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Abstract. The local black holes describe physical situations involving 
a black hole surrounded by a finite vacuum region and then by matter and 
fields. The stationary and axisymmetric local black holes belong into 
two classes, the spherical and the toroidal ones, depending on the topo­
logy of their horizon. For the static black holes their metric tensors 
are given explicitly in terms of Legendre polynomials. For the statio­
nary local black holes the problem is formulated interms of the Ernst 
potential of the rotational Killing field and the appropriate asymptotic 
conditions on the horizon are determined. 

1. LOCAL BLACK HOLES 
A black hole, being the final configuration of a burnt out and settled 

down massive star, is described in General Relativity by a stationary 
spacetime. A stationary isolated black hole - i.e., a spacetime represent­
ing a single black hole - has to be axisymmetric^ as well and its horizon 
must have the topology of the sphere S . In fact the two parametric 
family of the Kerr solutions of the Einstein equations describes the most 
general^"^ stationary isolated black hole (We shall not be concerned in 
this paper with electrically charged black holes). To study in General 
Relativity physical phenomena involving isolated black holes, we have to 
use approximation methods. For instance, in all studies6"7 of the fall 
of particles into, or the scattering of waves by, a black hole we treat 
the falling matter or the scattered field as a perturbation, i,e., we 
treat them as test particles or test fields which move in, or are pro­
pagated in, the spacetime of the black hole, without actually affecting 
the geometry itself. 

The concept of the local black holes8 represents the first step in 
an effort to describe exactly in General Relativity physical phenomena 
involving a black hole surrounded by matter and fields. Since it is rea­
sonable to assume that the matter that was in the immediate neighborhood 
of the black hole has been "eaten up" by the hole, we demand that the black 
hole is surrounded, for a finite distance from its horizon, by a vacuum 
region. No matter or any other field but the gravitational field exists 
in this vacuum region. However, matter and other fields may exist (and 
generally do exist) farther away from this vacuum region; it is only de-
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manded that their density and strength fall off sufficiently fast away 
from the hole so that they represent an isolated system with a black hole 
at the center. 

The general theory of the static and axisymmetric local black holes 
has been recently put forward by Geroch and Hartle8. In particular they 
have shown that the horizon of these black holes is homeomorphic either 
to the sphere S2 or the torus S-'-xS1; these two classes will be referred 
to as the spherical and the toroidal black holes, respectively. Besides 
indicating how to construct such solutions, Geroch and Hartle have in­
vestigated their global structure, their thermodynamic behavior and their 
evolution with the emission of Hawking radiation. Certain examples of 
local black holes had appeared in the literature9--'-̂  before the work of 
Geroch and Hartle. 

2. THE STATIC AND AXISYMMETRIC LOCAL BLACK HOLES 
The construction of the spacetime of the local black holes proceeds 

in two steps . In the first we are concerned with the immediate (the 
vacuum) neighborhood of the black hole, where the actual difficulty is 
to satisfy the vacuum Einstein.equations compatibly with the requirement 
that they admit a smooth event horizon. The second step then will be to 
match this solution (of the Einstein equations) with an exterior solution 
with sources, which will represent the region far away from the hole. All 
the studies of the local black holes are concerned, so far, with the first 
step. For the static and axisymmetric case in particular the metric ten­
sors which describe the vacuum neighborhoods of the spherical and the to­
roidal black holes have been obtained explicitly by Chandrasekhar7 and 
Xanthopoulos-"-2 respectively. Here we give only the results. 

Spherical black holes7: The line element is 
* 2 _ (n-D Sr,_^2 m2(jrKO_ a-S, , v2 
ds ~7—rrv e (dt) ;— e (dl̂ ) ~ 

(n+l) n-l 
-m2(n+l)VS {(l-y2)(dcp)2+(l-y2)'1ea(dy)2} , (1) 

where S=S(n,y)=E AkP]<( n)P]<(u) and the function a=a(n,p) is determined 
from S by the equations 

(n2~y2) „ _ 2n 2y , 2 n M "17°̂ - ̂ 7 S'n~ T T S>^ y S>ns>y + (n - D ( I - M ) n -l n -l 

+ -A, {(n2-i)S,2_ + <p2-i)s * } , (2) 
2(n -1) 

(n2-w2) „ _ 2u 2n 
(n2-i)(i-P2) 1-P n -1 

+ y-5— t(n2-DS 2+(y2-l)S2 }. (3) 
2(l-y ) 
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The P],Ts are Legendre polynomials and the constants A^ are subject to the 
condition I ̂ 2k+l = ̂ * ^ e m a s s °f the hole is m, its horizon is the 
surface n=l, the surface area of the horizon is 16fim ea and the surface 
gravity on the horizon is (Mnea) , where a=-EA2j<. (All the summations 
are from zero to infinity). 

19 

Toroidal black holes1 : The line element is 

ds2= ~ (n2-D(l-u2)e-S(dt)2-4m2eS(.d(p)2-

- iim2(n2-u2)eQ"S {(n2-l)"1(dn)2+(l-y2) (du)2} , (4) 
where S=S(n,y)=E B^P^Cn )P]<(p) and the function o=a(n5y) is determined 
from S by the equations 

n _ nC.y2- l ) o 2 n c 2 , 2 n c 2 u y ( n 2 - D ( y 2 - D 0 Q , 0 

2(n -y ) n -y 

^ _ y ( n 2 - D r / 2 , vc 2 A / 2 1 W 2 , n ( n 2 - l ) ( y 2 - l ) 0 c , ^ 
% " , 2 2N

 { ( n " 1 ) s ' n + ( y " 1 ) S ' y } ' ~ 2 S ' n S ' y ' ( 6 ) 

2(n - y ) n - y 

The P̂ 's are Legendre polynomials and the constants B^ are subject to 
the conditions E B =0 , Z B2k^2k(1)=0* a n d E B2k+1^2k+l(1)::0' w h e r e 

the dots denote differentiations. The mass of the hole is m , the sur­
face area of the horizon is 16iim2ea and the surface gravity on the hori­
zon is (4mea)~ , where 2a equals to the constant value of the function 
a on the horizon. 

o 
Geroch and Hartle have shown that the above solutions can be smooth­

ly continued to asymptotically flat non-vacuum solutions. It should be 
mentioned, however, that no non-vacuum continuation has been explicitly 
constructed so far corresponding to some physically interesting distri­
bution of matter. 

3. THE STATIONARY CASE 

Contrary to the static black holes, which are non-rotating, the sta­
tionary and axisymmetric black holes are uniformly rotating. Unfortunately, 
the relevant stationary axisymmetric vacuum Einstein equations are quite 
complicated. For instance, in the static case a combination of the com­
ponents of the metric tensor satisfies a single linear equation; in the 
stationary case, instead, we have to deal with a non-linear system of 
partial differential equations. In particular we choose a coordinate 
chart which covers a neighborhood of the horizon and we determine the a-
symptotic behaviors of the coefficients of the metric tensor which gua­
rantee the existence of a smooth horizon. We find that a formulation of 
the problem based on the Ernst potential13 associated with the rotational 
Killing field is the most appropriate. Finally, we determine a simple 
necessary condition which distinguishes the spherical and the toroidal 
holes, 

A suitable expression for the line element of the general stationary 
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axisymmetric spacetime is 
ds2=+e2V(dt)2-e2^(d(p-codt)2-e2tl2(dx2)2_e2u3(dx3)25 ( 7 ) 

where t and cp are the time and the azimuthal angle and the scalars 
v,c|;,u),U2 and y3 are functions of the two remaining spatial coordinates 
x2 and x^. The Einstein equations for the stationary and axisymmetric 
case can be found, for instance, in reference 7 equations 7,8,14,15, and 
16 of chapter VI. We note that eq. 14, compatibly with which the gauge 
condition should be imposed14, is the same in both the static and the 
stationary cases. We can choose the gauge, therefore, exactly as in the 
static case. Since the argument is presented in detail in ref. 12, we 
here give only the conclusions: We impose the gauge conditions 

ey3-^=(n2_1)
1/2(1_p2)-l/2) e^v=m(ri2_1)

1/2(1_ij2)
1/2 ( 8 ) 

for which the line element (7) becomes 

ds2=m(n2-l)1/2(i-y2)1/2 {ev-*(dt)2-e*-v(d^wdt)2} -

n2_ 1 )V2 a_ y 2 )V2 eV^3 { (n2_1)-l(dn)2+(1V)-1(dy)2} . (9) 
3 Here m is a constant, the range of \i~x is in (-1,+1), and the 

horizon is the surface n=x -1. 
The limit on the horizon of the determinant of the spacetime metric 
G(1+) = -2n,2(l-M2) iira{(n_1) e2^2+U3)} (10) 

and the limit on the horizon of the corresponding determinant of the in­
duced metric is 

G(2) = 2m lim{(n-D e^"V e P2+y3} . (11) 

For the metric (9) to be well behaved on the horizon the limits G/̂ \ and 
G(2) should be finite and non-zero. Therefore, we should also have that 

lim {(n-l)1/2e<t'"V}and lim {(n-l)1/2 ev2+V*} (12) 
are finite and non-zero. We observe that we have obtained the same a-
symptotic conditions as in the static case12. 

By glancing on themetric (9) one can immediately see that the first 
of the conditions (12) is equivalent to the condition that the squared 
norm of the rotational Killing field is finite and non-zero on the hori­
zon. This observation suggests to use the formulation of the stationary 
axisymmetric Einstein equations interms of the Ernst potential1^"14 asso­
ciated with the rotational Killing field. Hence, instead of the variables 
(|>̂v and a) we consider 

^(n 2-D 1 / 2(i-u 2) 1 / 2 e*-v (13) 
and $ defined by the equations 

(n2-l)$, =Y2o>, and (y2-lH,y=Y2u),n , (14) 
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as the basic variables of the problem. In terms of the complex Ernst po­
tential Z=y+i<I> the vacuum Einstein equations read 

CReZ){[(n2-DZ,n], + [(l-y2)Z,y] } = (n2-l)Z,2+(1-u2 )Z,2 . (15) 

In addition, instead of U2+U05 we consider the M defined by 

eP2+y3=(n2-p2)(n2-i71/2(i-P2)"1/2 f^e" (16) 
as an equivalent variable. Interms of these variables the line element 
(9) takes the form 

ds2= m{(n2-l)(l'-u2)1'rl(dt)2->t<(dcp~a)dt)2} -

-(n2-y2)t-1eM{ (n2-l)~1(dn)2+(l-y2)"1(dy)2} . (17) 
M Note that, the second of the asymptotic conditions (12) is that e should 

be finite and non-zero on the horizon. 
Turning now to the remaining of the Einstein equations-namely, equa­

tions 8 and 16 of chapter VI of the reference IT we obtain, after a lengthy 
calculation, that M is determined from ¥ and $ by the equations 

2M,=(l-u2)(n2-u2r1 { nA~2y(n2-l)B} 
n (18) 

2M,y=(n2-D(n2-y2r1 { uA+2n(l-u2)B}, 
where 

A^-2{(n2-l)(Y2+$ 2)+(y2-l)(y ,2+*,2)} 
9 (19) 

B ^ (y,nY,y+$,n$,y). 
Note that by using equation (.15) and the assumption that lim ¥ is finite 
and non^zero we can conclude that $ is smooth in a neighborhood of the 
horizon. Hence A and B are bounded in a neighborhood of the horizon 
and the second of equations (18) implies that M is constant on the ho­
rizon. Therefore the second of the asymptotic conditions (12) is satisfied 
as a consequence of the first asymptotic condition. 

Finally we obtain an additional necessary condition on the scalar ¥ 
by applying the Gauss^Bonn theorem. The induced on the horizon metric 
from the spacetime metric is 

dT2=mg(.d(p)2+grleM(iiu)2 (20) 
where g=g(y)=¥(l,y) and M now stands for the constant value of the function 
M(n,y) on the horizon. The scalar curvature of the metric (20) is easily 
found to be R=-ge~M, where the dots denote differentiations. Then the 
Gauss-Bonnet formula 4ic)(=jRdV gives that 

2Xm'1/2 eM/2 = |(-i)-£(+1) . (21) 
In the expression (21) x is the Euler number16 of the horizon of the black 
hole, which is a topological invariant; x-2 for a spherical and x=0 for 
a toroidal horizon. We conclude therefore that g has to satisfy the con-
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-1/ M / d l t l o n -4m 2 e ' 2 for a spherical black hole. r 
:+D= |(-l)-g(+l)= I (22) 

0 for a toroidal black hole . 
We summarize the conclusions of this section: The stationary and 

axisymmetric local black holes should be searched among the smooth solu­
tions of the Ernst equation (15) whose real part Y of the complex poten­
tial Z is finite and different from zero on the horizon n=l and it sat­
isfies, in addition, the condition (22). The metric tensor is given by 
equation (17) where a) and M are determined from ¥ and $ via the equa­
tions (14) and (18). 

REFERENCES 
1. Hawking, S.W.: 1972, Commun. Math. Phys. 25, pp. 152-166. 
2. Kerr, R.P.: 1963, Phys. Rev. Lett. 11 > pp. 237-8. 
3. Israel, W.: 1968, Phys. Rev. 164, pp. 1776-9. 
4. Carter, B.: 1972, Phys. Rev. Lett. 26, pp. 331-3. 
5. Robinson, D.C.: 1975, Phys. Rev. Lett. 34, pp. 905-6. 
6. Misner, C.W., Thorne, K.S , and Wheeler, J.A.: 1973, "Gravitation", 

W.H. Freeman and Company, San Francisco. 
7. Chandrasekhar, S.: 1982, "The mathematical theory of black holes", 

Oxford at the Clarendon Press. 
8. Geroch, R., and Hartle, J.B.: 1982, J. Math. Phys. 23, pp. 680-92. 
9. Israel, W., and Khan, K.A.: 1964, Nuovo Cim., 33, pp. 331-44. 
L0. Mysak, L.A, , and Szekeres, G.: 1966, Can. J. Phys. 44, pp. 617-
Ll. Peters, P.C.: 1979, J. Math. Phys. 20, pp. 1481-5. 
L2. Xanthopoulos, B.C.; 1982, "Local toroidal black holes that are static 

and axisymmetric", Proc. R. Soc. Lond. (submitted). 
L3. Ernst, F.J.": 1968, Phys. Rev. 167, pp. 1175-8. 
L4. Chandrasekhar, S.: 1978, Proc. R. Soc. Lond. A358, pp. 405-20. 
L5. Hicks, N5 J.: 1971,"Notes on differential geometry", Van Nostrand 

Reinhold Company, London. 
L6. Steenrod, N.: 1951, "The topology of fibre bundles", Princeton Univer­

sity Press. 

Discussion 

Novikov: Is the toroidal black hole stable against the small per­
turbations? I guess it may be unstable. 

Xanthopoulos: It is unknown. 
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