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Finite Determinacy and Stability of Flatness
of Analytic Mappings

Janusz Adamus and Hadi Seyedinejad

Abstract. It is proved that flatness of an analytic mapping germ from a complete intersection is
determined by its sufficiently high jet. As a consequence, one obtains finite determinacy of complete
intersections. It is also shown that flatness and openness are stable under deformations.

1 Introduction

When dealing with singularities of analytic sets or mappings, particularly in explicit
calculations, one is often tempted to forget the original infinite transcendental data
and to work instead with its (sufficiently long) Taylor truncation. This approach is
satisfactory in many circumstances. For example, the Milnor number of an isolated
hypersurface singularity can be correctly calculated this way. In general, however,
local analytic invariants of a given singularity may differ from those of its Taylor ap-
proximations of arbitrary length (¢f. Example 3.5 and Remark 3.6).

In this paper we show that, roughly speaking, those algebro-geometric properties
of an analytic mapping-germ ¢ = (¢1,...,¢,) that depend on the variation of its
fibres are already determined by Taylor polynomials of ¢s, . . ., ¢, of sufficiently large
degree.

1.1 Main Results

Let K = Ror C. Let x = (x1,...,%,) and let m, denote the maximal ideal in the
ring of convergent power series K{x}. For a natural number k € N and a power
series f € K{x}, the k-jet of f, denoted j* f, is the image of f under the canonical
epimorphism K{x} — K{x}/m*L. For an s-tuple ¢ = (¢1,..., ;) € K{x}*, we set
o= (o i)

An analytic mapping ¢: X — Y is called flat at a point £ € X when the pullback
homomorphism ¢¢:Oy,g5) > Ox,¢ makes Ox ¢ into a flat Oy, (g)-module. One
of the major problems considered in this paper is whether flatness of a K-analytic
mapping germ is finitely determined (i.e., determined by its k-jet for k large enough).
We prove that this is indeed the case for mappings from complete intersections. More
precisely, we have the following theorem.
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Theorem 1.1  Let X be a K-analytic subspace of K™. Suppose that 0 € X and the
local ring Ox o is a complete intersection. If ¢ = (¢1,...,9,): X = K", ¢(0) = 0, is
a K-analytic mapping, then there exists yo > 1 such that the following conditions are
equivalent:

(i) ¢ isflat at zero.
(ii) Forevery u> po, j*¢ = (j*¢1,..., j*¢n): X - K" is flat at zero.
(ili) There exists y > po such that j* @ = (j*¢1,..., j*¢n): X - K" is flat at zero.

The above theorem implies, in particular, finite determinacy of complete intersec-
tions in K{x}: An s-tuple (fi,..., f;) forms a regular sequence in K{x} if and only
if this is so for every (gi,...,gs) € K{x}* with j#g; = j*f;, i = 1,...,s (Corol-
lary 4.8). As a consequence, we obtain that ¢: X — K" is a flat mapping if and only if
every y: X — K" satisfying j*°y = j#* ¢ is flat as well (Theorem 4.9).

Independently, one can prove an analogue of Theorem 1.1 for finite mappings. This
is our Theorem 4.3, which requires no assumptions on the source X. Interestingly,
Theorem 4.3 cannot be generalized to finitely generated modules. That is, in general,
flatness of a finitely generated K{x }-module is not finitely determined (Example 4.5).

Another problem considered here is that of stability of flatness under deformations.
Recall that given a morphism ¢: X — Y of K-analytic spaces and a pointed space
(T,0) (i.e., an analytic space with a distinguished point 0), a deformation of ¢ over Y
is a Cartesian diagram of the form

X X

‘| |

Y ——— YT

|

{0} —— T,

such that X is flat over T (see, e.g, [6]). For 6 € T, we denote by @Y the specialization
of @ over 0, that is, the pullback of @by Y x {6} - Y x T.

We prove that flatness of mappings into locally irreducible targets is stable under
deformations.

Theorem 1.2 Let ¢: X — Y be a flat morphism of K-analytic spaces, with Y locally
irreducible. If  is a deformation of ¢ parametrized by a locally irreducible T, then ®°
is a flat mapping for every 0 € T near zero.

When K = C, we also have an analogous result about stability of openness (Propo-
sition 6.3 and Corollary 6.4).

1.2 Plan of the Paper

Our main tool here is Hironaka’s diagram of initial exponents. We recall this notion
and its relevance to flatness in the next section. Section 3 is devoted to approximation
of the diagram of a given ideal in K{x} by the diagrams of its Taylor approximations.
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Theorems 1.1 and 1.2 are proved in Sections 4 and 5, respectively. The last section is
devoted to the complex case. In the complex setting, we prove geometric analogues
of our main results.

2 Diagram of Initial Exponents and Flatness

Let K = RorC. Let A = K{y}/J be alocal analytic K-algebra, where y = (y1,..., y,)
and J c K{y} is a proper ideal. Let x = (x;, ..., x,,) and define

Ax} =K{y,x}/T-K{y,x}.

We will write x? for x! - xbm | where B = (Bi,....Bm) € N™. By the canonical
embedding A{x} < A[[x]], one can regard the elements of A{x} as power series
with coefficients in A.

Let m, denote the maximal ideal of A. For a power series F = 3 gcym f5 xP e A{x},
define its evaluation at 0 as

F(0)= Y f(0)xF € A/mu{x} = K{x},
BeNm

and for an ideal I in A{x} define I(0) = {F(0) : F € I}, the evaluated ideal.

For B = (B1,...,Bm) € N™, we write |f| = B1 + -+ + B and call it the length of
B. We define a total ordering of N™ by lexicographic ordering of the (m + 1)-tuples
(1Bl Br> -+ > Bm), where B = (By, ..., Bm). The support of F = ¥ geym fpxP is defined
as supp(F) = {B e N": fz # 0}, and exp(F) = min{f € supp(F) } denotes the initial
exponent of F. Similarly,

supp(F(0)) = {[3 eN™: f3(0) # 0} and exp(F(0)) = min{ﬁ € supp(F(O))},
for the evaluated series. Of course, supp(F(0)) c supp(F).

If B* = exp(F) is the initial exponent of F = 3" fgx?, then the “monomial” fﬁ*xﬁ* €
A{x} is called the initial term of F and denoted in(F).

Given an ideal I in A{x}, we denote by (1) the diagram of initial exponents of I,
that is,

N(I) = {exp(F) : F e I\ {0}}.
Similarly, for the evaluated ideal I(0), we set

N(1(0)) = { exp(F(0)) : F e I, F(0) # 0}.

Note that every diagram 91(I) satisfies the equality D(I) + N = 9Q(I). (Indeed, for
B € 9(I) and y € N™, one can choose F € I such that exp(F) = f; then x”F € I, and
hence 8 +y = exp(x?F) is in N(I).)

Remark 2.1 1t is not difficult to show that, for every ideal I, there exists a unique
smallest (finite) set V(I) c D(I) such that V(1) +N™ = D(I) (see, e.g., [3, Lem. 3.8]).
The elements of V(I are called the vertices of the diagram 9%(I).

We now recall Hironaka’s combinatorial criterion that expresses flatness in terms

of the diagram of initial exponents. For an ideal I in A{x}, set A = N \ 91(1(0)),
and define A{x}* = {F € A{x} : supp(F) c A}. Consider the canonical projection

https://doi.org/10.4153/CJM-2016-008-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-008-0

244 J. Adamus and H. Seyedinejad

A{x} - A{x}/I and its restriction to A{x}*, called «. The following two results will
be used throughout the paper.

Proposition 2.2 ([7, $6, Prop.9]) The mapping x: A{x}® — A{x}/I is surjective.

Proposition 2.3 ([7,$6, Prop.10]) The ring A{x}/I is flat as an A-module if and only
if k is bijective.

3 Approximation of Diagrams

Let K =Ror C. Let x = (x1,...,%,) and let m, denote the maximal ideal of K{x}.
Recall that, for a natural number k € N and a power series f € K{x}, the k-jet of f (de-
noted j f) is the image of f under the canonical epimorphism K{x} — K{x}/mk*.,

In this section we study the relations between the diagram of initial exponents of a
given ideal in K{x} and those of its Taylor approximations. Throughout this section,

we will use the following notation: Let fi, ..., f; be a finite collection of power series
in K{x} and let

I=(fi,.- fs) - K{x}.

For a natural number g, let I, denote the ideal generated by the u-jets j* i, i = 1,...,s,
that is,

L= (G fis s 4 15) - R{x}.

The following simple observation will be used often in our considerations.

Remark 3.1 Given a power series F € K{x}, suppose that y > | exp(F)|. Then

exp(F) = exp(G)
for every G € K{x} with j*G = j*F.

We now show the connection between the diagram of initial exponents of I and
those of its approximations I,,.

Lemma 3.2 Let I and {I,},en be as above. Let Iy be the maximum of lengths of
vertices of the diagram N(I). Then:

1) N(IL,) > N(I) for all y > ly;
(ii) foreveryl > Iy,
N(I)n{BeN™: gl <1} =NI)n{BeN":|B| <},
forall u> 1.
Proof Fix y > ly. By Remark 2.1, for the proof of (i) it suffices to show that the ver-
tices of 01(I) are contained in (1, ). Let Fy, . .., F, € I be any set of representatives of

the vertices of 91(I). We can write Fx = 35, gkifi» k= 1,..., g, for some gi; € K{x}.
Then

j*Fr = jﬂ(zs;gkifi) = j”(zs;gki 'j”fi),
iz i

since the power series of a product up to order y depends only on the power series
up to order u of its factors. Hence, by Remark 3.1, we have equality of the initial
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exponents exp(Fy) = exp(Xi_; gki-j* fi). It follows that exp(Fy) € 9(I,) for all k,
which proves (i).
For the proof of part (ii), fix I > l,. It now suffices to show that
N(L)n{BeN™: g <1} c NI)n{BeN":|g|<I},

for every u > I. Pick f* e N™ \ 0N(I) with |*| < I. Suppose that f* € 9(1,) for
some ¢ > [. Then one can choose G € I, with exp(G) = *. Write G = i, gi - j* fi
for some g; € K{x}. We have j*G = j*(Xi_, g - j*fi) = j*(Xi., g fi), and since
lexp(G)| = |B*| < u, it follows that exp(G) = exp(}i_; gifi), by Remark 3.1 again.
Therefore, $* € 91(I), which is a contradiction. [ |

Corollary 3.3 LetIand {1} en be as above. Then

NI = ) N(Lw),

u=ly
where ly is the maximum of lengths of vertices of the diagram 2(I).

Proof By Lemma 3.2(i), we have 9U(I) ¢ Nys1, M(I,). On the other hand, by part
(ii) of the lemma, if $* € N \ 0(I), then * ¢ N(I,) for all y > max{|f*|,lp}. W

Corollary 3.4 Let I and {1} e be as above. Let ly be the maximum of lengths of
vertices of the diagram N(I). If I contains a k’th power of the maximal ideal m,, then
k> 1y and (1) = N(I) forall > k.

Proof If I > mk for some k, then 91(I) > 9N(mX). Hence, Iy < k and
(N" (D)) n{BeN™: || <1} =N" \N(I),
for all [ > k. The statement thus follows from Lemma 3.2(ii). [ |

It is important to observe that, in general, there need not be equality between the
diagrams of I and I, for y arbitrarily large. This is shown in the following example.

Example 3.5 LetIbean ideal in K{x, y} generated by f; and f, of the form
fh=xy+xyt+xy +xy® oo,
L=y 4y 4y
Then, for every y > 5, we have y* - j* fi — x - j* f, = xy**!, hence (1, u +1) € N(,).
However, (1, k) ¢ 91(I) for any k > 1.

We prove the latter by contradiction. Suppose there exists F € I with exp(F) =
(1, ko) for some kg € N. Choose hy, h, € K{x, y} so that F = h f; + h, f,. Let ax® y*
and bxP1 yP> be the initial terms of h; and h,, respectively. Clearly, in(h;) - in(f;) +
in(h,)-in( f,) = 0, because otherwise the x-component of exp (A f1 + h f> ) would not
be 1. Therefore, ax®*3y®2*1 4 pxPi+2yP2+3 = 0 Tt follows that a; +1 = By, @y = B2 +2,
and a + b = 0. Consequently,

(3.1) in(h) - fi+in(hy) - fo =

Now, set h() = h; —in(h;), i = 1,2. B;/(31) weget h( )f +h(1)f = F. Hence,
by repeatlng the above argument, 1n(h ) - fi +in( ) f2 = 0. We can thus set
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hfz) = hfl) - in(hfl)), i = 1,2, and again obtain hl(z)fl + hgz)fz = F. By induction, if
R = RO _in(hU™), i 21,2, then

(3.2) WD f+nVf,=F, forallj.

Note that, for every j > 1, the initial exponent of hgj s strictly greater than that of
hl(] )', by construction. Therefore, by the Krull Intersection Theorem, the sequences
(hl(J ) )j=1 and (hgj )) j»1 converge to zero in the Krull topology of K{x, y}. It follows
from (3.2) that 0- f; + 0- f, = F, hence F = 0, which contradicts the choiceof F. H

Remark 3.6 Identifying those ideals I (or, more precisely, those systems of gen-
erators) in K{x} for which the sequence of diagrams (9(I,,)), stabilizes seems im-
portant from the point of view of singularity theory. In fact, the singularities defined
by such ideals are precisely those whose Hilbert-Samuel function is finitely deter-
mined. Indeed, for an ideal J in K{x}, let H;(k) = dimg K{x}/(J + m¥*!) denote
the Hilbert-Samuel function of K{x}/]J. It follows from Proposition 2.2 that

Hy(k) = #(N" ~0(J)) n{BeN":|p| < k}.

Therefore, by Lemma 3.2(i), we have 0(I) = 91(1,) ifand only if H;(k) = H, (k) for
all k e N.

We conjecture that the diagrams of I, stabilize in the case where I is generated
by a regular sequence. Recall that an s-tuple (fi,..., f;) forms a K{x}-regular se-
quence when fi, ..., f; generate a proper ideal, f; # 0, and f;,; is not a zero divisor in

K{x}/(fi,...,fi)fori=1,...,s- L

Conjecture 3.7 LetI = (fi,..., f;) be an ideal in K{x}, and for u € N, let I, denote
the ideal generated in K{x} by the u-jets j* fi,..., j* f;. Suppose that fi,..., f; form
a regular sequence in K{x}. Then there exists po > 1 such that W(I) = N(1,), for all
Y > W (after a generic change of coordinates x, if needed).

The above conjecture is partly justified by the following observation: Let I and
{I,} yeny be as above. If f;, ..., f; form a regular sequence in K{x}, then there exists
Yo > 1such that

dim( K{x}/I) = dim(K{x}/I,),
for all y > po.

Indeed, as an ideal generated by s elements in an m-dimensional ring, every I, sat-
isfies the inequality m—s < dim(KK{x} /I, ). On the other hand, by [9, Ch. 2, Prop. 5.3],
there exists po > 1 such that

dim(K{x}/I,) <dim(K{x}/I),

forall g > po. Finally, if fi, . . ., f; form a regular sequence, then dim(K{x}/I) = m—s.

4 Finite Determinacy of Flatness

We now turn to the problem of finite determinacy of flatness of analytic mappings.
Throughout this section X will denote a K-analytic space, and ¢: X — K” will be a
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K-analytic mapping. Since our considerations are local, we can assume without loss
of generality that X is a subspace of K™ (for some m > 1), 0 € X, and ¢(0) = 0. Let us
begin with finite mappings.

4.1 Finite Mappings

Proposition 4.1 Let X be a K-analytic subspace of K™, with 0 € X and Ox, =
K{x}/I. Let ¢ = (¢1,...,¢n): X = K", ¢(0) = 0, be a finite K-analytic mapping.
Then there exists yo > 1 such that the following conditions are equivalent:

(i) ¢ isflat at zero;

(ii) forevery yu > po, (j¥@1,...,j*@n): X = K" is flat at zero;

(ili) there exists y > pgo such that (j*¢1,..., j*¢n): X - K" is flat at zero.

If, moreover, I = (hy, ..., hy) and, for y € N, X,, denotes a local model defined at 0 € K™
by Ox,,0 = K{x}/(j*h1,..., j*hs), then the above conditions are equivalent to each of
the following:

(ii") forall u > po, (j*@15. .., j*¢n): Xy = K" is flat at zero;
(iii") there exists y > o such that (j* @1, ..., j* ¢, ): X, - K" is flat at zero.

Proof Identifying X with the graph of ¢, we can write Ox o = K{y,x}/], where
Y= s¥u),x=(x1,...,Xm),and

= (h(x)s. .o h(x), y1= @1(x)s s yn — @u(x)) - Ky, x}.
For u > 1, set

Tui= (b he yi = 91,y = j9n) - K{y,x},

Jui= (G e jfho 1= jHou e yn = jH9n) - Ky, x}.
The finiteness of ¢ implies that J(0) > m¥ for some integer k (where the evaluation is
at y = 0). Let po denote the least such k. We shall prove that the theorem holds with
this choice of po.

Let Iy denote the maximum of lengths of the vertices of 91(J(0)). By the proof of
Lemma 3.2(i), we have

N(J(0))  N(Tu(0)) € N(Ju(0)),
for all u > Iy. Hence, by Corollary 3.4,

N(J(0)) =N(7.(0)) = N(1,.(0)),
for all p > po. Note also that || < po for all B € N™ < 91(J(0)).
For the proof of (i) = (ii), suppose there exists ¢ > pg such that
(o1 j u): X > K"
is not flat at zero. Then, by Proposition 2.3, one can choose a nonzero G € T# with
exp(G) € N \ N(J,(0)). Write G = ¥5_, gi - hi + Y14 (yj— j*9;), for some
gi»qj € K{y,x}. Define F := ¥}, gi-hi + ¥719; (yj — ¢;)- Then F € J and

exp(F) = exp(G) (by Remark 3.1), hence exp(F) € N \ 91(J(0)). This proves that
¢ is not flat at zero, again by Proposition 2.3.
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The implication (ii) = (iii) is trivial. To prove that (iii) = (i), suppose that ¢ is not
flatat zeroand choose F = Y7 _; gi-hi+ X7, q;-(j— ;) withexp(F) € N"~91(J(0)).
Given an arbitrary y > po, set

S n
G:=) gi-hi+) q; (yj—j“9;)

1 =1
Then G € J, and exp(G) = exp(F) € N™ \ 91(7,(0)), which proves that

(G o1, .5 j*9u): X > K"

is not flat at zero. _
The proof of implications (i) = (ii’) and (iii’) = (i) is analogous, with ideal J,
replaced by J,,. ]

Remark 4.2 Note that in Proposition 4.1 one can take yy to be the Milnor number
of the fibre ¢™(0); i.e.,

po = dimg (K{x}/7(0)).

Indeed, since dimg (K{x}/J(0)) is precisely the cardinality of the complement of
M(J(0)), one readily sees that with this choice of o we have J(0) > m&°.

Proposition 4.1 implies that flatness of finite analytic mappings is finitely deter-
mined in the following sense.

Theorem 4.3  Let X be a K-analytic subspace of K™, with 0 € X and Ox,o = K{x}/L
Let ¢ = (¢1,...,9n): X = K", ¢(0) =0, be a finite K-analytic mapping. Then there
exists o > 1 such that the following conditions are equivalent:
(i) ¢ isflat at zero;
(ii) forevery u > o and for every analytic mapping v = (y1,..., ¥, ): X - K" with
jfvi=jte; j=1...,n, visflat at zero;
(iii) there exist y > o and an analytic mapping v = (y1,...,¥n): X = K" such that
v is flat at zero and j*y; = j*¢;, j=1,...,n.
If, moreover, I = (hy, ..., hy) and, for u € N, X, denotes a local model defined at 0 € K™
by Ox,.0 = K{x}/(j*h1..., j*hs), then the above conditions are equivalent to each of
the following:
(ii") for every u > po and for every analytic mapping v = (y1, ..., y¥n): X, — K" with
fvi=jte; j=1...,n, visflat at zero;
(iii") there exist u > po and an analytic mappingy = (y1, ..., ¥, ): X, = K" such that
v is flat at zero and j*y; = j*¢;, j=1,...,n.

Proof Let] = (hi(x),....hs(x), 31 = @1(x), ... yn — ¢u(x)) - K{y,x}, and let
po = dimg (K{x}/J(0)). Let v = (y1,...,¥,): X — K" be an arbitrary analytic
mapping with j¥oy; = j*@;, j=1,...,n and let

Q= (M(x)s- o o) = Y (2)s s = ¥ (x)) - Ky}
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We will show that then 91(Q(0)) = 91(J(0)). This proves that dimg (K{x}/Q(0)) =
po (hence y is a finite mapping), and, consequently, the theorem follows directly from
Proposition 4.1 and Remark 4.2.

First, let us show that 91(Q(0)) contains all the vertices of 91(J(0)). Given f’ a
vertex of 91(J(0)), let F € J be such that exp(F(0)) = . Write F = Y}_, g - h; +
Yi19;(yj—9;), forsome gi, q; € K{y, x}. Define G = 33, gi-hi+ X1 95 (7;-¥;)-
Then G € Q, and, by assumption, j#*G = j*F. In particular, exp(G(0)) = exp(F(0)) =
B',as|B'| < . It follows that B € 91(Q(0)).

Now, choose 8 € N ~ 91(J(0)) and suppose that 8 € 91(Q(0)). Pick G € Q
such that exp(G(0)) = B and write G = X3, gi - hi + X7 9; - (¥ — ¥;), for some
gi-qj € K{y,x}. Define F = ¥}, gi-hi + ¥719; - (yj — ¢;)- Then F € J, and
j#F = j*G, by assumption. Since |B”| < u, we get exp(F(0)) = exp(G(0)) = 8",
which contradicts the choice of 3”. |

Remark 4.4 Note that Theorem 4.3 cannot be generalized to finitely generated
modules. More precisely, suppose that a finite K{ y }-module M is given as the coker-
nel of a homomorphism ®: K{y}? - K{y}?;i.e, M = K{y}?/(D(e1),...,D(egq)),
where {ej,..., eq} is the canonical basis of the free K{y}-module K{y}. For y € N,
let M,, denote the module K{y}?/(j*®(e;),...,j*®(eq)). One might expect that
flatness of M over K{y} is equivalent to flatness of M, for sufficiently large y. This is
not the case, however, as the following example shows.

Example 4.5 Consider f; and f, from Example 3.5, and let M be a K{x, y}-sub-
module of K{x, y}* generated by

G =(10,f1), Gy=(LLf), and Gs=(y"-x,-x,0).

Let O denote the structure sheaf of K* and let M be a coherent O-module whose
stalk at the origin is M(o,9) = K{x, y}*/M. We have G1(0,0) = (1,0,0), G5(0,0) =
(1,1,0), and G5(0,0) = (0,0, 0), hence the multiplicity of M at the originis 3 -2 = 1.
On the other hand, G being a combination of G, and G, (indeed, G5 = y*-G;-x-G),
the multiplicity of M at any other point cannot be less than 1. Therefore, multiplicity
of M is constant, and so M is flat at (0, 0) (see, e.g., [6, Thm. 1.78]).

Let now M¥ be a coherent O-module with M’(JO)O) = K{x, y}’/M,, where M,, is
generated by j# G, j¥ G, and j#Gs. We claim that M¥ is not flat at the origin (equiv-
alently, K{x, y}*/M, is not K{x, y}-flat), for any y > 5.

Indeed, identifying M,, with a matrix with rows j*G;, i = 1,2, 3, we get

det(My) = y* - j*fi—x- j" fo

which we know is equal to x y#*!, provided u > 5 (cf. Example 3.5). Therefore, for any
a#0andb # 0, the stalk M’(‘a) b) has multiplicity zero, while leo,o) has multiplicity
one.

4.2 Mappings from Complete Intersections

Proof of Theorem 1.1 Let hy,.. ., h; be aregular sequence in K{x } for which Ox ¢ =
K{x}/(hy, ..., hs). Identifying X with the graph of ¢, we can write Ox o = K{y,x}/],
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where

J= (i) s hs(x)s 1= @1(x)s o yn = 9u(x)) - K{p:x}.
For y € N, set

Ju= (hi(x), ho(x), 71 = J#91(%), - yu = j pu(x)) - Ky, x}.
By a well-known flatness criterion over regular local rings (see, e.g., [6, Thm. B.8.11])
and because the local ring Ox o is Cohen-Macaulay, flatness of ¢ at zero is equivalent
to

(4.1) dim( K{x}/J(0)) =dimOx,—n=(m-s) - n.

Suppose then that ¢ is flat at zero. By [9, Ch. 2, Prop. 5.3], there exists y’ > 1 such
that dim(K{x}/J,(0)) < dim(K{x}/J(0)), for all 4 > u’. On the other hand, as an
ideal generated by s+n elements, every J, (0) satisfies inequality dim (K{x}/J,(0)) >
m — (s + n). Therefore, by (4.1), dim(K{x}/J,(0)) = (m —s) — n,and so ¢,, is flat at
zero. This proves (i) = (ii).

The implication (ii) = (iii) is trivial. For the proof of (iii) = (i), suppose that ¢ is
not flat at the origin. Then, by Proposition 2.3, one can choose a nonzero F € ] sup-
ported outside of 91(J(0)). In particular, exp(F) ¢ M(J(0)). Write F = >;_; g;ih; +
Sk 9k (Ve — k), for some g;, gx € K{y,x}, and set u”" := max{| exp(F)|, lo }, where
Iy is the maximum of lengths of vertices of the diagram 9(J(0)). Fix y > p”, and
define G = Y3, gihi + Y- qk - (yk — j*¢k). Then G € J, and exp(G) = exp(F)
(as j*G = j*F and by Remark 3.1). By Lemma 3.2, exp(G) ¢ 91(J,(0)), which im-
plies that ¢, is not flat (by Propositions 2.3 and 2.2). The theorem thus holds for
po = max{y', u"}. u

Corollary 4.6  Given a collection of power series fi, ..., f; € K{x}, there exists yg > 1
such that the following conditions are equivalent:

(i)  fi,..., fs form a regular sequence;
(ii) forall u > uo, j* fi,. .., j* fs form a regular sequence;
(iil) there exists y > o such that j* fy, ..., j* fs form a regular sequence.

Proof The equivalence follows immediately from Theorem 1.1 applied to the map-
ping ¢ = (fi,..., fs): K™ — K*, and the fact that hy, ..., hy € K{x} form a regular
sequence if and only if (hy,. .., h;): K™ — K* is flat (see, e.g, [6, Thm. B.8.11]). ®

For the next result, we will need the following useful observation.

Remark 4.7 For an ideal I in K{x}, the following conditions are equivalent, up to
a generic linear change of coordinates x:

(i) dim(K{x}/I) < dimK{x} - k;

(ii) the diagram 91(I) has a vertex on each of the axes corresponding to x;, . . ., X.
Indeed, condition (ii) clearly implies (i). On the other hand, (i) implies that (up
to a generic linear change of coordinates) K{x}/I is a finite K{X}-module, where

X = (Xk+1> - - -»Xm ). The latter is equivalent to saying that I contains a distinguished
pseudo-polynomial f; € K{x}[x;] foreveryj=1,..., k (see, e.g., [8, Ch.III, Sec.2.2]),
hence (ii).
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Corollary 4.8  Given a collection of power series fi, . .., fs € K{x}, there exists yg > 1
such that the following conditions are equivalent:

(1)  f,...,[fs form a regular sequence;

(if) for every u > po, every sequence gy, ..., gs satisfying j* g; = j* f; (i=1,...,s) is
regular in K{x};

(iil) there exists u > po such that every sequence g, ..., gs satisfying j*g; = j*f;
(i=1,...,s)is regular in K{x}.

Proof Suppose that f;, ..., f; form a regular sequence in K{x}. Then

dimK{x}/(fi,....fs) =m—s.

By Remark 4.7, one can assume that the diagram 91(I) of the ideal I = (f;,..., f;) -
K{x} has a vertex on each of the axes corresponding to xy, .. ., x; say, B',..., B*. Let
4’ denote the maximum of lengths of B',..., 8. Fix y > y’ and choose arbitrary
g g € K{x} with j¥g; = j*#fifori=1,...,s. SetJ = (g1,..., &) - K{x}. For
k =1,...,s let Fy € I be such that exp(Fy) = B*. Write Fx = Y_, qxi fi, for some
qri € K{x}. Define Gy = ¥i_; qkigi- k = 1,...,s. Then Gy € ] and j*Gy = j*Fy for
all k. As|B¥| <y’ < p, it follows (by Remark 3.1) that exp(Gy) = exp(Fx) = ¥, and
so B',..., B¢ all belong to 91(J). Hence, by Remark 4.7 again, dimK{x}/] < m —s.
Thus, gi,. .., s form a regular sequence, which proves (i) = (ii).

The implication (ii) = (iii) is trivial. For the proof of (iii) = (i), suppose that
fi>--+» fs do not form a regular sequence. Then, by Corollary 4.6, there exists u'
such that, for all u > u”, j* f1,..., j* f; do not form a regular sequence. The corollary
thus holds for g = max{y’, u"'}. [ |

It is now easy to see that flatness of mappings from complete intersections is finitely
determined, in the following sense.

Theorem 4.9  Let X be a K-analytic subspace of K™. Suppose that 0 € X and the
local ring Ox o is a complete intersection. Let ¢ = (@1,...,¢,): X > K", ¢(0) =0, be
a K-analytic mapping. Then, there exists yo > 1 such that the following conditions are
equivalent:
(i) ¢ isflat at zero;
(ii) forevery u > po, every analytic mapping y = (y1,..., ¥, ): X - K" with jly; =
i (i=1,...,n)isflat at zero;
(ili) there exists y > o such that every analytic mapping v = (y1,...,¥,): X - K"
with j*y; = j#¢; (i=1,...,n) is flat at zero.
If, moreover, X is defined at 0 € K™ by a regular sequence hy, ..., hs and, for y e N, X,
denotes a local model defined at 0 € K™ by Ox,,0 = K{x}/(j*h1, ..., j*hs), then the
above conditions are equivalent to each of the following:
(ii") for every u > po, every analytic mapping v = (y1,..., ¥»): X, = K" with jty; =
j#oi(i=1,...,n)is flat at zero;
(iii") there exists y > po such that every analytic mapping v = (y1,..., ¥, ): X, - K"
with j*y; = j*@; (i=1,...,n) is flat at zero.
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Proof Recall ([6, Thm. B.8.11]) that an analytic mapping ¢ = (¢1,...,¢,): X - K"
is flat at zero if and only if ¢y, . . ., ¢, form an O o-regular sequence. Therefore, if X
is defined at 0 € K™ by a regular sequence h;, ..., h;, then the latter is equivalent to
saying that hy, ..., ks, @1, ..., ¢, form a K{x}-regular sequence. The theorem thus
follows from Corollary 4.8 applied to the sequence hy, ..., hs, 91,. .., @p. ]

Question 4.10 It would be interesting to know if one could relax the complete inter-
section assumption on the domain X in Theorem 4.9.

5 Stability Under Deformations

Let ¢: X — Y be a morphism of K-analytic spaces, and let (T, 0) be a pointed space
(i.e., a K-analytic space with a distinguished point 0). By a deformation of ¢ over Y
we shall mean a Cartesian diagram of the form

X — X

‘| |o

Y —— YT

Lk

{0} —— T

such that X is flat over T (see, e.g., [6]). If X is of the form X x T, then @ is called an
unfolding of ¢.

In this section, we study the stability of flatness of ¢ under such deformations.
Since our considerations are local, we can assume from the start that all spaces are
local models; say, X ¢ K™, Y ¢ K", T c K*, X and Y pass through the origins in
K™ and K" respectively, and ¢(0) = 0. Letx = (x1,...,%m), ¥ = (y1,...> ¥n), and
t = (t1,...,t) denote the systems of variables in the respective ambient spaces of X,
Y,and T.

For 6 € T, we shall denote by ®? the specialization of ® over 6, that is, the unique
mapping closing the following Cartesian diagram

(10 ®)71(8) x
| s
Y — YT

| |

e  — T

For the proof of Theorem 1.2, we will first settle the case of smooth one-dimen-
sional parameter space.
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Lemma 5.1 Let ¢:X — Y be a flat morphism of K-analytic spaces, with Y locally
irreducible. If ® is a deformation of ¢ parametrized by T = K, then ®° is a flat mapping
for every 0 € T near zero.

Proof Since flatness is an open property (see, e.g., [3, Thm. 7.15]) and because flatness
is preserved by base change (see, e.g., [7, Prop. 6.8]), it suffices to show that ® is flat
at 0 € X. For a proof by contradiction, suppose that @ is not flat at the origin. Let R
denote thelocal ring Oy o. After identifying X with the graph of ®, we can regard Oz o
as a quotient of OgmyxT,(0,0,0)5 thatis, Ox,0 = R{t, x} /I for some ideal I = I(y, t, x)
in R{t, x}.

Now, by Proposition 2.3, there exists a nonzero F € I such that

supp(F) ¢ N ~ 91(1(0,0, x)),

where the evaluation is at (y,t) = (0,0). We have F(y,0,x) € I(y,0,x). Hence,
flatness of ¢ at zero implies that F(y,0,x) = 0 in R{x}, again by Proposition 2.3. The
latter means that ¢ divides F in R{t, x}. Let d be the maximum power of ¢ that can
be factored out from F in R{t,x} and set F = "% - F. Then F(y,0,x) is not zero
anymore. But supp(F) = supp(F), so applying Proposition 2.3 once more, we get
that F ¢ I. Consequently, 4 is a zero divisor in the local ring Ox o, which contradicts
the flatness of 7 o ®. ]

Proof of Theorem 1.2  As in the proof of the above lemma, it suffices to show that
® is flat at 0 € X. Suppose first that T is smooth. The problem being local, we can
thus assume that T = K¥. We will prove by induction on k that flatness of 77 0 ®: X —
Y x Kk - KF and ®° = ¢: X — Y at zero implies that ®: X — Y x KF is flat at zero.

For k = 0 there is nothing to prove, so suppose that k > 1 and the statement holds
for k — 1. Consider the flat mapping X, — Y x K*~! — K*~1, defined as the pullback
of the flat 7 o ® by the inclusion K¥~! — K*. The inductive hypothesis implies that
®;: X, - Y xKF s flat. Next, consider the mapping X — (Y xKF1)xK - K, which
is flat as the composite of 7z o ® with the projection K¥ — K. Applying Lemma 5.1 to
the Cartesian diagram

X —_ X

o |s

Y x KD —— (Y xKF) xK

| |

{oy —— K,
we conclude that @ is flat at zero.

Finally, consider a general locally irreducible T. In this case, one can find a non-
singular K-analytic space Z and a dominant mapping 0:Z — T, ¢(0) = 0, with
dim Zy = dim Tj (for example, take a desingularization of T near the origin). Con-
sider the pullbackof 1o ®:X - Y x T — T by 0: Z — T (which is flat by the flatness
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of 77 o ®@). One can easily check that this mapping factors as X’ SyYxzZ-2z. By the
first part of the proof, we thus get that ®": X’ — Y x Z is flat at zero. Moreover, the
pullback of ¢ by 7 is clearly dominant, and so we get the following Cartesian square
in which @’ is flat and the bottom arrow is dominant:

X — X

@l l@’
YXxT «— YxZ.

By assumption, Y x T is irreducible at (0, 0). Hence, the analytic flatness descent (see
[1, Prop. 2.1]) implies that @ is flat at zero, as required. [ |

6 Complex Case

In this section, we consider the case K = C. In the complex setting, flatness of a
mapping ¢: X — Y has a natural geometric interpretation. Namely, it is equivalent
to continuity in the family of fibres of ¢. In fact, if Y is nonsingular and (the local
ring of) X is Cohen-Macaulay (at every point), then flatness of ¢ is equivalent to
openness (see, e.g., [5, $3.20]), and the latter simply means that all fibres of ¢ are of
the same dimension. In particular, over K = C, in Theorems 1.1 and 4.9 “flatness” can
be replaced with “openness’, since complete intersections are Cohen-Macaulay.

Over singular targets, the picture is (considerably) more complicated; nonetheless,
it is still possible to interpret flatness in purely geometric terms. As we show in [2], a
morphism ¢: X - Y of complex-analytic spaces (with Y locally irreducible) is flat at a
point £ € X if and only if every irreducible component of the fibred product X xy Z at
(&, ¢) is dominant over Z;, where o;: Z; — Y, is the local blowing up of Y at 7 = ¢(&).

Below, we generalize this idea and construct test mappings to detect higher order
discontinuities in the family of fibres of a given mapping. For an analytic mapping
¢: X — Y with locally irreducible Y and X of pure dimension, one can speak of the
generic fibre dimension of ¢, denoted A,. Further, let «, be the maximum fibre di-
mension of ¢. We shall call the difference x, — A, the fibre defect of ¢. By the Remmert
Open Mapping Theorem (see, e.g., [8, Ch. V, § 6, Thm. 2]), ¢ is open if and only if its
fibre defect is zero.

6.1 Test Mappings

Consider a morphism ¢: X — Y of local models. Suppose that X c C™ is of pure
dimension, Y c C” is locally irreducible (of positive dimension), and ¢(0) = 0. Sup-
pose further that n = edimOy o. After a linear change of coordinates in C" if needed,
we can assume that y,, belongs to the tangent cone of Y at 0. The following proposition
gives a method of testing for the degree of fibre defect of a given mapping.

For k € {0,...,n -1}, let 03: C" — C" denote the mapping

1o ¥n) = (Ve e s Vi V1Yo« « > Yne1Vn> Y )-

In other words, oy is the restriction to the affine chart {y,, # 0} of the blowing up of
C" with centre Cx = {yk41 = -+ = yn = 0}. Denote by Y;* the strict transform of Y
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under oy. We will consider a Cartesian square of the form

XXYylit —_ X

4

Ok y’s(t
v — v

Proposition 6.1  Suppose that ¢ has fibre defect greater than 8. Then:

(i) at(0,0) € X xy Y3, the fibre (06ys o ¢5)7(0) has dimension greater than or
equal to dim X;

(ii) the fibred product X xy Y3* has an isolated irreducible component at (0,0) that is
mapped by o| yz © ¢’ into CsnY. Equivalently, y, is a zero divisor in the reduced

local ring (OXXYy;t,(o,o))red-

Proof Let d € N and suppose that x, — 1, > §. Since edimOy g = n, it follows that
Yo is not contained in the germ of the center (Cs)o. Consequently,

dim( Y3' no5'(Cs)) = dim(os

y#) " (Cs) =dim V5 ~1=dimY - 1.

As the center itself is of dimension §, we get that

dim( oy Ygt)-l(o) >(dimY -1)-8>dimX -1, -1-9,

and hence
fbd 0,0y (0s]ys © 95) > (dimX -1y -6 -1) + k4 > dim X,

which proves property (i).

On the other hand, since g is a biholomorphism outside o' (Cs), it follows that
dimg ) X xy Y5* = dim X for all (&, ) except at most those for which # is mapped by
o5 into Cs. Therefore, either the fibre (0'3|Y§r o ¢5)71(0) itself contains an irreducible
component of X xy Yj" at (0,0) or else it is contained in a component mapped into
CsnY.

The last statement of the proposition follows from the fact that the Oy ¢-module
structure of OXXngf,(o,o) factors as Oy,p — ngt,O - OXXYYgf,(o,o) and the image in
Oyyr,o of the ideal defining Cj is the principal ideal generated by y,. |

Remark 6.2 It is evident from the proof above that if Y = C” and the mapping
¢: X — Y is dominant (i.e,, A, = dim X — n), then, conversely, the equivalent condi-
tions (i) and (ii) of the proposition imply that the fibre defect of ¢ is greater than 6.

6.2 Stability of Openness

In this section we prove that, like flatness, openness of complex-analytic mappings is
stable under deformations. This follows from Theorem 1.2 for mappings from Cohen-
Macaulay into smooth spaces (by [5, §3.20]), but in general an open mapping need
not be flat. We have the following proposition.
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Proposition 6.3 Let 9: X — Y be a morphism of local models, where Y c C" is
locally irreducible, X ¢ C™ is of pure dimension, and ¢(0) = 0. Suppose that T is
locally irreducible. Let d > 1 and suppose that ¢ is a dominant mapping with fibre
defect less than d. If © is a deformation of ¢ over Y, parametrized by T and with X of
pure dimension, then ®° is dominant and has fibre defect less than d for every 0 € T
near zero. (In particular, this is the case if ® is an unfolding of ¢.)

Proof Set!:=dimT and r = dim X. As a flat mapping, 7 o @ is open (by Douady
[4]), and hence its fibre dimension is r — [ at every point & € X. In particular, X = (7o
®)7'(0) is of pure dimension r — I. By dominance of ¢, we have dim Y = dim X — A,
thatis,dim Y = r—I-A,. Since A, is the generic fibre dimension of ¢, it follows that Y
contains an open subset Z adherent to 0 € C" such thatforall 7 € Z,dim ¢™' () = A,.
As ¢7'(n7) = @7'(5,0), it follows by upper semicontinuity of fibre dimension of ®
that Age < A, for 6 € T near zero.

On the other hand, one always has A6 > dim(7o®)}(0)-dimY =r—I-dim Y.
Therefore, Ago > (r—1) = (r=1-1y) = Ay, and so Ags = A, for all € T near zero.
Since all (70 ®)7!() are of the same dimension as X, the dominance of ®? follows.

Finally, «,, is equal to the dimension of ¢'(0), and hence ks < , by upper
semicontinuity of fibre dimension of ® again. Thus, forall § € T near zero, kgo—Age <
Ky — Ay < d, as required. ]

Corollary 6.4  Openness is stable under deformations: if ¢ is an open mapping and
@ is its deformation as in Proposition 6.3, then ®° is open for every 0 € T near zero.

6.3 Finite Determinacy of Flatness of Complex-analytic Mappings

We conclude the paper with a comment on Theorem 4.9 in the complex case.

Recall that, for a d-dimensional complex analytic set X in C™ and a point &
X, one defines the multiplicity pug(X) of X at & as follows: In a generic system of
coordinates x at & in C™, the local ring Oy ¢ is a finite C{X}-module, where X =
(x15...5X4). We set pg(X) to be the rank of this module. Equivalently, y¢(X) is the
generic cardinality of a fibre of a projection of X to a generic d-dimensional linear
subspace of C™ (in a neighbourhood of ¢).

Proposition 6.5  Under the notations of Theorem 4.9, let Z denote the fibre ¢~(0)
(that is, Zg = V(J), where | = (hy,..., hs, 1,...,¢n)). Then, the implications (i) =
(ii) and (i) = (iii) in Theorem 4.9 hold with p¢ = po(Z).

Proof Indeed, directly from the definition of yo(Z), it follows that (after a linear
change of variables x, if needed) the classes in C{x}/J of xi,...,x,,, are integral
over C{X}, where X = (x,45+1>--.>%m ). Hence, J contains a distinguished pseudo-
polynomial P; € C{x}[x;] for every j =1,...,n + s. Therefore, 9(J) has a vertex on
each of the axes corresponding to xi, . . ., X,+s. Since deg(P;) < po(Z) forall j, we get
that each of these vertices is of length at most yo(Z), and so the claim follows from
the proof of Corollary 4.8. ]
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