initial

and the boundary data which are implied by the conformal field equations.

Taking into account the above observations one has the following.
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Theorem 1.4 (local existence of anti-de Sitter-like spacetimes) Consider

an anti-de Sitter-like initial data set (S̃, h̃, K̃) for the Einstein field equations and

a Lorentzian three-dimensional metric 
 on Ic. Assume that the above data sat-

isfy suitable corner conditions. Then, there exists a solution to the Einstein field

equations (M̃, g̃) with anti-de Sitter-like cosmological constant and an associated

conformal extension (M, g) such that S̃ is a spacelike hypersurface of (M̃, g̃) and

so that (h̃, K̃) coincides with the intrinsic metric and extrinsic curvature implied

by (M̃, g̃) on S̃. Furthermore, Ic is the conformal boundary of (M, g) and the

intrinsic metric of Ic implied by g belongs to the conformal class of 
.

The proof of the above theorem is described in Chapter 17. The above theorem

ensures only local existence of anti-de Sitter-like spacetimes, that is, the existence

of a solution close to S̃. It says nothing about the global existence or stability of

solutions. Accordingly, it does not require assumptions on the smallness of the

data. At the time of writing, the question of the stability (or lack thereof) is an

open problem.

1.5.4 Minkowski-like spacetimes

The analysis of Minkowski-like spacetimes gives rise to some of the most

challenging open problems in the application of conformal methods in general

relativity.

In principle, one would like to construct Minkowski-like spacetimes by

prescribing suitable asymptotically Euclidean initial data on a three-dimensional

manifold S̃ which is a Cauchy hypersurface of the hypothetic spacetime. However,

it turns out that a simpler problem consists of the specification of initial data

on a 3-manifold H̃ describing a hypersurface of M̃ which in the conformal

extension intersects I —a so-called hyperboloid . Hyperboloidal initial data

sets (H̃, h̃, K̃) admit conformal extensions (H,h,K) for which H is a manifold

with boundary ∂H which has the topology of the 2-sphere S2 – this boundary

corresponds to the intersection of the hyperboloid with I . Hyperboloidal initial

data sets are similar in structure to anti-de Sitter-like initial data. There is, in

fact, a correspondence between the two; this relation is explored in Chapter 11.

An important feature of hyperboloids is that they are not Cauchy hypersurfaces;

that is, they do not allow the reconstruction of a whole Minkowski-like spacetime.

Despite this shortcoming, one has the following semi-global existence and

stability result first proved in Friedrich (1986b).

Theorem 1.5 (semi-global existence and stability of the hyperboloidal

initial value problem) Solutions to the hyperboloidal initial value problem

for the Einstein Equation (1.3) with initial data (H̃, h̃, K̃) which are suitable

perturbations of Minkowski hyperboloidal data are asymptotically simple to the

future of H̃ and have a conformal boundary with the same global structure as the

conformal boundary of Minkowski spacetime.
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A detailed account of this result is given in Chapter 16. Aside from some

technical details, the key ideas of the proof of this result are similar to those of

Theorem 1.3 for de Sitter-like spacetimes. Again, a conformal point of view allows

one to provide a global existence result for the Einstein field equations in terms

of a problem involving a finite existence time. A proof of the non-linear stability

of the Minkowski spacetime making use of initial data prescribed on a Cauchy

initial hypersurface has been given in the work by Christodoulou and Klainerman

(1993). This proof relies on a detailed analysis of the decay of the gravitational

field using carefully constructed estimates. Remarkably, the main result of this

work does not provide enough regularity at infinity for us to conclude that the

spacetime obtained is asymptotically simple.

Time-independent solutions

An important source of intuition on the behaviour of general Minkowski-

like spacetimes is provided by the analysis of time-independent spacetimes,

that is, spacetimes possessing a continuous symmetry which (at least) in the

asymptotic region is timelike. If the Killing vector of a time-independent solution

is hypersurface orthogonal, then one speaks of a static spacetime. Otherwise,

one has a stationary solution. In the vacuum case, static and stationary

solutions can be thought of as describing the exterior gravitational field of

some compact matter configuration. In addition, the Schwarzschild and Kerr

spacetimes describe time-independent black holes. From the point of view of

conformal geometry, their relevance lies in that they allow a detailed analysis of

spatial infinity, that is, the portion of the conformal boundary intersecting the

conformal extension S of a Cauchy hypersurface S̃. Vacuum time-independent

spacetimes can be shown to admit conformal extensions which are as smooth as

one can expect.

Time-independent spacetimes are described by equations which, in a suitable

gauge, are elliptic. This feature of this class of solutions explains many of their

rigidity and uniqueness properties – in particular, they are characterised through

a sequence of multipole moments. The analysis of these expansions and other

asymptotic properties of static and stationary solutions can be performed in

a very convenient manner through conformal methods. In addition, and quite

remarkably, static spacetimes can be shown to have a close relation to spacetimes

constructed from an asymptotic characteristic initial value problem on a light

cone. These and further aspects of static solutions are discussed in Chapter 19.

Spatial infinity

The asymptotic region of Cauchy hypersurfaces of Minkowski-like spacetimes

can be conformally extended to include a further point – the point at infinity. In

these conformal extensions, domains in the asymptotic region are transformed

into suitable neighbourhoods of the point at infinity. This point compactification

procedure is a generalisation of the compactification of R2 into S2. From a
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spacetime perspective, the point at infinity gives rise to spatial infinity i0.

In this picture, i0 can be thought of as the vertex of the light cone of I ,

and the Minkowski-like spacetime corresponds to the exterior of the cone; this

construction is analysed in Chapters 19 and 20.

The construction of Minkowski-like asymptotically simple spacetimes from

Cauchy initial data requires a precise understanding of the behaviour of the

gravitational field in a neighbourhood of spatial infinity. It was first observed

by Penrose (1965) that for spacetimes with non-vanishing mass the conformal

structure becomes singular at spatial infinity. As a consequence, the initial data

implied by the Bianchi Equation (1.9) – which, as already discussed, is one of the

key constituents of the conformal field equations – blows up at spatial infinity.

The resulting singularity makes the analysis of solutions to the conformal field

equations in this region of spacetime particularly challenging. This observation

explains, to some extent, why the first results on the existence of Minkowski-

like spacetimes were restricted to the developments of hyperboloidal initial data.

Early attempts to analyse this situation – see, for example, Beig and Schmidt

(1982), Beig (1984) and Friedrich (1988) – reached an impasse due to the lack

of a suitable representation of spatial infinity. A breakthrough in this direction

was given in Friedrich (1998c) where a representation of spatial infinity based on

the properties of conformal geodesics, the so-called cylinder at spatial infinity,

allows one to formulate a regular finite initial value problem for the conformal

field equations at spatial infinity. In recent years, a considerable amount of

work has been devoted to exploring the implications of this construction.

The picture that has progressively emerged is that the conditions required to

ensure the existence of asymptotically simple developments out of asymptotically

Euclidean initial data are much more restrictive than what one would first

expect.

The analysis of the structure of spatial infinity has been informed by

developments in the construction of solutions to the constraint equations of

general relativity. The exterior asymptotic gluing constructions introduced in

Corvino (2000) and Corvino and Schoen (2006) allow one to glue static and

stationary asymptotic regions to otherwise completely general asymptotically

Euclidean initial data sets, the basic ideas of the exterior asymptotic gluing

construction are briefly discussed in Chapter 11. As already observed, time-

independent solutions to the Einstein field equations are well behaved in a

neighbourhood of spatial infinity. Chruściel and Delay (2002) have shown that

it is possible to combine this observation with Theorem 1.5 to obtain complete

Minkowski-like asymptotically simple spacetimes. The spacetimes obtained in

this manner are very special, as they are exactly static, or, more generally,

stationary in a neighbourhood of spatial infinity – nevertheless, radiation is

registered at null infinity. It is natural to ask whether it is possible to relax

this rigid behaviour so as to obtain more general types of asymptotically simple

spacetimes. The analysis of the problem of spatial infinity remains a challenging
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open area of research; an introductory discussion to the problem of spatial infinity

is provided in Chapter 20.

1.6 Perspectives

At the time of writing, the use of conformal methods to analyse the global

existence and stability of solutions to the Einstein field equations has been

mainly restricted to asymptotically simple spacetimes. One of the motivations

behind this book is to encourage researchers interested in the open problems

of mathematical relativity to further extend the available conformal methods

so as to make them suitable for the analysis of more complicated spacetimes

– for example, black holes. From the author’s point of view, the realisation

of this vision requires the development of not only analytic tools, but also a

computational framework which allows one to perform numerical relativity using

the conformal field equations. Some ideas in this direction are put forward in the

concluding Chapter 21.

1.7 Structure of this book

This book is divided in four parts. Throughout, a combination of abstract index

notation and index-free notation has been used. An index-free notation has

been preferred whenever it simplifies the presentation and emphasises structural

aspects of an equation, while abstract indices are used, mostly, in detailed

calculations. The spinorial conventions follow those in the monograph of Penrose

and Rindler (1984). In view of the systematic use of spinors, this book adopts a

(+−−−) convention for the signature of Lorentzian metrics. As a consequence of

this convention the sign of the cosmological constant in the de Sitter spacetime

is negative, while for the anti-de Sitter spacetime it is positive. In order to

avoid confusion – inasmuch as it is possible – with other sources, a negative

cosmological constant will be described as being de Sitter-like and a positive

one as being anti-de Sitter-like. Further details on conventions can be found in

Chapters 2, 3 and 4.

Throughout this book bold italics are systematically used to denote that a

given concept is being defined, while italics are used to highlight an idea; the

attentive reader will realise that sometimes the distinction between these two is

blurry.

The content of the four parts of this book can be briefly described as follows.

Part I (Geometric tools) provides a self-contained discussion of the differential

geometric and spinorial notions that will be used throughout the book. The

presentation and selection of material is tailored to the needs of the discussion

in Parts II and III and the applications in Part IV. Chapter 2 gives a brief

account of the required notions of differential geometry. The purpose of the

chapter is not only to serve as a quick reference in later parts of the book

but also to elaborate certain ideas which are not readily available elsewhere
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in the literature. Chapter 3 provides an account of 2-spinors, while Chapter 4

develops the so-called space spinor formalism. Chapter 5 provides an introduction

to conformal geometry which covers not only the transformation formulae for

the connection and curvature but also not so well-known topics such as Weyl

connections and conformal geodesics – two key notions which will be further

developed in Parts II and III.

Part II (General relativity and conformal geometry) provides an introduction to

the use of conformal methods in general relativity. It also develops a toolkit of

other mathematical methods which will be used to extract information from the

Einstein field equations. Chapter 6 provides a brief survey of the construction

of conformal extensions of basic solutions to the Einstein field equations – the

Minkowski, de Sitter, anti-de Sitter and Schwarzschild spacetimes – as well as

a general framework for the construction of Penrose diagrams of spherically

symmetric static spacetimes. Chapter 7 provides a discussion of one of the leading

themes of this book, the concept of asymptotically simple spacetimes and a

formulation of the so-called Penrose’s proposal. Chapter 8 gives a derivation

and detailed discussion of the main tool of this book, the conformal Einstein

field equations. Several versions of the equations are considered – metric, frame,

spinorial and in terms of Weyl connections. Chapter 9 complements Chapter

8 and describes matter models amenable to treatment by means of conformal

methods. Several of the main results of this book for the vacuum case can

be generalised by including these matter models. Chapter 10 provides a brief

discussion of the formal theory of the asymptotics of spacetime – sometimes also

called asymptopia. This is a vast topic with a sprawling literature. It is thus

impossible to do full justice to the subject in a concise chapter. Accordingly, the

decision has been made to restrict the material to aspects of the subject which

motivate the later parts of the book.

Part III (Methods of PDE theory) provides an account of PDE and spinorial

methods that will be used systematically in Part IV to obtain statements about

the existence of various types of solutions to the Einstein field equations. Chapter

11 provides a discussion of the constraint equations implied by the conformal

Einstein field equations on spacelike and timelike hypersurfaces – the so-called

conformal constraint equations. The proper discussion of this material requires

the introduction of certain notions of elliptic PDE theory. This is done at various

places in the chapter. Chapter 12 provides a discussion of the methods of the

theory of hyperbolic PDEs which will be used in the latter parts of the book. This

chapter has been written with the applications in Part IV in mind and covers

basic local existence and uniqueness results for initial value, boundary value

and characteristic initial value problems. Chapter 13 discusses in detail various

hyperbolic reduction procedures for the conformal Einstein field equations by

means of spinorial methods. The analysis is not restricted to the evolution

systems, but also considers the subsidiary evolution equations required to prove

the propagation of the constraints. Part III of the book concludes with Chapter
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14 where a brief discussion of Lorentzian causality and key aspects of the Cauchy

problem in general relativity are given.

Part IV (Applications) is concerned with applications of the conformal Ein-

stein field equations to the analysis of the existence of asymptotically simple

spacetimes. Chapter 15 analyses the global existence and stability of de Sitter-

like spacetimes; see Theorem 1.3. Two different proofs are provided: the first

one makes use of the standard conformal field equations and gauge source

functions, and the second one relies on the extended conformal field equations

and conformal Gaussian systems. Chapter 16 provides a proof of the semiglobal

existence and stability result for hyperboloidal initial data for the Minkowski

spacetime and a detailed analysis of the structure of the conformal boundary of

the resulting spacetimes; see Theorem 1.5. Chapter 17 provides a discussion of

the construction of anti-de Sitter-like spacetimes by means of an initial boundary

value problem; see Theorem 1.5. Chapter 18 discusses a different setting for the

construction of solutions to the conformal field equations, that of asymptotic

characteristic initial value problems either on intersecting null hypersurfaces (one

of them representing null infinity) or on a cone (representing past null infinity).

Chapter 19 analyses the properties of static solutions by means of conformal

methods. The main purpose of this chapter is to pave the way for the discussion

of the problem of spatial infinity, which is analysed in Chapter 20. In particular,

a discussion of the construction of the so-called cylinder at spatial infinity is

provided.

The book concludes with Chapter 21, which provides a subjective selection of

open problems in mathematical general relativity where it is felt that the use of

conformal methods can provide fresh insights.

Further reading sections. Each chapter provides a brief literature survey. The

purpose of this is to provide the interested reader a convenient point of entry into

the literature in case more details or an alternative perspective on the subject

are required.
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