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Finite Determinacy and Stability of Flatness
of Analytic Mappings

Janusz Adamus and Hadi Seyedinejad

Abstract. It is proved that �atness of an analytic mapping germ from a complete intersection is
determined by its suõciently high jet. As a consequence, one obtains ûnite determinacy of complete
intersections. It is also shown that �atness and openness are stable under deformations.

1 Introduction

When dealing with singularities of analytic sets or mappings, particularly in explicit
calculations, one is o�en tempted to forget the original inûnite transcendental data
and to work instead with its (suõciently long) Taylor truncation. _is approach is
satisfactory in many circumstances. For example, the Milnor number of an isolated
hypersurface singularity can be correctly calculated this way. In general, however,
local analytic invariants of a given singularity may diòer from those of its Taylor ap-
proximations of arbitrary length (cf. Example 3.5 and Remark 3.6).

In this paper we show that, roughly speaking, those algebro-geometric properties
of an analytic mapping-germ φ = (φ1 , . . . , φn) that depend on the variation of its
ûbres are already determined by Taylor polynomials of φ1 , . . . , φn of suõciently large
degree.

1.1 Main Results

Let K = R or C. Let x = (x1 , . . . , xm) and let mx denote the maximal ideal in the
ring of convergent power series K{x}. For a natural number k ∈ N and a power
series f ∈ K{x}, the k-jet of f , denoted jk f , is the image of f under the canonical
epimorphism K{x} → K{x}/mk+1

x . For an s-tuple φ = (φ1 , . . . , φs) ∈ K{x}s , we set
jkφ = ( jkφ1 , . . . , jkφs).
An analytic mapping φ∶X → Y is called �at at a point ξ ∈ X when the pullback

homomorphism φ∗ξ ∶OY ,φ(ξ) → OX ,ξ makes OX ,ξ into a �at OY ,φ(ξ)-module. One
of the major problems considered in this paper is whether �atness of a K-analytic
mapping germ is ûnitely determined (i.e., determined by its k-jet for k large enough).
We prove that this is indeed the case for mappings from complete intersections. More
precisely, we have the following theorem.
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_eorem 1.1 Let X be a K-analytic subspace of Km . Suppose that 0 ∈ X and the
local ring OX ,0 is a complete intersection. If φ = (φ1 , . . . , φn)∶X → Kn , φ(0) = 0, is
a K-analytic mapping, then there exists µ0 ≥ 1 such that the following conditions are
equivalent:
(i) φ is �at at zero.
(ii) For every µ ≥ µ0, jµφ = ( jµφ1 , . . . , jµφn)∶X → Kn is �at at zero.
(iii) _ere exists µ ≥ µ0 such that jµφ = ( jµφ1 , . . . , jµφn)∶X → Kn is �at at zero.

_e above theorem implies, in particular, ûnite determinacy of complete intersec-
tions in K{x}: An s-tuple ( f1 , . . . , fs) forms a regular sequence in K{x} if and only
if this is so for every (g1 , . . . , gs) ∈ K{x}s with jµ0 g i = jµ0 f i , i = 1, . . . , s (Corol-
lary 4.8). As a consequence, we obtain that φ∶X → Kn is a �at mapping if and only if
every ψ∶X → Kn satisfying jµ0ψ = jµ0φ is �at as well (_eorem 4.9).

Independently, one can prove an analogue of_eorem 1.1 for ûnite mappings. _is
is our _eorem 4.3, which requires no assumptions on the source X. Interestingly,
_eorem 4.3 cannot be generalized to ûnitely generated modules. _at is, in general,
�atness of a ûnitely generatedK{x}-module is not ûnitely determined (Example 4.5).
Another problemconsidered here is that of stability of �atness under deformations.

Recall that given a morphism φ∶X → Y of K-analytic spaces and a pointed space
(T , 0) (i.e., an analytic space with a distinguished point 0), a deformation of φ over Y
is a Cartesian diagram of the form

X ÐÐÐÐ→ X

φ
×××Ö

×××Ö
Φ

Y ÐÐÐÐ→ Y × T
×××Ö

×××Ö
π

{0} ÐÐÐÐ→ T ,

such thatX is �at over T (see, e.g., [6]). For θ ∈ T , we denote by Φθ the specialization
of Φ over θ, that is, the pullback of Φ by Y × {θ} ↪ Y × T .

We prove that �atness of mappings into locally irreducible targets is stable under
deformations.

_eorem 1.2 Let φ∶X → Y be a �at morphism of K-analytic spaces, with Y locally
irreducible. If Φ is a deformation of φ parametrized by a locally irreducible T, then Φθ

is a �at mapping for every θ ∈ T near zero.

WhenK = C, we also have an analogous result about stability of openness (Propo-
sition 6.3 and Corollary 6.4).

1.2 Plan of the Paper

Our main tool here is Hironaka’s diagram of initial exponents. We recall this notion
and its relevance to �atness in the next section. Section 3 is devoted to approximation
of the diagram of a given ideal inK{x} by the diagrams of its Taylor approximations.
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_eorems 1.1 and 1.2 are proved in Sections 4 and 5, respectively. _e last section is
devoted to the complex case. In the complex setting, we prove geometric analogues
of our main results.

2 Diagram of Initial Exponents and Flatness

LetK = R orC. Let A = K{y}/J be a local analyticK-algebra, where y = (y1 , . . . , yn)
and J ⊂ K{y} is a proper ideal. Let x = (x1 , . . . , xm) and deûne

A{x} ∶= K{y, x}/J ⋅K{y, x}.

We will write xβ for xβ1
1 ⋅ ⋅ ⋅ xβmm , where β = (β1 , . . . , βm) ∈ Nm . By the canonical

embedding A{x} ↪ A[[x]], one can regard the elements of A{x} as power series
with coeõcients in A.

LetmA denote the maximal ideal of A. For a power series F = ∑β∈Nm fβxβ ∈ A{x},
deûne its evaluation at 0 as

F(0) = ∑
β∈Nm

fβ(0)xβ ∈ A/mA{x} = K{x},

and for an ideal I in A{x} deûne I(0) = {F(0) ∶ F ∈ I}, the evaluated ideal.
For β = (β1 , . . . , βm) ∈ Nm , we write ∣β∣ = β1 + ⋅ ⋅ ⋅ + βm and call it the length of

β. We deûne a total ordering of Nm by lexicographic ordering of the (m + 1)-tuples
(∣β∣, β1 , . . . , βm), where β = (β1 , . . . , βm). _e support of F = ∑β∈Nm fβxβ is deûned
as supp(F) = {β ∈ Nm ∶ fβ /= 0}, and exp(F) = min{β ∈ supp(F)} denotes the initial
exponent of F. Similarly,

supp(F(0)) = {β ∈ Nm ∶ fβ(0) /= 0} and exp(F(0)) = min{β ∈ supp(F(0))} ,
for the evaluated series. Of course, supp(F(0)) ⊂ supp(F).

If β∗ = exp(F) is the initial exponent of F = ∑ fβxβ , then the “monomial” fβ∗xβ
∗ ∈

A{x} is called the initial term of F and denoted in(F).
Given an ideal I in A{x}, we denote byN(I) the diagram of initial exponents of I,

that is,
N(I) = {exp(F) ∶ F ∈ I ∖ {0}} .

Similarly, for the evaluated ideal I(0), we set

N(I(0)) = {exp(F(0)) ∶ F ∈ I, F(0) /= 0} .

Note that every diagram N(I) satisûes the equalityN(I) +Nm = N(I). (Indeed, for
β ∈ N(I) and γ ∈ Nm , one can choose F ∈ I such that exp(F) = β; then xγF ∈ I, and
hence β + γ = exp(xγF) is in N(I).)

Remark 2.1 It is not diõcult to show that, for every ideal I, there exists a unique
smallest (ûnite) setV(I) ⊂N(I) such thatV(I)+Nm =N(I) (see, e.g., [3, Lem. 3.8]).
_e elements of V(I) are called the vertices of the diagram N(I).

We now recall Hironaka’s combinatorial criterion that expresses �atness in terms
of the diagram of initial exponents. For an ideal I in A{x}, set ∆ = Nm ∖N(I(0)),
and deûne A{x}∆ = {F ∈ A{x} ∶ supp(F) ⊂ ∆}. Consider the canonical projection
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A{x} → A{x}/I and its restriction to A{x}∆ , called κ. _e following two results will
be used throughout the paper.

Proposition 2.2 ([7, §6, Prop. 9]) _e mapping κ∶A{x}∆ → A{x}/I is surjective.

Proposition 2.3 ([7, §6, Prop. 10]) _e ring A{x}/I is �at as an A-module if and only
if κ is bijective.

3 Approximation of Diagrams

Let K = R or C. Let x = (x1 , . . . , xm) and let mx denote the maximal ideal of K{x}.
Recall that, for a natural number k ∈ N and a power series f ∈ K{x}, the k-jet of f (de-
noted jk f ) is the image of f under the canonical epimorphismK{x} → K{x}/mk+1

x .
In this section we study the relations between the diagram of initial exponents of a

given ideal inK{x} and those of its Taylor approximations. _roughout this section,
we will use the following notation: Let f1 , . . . , fs be a ûnite collection of power series
in K{x} and let

I = ( f1 , . . . , fs) ⋅K{x}.
For a natural number µ, let Iµ denote the ideal generated by the µ-jets jµ f i , i = 1, . . . , s,
that is,

Iµ = ( jµ f1 , . . . , jµ fs) ⋅K{x}.
_e following simple observation will be used o�en in our considerations.

Remark 3.1 Given a power series F ∈ K{x}, suppose that µ ≥ ∣ exp(F)∣. _en

exp(F) = exp(G)
for every G ∈ K{x} with jµG = jµF.

We now show the connection between the diagram of initial exponents of I and
those of its approximations Iµ .

Lemma 3.2 Let I and {Iµ}µ∈N be as above. Let l0 be the maximum of lengths of
vertices of the diagram N(I). _en:
(i) N(Iµ) ⊃N(I) for all µ ≥ l0;
(ii) for every l ≥ l0,

N(Iµ) ∩ {β ∈ Nm ∶ ∣β∣ ≤ l} =N(I) ∩ {β ∈ Nm ∶ ∣β∣ ≤ l} ,
for all µ ≥ l .

Proof Fix µ ≥ l0. By Remark 2.1, for the proof of (i) it suõces to show that the ver-
tices ofN(I) are contained inN(Iµ). Let F1 , . . . , Fq ∈ I be any set of representatives of
the vertices ofN(I). We can write Fk = ∑s

i=1 gki f i , k = 1, . . . , q, for some gki ∈ K{x}.
_en

jµFk = jµ(
s

∑
i=1

gki f i) = jµ(
s

∑
i=1

gki ⋅ jµ f i) ,

since the power series of a product up to order µ depends only on the power series
up to order µ of its factors. Hence, by Remark 3.1, we have equality of the initial
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exponents exp(Fk) = exp(∑s
i=1 gki ⋅ jµ f i). It follows that exp(Fk) ∈ N(Iµ) for all k,

which proves (i).
For the proof of part (ii), ûx l ≥ l0. It now suõces to show that

N(Iµ) ∩ {β ∈ Nm ∶ ∣β∣ ≤ l} ⊂ N(I) ∩ {β ∈ Nm ∶ ∣β∣ ≤ l} ,
for every µ ≥ l . Pick β∗ ∈ Nm ∖N(I) with ∣β∗∣ ≤ l . Suppose that β∗ ∈ N(Iµ) for
some µ ≥ l . _en one can choose G ∈ Iµ with exp(G) = β∗. Write G = ∑s

i=1 g i ⋅ jµ f i
for some g i ∈ K{x}. We have jµG = jµ(∑s

i=1 g i ⋅ jµ f i) = jµ(∑s
i=1 g i f i), and since

∣ exp(G)∣ = ∣β∗∣ ≤ µ, it follows that exp(G) = exp(∑s
i=1 g i f i), by Remark 3.1 again.

_erefore, β∗ ∈N(I), which is a contradiction.

Corollary 3.3 Let I and {Iµ}µ∈N be as above. _en
N(I) = ⋂

µ≥l0
N(Iµ),

where l0 is the maximum of lengths of vertices of the diagram N(I).

Proof By Lemma 3.2(i), we have N(I) ⊂ ⋂µ≥l0 N(Iµ). On the other hand, by part
(ii) of the lemma, if β∗ ∈ Nm ∖N(I), then β∗ ∉N(Iµ) for all µ ≥ max{∣β∗∣, l0}.

Corollary 3.4 Let I and {Iµ}µ∈N be as above. Let l0 be the maximum of lengths of
vertices of the diagram N(I). If I contains a k’th power of the maximal ideal mx , then
k ≥ l0 andN(Iµ) =N(I) for all µ ≥ k.

Proof If I ⊃ mk
x for some k, then N(I) ⊃N(mk

x). Hence, l0 ≤ k and
(Nm ∖N(I)) ∩ {β ∈ Nm ∶ ∣β∣ ≤ l} = Nm ∖N(I),

for all l ≥ k. _e statement thus follows from Lemma 3.2(ii).

It is important to observe that, in general, there need not be equality between the
diagrams of I and Iµ , for µ arbitrarily large. _is is shown in the following example.

Example 3.5 Let I be an ideal in K{x , y} generated by f1 and f2 of the form

f1 = x3 y + xy4 + xy5 + xy6 + ⋅ ⋅ ⋅ ,
f2 = x2 y3 + y6 + y7 + y8 + ⋅ ⋅ ⋅ .

_en, for every µ ≥ 5, we have y2 ⋅ jµ f1 − x ⋅ jµ f2 = xyµ+1, hence (1, µ + 1) ∈ N(Iµ).
However, (1, k) ∉N(I) for any k ≥ 1.

We prove the latter by contradiction. Suppose there exists F ∈ I with exp(F) =
(1, k0) for some k0 ∈ N. Choose h1 , h2 ∈ K{x , y} so that F = h1 f1 + h2 f2. Let axα1 yα2
and bxβ1 yβ2 be the initial terms of h1 and h2, respectively. Clearly, in(h1) ⋅ in( f1) +
in(h2)⋅in( f2) = 0, because otherwise the x-component of exp(h1 f1+h2 f2)would not
be 1. _erefore, axα1+3 yα2+1 + bxβ1+2 yβ2+3 = 0. It follows that α1 + 1 = β1, α2 = β2 + 2,
and a + b = 0. Consequently,

(3.1) in(h1) ⋅ f1 + in(h2) ⋅ f2 = 0.

Now, set h(1)i ∶= h i − in(h i), i = 1, 2. By (3.1), we get h(1)1 f1 + h(1)2 f2 = F. Hence,
by repeating the above argument, in(h(1)1 ) ⋅ f1 + in(h(1)2 ) ⋅ f2 = 0. We can thus set
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h(2)i ∶= h(1)i − in(h(1)i ), i = 1, 2, and again obtain h(2)1 f1 + h(2)2 f2 = F. By induction, if
h( j)i = h( j−1)

i − in(h( j−1)
i ), i = 1, 2, then

(3.2) h( j)1 f1 + h( j)2 f2 = F , for all j.

Note that, for every j ≥ 1, the initial exponent of h( j+1)
i is strictly greater than that of

h( j)i , by construction. _erefore, by the Krull Intersection _eorem, the sequences
(h( j)1 ) j≥1 and (h( j)2 ) j≥1 converge to zero in the Krull topology of K{x , y}. It follows
from (3.2) that 0 ⋅ f1 + 0 ⋅ f2 = F, hence F = 0, which contradicts the choice of F.

Remark 3.6 Identifying those ideals I (or, more precisely, those systems of gen-
erators) in K{x} for which the sequence of diagrams (N(Iµ))µ stabilizes seems im-
portant from the point of view of singularity theory. In fact, the singularities deûned
by such ideals are precisely those whose Hilbert–Samuel function is ûnitely deter-
mined. Indeed, for an ideal J in K{x}, let HJ(k) = dimKK{x}/(J + mk+1

x ) denote
the Hilbert–Samuel function ofK{x}/J. It follows from Proposition 2.2 that

HJ(k) = #(Nm ∖N(J)) ∩ {β ∈ Nm ∶ ∣β∣ ≤ k} .

_erefore, by Lemma 3.2(i), we haveN(I) =N(Iµ) if and only ifHI(k) = HIµ(k) for
all k ∈ N.

We conjecture that the diagrams of Iµ stabilize in the case where I is generated
by a regular sequence. Recall that an s-tuple ( f1 , . . . , fs) forms a K{x}-regular se-
quence when f1 , . . . , fs generate a proper ideal, f1 /= 0, and f i+1 is not a zero divisor in
K{x}/( f1 , . . . , f i) for i = 1, . . . , s − 1.

Conjecture 3.7 Let I = ( f1 , . . . , fs) be an ideal inK{x}, and for µ ∈ N, let Iµ denote
the ideal generated in K{x} by the µ-jets jµ f1 , . . . , jµ fs . Suppose that f1 , . . . , fs form
a regular sequence in K{x}. _en there exists µ0 ≥ 1 such that N(I) = N(Iµ), for all
µ ≥ µ0 (a�er a generic change of coordinates x, if needed).

_e above conjecture is partly justiûed by the following observation: Let I and
{Iµ}µ∈N be as above. If f1 , . . . , fs form a regular sequence in K{x}, then there exists
µ0 ≥ 1 such that

dim(K{x}/I) = dim(K{x}/Iµ) ,
for all µ ≥ µ0.

Indeed, as an ideal generated by s elements in an m-dimensional ring, every Iµ sat-
isûes the inequalitym−s ≤ dim(K{x}/Iµ). On the other hand, by [9, Ch. 2, Prop. 5.3],
there exists µ0 ≥ 1 such that

dim(K{x}/Iµ) ≤ dim(K{x}/I) ,
for all µ ≥ µ0. Finally, if f1 , . . . , fs forma regular sequence, then dim(K{x}/I) = m−s.

4 Finite Determinacy of Flatness

We now turn to the problem of ûnite determinacy of �atness of analytic mappings.
_roughout this section X will denote a K-analytic space, and φ∶X → Kn will be a
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K-analytic mapping. Since our considerations are local, we can assume without loss
of generality that X is a subspace ofKm (for somem ≥ 1), 0 ∈ X, and φ(0) = 0. Let us
begin with ûnite mappings.

4.1 Finite Mappings

Proposition 4.1 Let X be a K-analytic subspace of Km , with 0 ∈ X and OX ,0 =
K{x}/I. Let φ = (φ1 , . . . , φn)∶X → Kn , φ(0) = 0, be a ûnite K-analytic mapping.
_en there exists µ0 ≥ 1 such that the following conditions are equivalent:
(i) φ is �at at zero;
(ii) for every µ ≥ µ0, ( jµφ1 , . . . , jµφn)∶X → Kn is �at at zero;
(iii) there exists µ ≥ µ0 such that ( jµφ1 , . . . , jµφn)∶X → Kn is �at at zero.
If, moreover, I = (h1 , . . . , hs) and, for µ ∈ N, Xµ denotes a localmodel deûned at 0 ∈ Km

byOXµ ,0 = K{x}/( jµh1 , . . . , jµhs), then the above conditions are equivalent to each of
the following:
(ii′) for all µ ≥ µ0, ( jµφ1 , . . . , jµφn)∶Xµ → Kn is �at at zero;
(iii′) there exists µ ≥ µ0 such that ( jµφ1 , . . . , jµφn)∶Xµ → Kn is �at at zero.

Proof Identifying X with the graph of φ, we can write OX ,0 = K{y, x}/J, where
y = (y1 , . . . , yn), x = (x1 , . . . , xm), and

J = (h1(x), . . . , hs(x), y1 − φ1(x), . . . , yn − φn(x)) ⋅K{y, x}.
For µ ≥ 1, set

J̃µ ∶= (h1 , . . . , hs , y1 − jµφ1 , . . . , yn − jµφn) ⋅K{y, x},
Jµ ∶= ( jµh1 , . . . , jµhs , y1 − jµφ1 , . . . , yn − jµφn) ⋅K{y, x}.

_e ûniteness of φ implies that J(0) ⊃ mk
x for some integer k (where the evaluation is

at y = 0). Let µ0 denote the least such k. We shall prove that the theorem holds with
this choice of µ0.

Let l0 denote the maximum of lengths of the vertices ofN(J(0)). By the proof of
Lemma 3.2(i), we have

N( J(0)) ⊂N( J̃µ(0)) ⊂N( Jµ(0)) ,
for all µ ≥ l0. Hence, by Corollary 3.4,

N( J(0)) =N( J̃µ(0)) =N( Jµ(0)) ,
for all µ ≥ µ0. Note also that ∣β∣ ≤ µ0 for all β ∈ Nm ∖N(J(0)).
For the proof of (i)⇒ (ii), suppose there exists µ ≥ µ0 such that

( jµφ1 , . . . , jµφn)∶X → Kn

is not �at at zero. _en, by Proposition 2.3, one can choose a nonzero G ∈ J̃µ with
exp(G) ∈ Nm ∖N(J̃µ(0)). Write G = ∑s

i=1 g i ⋅ h i + ∑n
j=1 q j ⋅ (y j − jµφ j), for some

g i , q j ∈ K{y, x}. Deûne F ∶= ∑s
i=1 g i ⋅ h i + ∑n

j=1 q j ⋅ (y j − φ j). _en F ∈ J and
exp(F) = exp(G) (by Remark 3.1), hence exp(F) ∈ Nm ∖N(J(0)). _is proves that
φ is not �at at zero, again by Proposition 2.3.
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_e implication (ii)⇒ (iii) is trivial. To prove that (iii)⇒ (i), suppose that φ is not
�at at zero and choose F = ∑s

i=1 g i ⋅h i+∑n
j=1 q j ⋅(y j−φ j)with exp(F) ∈ Nm∖N(J(0)).

Given an arbitrary µ ≥ µ0, set

G ∶=
s

∑
i=1

g i ⋅ h i +
n

∑
j=1

q j ⋅ (y j − jµφ j).

_en G ∈ J̃µ and exp(G) = exp(F) ∈ Nm ∖N(J̃µ(0)), which proves that

( jµφ1 , . . . , jµφn)∶X → Kn

is not �at at zero.
_e proof of implications (i) ⇒ (ii′) and (iii′) ⇒ (i) is analogous, with ideal J̃µ

replaced by Jµ .

Remark 4.2 Note that in Proposition 4.1 one can take µ0 to be the Milnor number
of the ûbre φ−1(0); i.e.,

µ0 = dimK(K{x}/J(0)) .

Indeed, since dimK(K{x}/J(0)) is precisely the cardinality of the complement of
N(J(0)), one readily sees that with this choice of µ0 we have J(0) ⊃ m

µ0
x .

Proposition 4.1 implies that �atness of ûnite analytic mappings is ûnitely deter-
mined in the following sense.

_eorem 4.3 Let X be aK-analytic subspace ofKm , with 0 ∈ X andOX ,0 = K{x}/I.
Let φ = (φ1 , . . . , φn)∶X → Kn , φ(0) = 0, be a ûnite K-analytic mapping. _en there
exists µ0 ≥ 1 such that the following conditions are equivalent:
(i) φ is �at at zero;
(ii) for every µ ≥ µ0 and for every analytic mapping ψ = (ψ1 , . . . ,ψn)∶X → Kn with

jµψ j = jµφ j , j = 1, . . . , n, ψ is �at at zero;
(iii) there exist µ ≥ µ0 and an analytic mapping ψ = (ψ1 , . . . ,ψn)∶X → Kn such that

ψ is �at at zero and jµψ j = jµφ j , j = 1, . . . , n.
If, moreover, I = (h1 , . . . , hs) and, for µ ∈ N, Xµ denotes a localmodel deûned at 0 ∈ Km

byOXµ ,0 = K{x}/( jµh1 , . . . , jµhs), then the above conditions are equivalent to each of
the following:
(ii′) for every µ ≥ µ0 and for every analytic mapping ψ = (ψ1 , . . . ,ψn)∶Xµ → Kn with

jµψ j = jµφ j , j = 1, . . . , n, ψ is �at at zero;
(iii′) there exist µ ≥ µ0 and an analytic mapping ψ = (ψ1 , . . . ,ψn)∶Xµ → Kn such that

ψ is �at at zero and jµψ j = jµφ j , j = 1, . . . , n.

Proof Let J = (h1(x), . . . , hs(x), y1 − φ1(x), . . . , yn − φn(x)) ⋅ K{y, x}, and let
µ0 = dimK(K{x}/J(0)). Let ψ = (ψ1 , . . . ,ψn)∶X → Kn be an arbitrary analytic
mapping with jµ0ψ j = jµ0φ j , j = 1, . . . , n and let

Q ∶= (h1(x), . . . , hs(x), y1 − ψ1(x), . . . , yn − ψn(x)) ⋅K{y, x}.
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We will show that thenN(Q(0)) =N(J(0)). _is proves that dimK(K{x}/Q(0)) =
µ0 (henceψ is a ûnitemapping), and, consequently, the theorem follows directly from
Proposition 4.1 and Remark 4.2.
First, let us show that N(Q(0)) contains all the vertices of N(J(0)). Given β′ a

vertex of N(J(0)), let F ∈ J be such that exp(F(0)) = β′. Write F = ∑s
i=1 g i ⋅ h i +

∑n
j=1 q j ⋅(y j−φ j), for some g i , q j ∈ K{y, x}. DeûneG = ∑s

i=1 g i ⋅h i+∑n
j=1 q j ⋅(y j−ψ j).

_enG ∈ Q, and, by assumption, jµG = jµF. In particular, exp(G(0)) = exp(F(0)) =
β′, as ∣β′∣ ≤ µ. It follows that β′ ∈N(Q(0)).

Now, choose β′′ ∈ Nm ∖N(J(0)) and suppose that β′′ ∈ N(Q(0)). Pick G ∈ Q
such that exp(G(0)) = β′′ and write G = ∑s

i=1 g i ⋅ h i + ∑n
j=1 q j ⋅ (y j − ψ j), for some

g i , q j ∈ K{y, x}. Deûne F = ∑s
i=1 g i ⋅ h i + ∑n

j=1 q j ⋅ (y j − φ j). _en F ∈ J, and
jµF = jµG, by assumption. Since ∣β′′∣ ≤ µ, we get exp(F(0)) = exp(G(0)) = β′′,
which contradicts the choice of β′′.

Remark 4.4 Note that _eorem 4.3 cannot be generalized to ûnitely generated
modules. More precisely, suppose that a ûniteK{y}-moduleM is given as the coker-
nel of a homomorphism Φ∶K{y}q → K{y}p ; i.e., M = K{y}p/(Φ(e1), . . . , Φ(eq)),
where {e1 , . . . , eq} is the canonical basis of the freeK{y}-moduleK{y}q . For µ ∈ N,
let Mµ denote the module K{y}p/( jµΦ(e1), . . . , jµΦ(eq)). One might expect that
�atness ofM overK{y} is equivalent to �atness ofMµ for suõciently large µ. _is is
not the case, however, as the following example shows.

Example 4.5 Consider f1 and f2 from Example 3.5, and let M be a K{x , y}-sub-
module ofK{x , y}3 generated by

G1 = (1, 0, f1), G2 = (1, 1, f2), and G3 = (y2 − x ,−x , 0).

Let O denote the structure sheaf of K2 and let M be a coherent O-module whose
stalk at the origin is M(0,0) = K{x , y}3/M. We have G1(0, 0) = (1, 0, 0), G2(0, 0) =
(1, 1, 0), and G3(0, 0) = (0, 0, 0), hence the multiplicity ofM at the origin is 3− 2 = 1.
On the other hand,G3 being a combination ofG1 andG2 (indeed,G3 = y2 ⋅G1−x ⋅G2),
the multiplicity ofM at any other point cannot be less than 1. _erefore, multiplicity
ofM is constant, and so M is �at at (0, 0) (see, e.g., [6, _m. 1.78]).

Let now Mµ be a coherent O-module with M
µ
(0,0) = K{x , y}3/Mµ , where Mµ is

generated by jµG1, jµG2, and jµG3. We claim that Mµ is not �at at the origin (equiv-
alently,K{x , y}3/Mµ is not K{x , y}-�at), for any µ ≥ 5.

Indeed, identifying Mµ with a matrix with rows jµG i , i = 1, 2, 3, we get

det(Mµ) = y2 ⋅ jµ f1 − x ⋅ jµ f2 ,

which we know is equal to xyµ+1, provided µ ≥ 5 (cf. Example 3.5). _erefore, for any
a /= 0 and b /= 0, the stalk M

µ
(a ,b) has multiplicity zero, whileMµ

(0,0) has multiplicity
one.

4.2 Mappings from Complete Intersections

Proof of_eorem 1.1 Let h1 , . . . , hs be a regular sequence inK{x} for whichOX ,0 =
K{x}/(h1 , . . . , hs). Identifying X with the graph of φ, we canwriteOX ,0 = K{y, x}/J,
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where

J = (h1(x), . . . , hs(x), y1 − φ1(x), . . . , yn − φn(x)) ⋅K{y, x}.
For µ ∈ N, set

Jµ ∶= (h1(x), . . . , hs(x), y1 − jµφ1(x), . . . , yn − jµφn(x)) ⋅K{y, x}.
By a well-known �atness criterion over regular local rings (see, e.g., [6, _m. B.8.11])
and because the local ringOX ,0 is Cohen–Macaulay, �atness of φ at zero is equivalent
to

(4.1) dim(K{x}/J(0)) = dimOX ,0 − n = (m − s) − n.
Suppose then that φ is �at at zero. By [9, Ch. 2, Prop. 5.3], there exists µ′ ≥ 1 such
that dim(K{x}/Jµ(0)) ≤ dim(K{x}/J(0)), for all µ ≥ µ′. On the other hand, as an
ideal generated by s+n elements, every Jµ(0) satisûes inequality dim(K{x}/Jµ(0)) ≥
m − (s + n). _erefore, by (4.1), dim(K{x}/Jµ(0)) = (m − s) − n, and so φµ is �at at
zero. _is proves (i)⇒ (ii).

_e implication (ii)⇒ (iii) is trivial. For the proof of (iii)⇒ (i), suppose that φ is
not �at at the origin. _en, by Proposition 2.3, one can choose a nonzero F ∈ J sup-
ported outside of N(J(0)). In particular, exp(F) ∉ N(J(0)). Write F = ∑s

i=1 g ih i +
∑n

k=1 qk ⋅(yk−φk), for some g i , qk ∈ K{y, x}, and set µ′′ ∶= max{∣ exp(F)∣, l0}, where
l0 is the maximum of lengths of vertices of the diagram N(J(0)). Fix µ ≥ µ′′, and
deûne G ∶= ∑s

i=1 g ih i + ∑n
k=1 qk ⋅ (yk − jµφk). _en G ∈ Jµ and exp(G) = exp(F)

(as jµG = jµF and by Remark 3.1). By Lemma 3.2, exp(G) ∉ N(Jµ(0)), which im-
plies that φµ is not �at (by Propositions 2.3 and 2.2). _e theorem thus holds for
µ0 = max{µ′ , µ′′}.

Corollary 4.6 Given a collection of power series f1 , . . . , fs ∈ K{x}, there exists µ0 ≥ 1
such that the following conditions are equivalent:
(i) f1 , . . . , fs form a regular sequence;
(ii) for all µ ≥ µ0, jµ f1 , . . . , jµ fs form a regular sequence;
(iii) there exists µ ≥ µ0 such that jµ f1 , . . . , jµ fs form a regular sequence.

Proof _e equivalence follows immediately from _eorem 1.1 applied to the map-
ping φ ∶= ( f1 , . . . , fs)∶Km → Ks , and the fact that h1 , . . . , hk ∈ K{x} form a regular
sequence if and only if (h1 , . . . , hk)∶Km → Kk is �at (see, e.g., [6, _m. B.8.11]).

For the next result, we will need the following useful observation.

Remark 4.7 For an ideal I in K{x}, the following conditions are equivalent, up to
a generic linear change of coordinates x:
(i) dim(K{x}/I) ≤ dimK{x} − k;
(ii) the diagram N(I) has a vertex on each of the axes corresponding to x1 , . . . , xk .
Indeed, condition (ii) clearly implies (i). On the other hand, (i) implies that (up
to a generic linear change of coordinates) K{x}/I is a ûnite K{x̃}-module, where
x̃ = (xk+1 , . . . , xm). _e latter is equivalent to saying that I contains a distinguished
pseudo-polynomial f j ∈ K{x̃}[x j] for every j = 1, . . . , k (see, e.g., [8, Ch. III, Sec. 2.2]),
hence (ii).
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Corollary 4.8 Given a collection of power series f1 , . . . , fs ∈ K{x}, there exists µ0 ≥ 1
such that the following conditions are equivalent:
(i) f1 , . . . , fs form a regular sequence;
(ii) for every µ ≥ µ0, every sequence g1 , . . . , gs satisfying jµ g i = jµ f i (i = 1, . . . , s) is

regular in K{x};
(iii) there exists µ ≥ µ0 such that every sequence g1 , . . . , gs satisfying jµ g i = jµ f i

(i = 1, . . . , s) is regular in K{x}.

Proof Suppose that f1 , . . . , fs form a regular sequence in K{x}. _en

dimK{x}/( f1 , . . . , fs) = m − s.

By Remark 4.7, one can assume that the diagram N(I) of the ideal I = ( f1 , . . . , fs) ⋅
K{x} has a vertex on each of the axes corresponding to x1 , . . . , xs ; say, β1 , . . . , βs . Let
µ′ denote the maximum of lengths of β1 , . . . , βs . Fix µ ≥ µ′ and choose arbitrary
g1 , . . . , gs ∈ K{x} with jµ g i = jµ f i for i = 1, . . . , s. Set J ∶= (g1 , . . . , gs) ⋅K{x}. For
k = 1, . . . , s, let Fk ∈ I be such that exp(Fk) = βk . Write Fk = ∑s

i=1 qki f i , for some
qki ∈ K{x}. Deûne Gk ∶= ∑s

i=1 qki g i , k = 1, . . . , s. _en Gk ∈ J and jµGk = jµFk for
all k. As ∣βk ∣ ≤ µ′ ≤ µ, it follows (by Remark 3.1) that exp(Gk) = exp(Fk) = βk , and
so β1 , . . . , βs all belong to N(J). Hence, by Remark 4.7 again, dimK{x}/J ≤ m − s.
_us, g1 , . . . , gs form a regular sequence, which proves (i)⇒ (ii).

_e implication (ii) ⇒ (iii) is trivial. For the proof of (iii) ⇒ (i), suppose that
f1 , . . . , fs do not form a regular sequence. _en, by Corollary 4.6, there exists µ′′
such that, for all µ ≥ µ′′, jµ f1 , . . . , jµ fs do not form a regular sequence. _e corollary
thus holds for µ0 ∶= max{µ′ , µ′′}.

It is now easy to see that �atness ofmappings from complete intersections is ûnitely
determined, in the following sense.

_eorem 4.9 Let X be a K-analytic subspace of Km . Suppose that 0 ∈ X and the
local ring OX ,0 is a complete intersection. Let φ = (φ1 , . . . , φn)∶X → Kn , φ(0) = 0, be
a K-analytic mapping. _en, there exists µ0 ≥ 1 such that the following conditions are
equivalent:
(i) φ is �at at zero;
(ii) for every µ ≥ µ0, every analytic mapping ψ = (ψ1 , . . . ,ψn)∶X → Kn with jµψ i =

jµφ i (i = 1, . . . , n) is �at at zero;
(iii) there exists µ ≥ µ0 such that every analytic mapping ψ = (ψ1 , . . . ,ψn)∶X → Kn

with jµψ i = jµφ i (i = 1, . . . , n) is �at at zero.
If, moreover, X is deûned at 0 ∈ Km by a regular sequence h1 , . . . , hs and, for µ ∈ N, Xµ
denotes a local model deûned at 0 ∈ Km by OXµ ,0 = K{x}/( jµh1 , . . . , jµhs), then the
above conditions are equivalent to each of the following:
(ii′) for every µ ≥ µ0, every analytic mapping ψ = (ψ1 , . . . ,ψn)∶Xµ → Kn with jµψ i =

jµφ i (i = 1, . . . , n) is �at at zero;
(iii′) there exists µ ≥ µ0 such that every analytic mapping ψ = (ψ1 , . . . ,ψn)∶Xµ → Kn

with jµψ i = jµφ i (i = 1, . . . , n) is �at at zero.
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Proof Recall ([6, _m. B.8.11]) that an analytic mapping φ = (φ1 , . . . , φn)∶X → Kn

is �at at zero if and only if φ1 , . . . , φn form an OX ,0-regular sequence. _erefore, if X
is deûned at 0 ∈ Km by a regular sequence h1 , . . . , hs , then the latter is equivalent to
saying that h1 , . . . , hs , φ1 , . . . , φn form a K{x}-regular sequence. _e theorem thus
follows from Corollary 4.8 applied to the sequence h1 , . . . , hs , φ1 , . . . , φn .

Question 4.10 It would be interesting to know if one could relax the complete inter-
section assumption on the domain X in _eorem 4.9.

5 Stability Under Deformations

Let φ∶X → Y be a morphism of K-analytic spaces, and let (T , 0) be a pointed space
(i.e., a K-analytic space with a distinguished point 0). By a deformation of φ over Y
we shall mean a Cartesian diagram of the form

X ÐÐÐÐ→ X

φ
×××Ö

×××Ö
Φ

Y ÐÐÐÐ→ Y × T
×××Ö

×××Ö
π

{0} ÐÐÐÐ→ T

such that X is �at over T (see, e.g., [6]). If X is of the form X × T , then Φ is called an
unfolding of φ.

In this section, we study the stability of �atness of φ under such deformations.
Since our considerations are local, we can assume from the start that all spaces are
local models; say, X ⊂ Km , Y ⊂ Kn , T ⊂ Kk , X and Y pass through the origins in
Km and Kn respectively, and φ(0) = 0. Let x = (x1 , . . . , xm), y = (y1 , . . . , yn), and
t = (t1 , . . . , tk) denote the systems of variables in the respective ambient spaces of X,
Y , and T .
For θ ∈ T , we shall denote by Φθ the specialization of Φ over θ, that is, the unique

mapping closing the following Cartesian diagram

(π ○Φ)−1(θ) ÐÐÐÐ→ X

Φθ
×××Ö

×××Ö
Φ

Y ÐÐÐÐ→ Y × T
×××Ö

×××Ö
π

{θ} ÐÐÐÐ→ T .

For the proof of _eorem 1.2, we will ûrst settle the case of smooth one-dimen-
sional parameter space.
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Lemma 5.1 Let φ∶X → Y be a �at morphism of K-analytic spaces, with Y locally
irreducible. IfΦ is a deformation of φ parametrized by T = K, thenΦθ is a �atmapping
for every θ ∈ T near zero.

Proof Since �atness is an open property (see, e.g., [3,_m. 7.15]) and because �atness
is preserved by base change (see, e.g., [7, Prop. 6.8]), it suõces to show that Φ is �at
at 0 ∈ X. For a proof by contradiction, suppose that Φ is not �at at the origin. Let R
denote the local ringOY ,0. A�er identifyingXwith the graph ofΦ, we can regardOX,0
as a quotient ofOKm×Y×T ,(0,0,0); that is,OX,0 = R{t, x}/I for some ideal I = I(y, t, x)
in R{t, x}.

Now, by Proposition 2.3, there exists a nonzero F ∈ I such that

supp(F) ⊂ Nm ∖N(I(0, 0, x)),

where the evaluation is at (y, t) = (0, 0). We have F(y, 0, x) ∈ I(y, 0, x). Hence,
�atness of φ at zero implies that F(y, 0, x) = 0 in R{x}, again by Proposition 2.3. _e
latter means that t divides F in R{t, x}. Let d be the maximum power of t that can
be factored out from F in R{t, x} and set F̃ ∶= t−d ⋅ F. _en F̃(y, 0, x) is not zero
anymore. But supp(F̃) = supp(F), so applying Proposition 2.3 once more, we get
that F̃ ∉ I. Consequently, td is a zero divisor in the local ringOX,0, which contradicts
the �atness of π ○Φ.

Proof of_eorem 1.2 As in the proof of the above lemma, it suõces to show that
Φ is �at at 0 ∈ X. Suppose ûrst that T is smooth. _e problem being local, we can
thus assume that T = Kk . We will prove by induction on k that �atness of π ○Φ∶X→
Y ×Kk → Kk and Φ0 = φ∶X → Y at zero implies that Φ∶X→ Y ×Kk is �at at zero.
For k = 0 there is nothing to prove, so suppose that k ≥ 1 and the statement holds

for k − 1. Consider the �at mapping X1 → Y ×Kk−1 → Kk−1, deûned as the pullback
of the �at π ○ Φ by the inclusion Kk−1 ↪ Kk . _e inductive hypothesis implies that
Φ1∶X1 → Y×Kk−1 is �at. Next, consider themappingX→ (Y×Kk−1)×K→ K, which
is �at as the composite of π ○Φ with the projection Kk → K. Applying Lemma 5.1 to
the Cartesian diagram

X1 ÐÐÐÐ→ X

Φ1

×××Ö
×××Ö

Φ

Y ×Kk−1 ÐÐÐÐ→ (Y ×Kk−1) ×K
×××Ö

×××Ö
{0} ÐÐÐÐ→ K,

we conclude that Φ is �at at zero.

Finally, consider a general locally irreducible T . In this case, one can ûnd a non-
singular K-analytic space Z and a dominant mapping σ ∶ Z → T , σ(0) = 0, with
dim Z0 = dimT0 (for example, take a desingularization of T near the origin). Con-
sider the pullback of π ○Φ∶X→ Y × T → T by σ ∶ Z → T (which is �at by the �atness
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of π ○Φ). One can easily check that this mapping factors as X′
Φ′→ Y × Z → Z. By the

ûrst part of the proof, we thus get that Φ′∶X′ → Y × Z is �at at zero. Moreover, the
pullback of σ by π is clearly dominant, and so we get the following Cartesian square
in which Φ′ is �at and the bottom arrow is dominant:

X ←ÐÐÐÐ X′

Φ
×××Ö

×××Ö
Φ′

Y × T ←ÐÐÐÐ Y × Z .

By assumption, Y ×T is irreducible at (0, 0). Hence, the analytic �atness descent (see
[1, Prop. 2.1]) implies that Φ is �at at zero, as required.

6 Complex Case

In this section, we consider the case K = C. In the complex setting, �atness of a
mapping φ∶X → Y has a natural geometric interpretation. Namely, it is equivalent
to continuity in the family of ûbres of φ. In fact, if Y is nonsingular and (the local
ring of) X is Cohen–Macaulay (at every point), then �atness of φ is equivalent to
openness (see, e.g., [5, §3.20]), and the latter simply means that all ûbres of φ are of
the same dimension. In particular, overK = C, in _eorems 1.1 and 4.9 “�atness” can
be replaced with “openness”, since complete intersections are Cohen–Macaulay.

Over singular targets, the picture is (considerably) more complicated; nonetheless,
it is still possible to interpret �atness in purely geometric terms. As we show in [2], a
morphism φ∶X → Y of complex-analytic spaces (with Y locally irreducible) is �at at a
point ξ ∈ X if and only if every irreducible component of the ûbred product X×Y Z at
(ξ, ζ) is dominant over Zζ , where σζ ∶ Zζ → Yη is the local blowing up ofY at η = φ(ξ).
Below, we generalize this idea and construct test mappings to detect higher order

discontinuities in the family of ûbres of a given mapping. For an analytic mapping
φ∶X → Y with locally irreducible Y and X of pure dimension, one can speak of the
generic ûbre dimension of φ, denoted λφ . Further, let κφ be the maximum ûbre di-
mension of φ. We shall call the diòerence κφ−λφ the ûbre defect of φ. By the Remmert
Open Mapping _eorem (see, e.g., [8, Ch. V, § 6, _m. 2]), φ is open if and only if its
ûbre defect is zero.

6.1 Test Mappings

Consider a morphism φ∶X → Y of local models. Suppose that X ⊂ Cm is of pure
dimension, Y ⊂ Cn is locally irreducible (of positive dimension), and φ(0) = 0. Sup-
pose further that n = edimOY ,0. A�er a linear change of coordinates inCn if needed,
we can assume that yn belongs to the tangent cone ofY at 0. _e following proposition
gives a method of testing for the degree of ûbre defect of a given mapping.
For k ∈ {0, . . . , n − 1}, let σk ∶Cn → Cn denote the mapping

(y1 , . . . , yn) z→ (y1 , . . . , yk , yk+1 yn , . . . , yn−1 yn , yn).

In other words, σk is the restriction to the aõne chart {yn /= 0} of the blowing up of
Cn with centre Ck = {yk+1 = ⋅ ⋅ ⋅ = yn = 0}. Denote by Y st

k the strict transform of Y
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under σk . We will consider a Cartesian square of the form

X ×Y Y st
k ÐÐÐÐ→ X

φ′k
×××Ö

×××Ö
φ

Y st
k

σk ∣Yst
kÐÐÐÐ→ Y .

Proposition 6.1 Suppose that φ has ûbre defect greater than δ. _en:
(i) at (0, 0) ∈ X ×Y Y st

δ , the ûbre (σδ ∣Y st
δ
○ φ′δ)−1(0) has dimension greater than or

equal to dimX;
(ii) the ûbred product X×Y Y st

δ has an isolated irreducible component at (0, 0) that is
mapped by σδ ∣Y st

δ
○φ′δ into Cδ ∩Y. Equivalently, yn is a zero divisor in the reduced

local ring (OX×YY st
δ ,(0,0)

)red.

Proof Let δ ∈ N and suppose that κφ − λφ > δ. Since edimOY ,0 = n, it follows that
Y0 is not contained in the germ of the center (Cδ)0. Consequently,

dim(Y st
δ ∩ σ−1

δ (Cδ)) = dim(σδ ∣Y st
δ
)−1(Cδ) = dimY st

δ − 1 = dimY − 1.

As the center itself is of dimension δ, we get that

dim(σδ ∣Y st
δ
)−1(0) ≥ (dimY − 1) − δ ≥ dimX − λφ − 1 − δ,

and hence

fbd(0,0)(σδ ∣Y st
δ
○ φ′δ) ≥ (dimX − λφ − δ − 1) + κφ ≥ dimX ,

which proves property (i).
On the other hand, since σδ is a biholomorphism outside σ−1

δ (Cδ), it follows that
dim(ξ,η) X×Y Y st

δ = dimX for all (ξ, η) except atmost those for which η is mapped by
σδ into Cδ . _erefore, either the ûbre (σδ ∣Y st

δ
○ φ′δ)−1(0) itself contains an irreducible

component of X ×Y Y st
δ at (0, 0) or else it is contained in a component mapped into

Cδ ∩ Y .
_e last statement of the proposition follows from the fact that the OY ,0-module

structure of OX×YY st
δ ,(0,0)

factors as OY ,0 → OY st
δ ,0
→ OX×YY st

δ ,(0,0)
and the image in

OY st
δ ,0

of the ideal deûning Cδ is the principal ideal generated by yn .

Remark 6.2 It is evident from the proof above that if Y = Cn and the mapping
φ∶X → Y is dominant (i.e., λφ = dimX − n), then, conversely, the equivalent condi-
tions (i) and (ii) of the proposition imply that the ûbre defect of φ is greater than δ.

6.2 Stability of Openness

In this section we prove that, like �atness, openness of complex-analytic mappings is
stable under deformations. _is follows from_eorem 1.2 formappings fromCohen–
Macaulay into smooth spaces (by [5, §3.20]), but in general an open mapping need
not be �at. We have the following proposition.
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Proposition 6.3 Let φ∶X → Y be a morphism of local models, where Y ⊂ Cn is
locally irreducible, X ⊂ Cm is of pure dimension, and φ(0) = 0. Suppose that T is
locally irreducible. Let d ≥ 1 and suppose that φ is a dominant mapping with ûbre
defect less than d. If Φ is a deformation of φ over Y, parametrized by T and with X of
pure dimension, then Φθ is dominant and has ûbre defect less than d for every θ ∈ T
near zero. (In particular, this is the case if Φ is an unfolding of φ.)

Proof Set l ∶= dimT and r ∶= dimX. As a �at mapping, π ○ Φ is open (by Douady
[4]), and hence its ûbre dimension is r− l at every point ξ ∈ X. In particular, X = (π ○
Φ)−1(0) is of pure dimension r− l . By dominance of φ, we have dimY = dimX − λφ ,
that is, dimY = r− l−λφ . Since λφ is the generic ûbre dimension of φ, it follows that Y
contains an open subset Z adherent to 0 ∈ Cn such that for all η ∈ Z, dimφ−1(η) = λφ .
As φ−1(η) = Φ−1(η, 0), it follows by upper semicontinuity of ûbre dimension of Φ
that λΦθ ≤ λφ for θ ∈ T near zero.

On the other hand, one always has λΦθ ≥ dim(π○Φ)−1(θ)−dimY = r− l−dimY .
_erefore, λΦθ ≥ (r − l) − (r − l − λφ) = λφ , and so λΦθ = λφ for all θ ∈ T near zero.
Since all (π ○Φ)−1(θ) are of the same dimension as X, the dominance of Φθ follows.
Finally, κφ is equal to the dimension of φ−1(0), and hence κΦθ ≤ κφ , by upper

semicontinuity of ûbre dimension ofΦ again. _us, for all θ ∈ T near zero, κΦθ−λΦθ ≤
κφ − λφ < d, as required.

Corollary 6.4 Openness is stable under deformations: if φ is an open mapping and
Φ is its deformation as in Proposition 6.3, then Φθ is open for every θ ∈ T near zero.

6.3 Finite Determinacy of Flatness of Complex-analytic Mappings

We conclude the paper with a comment on _eorem 4.9 in the complex case.
Recall that, for a d-dimensional complex analytic set X in Cm and a point ξ ∈

X, one deûnes the multiplicity µξ(X) of X at ξ as follows: In a generic system of
coordinates x at ξ in Cm , the local ring OX ,ξ is a ûnite C{x̃}-module, where x̃ =
(x1 , . . . , xd). We set µξ(X) to be the rank of this module. Equivalently, µξ(X) is the
generic cardinality of a ûbre of a projection of X to a generic d-dimensional linear
subspace of Cm (in a neighbourhood of ξ).

Proposition 6.5 Under the notations of _eorem 4.9, let Z denote the ûbre φ−1(0)
(that is, Z0 = V(J), where J = (h1 , . . . , hs , φ1 , . . . , φn)). _en, the implications (i)⇒
(ii) and (i)⇒ (iii) in _eorem 4.9 hold with µ0 ∶= µ0(Z).

Proof Indeed, directly from the deûnition of µ0(Z), it follows that (a�er a linear
change of variables x, if needed) the classes in C{x}/J of x1 , . . . , xn+s are integral
over C{x̃}, where x̃ = (xn+s+1 , . . . , xm). Hence, J contains a distinguished pseudo-
polynomial Pj ∈ C{x̃}[x j] for every j = 1, . . . , n + s. _erefore,N(J) has a vertex on
each of the axes corresponding to x1 , . . . , xn+s . Since deg(Pj) ≤ µ0(Z) for all j, we get
that each of these vertices is of length at most µ0(Z), and so the claim follows from
the proof of Corollary 4.8.
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