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ON THE INVERSION OF RIGHT 
INVARIANT ELEMENTS 

BY 

RAYMOND A. BEAUREGARD 

In this note we show that every (not necessarily commutative) integral domain 
R has a quotient ring which, although need not be a field, has the property that 
all of its right invariant elements are units. As an application this shows that every 
PRI (principal right ideal) domain can be embedded in a simple PRI domain 
which is, in general, not a field. 

A nonzero element a in R is said to be right invariant if aR is a twosided ideal 
of R, i.e., if Ra^aR. Let / be the set of all right invariant elements of R and let 
B=B(R) be the set of all factors of elements of /. We note that every factor b 
of a right invariant element a is actually a left factor; for if a—xby then a=byxf 

where x' is chosen to satisfy xa=ax\ Thus we may write 

B = {b e R | aR ç bR for some a e I}. 

The right quotient ring K=RB~1={rb~11 r e R, b eB} may be formed pro
vided that B is a right Ore system in R, i.e., a submonoid of the monoid i?* of 
nonzero elements of R satisfying 

bR n rB 7* 0 

for each b eB, r GR. We assume that all right Ore systems are saturated. For B, 
this means that 

bxb2 e B iff bx and b2 e B. 

Saturation insures that if U(K) is the group of units of K then U(K) n R=S. 
The proof that B is a right Ore system in R is left as an exercise (cf. [2, p. 218]). 
Although we do not know that the right invariant elements of K are units in K, 
the center of K is a field (also left as an exercise). 

In order to find a quotient ring of R all of whose right invariant elements are 
units we use a simple iteration based on a procedure which is borrowed from [1]. 
Let S1=U(R) and let KX=R. Let a > l be an ordinal and assume that for each 
/?<oc, Sp has been defined and is a right Ore system in R with Kp^RSJ1. We define 
Sa by 

U Sp if a is a limit ordinal 
0<<x 

B(Ka_^) n R if a is not a limit ordinal. 

One may easily check that Sa is a right Ore system in R, and we put K^RS"1 

so that the induction is valid. Thus we obtain an increasing sequence of right Ore 
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systems in R. Clearly we must have Sa=Sa+1 for some a, and we let y be the least 
such ordinal. Then Ky can have no nonunit right invariant element. We have estab
lished the following. 

THEOREM 1. Each integral domain can be embedded in a quotient ring whose right 
invariant elements are all units. 

As a corollary we find at if R is a PRI domain then it has a right quotient ring 
Ky which has no nonunit right invariant elements; since Ky is also a PRI domain 
[1] this means that Ky is simple More specifically we can show that the sequence 
constructed above ends at y = 2 . In other words, if K^RB'1 then all of the right 
invariant elements in KSLTQ units in K. To prove this let k=rb~1 be right invariant in 
K. Then r is also right invariant in K. Since rK n R is a right ideal of R we may put 
rK n R=aR. Then a=rd where d is a unit in K (since aK=rK). Thus a is also 
right invariant in K. From 

Ra Ç Ka n R ç aK n R = aR 

we find that a is right invariant in R and hence a unit in K. Consequently k= 
ad~xb~x is also a unit in î T. We summarize in the following. 

THEOREM 2. Let R be a PRI domain and let B be the set of all right invariant 
elements of R together with all of their factors. Then the quotient ring K=RB~X 

is a simple PRI domain. 

We remark that for the case of a PRI domain R the set B(R) is precisely the 
set of all elements b e R for which bR is a bounded right ideal as defined in [4, 
p. 38] (cf. also [2, p. 227]). 

It is well known that in a PRI domain R, R* is a right Ore system and so R 
has a quotient field. Thus the main interest in Theorem 2 is in the construction 
of simple PRI domains which are not fields (cf. also [3]). In order to achieve this 
we need only take R to be a PRI domain in which B(R)?£R*. For such an example 
see [5, p. 211]. 
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