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Abstract. We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-
Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this
lattice by splitting it into several subintervals, and prove some new completeness theorems for
super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic
(or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic
turn out to be of particular interest owing to their connection to graph theory: the lattice of
finitary antiaxiomatic extensions of Belnap–Dunn logic is isomorphic to the lattice of upsets
in the homomorphism order on finite graphs (with loops allowed). In particular, there is a
continuum of finitary super-Belnap logics. Moreover, a non-finitary super-Belnap logic can be
constructed with the help of this isomorphism. As algebraic corollaries we obtain the existence
of a continuum of antivarieties of De Morgan algebras and the existence of a prevariety of De
Morgan algebras which is not a quasivariety.

§1. Introduction. The present paper is an attempt to map out the landscape of
extensions of the four-valued logic introduced in the 1960’s and 1970’s by Dunn [15–
17] as the so-called first-degree fragment of the logic of entailment of Anderson and
Belnap [3] and later proposed by Belnap [5, 6] as a logic which a computer could use
to handle inconsistent and incomplete information. This logic will be called Belnap–
Dunn logic here and denotedBD. It is also known as the logic of first-degree entailment
(FDE). For a more complete account of the origins of this logic, see [20, 21].

Belnap–Dunn logic has attracted considerable attention from researchers in logic
and computer science since its introduction in the 1970’s. However, few of its non-
classical extensions have been investigated in detail. Most prominent among these
are Kleene’s strong three-valued logic K [32, 33] and Priest’s Logic of Paradox LP
[39]. These two logics have been widely used by philosophers who accept truth gaps
or truth gluts in their accounts of truth. The intersection of these two logics, which
we call Kleene’s logic of order and denote KO, was occasionally studied as well. It
is mentioned by Makinson [35], who calls it Kalman implication, and identified by
Dunn [18] as the first-degree fragment of the relevance logic R-Mingle. More recently,
Exactly True Logic was introduced by Pietz & Rivieccio [37]. This seems to exhaust
the list of non-classical super-Belnap logics which have been studied in any detail.

The idea of studying extensions of BD as a family of logics in its own right was first
proposed by Rivieccio [44], who called such extensions super-Belnap logics by analogy
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with super-intuitionistic logics. Among other things, Rivieccio proved that there are
infinitely many super-Belnap logics. We take up his proposal and study the structure
of the lattice of super-Belnap logics.

Unlike in the case of intuitionistic logic, where the axiomatic extensions are the main
objects of interest, here it is the antiaxiomatic extensions (extensions by rules stating
that a certain set of formulas is inconsistent) which are of interest. Indeed, BD has
only one non-trivial proper axiomatic extension, namely LP , while it turns out that it
has a continuum of finitary antiaxiomatic extensions. Before engaging in the study of
super-Belnap logics, we therefore establish some basic facts about antiaxiomatic (or
explosive) extensions (Section 3).

In particular, the antiaxiomatic (or explosive) part of a logic turns out to be a useful
tool in this context. The explosive part ExpB L of an extension L of a base logic B is
the strongest antiaxiomatic extension of B which lies below L. The logic determined
by a product of matrices

∏
i∈I Ai can then be computed from the logics determined by

the matrices Ai and their explosive parts.
Computing the explosive parts of known super-Belnap logics will enable us, after

reviewing their basic properties (Section 4), to prove some new completeness theorems
for super-Belnap logics (Section 5). For example, the logic ECQ which extends BD by
the rule of ex contradictione quodlibet p, –p � q is precisely the explosive part of the
Exactly True Logic ET L of Pietz & Rivieccio [37] which extends BD by the rule of
disjunctive syllogism p, –p ∨ q � q. (The rule of ex contradictione quodlibet p, –p � q
is an example of an antiaxiomatic rule: it states that the set of formulas {p, –p} is
inconsistent.) This will yield a completeness theorem for ECQ.

We then describe the large-scale structure of the lattice of extensions of BD
(Section 6). It has a smallest proper extension LP ∩ ECQ, as well as a largest non-
trivial extension, namely classical logic CL. The interval [LP ∩ ECQ, CL] decomposes
into three disjoint intervals: [LP ∩ ECQ,LP], [ECQ,LP ∨ ECQ], and [ET L, CL]. This
last interval moreover has the structure ET L < [ET L2,K–] < K < CL, where ET L2 is
the extension of ET L by the rule (p ∧ –p) ∨ (q ∧ –q) � r and K– extends ET L by the
rules (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) ∨ q, –q ∨ r � r for each n ∈ �. We then determine
which super-Belnap logics enjoy various metalogical properties such as structural
completeness or the proof by cases property.

While lattices of logics have long been studied, especially in the context of modal,
super-intuitionistic, and substructural logics [7, 8, 27], the present study differs from
most of these investigations in two respects. Firstly, we consider all extensions of BD
rather than only axiomatic extensions. Secondly, the link between logic and algebra is
too weak in the realm of super-Belnap logics to permit a straightforward application of
algebraic techniques. In the case of super-intuitionistic logics, there is a straightforward
correspondence between axiomatic extensions of intuitionistic logic and varieties of
Heyting algebras. In contrast, there is no such straightforward bijective correspondence
between super-Belnap logics and quasivarieties of De Morgan algebras, which form
the algebraic counterpart of Belnap–Dunn logic in the sense of [24, 25].

In technical terms, intuitionistic logic is algebraizable (its consequence relation
is equivalent, in a suitable sense, to equational consequence in Heyting algebras),
while Belnap–Dunn logic fails to satisfy even the much weaker property of being
protoalgebraic (it lacks an implication satisfying the axiom of Reflexivity and the
rule of Modus Ponens). The present investigation therefore also has some value as a
contribution to the study of lattices of non-protoalgebraic logics.
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The above results, it turns out, do not substantially depend on whether the truth and
falsity constants t and f are taken to be part of the signature of the logic (Section 7).
While Belnap–Dunn logic has typically been studied without these constants, their
inclusion changes the picture only marginally. On the other hand, moving to a multiple-
conclusion setting changes the picture dramatically: the multiple-conclusion form
of BD only has finitely many extensions, namely the multiple-conclusion forms of
BD, KO, K, LP , and CL. This is because the move to the multiple-conclusion setting
amounts to forcing the proof by cases property: Γ, ϕ ∨ � � � holds if and only if
Γ, ϕ � � and Γ, � � � hold. To go beyond these well-studied extensions of BD, one
must be ready to abandon this property.

The second half of the paper is devoted to working out the relationship between
super-Belnap logics and finite graphs (we allow for loops). Each finite reduced model
of BD in the sense of abstract algebraic logic is determined up to isomorphism by a
pair of graphs and a non-negative integer (Section 8). Even better, each finite reduced
model of Exactly True Logic ET L is determined up to logical equivalence by a single
graph and a single bit k ∈ {0, 1}. Ultimately, this follows from the duality theory
for De Morgan algebras [11]. As a consequence, we obtain certain graph-theoretic
completeness theorems (Section 9).

A somewhat unexpected connection between explosive super-Belnap logics and
the homomorphism order on finite graphs now arises (Section 10): the lattice of
finitary antiaxiomatic extensions of BD is dually isomorphic to the lattice of upsets
in the homomorphism order on finite graphs. It immediately follows that there is a
continuum of finitary antiaxiomatic extensions of BD (and consequently a continuum
of antivarieties of De Morgan algebras), improving on the result of Rivieccio that there
are infinitely many finitary super-Belnap logics. Moreover, we can use the countable
universality of the homomorphism order on graphs to construct a non-finitary super-
Belnap logic. We can also use this graph-theoretic connection to prove that the super-
Belnap logics ECQn and ET Ln, defined as extensions of BD and ET L by the rule
(p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) � q, are not complete with respect to any finite set of
finite matrices for n ≥ 2.

Finally (Section 11), we describe the lattice of all finitary extensions of ET L in
terms of graphs. In particular, its interval [ET L, ET L�] is isomorphic to the lattice
of classes of non-empty graphs without loops closed under homomorphic images,
disjoint unions, and contracting isolated edges. A description of the full lattice of
finitary super-Belnap logics in terms of classes of triples 〈G,H, k〉, where G and H are
graphs and k ∈ {0, 1}, is possible but rather cumbersome.

The bulk of this paper is based on the author’s thesis [38]. Some of the results proved
here, including the fact that K– is a lower cover of K and ET L2 is an upper cover
of ET L, were already established by Rivieccio in his unpublished research notes [43],
which he kindly shared with the present author. Some of the research presented here
was also summarized in [2].

§2. Logical preliminaries. This preliminary section introduces the basic notions of
abstract algebraic logic which will be used throughout the paper. For a more thorough
introduction to the field, the reader may consult the textbook [24], the monographs
[13] and [47], or the survey paper [26]. Toward the end of the section, we also recall
some universal algebraic preliminaries.

https://doi.org/10.1017/S1755020321000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000204


THE LATTICE OF SUPER-BELNAP LOGICS 117

The signature of a logic is given by an infinite set of propositional variables (also
called atoms) and a set of connectives of finite arities. The algebra of formulas is
then the absolutely free algebra generated by these variables. Less abstractly, the set
of formulas is obtained by closing the set of atoms under the given connectives in
the obvious way. Atoms will be denoted by p, q, r, formulas by ϕ, �, �, and sets
of formulas by Γ, Δ. A substitution is an endomorphism of the algebra of formulas.
Equivalently, substitutions may be viewed as mappings which assign a formula to each
atom. Each such mapping then extends to a function � which assigns to each formula
ϕ its substitution instance �(ϕ). Let us consider a fixed signature in the following
definitions.

A rule is a pair consisting of a set of formulas Γ and a formula ϕ, written as Γ � ϕ.
A logic L is a set of rules which satisfies the following conditions:

• ϕ �L ϕ (reflexivity),
• if Γ �L ϕ, then Γ,Δ �L ϕ (monotonicity),
• if Γ �L � for all � ∈ Δ and Δ �L ϕ, then Γ �L ϕ (cut),
• if Γ �L ϕ, then �[Γ] �L �(ϕ) for each substitution � (structurality),

where Γ �L ϕ means that the rule Γ � ϕ belongs to (holds in, is valid in) the logic L.
If Γ �L ϕ implies that Γ′ �L ϕ for some finite set of formulas Γ′ ⊆ Γ, then L is called
finitary. The finitary part of L is the finitary logic where Γ � ϕ holds if and only if there
is some finite set of formulas Γ′ ⊆ Γ such that Γ′ �L ϕ. Rules of the form ∅ � ϕ are
called axiomatic. A formula ϕ is a theorem of L if ∅ �L ϕ. The trivial logic is the logic
where Γ � ϕ holds for each Γ and ϕ.

A logic L is called an extension of a logic B (in the same signature), symbolically
B ≤ L, if each rule valid in B also holds in L. The extensions of B form a complete
lattice denoted ExtB. The finitary extensions of a finitary logic B form an algebraic
lattice denoted Ext� B. If L1 ≤ L2, the interval of ExtL1 (or Ext� L1, depending on
context) between L1 and L2 will be denoted [L1,L2].

A logic L is axiomatized by a set of rules � (relative to some logic B) if it is the least
logic which validates each rule of � (and extends B). We also say that L is the extension
of B by the set of rules �. It is finitely axiomatizable (relative to B) if it is axiomatized
(relative to B) by a finite set of rules. If L1 and L2 are extensions of B by the sets of
rules �1 and �2, respectively, then their join L1 ∨ L2 in ExtB is axiomatized by �1 ∪ �2.

The above notion of axiomatization may be given a more proof-theoretic interpre-
tation. By a proof of ϕ from Γ using the rules �, we mean a well-founded tree (i.e.,
a tree with no infinite branches) where the root is labeled by ϕ, each terminal node
is labeled either by some 	 ∈ Γ or by a substitution instance of the conclusion of an
axiomatic rule in �, and each non-terminal node is labeled by a formula obtained from
the labels of its parents by a substitution instance of a rule in �. Saying that a logic L is
axiomatized by � is then equivalent to saying that Γ �L ϕ if and only if ϕ has a proof
from Γ using the rules �.

The models of consequence relations are (logical) matrices. A matrix A = 〈A, F 〉
consists of an algebra A and a set F ⊆ A of designated values. A matrix is trivial if
F = A, and it is almost trivial if F = ∅. A valuation on A is a homomorphism from the
algebra of formulas into A. A rule Γ � ϕ is valid in A if v[Γ] ⊆ F implies v(ϕ) ∈ F
for each valuation v on A. Each matrix A thus determines a logic LogA such that
Γ � ϕ in LogA if and only if Γ � ϕ is valid in A. If K is a class of matrices in the given
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signature, then Log K will denote the logic
⋂
A∈K LogA. The finitary part of Log K

will be denoted Log� K.
A logic L is complete with respect to a class of matrices K if L = Log K. Likewise,

a finitary logic L is complete as a finitary logic (or �-complete) with respect to a class
of matrices K if L = Log� K, i.e., if a finitary rule holds in L if and only if it holds in
each matrix in K. The two notions coincide if K is a finite class of finite matrices: in
that case Log K is always finitary.

A matrix A is a model of a logic L if each rule of L is valid in A, i.e., if L ≤ LogA.
The class of all models of L is denoted ModL. Each logic L is the logic determined
by the class of its models: L = Log ModL. However, ModL is usually too broad a
class to give us a good grip on the properties of L. Models of a particular kind, called
reduced models, will be needed.

We call a congruence 
 of an algebra A compatible with F ⊆ A if

a ∈ F and 〈a, b〉 ∈ 
 implies b ∈ F.

If 
 is compatible with F, we define F/
 := {a/
 | a ∈ F }, where a/
 denotes the
equivalence class of a with respect to 
. For each F ⊆ A there is a largest congruence
of A compatible with F, called the Leibniz congruence of F and denoted ΩA(F ). The
Leibniz congruence of a matrix A = 〈A, F 〉 is ΩA(F ) and the Leibniz reduct of A is the
matrix A∗ := 〈A/ΩA(F ), F/ΩA(F )〉.

A matrix is called reduced if its Leibniz congruence is the identity relation. The
Leibniz reduct of A is always a reduced matrix. The class of all reduced models of a
logic L will be denoted Mod∗ L. Crucially, each matrix is logically equivalent to (i.e.,
yields the same logic as) its Leibniz reduct. Each logic L is thus determined by the class
of its reduced models: L = Log Mod∗ L.

Each matrix is a structure in the sense of model theory, therefore we may define
submatrices and products and ultraproducts of matrices in the usual model-theoretic
way. More explicitly, consider the matrices A = 〈A, F 〉, B = 〈B, G〉, and Ai = 〈Ai , Fi〉
for i ∈ I . Then A is a submatrix of B, symbolically A ≤ B, if A is a subalgebra of B,
symbolicallyA ≤ B, and F = G ∩ A. The matrix A is the direct product of the matrices
Ai ifA =

∏
i∈I Ai and F =

∏
i∈I Fi . Given two classes of matrices K1 and K2, the class

of all matrices A1 × A2 such that A1 ∈ K1 and A2 ∈ K2 will be denoted K1 × K2, with
A× K := {A} × K.

A matrix homomorphism h : A → B is an algebraic homomorphism h : A→ B such
that h[F ] ⊆ G . It is strict if in fact F = h–1[G ]. If the homomorphism h is surjective
(and strict), we call B a (strict) homomorphic image of the matrix A, and we call A a
(strict) homomorphic preimage of B.

If K is a class of matrices in the given signature, the classes of all homomorphic
preimages, strict homomorphic images, strict homomorphic preimages, submatrices,
products, and ultraproducts of matrices in K will respectively be denoted H–1(K),
HS(K), H–1

S (K), S(K), P(K), and PU(K).
The class ModL is always closed under submatrices, products of matrices, strict

homomorphic images, and strict homomorphic preimages. Conversely, the following
analogue of the ISP theorem for quasivarieties characterizes those classes of matrices
which arise as ModL for some finitary logic L. The theorem is due to Czelakowski
[12] for languages with countably many connectives and to Dellunde & Jansana [14]
for arbitrary languages.
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Theorem 2.1. Mod Log� K = H–1
S HSSPPU(K) for any class of matrices K.

In particular, the map L �→ ModL is an isomorphism between the lattice Ext� B of
finitary extensions of a finitary logic B and the lattice of classes of models of B closed
under the appropriate constructions. If the class Alg∗ B of algebraic reducts of reduced
models of B moreover generates a locally finite variety, then the following theorem
states that this map yields an isomorphism between the lattice of finitary extensions of
B and a certain lattice of classes of finite reduced models of B. This theorem is merely
the matrix version of a theorem of Grätzer & Quackenbush [29, Theorem 2.3]. Here
S∗(K) and P∗

�(K) denote respectively the class of all Leibniz reducts of submatrices of
matrices in K and the class of finite products of matrices in K. Mod∗

� L denotes the
class of all finite reduced models of L.

Theorem 2.2. Let B be a finitary logic such that Alg∗ B generates a locally finite variety.
Then Ext� B is dually isomorphic to the lattice of subclasses of Mod∗

� B closed under S∗

and P∗
� via the maps L �→ Mod∗

� L and K �→ Log� K.

Proof. The two maps are isotone, and L = Log� Mod∗
� L for each L in Ext� B by

the finitarity of L and the local finiteness of Alg∗ B. Moreover, K ⊆ Mod∗
� Log� K for

each class K ⊆ Mod∗
� B. It therefore remains to prove that Mod∗

� Log� K ⊆ S∗P∗(K).
Let A be a finite reduced model of Log� K of cardinality n with K ⊆ Mod∗

� B.
Then A ∈ HSSPPU(K) by Theorem 2.1. There is an n-generated (hence finite) matrix
B ∈ SPPU(K) such that A ∈ HS(B). The condition B ∈ SPPU(K) implies that there
are finitely many Ci ∈ PU(K) for i ∈ I with strict homomorphisms hi : B → Ci such
that

⋂
{Ker hi | i ∈ I } = ΔB , where ΔB is the identity relation on B and Ker hi is

the kernel of the homomorphism hi . It follows that there are n-generated (hence
finite) matrices Di ≤ Ci such that Di is the range of hi . Each such matrix Di is an
n-generated submatrix of an ultraproduct of matrices in K, and therefore embeds
into an ultraproduct of n-generated submatrices of matrices in K ⊆ Alg∗ K. Since
Alg∗ L generates a locally finite variety, there are only finitely many such n-generated
submatrices. The matrices Di are thus submatrices of matrices in K, i.e., Di ∈ S(K) for
i ∈ I . Therefore A ∈ HSSP�S(K) ⊆ HSSP�(K), where P� stands for finite products.
Since the matrix A is reduced, we in fact have A ∈ S∗P�(K) ⊆ S∗P∗

�(K).

Finally, we recall some basic notions of universal algebra. The reader may consult
the textbook [9] for an introduction to universal algebra and the monograph [28] for
an introduction to the study of quasivarieties and antivarieties.

If K is a class of algebras in a given signature, then H–1(K), S(K), P(K), and PU(K)
denote the algebraic analogues of the corresponding matrix constructions. We use
H(K) to denote the class of all homomorphic images of algebras in K and we use
P∗

U(K) to denote the class of all ultraproducts of non-empty families of algebras in
K. An equation in a given signature is a formula of the form t ≈ u, where t and u
are terms in the given signature and ≈ is the equality predicate. A quasiequation has
the form t1 ≈ u1 & ··· & tn ≈ un =⇒ t ≈ u. Finally, a negative clause has the form
t1 �≈ u1 ∨ ··· ∨ tn �≈ un.

A variety (quasivariety, antivariety) is a class of algebras in a given signature
axiomatized by a set of universally quantified equations (quasiequations, negative
clauses). The variety (quasivariety, antivariety) generated by K is the smallest variety
(quasivariety, antivariety) which contains K.
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Theorem 2.3 [28, Theorems 2.1.12 and 2.3.11 and Corollary 2.3.4].

1. The variety generated by K is HSP(K).
2. The quasivariety generated by K is ISPPU(K).
3. The antivariety generated by K is H–1SP∗

U(K).

§3. Explosive extensions. In our study of the lattice of super-Belnap logics, the
extensions of Belnap–Dunn logic by an antiaxiomatic (or explosive) rule will play an
important role. An antiaxiomatic rule is, roughly speaking, a rule which states that a
certain set of propositions is inconsistent. In this section, we study such antiaxiomatic
extensions of a given base logic in full generality.

Definition 3.1. A set of formulas Γ is an antitheorem of the logic L, symbolically
Γ �L ∅, if no valuation on a non-trivial model of L designates all of Γ.

Fact 3.2. Let p be a variable which does not occur in Γ. Then Γ is an antitheorem of L
if and only if Γ �L p.

If all the variables of L occur in Γ, one has to resort to renaming the variables. Pick
a variable p and substitutions �p and �p such that (�p ◦ �p)(ϕ) = ϕ for each formula
ϕ, �p(p) = p, and moreover p does not occur in �p(ϕ) for any ϕ.

Fact 3.3. The following are equivalent:

1. Γ is an antitheorem of L,
2. �p[Γ] �L p,
3. �[Γ] �L ϕ for each formula ϕ and each substitution �.

Proof. If �[Γ] �L ϕ, then there is a model 〈A, F 〉 of L and a valuation v on it
such that v[�[Γ]] ⊆ F but v(ϕ) /∈ F . Thus 〈A, F 〉 is a non-trivial model of L and the
valuation w(ϕ) = v(�(ϕ)) witnesses that Γ is not an antitheorem.

Conversely, if Γ is not an antitheorem of L, then there is a valuation v on some non-
trivial model 〈A, F 〉 of L such that v[Γ] ⊆ F . Consider the valuation w on 〈A, F 〉 such
that w(p) /∈ F and w(q) = v(q) otherwise. Then (w ◦ �p)[�p[Γ]] = w[(�p ◦ �p)[Γ]] =
w[Γ] ⊆ F while (w ◦ �p)(p) = w(p) /∈ F . Thus �p[Γ] �L p.

The remaining implication is trivial: we instantiate � by �p and ϕ by p.

When we talk about the explosive rule Γ � ∅, we mean the rule �p[Γ] �L p. If p is
a variable which does not occur in Γ, we may identify Γ � ∅ with the rule Γ � p. For
logics which validate the rule f � p for some constant f, we may identify explosive rules
with rules of the form Γ � f.

An explosive extension of B is an extension of B by a set of explosive rules. The
following lemma describes the consequence relation of such an extension.

Lemma 3.4. Let L be the extension of B by a set of explosive rules Δi � ∅ for i ∈ I . Then
Γ �L ϕ if and only if either Γ �B ϕ or there is some substitution � and some i ∈ I such
that Γ �B �(�) for each � ∈ Δi .

Proof. The right-to-left direction is obvious, since Γ �L ∅ implies �[Γ] �L ∅. To
prove the opposite direction it suffices to verify that the condition on the right-hand
side of the equivalence indeed defines a logic.
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The explosive part of a logic (relative to some base logic) will turn out to be a very
useful construction in the following. Throughout this section, we assume that L and
Li for i ∈ I are extensions of some base logic B.

Definition 3.5. The explosive part of L relative to B, denoted ExpB L, is the logic such
that Γ � ϕ holds in ExpB L if and only if either Γ �B ϕ or Γ �L ∅.

Fact 3.6. L is an explosive extension of B if and only if L = ExpB L.

The logic ExpB L is the largest extension of B by a set of explosive rules which lies
below L. Two extensions of B have the same explosive part if and only if they have the
same antitheorems. Let us now make some basic observations about the explosive part
operator ExpB.

Fact 3.7. ExpB is an interior operator on ExtB. That is, it is isotone and ExpB ExpB L =
ExpB L ≤ L.

Fact 3.8. ExpB
⋂
i∈I Li =

⋂
i∈I ExpB Li .

Proof. The inequality ExpB
⋂
i∈I Li ≤

⋂
i∈I ExpB Li holds because ExpB is an

interior operator. Conversely, suppose that Γ � ϕ is valid in ExpB Li for each i ∈ I .
Then either Γ �B ϕ or Γ �Li ∅ for each i ∈ I . But then either Γ �B ϕ or Γ is an
antitheorem of

⋂
i∈I Li .

Fact 3.9.

∨
i∈I ExpB Li =

⋃
i∈I ExpB Li .

Proof. This is an immediate consequence of Lemma 3.4.

Fact 3.10. Let L1 ≤ L2. Then L1 ∨ ExpB L2 = L1 ∪ ExpB L2.

Proof. By Lemma 3.4, Γ � ϕ holds in L1 ∨ ExpB L2 if and only if either Γ �L1 ϕ or
there is some antitheorem Δ of L2 and some substitution � such that Γ �L1 �(�) for
each � ∈ Δ. But then L1 ≤ L2 implies that Γ is an antitheorem of L2, therefore Γ � ϕ
holds in ExpB L2.

Proposition 3.11. The explosive extensions of a logic B form a completely distributive
complete sublattice of ExtB. We denote it Exp ExtB.

Proposition 3.12. The finitary explosive extensions of a finitary logicB form an algebraic
distributive sublattice of Ext� B. We denote it Exp Ext� B.

The lattices of explosive extensions of any logic L0 and of its explosive part ExpB L0

are in fact isomorphic via the maps L �→ ExpB L and L �→ L0 ∨ L = L0 ∪ L. If B and
L0 are finitary, this isomorphism restricts to an isomorphism between the lattices of
finitary explosive extensions of L0 and ExpB L0.

Theorem 3.13. Let L0 be an extension of B. Then the lattices Exp ExtL0 and
Exp Ext ExpB L0 are isomorphic via the maps L �→ ExpB L and L �→ L0 ∪ L.

Proof. The two maps are isotone and clearly L0 ∨ ExpB L ≤ L for L in Exp ExtL0.
Conversely, if Γ �L ϕ for L ∈ Exp ExtL0, then either Γ �L0 ϕ or Γ �L ∅. In either
case Γ � ϕ holds in L0 ∨ ExpB L. Thus L = L0 ∨ ExpB L. Fact 3.10 now implies that
L = L0 ∪ ExpB L for each L ∈ Exp ExtL0.

On the other hand, L ≤ ExpB(L0 ∨ L) for L ∈ Exp Ext(ExpB L0). Conversely, if
Γ � ϕ holds in ExpB(L0 ∨ L) for L ∈ Exp Ext(ExpB L0), then either Γ �B ϕ or Γ � ∅
holds in L0 ∨ L. But L0 ∨ L is the extension of L0 by the explosive rules Γ � ∅ valid
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in L, therefore Γ �L0∨L ∅ implies Γ �L0 ∅ or Γ �L ∅. If Γ � ∅ holds in L0, then it holds
in ExpB L0, and therefore also in L. Thus Γ �B ϕ or Γ �L ∅. In either case Γ �L ϕ.
Thus ExpB(L0 ∨ L) = L for L ∈ Exp Ext(ExpB L0).

Although axiomatizing the intersection of two logics may be a non-trivial task in
general, axiomatizing the intersection of an explosive extension of B with an arbitrary
extension of B turns out to be much easier.

We call two rules Γ � ϕ and Δ � � variable disjoint if no propositional atom occurs
as a subformula both in Γ ∪ {ϕ} and in Δ ∪ {�}. The following two propositions hold,
mutatis mutandis, for the intersection

⋂
i∈I Li of a family Li with i ∈ I of explosive

extensions of B (instead of L ∩ Lexp), provided that we can find axiomatizations �i
of Li such that each rule in �i is variable disjoint from each rule in �j if i and j are
distinct.

Proposition 3.14. Let L be an extension of B by the rules Γi � ϕi for i ∈ I . Let Lexp

be an explosive extension of B by the rules Δj � ∅ for j ∈ I such that Γi � ϕi is variable
disjoint from Δj � ∅ for each i ∈ I , j ∈ J . Then L ∩ Lexp is the extension of B by the
rules Γi ,Δj � ϕi for i ∈ I , j ∈ J .

Proof. Clearly Γi ,Δj �L∩Lexp ϕi for each i ∈ I , j ∈ J . Conversely, Γ �Lexp ϕ implies
that Γ �B ϕ or for some � and some j ∈ J we have Γ �B �(�j) for all �j ∈ Δj , thus
Γ � ϕ holds in the extension of B by the rules Γ,Δj � ϕ if Γ �L ϕ. But the rule
Γ,Δj � ϕ can be derived from the rules Γi ,Δj � ϕi if Γ �L ϕ.

Proposition 3.15. Mod(L ∩ Lexp) = ModL ∪ ModLexp for each L ∈ ExtB and
Lexp ∈ Exp ExtB.

Proof. Clearly ModL ⊆ Mod(L ∩ Lexp) and ModLexp ⊆ Mod(L ∩ Lexp). Con-
versely, suppose that a non-trivial matrix 〈A, F 〉 is a model of neither L nor Lexp.
Then there are rules Γ � ϕ and Δ � ∅, without loss of generality variable disjoint, and
valuations v and w on A such that Γ �L ϕ and Δ �Lexp ∅ and moreover v[Γ] ⊆ F ,
v(ϕ) /∈ F , and w[Δ] ⊆ F . Any valuation u such that u(p) = v(p) if p occurs in Γ or ϕ
and u(p) = w(p) if p occurs in Δ then witnesses that the rule Γ,Δ � ϕ, which is valid
in L ∩ Lexp, fails in the matrix 〈A, F 〉.

The logic determined by a product of matrices may be described in terms of the
logics determined by the factors and their explosive parts. In the following proposition
and its corollaries, the matrices A, K, and Ai for i ∈ I are assumed to be non-trivial
models of B.

Proposition 3.16. Log
∏
i∈I Ai =

⋂
i∈I LogAi ∪

⋃
i∈I (ExpB LogAi).

Proof. The right-to-left inclusion is clear. Conversely, suppose that Γ � ϕ holds in
Log

∏
i∈I Ai . If no valuation on Ai designates Γ, then Γ � ϕ holds in ExpB LogAi .

Otherwise, take a valuation vi on Ai which designates Γ for each i ∈ I . If there were
some j ∈ I such that Γ � ϕ in LogAj , as witnessed by a valuation wj , then the
product of the valuation wj with the valuations vi for i �= j would witness that Γ � ϕ
in Log

∏
i∈I Ai . Thus Γ � ϕ in each LogAi .

This formula for computing the logic determined by a product of matrices will be
used throughout the paper. We recommend that the reader keep it in mind. We now
state some of its immediate corollaries.

Corollary 3.17. Log(K× A) = ExpB Log K ∪ ExpB LogA ∪ (Log K ∩ LogA).
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Proof.

Log(K× A) =
⋂
B∈K

Log (B× A)

=
⋂
B∈K

(ExpB LogB ∪ ExpB LogA ∪ (LogB ∩ LogA))

= ExpB LogB ∪
(⋂
B∈K

(ExpB LogB ∪ LogA) ∩
⋂
B∈K

LogB

)

= ExpB LogA ∪
(

(LogA ∪
⋂
B∈K

ExpB LogB) ∩
⋂
B∈K

LogB

)

= ExpB LogA ∪ ExpB LogK ∪ (LogA ∩ LogK).

Corollary 3.18. If B = LogA and L = Log K, then ExpB L = Log(K× A).

Corollary 3.19. Let L be an explosive extension of B. Then
∏
i∈I Ai is a model of L if

and only if Ai is a model of L for some i ∈ I .

The following corollary describes the opposite extreme case. Let us call Γ a potential
antitheorem of B if the extension of B by Γ � ∅ is a non-trivial logic.

Corollary 3.20. Let L be the extension of B by a set of rules of the form Γ � ϕ where
Γ is not a potential antitheorem of B. Then

∏
i∈I Ai is a model of L if and only if each

Ai is a model of L.

Proof. A rule Γ � ϕ holds in Log
∏
i∈I Ai if and only if it either holds in each Ai or

Γ is an antitheorem of some LogAi . But LogAi is a non-trivial extension of B.

§4. Belnap–Dunn logic and its closest kin. It is now time to turn our attention from
the general theory toward super-Belnap logics. In this section, we review some known
facts about Belnap–Dunn logic and its closest relatives.

The algebraic counterpart of Belnap–Dunn logic is the variety of De Morgan
algebras. A De Morgan algebra 〈A,∧,∨, t, f, –〉 is a bounded distributive lattice
〈A,∧,∨, t, f〉 with an order-inverting involution –x called De Morgan negation. The
constants t and f denote the top and bottom elements respectively.

The variety of De Morgan algebras is axiomatized by the equation – –x ≈ x and
either of the De Morgan laws –(x ∨ y) ≈ –x ∧ –y or –(x ∧ y) ≈ –x ∨ –y relative to
an axiomatization of the variety of bounded distributive lattices.

The only subdirectly irreducible De Morgan algebras are the two-element Boolean
algebraB2, the three-element chainK3 with the unique order-inverting involution, and
the four-element diamond DM4 with the unique order-inverting involution with two
fixpoints (see [31, 41]). Clearly B2 ≤ K3 ≤ DM4.

Each De Morgan algebra is therefore a subdirect power of DM4. Moreover, each
Kleene algebra (De Morgan algebra which satisfies x ∧ –x ≤ y ∨ –y) is a subdirect
power ofK3, and each Boolean algebra (De Morgan algebra which satisfiesx ∧ –x ≤ y)
is a subdirect power of B2. There are no other varieties of De Morgan algebras, apart
from the trivial one.

The best-known super-Belnap logics are determined by matrices over one of the
algebrasB2,K3,DM4 where the designated elements form a lattice filter. These matrices
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BD4 (BD) B2 (CL) K3 (K) P3 (LP) ETL4 (ET L)

Fig. 1. Some important models of BD.

are shown in Figure 1, where De Morgan negation is interpreted by reflection across
the horizontal axis of symmetry. The logics determined by these matrices are recorded
in parentheses.

Belnap–Dunn logic BD itself is determined by the matrix BD4. The four elements of
this matrix can be interpreted as the truth values True, False, Neither (True nor False),
and Both (True and False). The matrices K3 and P3 are submatrices of BD4: the former
drops the truth value Both, the latter drops the truth value Neither. The familiar matrix
B2 which determines classical logic CL is a submatrix of both K3 and P3. It is obtained
from BD4 by restricting to the two classical values True and False.

A Hilbert-style axiomatization of Belnap–Dunn logic (i.e., an axiomatization in
the sense of Section 2) was provided independently by Pynko [40] and Font [23].
Both papers also contain sequent calculi for BD. More precisely, Pynko and Font
study Belnap–Dunn logic without the constants t and f. However, to obtain an
axiomatization of BD with the constants it suffices to add the rules

f ∨ p � p, ∅ � t,

–t ∨ p � p, ∅ � –f.

We shall see in Section 7 that the presence or absence of these constants makes very
little difference. One benefit of including them is that doing so collapses the distinction
between the trivial logic axiomatized by ∅ � p and the almost trivial logic axiomatized
by p � q, as well as between classical logic CL and almost classical logic CL– where
Γ �CL– ϕ if and only if Γ is non-empty and Γ �CL ϕ.

Kleene’s strong three-valued logic K is determined by the matrix K3. This logic, or
at least the three-valued semantics for its connectives, was introduced by Kleene [32,
33] in connection with partial recursive functions. It was later used by Kripke [34] in
his theory of truth. The logic K is axiomatized relative to BD by (p ∧ –p) ∨ q � q, or
equivalently by the rule of resolution p ∨ q, –q ∨ r � p ∨ r, as observed by Rivieccio
[44] and proved in [2].

The Logic of Paradox LP is determined by the matrix P3. It was introduced by Priest
[39], who proposed to use it to handle semantic paradoxes such as the Liar Paradox.
Pynko [40] later proved thatLP is axiomatized relative toBD by the law of the excluded
middle ∅ � p ∨ –p. This logic is the only non-trivial proper axiomatic extension of BD.

The intersection of LP and K is the logic determined by the set of matrices {K3,P3}.
We call it Kleene’s logic of order, following Rivieccio [44], and we denote it KO. This
logic was called Kalman implication by Makinson [35] and studied by Dunn [18],
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BD

KO

LP K

CL

Fig. 2. Some super-Belnap logics.

who identified it as the so-called first-degree fragment of the relevance logic R-Mingle.
(Recall that BD itself is the first-degree fragment of the logic of entailment [17].)
Kleene’s logic of order is axiomatized by the rule (p ∧ –p) ∨ r � (q ∨ –q) ∨ r relative
to BD, as observed by Rivieccio [44] and proved in [2]. It can also be axiomatized by
a rule in two variables, namely (p ∧ –p) ∨ q � q ∨ –q.1

In addition to the above logics, super-Belnap logics of course also include classical
logic CL, determined by the matrix B2. Figure 2 shows the super-Belnap logics
introduced so far ordered by their logical strength.

A more recent addition to the super-Belnap family is the Exactly True Logic ET L
introduced by Pietz & Rivieccio [37] as the logic of the matrix ETL4. It was also studied
by Rivieccio in [44], where it was denoted B1.2 This logic is axiomatized relative to
BD by the rule of disjunctive syllogism p, –p ∨ q � q. Classical logic is precisely the
extension of ET L by the law of the excluded middle. That is, CL = LP ∨ ET L. We
shall see that, in a way, this is the canonical decomposition of CL in the lattice of
super-Belnap logics.

We now review some known properties of these logics, which will be used throughout
the paper. The logics CL, KO, and BD are directly related to the equational theories
of Boolean, Kleene, and De Morgan algebras.

Fact 4.1. Let Γ be a finite set of formulas. Then:

1. Γ �BD ϕ if and only if
∧

Γ ≤ ϕ holds in all De Morgan algebras.
2. Γ �KO ϕ if and only if

∧
Γ ≤ ϕ holds in all Kleene algebras.

3. Γ �CL ϕ if and only if
∧

Γ ≤ ϕ holds in all Boolean algebras.

The following observations follow immediately from the semantic definitions of the
logics in question.

Fact 4.2. The logics BD, KO, and CL enjoy the contraposition property:

ϕ �L � =⇒ –� �L –ϕ.

The logics K and LP are related by contraposition as follows:

ϕ �K � =⇒ –� �LP –ϕ, ϕ �LP � =⇒ –� �K –ϕ.

1 Dunn [19] provides an axiomatization of KO which relies on a metarule which allows one to
infer ϕ ∨ � � � from ϕ � � and � � �. It is therefore not a (Hilbert-style) axiomatization
in our sense of the word.

2 The idea of preserving exact truth (truth and non-falsity) had previously been considered by
Marcos [36], although the signature of his logic was larger than the signature of ET L.
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Fact 4.3. The logics BD, K, LP , KO, and CL enjoy the proof by cases property:

Γ, ϕ ∨ � �L � ⇐⇒ Γ, ϕ �L � and Γ, � �L �.

The reduced models of BD were described by Font [23], and the reduced models of
ET L by Rivieccio [44]. We will only need the following observations here.

Proposition 4.4. Each reduced model of BD is a De Morgan algebra with a lattice
filter. Conversely, each De Morgan algebra equipped with a lattice filter is a model of BD
(although it need not be a reduced model ).

Proposition 4.5. Each reduced model of ET L is a De Morgan algebra with F = {t}.
Conversely, each De Morgan algebra equipped with F = {t} is a model of ET L (although
it need not be a reduced model ).

The following propositions shows that consequence in LP , K, and ET L may be
reduced to consequence in BD. Throughout the paper, by (classical) tautologies and
contradictions we mean the tautologies and contradictions of classical logic.

Proposition 4.6.

1. Γ �LP ϕ if and only if Γ, � �BD ϕ for some classical tautology �.
2. Γ �K ϕ if and only if Γ �BD ϕ ∨ � for some classical contradiction �.
3. Γ �ET L ϕ if and only if Γ �BD � and � �BD –� ∨ ϕ for some formula �.

Proof. The claim for LP is equivalent to the fact that LP is axiomatized by the law
of the excluded middle relative to BD. (For a direct semantic proof of the equivalence,
see [38, proposition 3.5].) The claim forK then follows from the contraposition relation
between K and LP . Finally, the claim for ET L was proved by Pietz & Rivieccio [37,
Lemma 3.2].

We define conjunctive and disjunctive normal forms of formulas ofBD as in classical
logic: a literal is an atom or a negated atom, a conjunctive (disjunctive) clause is a
conjunction (disjunction) of literals, and a formula is in conjunctive (disjunctive) normal
form if it is a conjunction of disjunctive clauses (a disjunction of conjunctive clauses).
The empty conjunction (disjunction) is identified with t (f). A clause is positive if it
does not contain negated atoms.

Each formula is equivalent in BD to a formula in conjunctive normal form, and
therefore also to a formula in disjunctive normal form (see [23]). More precisely, each
formula is equivalent to t or to f or to a non-empty disjunction (conjunction) of
non-empty conjunctions (disjunctions) of literals.

Proposition 4.7. Let ϕ be a disjunctive clause. Then Γ �BD ϕ if and only if 	 �BD ϕ
for some 	 ∈ Γ.

Proof. Since each formula is equivalent inBD to a conjunction of disjunctive clauses,
we may assume without loss of generality that each formula of Γ is a disjunctive clause.
If 	 �BD ϕ for each 	 ∈ Γ, then each 	 ∈ Γ contains a literal which does not occur in
ϕ. The unique valuation on BD4 which assigns an undesignated value to every literal
which occurs in ϕ and a designated value to every other literal then witnesses that
Γ �BD ϕ.

Unlike in classical logic, the equivalent conjunctive and disjunctive normal form of
a formula is essentially unique in BD (see [38, theorem 3.15]).
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§5. Completeness theorems and explosive parts. In this section, we prove several
new completeness theorems for super-Belnap logics. The explosive part operator Exp
turns out to be a useful tool for this purpose.

Let us first introduce two related sequences of super-Belnap logics. The logic ECQn
(ET Ln) for n ≥ 1 extends BD (ET L) by the explosive rule

(p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) � ∅.

We use ECQ as a synonym for ECQ1. Clearly ECQ ≤ ET L, so ET L1 = ET L. These
logics are ordered as follows:

ECQn ≤ ET Ln, ECQn ≤ ECQn+1, ET Ln ≤ ET Ln+1.

The joins (unions) of these sequences of logics will be denoted ECQ� and ET L� :

ECQ� :=
⋃
n≥1

ECQn, ET L� :=
⋃
n≥1

ET Ln.

The logics ET Ln and their union ET L� were first introduced by Rivieccio [44]
under the names Bn and B� . Rivieccio provided a completeness theorem for ET L�
and proved that ET Ln < ET Ln+1. It follows that ECQn < ECQn+1 and that the logics
ECQ� and ET L� are not finitely axiomatizable. The inequality ECQn < ET Ln also
holds: if p, –p ∨ q � q were valid in ECQn, then we would have either p, –p ∨ q �BD q
or p, –p ∨ q �ECQn ∅. But ECQn ≤ CL and p, –p ∨ q �CL ∅.

We now determine the explosive parts of LP , ET L, and CL. These logics are finitary,
therefore it only suffices to consider antitheorems of the form {	}.

Proposition 5.1. ExpBD LP = BD.

Proof. If 	 �LP ∅, then 	, � �BD ∅ for some classical tautology � by Proposition 4.6,
so either 	 �BD ∅ or � �BD ∅ by Proposition 4.7. But � �BD ∅ because � �CL ∅.

Proposition 5.2. ExpBD ET L = ECQ.

Proof. If 	 �ET L ∅, then 	 �ET L –	, so 	 �BD –	 by Proposition 4.6 and 	 �ECQ ∅.
Thus ExpBD ET L ≤ ECQ. Conversely, ECQ ≤ ET L.

Proposition 5.3. ExpBD CL = ECQ� .

Proof. The inclusion ECQ� ≤ ExpBD CL is clear. Conversely, suppose that 	 �CL
∅. Let 	1 ∨ ··· ∨ 	n be a disjunction of conjunctive clauses which is equivalent 	 in
BD. Then 	i �CL ∅ for each 	i by the proof by cases property. It follows that 	i is
equivalent in BD to pi ∧ –pi ∧ ϕi for some atom pi and some formula ϕi . Thus
	 �BD (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) and 	 �ECQ� ∅.

The following lemma will help us identify classical contradictions. Throughout the
paper, we take

�n := (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn).

Lemma 5.4. A formula� is a classical contradiction if and only if there is some substitution
� such that � �BD �(�n).

Proof. This follows from the fact that ExpBD CL = ECQ� by Lemma 3.4.

Proposition 5.5. (LP ∩ ECQ�) ∨ ECQ = ECQ� .
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Proof. We first prove that ECQ� ≤ LP ∨ ECQ. It suffices to show that the rule
(p ∧ –p) ∨ (q ∧ –q) ∨ r � (ϕ ∧ –ϕ) ∨ r is derivable in LP for some ϕ. In particular,
let ϕ = (p ∨ q) ∧ (–p ∨ –q). Then (ϕ ∧ –ϕ) ∨ r is equivalent to the conjunction of the
formulas p ∨ q ∨ r, p ∨ –q ∨ r, –p ∨ q ∨ r, –p ∨ –q ∨ r, p ∨ –p ∨ r, and q ∨ –q ∨ r.
But the last two formulas are theorems of LP and the rest are derivable from (p ∧
–p) ∨ (q ∧ –q) in BD.

It remains to prove that ECQ� ≤ (LP ∩ ECQ�) ∨ ECQ. Consider a model A of
(LP ∩ ECQ�) ∨ ECQ. Then A is a model of ECQ, as well as a model of either LP or
ECQ� by Proposition 3.15. In the former case, A is still a model of ECQ� because
ECQ� ≤ LP ∨ ECQ.

Cashing in our general observations about the explosive part operator from
Section 3, we can immediately infer that

LP ∨ ECQ = LP ∨ ECQ� = LP ∨ ExpBD CL = LP ∪ ExpBD CL = ExpLP CL.
Similarly, LP ∩ ECQ� ≤ KO (P3 is a model of LP and K3 of ECQ�), therefore

KO ∨ ECQ = KO ∨ ECQ� = KO ∨ ExpBD CL = KO ∪ ExpBD CL = ExpKO CL.
Now recall how a completeness theorem for ExpB L is obtained from completeness
theorems for L = LogA and B = LogB if L is an extension of B:

ExpB L = LogA× B.

We immediately obtain the following batch of completeness theorems. The complete-
ness theorem for LP ∨ ECQ was already proved by Pynko [42].3

Proposition 5.6. ECQ = LogETL4 × BD4.

Proposition 5.7. ECQ� = LogB2 × BD4.

Proposition 5.8. ET L� = LogB2 × ETL4.

Proposition 5.9. LP ∨ ECQ = LogB2 × P3.

Proposition 5.10. KO ∨ ECQ = Log{B2 × P3,K3}.

Proof. This holds because LP ∨ ECQ = LogB2 × P3 and (LP ∨ ECQ) ∩ K =
(LP ∪ ECQ�) ∩ K = (LP ∩ K) ∪ (ECQ� ∩ K) = KO ∪ ECQ� = KO ∨ ECQ.

The observations that ExpBD LP = BD and ExpBD ET L = ECQ are easy to prove
but crucial for understanding the structure of the lattice of explosive extensions of BD,
as we now show.

Proposition 5.11. For each L ≥ BD either ECQ ≤ L or L ≤ LP .

Proof. If ECQ � L, then L has a non-trivial reduced model 〈A, F 〉 such that a ∈ F
for some a ≤ –a. But then the three- or four-element submatrix f < a ≤ –a < t of
〈A, F 〉 is a model of L. In either case the Leibniz reduct of this submatrix is isomorphic
to P3, therefore P3 is a model of L and L ≤ LP .

3 A completeness theorem for ET L� was already proved by Rivieccio [44] with respect to the
slightly more complicated matrix ETL4 ×K3. This is no contradiction: the logic ET L� is
complete with respect to any matrix of the form A× B such that LogA ≤ ET L� ≤ LogB ≤
CL. Observe that the algebraic reducts of B2 × ETL4 and K3 × ETL4 do not generate the
same quasivariety. In particular, the algebraic reduct ofETL4 × B2 satisfies the quasiequation
x ≈ –x =⇒ x ≈ y, while the algebraic reduct of ETL4 ×K3 does not.
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Proposition 5.12. ECQ is the smallest proper explosive extension of BD.

Proof. If L is an explosive extension of BD such that L ≤ LP , then L = ExpBD L ≤
ExpBD LP = BD.

In other words, Exp Ext ECQ is the lattice of proper explosive extensions of BD.
Because ExpBD ET L = ECQ, this lattice is isomorphic to Exp Ext ET L.

Theorem 5.13. The lattices Exp Ext ECQ and Exp Ext ET L are isomorphic via the maps
L �→ ET L ∨ L = ET L ∪ L and L �→ ExpBD L = ExpECQ L.

Proof. This is a particular instance of Theorem 3.13.

Corollary 5.14. ExpBD ET Ln = ECQn and ET Ln = ET L ∪ ECQn.

Exp Ext ECQ is also isomorphic to the lattice LP ∩ Exp Ext ECQ of all intersections
of LP with an explosive extension of ECQ.

Theorem 5.15. The lattices Exp Ext ECQ and LP ∩ Exp Ext ECQ are isomorphic via
the maps L �→ LP ∩ L and L �→ L ∨ ECQ.

Proof. Consider an extension L of ECQ by the explosive rules Γi � ∅ for i ∈ I .
Intersecting with LP yields a logic axiomatized by the rules Γi � pi ∨ –pi for i ∈ I ,
where the atom pi does not occur in Γi by Proposition 3.14. (We rename the variables
of Γ if necessary.) But a matrix validates Γi � pi ∨ –pi if and only if it validates either
Γi � ∅ or ∅ � pi ∨ –pi . Since ECQ is the smallest proper explosive extension of BD, it
follows that a matrix validates bothp, –p � ∅ and Γi � pi ∨ –pi if and only if it validates
either Γi � ∅ or both ∅ � p ∨ –p andp, –p � ∅. ButL ≤ ECQ� ≤ LP ∨ ECQ, therefore
a matrix is a model of both ECQ and LP ∩ L if and only if it is a model of L, i.e.,
(LP ∩ L) ∨ ECQ = L.

In the rest of this section, we prove some more completeness theorems for super-
Belnap logics. The methodology used above will not apply here, since these logics will
not be identified as explosive parts of other super-Belnap logics.

We introduce K– as the logic determined by the eight-element matrix ETL8 shown
in Figure 3, where De Morgan negation again corresponds to reflection across the
horizontal axis of symmetry. This may seem like a very ad hoc logic to study at first
sight, but we shall see that this logic is one of the two lower covers of K in ExtBD
(hence the name), the other being KO ∨ ECQ.

Proposition 5.16 (Consequence inK–). Γ �K– ϕ if and only if Γ �BD � ∨ � and Γ �BD
–� ∨ ϕ for some formula � and some classical contradiction �.

Proof. Right to left, it suffices to verify that the rule �n ∨ q, –q ∨ r � r holds in ETL8
for each n ≥ 1, where �n := (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn). This is true because for each
valuation v on ETL8 we have v(�n) ≤ a ∨ c, so v(�n ∨ q) = t implies v(q) ≥ b. But
then v(–q) ≤ c, so v(–q ∨ r) = t implies v(r) = t.

Conversely, suppose that Γ �K– ϕ. By finitarity, we may assume that Γ = {	}. We
first prove two auxiliary claims. Firstly, we show that if the left-to-right implication
holds for each 	 ∈ {�1, �2, �3}, where

�1 := 	2 ∨ 	3, �2 := 	3 ∨ 	1, �3 := 	1 ∨ 	2,
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a

b

c

ETL8 (K−)

Fig. 3. The matrix ETL8.

then it holds for 	 := 	1 ∨ 	2 ∨ 	3. If the implication holds in these three cases, then we
have formulas �i and classical contradictions �i for 1 ≤ i ≤ 3 such that

�i �BD �i ∨ �i and �i �BD –�i ∨ ϕ.

Observe that

	1 �BD �2 ∨ �3, 	2 �BD �3 ∨ �1, 	3 �BD �1 ∨ �2.

Now take

� := (�1 ∨ �2) ∧ (�2 ∨ �3) ∧ (�3 ∨ �1), � := �1 ∨ �2 ∨ �3.

Then

	1 �BD �2 ∧ �3 �BD (�2 ∨ �2) ∧ (�3 ∨ �3) �BD �2 ∨ �3 ∨ (�2 ∧ �3) �BD � ∨ �,

and likewise 	2 �BD � ∨ � and 	3 �BD � ∨ �. Moreover,

	1 �BD �2 ∧ �3 �BD (–�2 ∧ –�3) ∨ ϕ �BD –� ∨ ϕ,

and likewise 	2 �BD –� ∨ ϕ and 	3 �BD –� ∨ ϕ. By the proof by cases property for
BD (Fact 4.3) we have

	1 ∨ 	2 ∨ 	3 �BD � ∨ � and 	1 ∨ 	2 ∨ 	3 �BD –� ∨ ϕ,

therefore the implication holds for 	 := 	1 ∨ 	2 ∨ 	3.
Secondly, we show that if the left-to-right implication holds for ϕ1 and ϕ2, then it

holds for ϕ := ϕ1 ∧ ϕ2. The assumption yields formulas �1, �2 and contradictions �1,
�2 such that

	 �BD �i ∨ �i and 	 �BD –�i ∨ ϕi .

But then taking � := �1 ∨ �2 and � := �1 ∧ �2 yields that

	 �BD � ∨ � and 	 �BD –� ∨ ϕ.

We now prove the left-to-right implication for arbitrary 	 using these two auxiliary
claims. By the first claim, it suffices to prove the implication for 	 := 	1 ∨ 	2, where 	1
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and 	2 are conjunctive clauses. By the second claim, it suffices to prove the implication
under the assumption that ϕ is a disjunctive clause.

If 	 is a classical contradiction, the implication holds trivially for � := 	 and� := –	.
Otherwise, we may suppose that without loss of generality the conjunctive clause 	2 is
not a classical contradiction.

Suppose now that the right-hand side of the implication fails and 	1 is not a classical
contradiction. Taking � := 	, either 	1 �BD –	 ∨ ϕ or 	2 �BD –	 ∨ ϕ. In particular,
either 	1 �BD ϕ or 	2 �BD ϕ. Suppose without loss of generality that 	2 �BD ϕ. Then
	2 has no literal in common with ϕ, therefore there is a valuation v on ETL8 such
that v(l) = t for each literal l of 	2 while v(l) ∈ {f, b, c} for each literal l of ϕ. This
valuation v witnesses that 	 �K– ϕ.

On the other hand, suppose that the right-hand side of the implication fails and
	1 is a classical contradiction. Taking � := 	1 and � := 	2, either 	1 �BD –	2 ∨ ϕ or
	2 �BD –	2 ∨ ϕ. The latter case, where 	2 �BD ϕ, has already been dealt with. Suppose
therefore that 	1 �BD –	2 ∨ ϕ.

Now consider the following valuation v on ETL8. If p and –p are both literals of 	1,
take v(p) := a. If p but not –p is a literal of 	1, take v(p) := t, while if –p but not p is a
literal of 	1, take v(p) := f. For atoms such that neither p nor –p is a literal of 	1, take
v(p) := b if p is a literal of 	2 and v(p) := c if –p is a literal of 	2. (These two subcases
are mutually exclusive, since 	2 is not a classical contradiction.) For other atoms p take
arbitrary v(p) ∈ {b, c}.

We have v(	1) = a, since 	1 contains both p and –p for some atom p. Moreover,
v(	2) ∈ {t, b}, since 	2 is a conjunction of literals l with v(l) ∈ {t, b}: if l is a literal of
both 	1 and 	2, then –l is not a literal of 	1, since 	1 �BD –	2. Thus v(	) = v(	1 ∨ 	2) = t.
But v(ϕ) ∈ {f, b, c} because all literals take values in {f, b, c, t} and no literal ofϕ takes
the value t because 	1 �BD ϕ, so 	 �K– ϕ.

A completeness theorem for K– now follows as a corollary. Let EDSn with n ≥ 1 be
the extension of BD by the rule

�n ∨ q, –q ∨ r � r, where �n := (p1 ∧ –p1) ∨ ... (pn ∧ –pn).

We call this rule the n-explosive disjunctive syllogism: as special cases it subsumes
both the ordinary disjunctive syllogism p, –p ∨ q � q and the rule of ex contradictione
quodlibet in the form �n � q.

In particular, EDS1 is axiomatized by the rule (p ∧ –p) ∨ q, –q ∨ r � r. Clearly
EDSn ≤ EDSn+1. The join (union) of this chain of logics will be denoted EDS� .

Fact 5.17. ET Ln+1 < EDSn.
Proof. We have �n+1 �BD �n ∨ pn+1 and �n+1 �BD –pn+1 ∨ �n, hence �n+1 �EDSn

�n. But ET Ln ≤ EDSn, so �n+1 �EDSn ∅. On the other hand, EDS1 � ET L� because
�n ∨ q, –q ∨ r is not a classical contradiction.

The inequalities EDSn ≤ EDSn+1 are in fact strict (Fact 9.7). We postpone the proof
of this fact until we have the appropriate tools to separate these logics.

Proposition 5.18 (Completeness for K–). The logic K– is axiomatized by the infinite
set of rules �n ∨ q, –q ∨ r � r for n ≥ 1, i.e., K– = EDS� .

We may also axiomatize the intersections of the logics ET L, EDSn, and K– with LP .
We shall use the notation KO– := LP ∩ K–. This is because KO– turns out to be the
only lower cover of KO.
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Proposition 5.19. LP ∩ ET L is axiomatized by p, –p ∨ q ∨ –q � q ∨ –q.

Proof. Suppose that Γ �LP∩ET L ϕ and Γ �BD ϕ. In BD the formula ϕ is equivalent
to a conjunction of disjunctive clauses ϕi for i ∈ I . Then Γ, � �BD ϕ for some classical
tautology � by Proposition 4.6. But Γ �BD ϕ, so � �BD ϕi by Proposition 4.7. Each
ϕi is thus a tautology, hence it is equivalent to qi ∨ –qi ∨ �i for some atom qi and
some formula �i . By Proposition 4.6, Γ �ET L ϕ implies that Γ �BD � and Γ �BD
–� ∨ q ∨ –q ∨ �i for some �. The rule p, –p ∨ q ∨ –q ∨ r � q ∨ –q ∨ r then suffices to
derive ϕi from Γ. The equivalence of this rule and the rule p, –p ∨ q ∨ –q � q ∨ –q
follows from the fact that in any De Morgan algebra, the elements of the form q ∨ –q ∨ r
are precisely the elements of the form q ∨ –q. Finally, we can derive ϕ from the set of
formulas {ϕi | i ∈ I } in BD.

Proposition 5.20 (Completeness for LP ∩ EDSn). The logic LP ∩ EDSn is axioma-
tized by the infinite set of rules �n ∨ q, –q ∨ r ∨ –r � r ∨ –r for n ≥ 1.

Proof. Suppose that Γ �KO– ϕ and Γ �BD ϕ. We may assume that ϕ is a disjunctive
clause, as in the proof of Proposition 5.19. Then Γ, � �BD ϕ for some tautology � by
Proposition 4.6, hence � �BD ϕ by Proposition 4.7. It follows that ϕ is equivalent to
r ∨ –r ∨ α for some atom r and some formula α. Then Γ �K– ϕ implies that Γ �BD
� ∨ � and Γ �BD –� ∨ r ∨ –r ∨ α for some formula � and some contradiction � by
Proposition 5.16. The formula ϕ is thus derivable from Γ in the extension of BD by the
rules �n ∨ q, –q ∨ r ∨ –r ∨ s � r ∨ –r ∨ s for n ∈ �. But these rules are derivable from
the simpler rules �n ∨ q, –q ∨ r ∨ –r � r ∨ –r, as in the proof of Proposition 5.19.

Proposition 5.21 (Completeness for KO–). The logic KO– := LP ∩ K– is axiomatized
by the infinite set of rules �n ∨ q, –q ∨ r ∨ –r � r ∨ –r for n ≥ 1.

§6. The lattice of super-Belnap logics. In this section, we study the global
structure of the lattice of super-Belnap logics. We prove that lattice of non-trivial
proper extensions of BD splits into the three disjoint intervals [LP ∩ ECQ,LP],
[ECQ,LP ∨ ECQ], and [ET L, CL]. That is, each logic in [BD, CL] lies in exactly one of
these intervals. Moreover, the lattice of non-trivial proper extensions of ET L has the
structure [ET L2,K–] < K < CL. We then identify some other splittings of ExtBD and
use these results to list all super-Belnap logics which satisfy various natural metalogical
properties.

We first provide an example which shows that the lattice of super-Belnap logics
is non-modular (and therefore non-distributive). Recall that a lattice is modular if it
satisfies the equation (a ∧ b) ∨ c = (a ∨ c) ∧ b for c ≤ b.

Proposition 6.1. (LP ∩ ET L) ∨ ECQ < (LP ∨ ECQ) ∩ ET L.

Proof. By Fact 3.10 we have (LP ∩ ET L) ∨ ECQ = (LP ∩ ET L) ∨ Exp ET L =
(LP ∩ ET L) ∪ Exp ET L = (LP ∩ ET L) ∪ ECQ and (LP ∨ ECQ) ∩ ET L = (LP ∪
ECQ�) ∩ ET L = (LP ∩ ET L) ∪ (ECQ� ∩ ET L). It therefore suffices to find Γ and
ϕ such that Γ �ECQ�∩ET L ϕ but Γ �ECQ ϕ and Γ �LP ϕ.

The rule (p1 ∧ –p1) ∨ (p2 ∧ –p2), q, –q ∨ r � r holds in ECQ� ∩ ET L but not in
LP = LogP3. Moreover, ECQ = LogETL4 × BD4 and there is a valuation onETL4 ×
BD4 which designates (p1 ∧ –p1) ∨ (p2 ∧ –p2), therefore the rule in question holds in
ECQ only if q, –q ∨ r �ECQ r. But q, –q ∨ r �ECQ r.
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Corollary 6.2. Ext� BD is not a modular lattice.

We now identify some natural splittings of ExtBD. We already know that [BD, CL]
splits into [BD,LP] and [ECQ, CL] (Proposition 5.11).

In the following, 
(a, b) for a, b ∈ A will denote the principal congruence of the
De Morgan algebra A generated by the pair 〈a, b〉. A result of Sankappanavar [45]
states that for a ≤ b we have 〈x, y〉 ∈ 
(a, b) if and only if the following equations are
satisfied:

x ∧ a ∧ –b = y ∧ a ∧ –b, (x ∧ a) ∨ –a = (y ∧ a) ∨ –a,

x ∨ b ∨ –a = y ∨ b ∨ –a, (x ∨ b) ∧ –b = (y ∨ b) ∧ –b.

Proposition 6.3. LP ∩ ECQ is the smallest proper extension of BD.

Proof. Suppose that LP ∩ ECQ � L. Then p ∧ –p �L q ∨ –q, so L has a reduced
model 〈A, F 〉 with a ∈ F and b /∈ F such that a ≤ –a and –b ≤ b. The congruence

(a, –a) is compatible with F : ifx ∈ F and 〈x, y〉 ∈ 
(a, –a), thenx ∧ a = y ∧ a by the
above description of principal congruences on De Morgan algebras. Since x ∧ a ∈ F ,
we have y ∈ F . Since the matrix 〈A, F 〉 is reduced, the congruence 
(a, –a) is the
identity relation, therefore a = –a.

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by a and c = (a ∧ b) ∨ –b. Note
that c = –c = (a ∨ –b) ∧ b. The elements a and c are distinct, since a ∈ F but c /∈ F
(because b /∈ F ). The universe of B is the set {f, a ∧ c, a, c, a ∨ c, t} and G := F ∩
B = {a, a ∨ c, t}. The congruence 
(a ∨ c, t) is compatible with G and the matrix
〈B/
(a ∨ c, t), G/
(a ∨ c, t)〉 is isomorphic to BD4. Therefore BD4 is a model of L and
L ≤ BD.

Proposition 6.4. CL is the largest non-trivial extension of BD.

Proof. If L is a non-trivial extension of BD, then it has a non-trivial reduced model
〈A, F 〉. Then t ∈ F and f /∈ F , so the submatrix of 〈A, F 〉 with the universe {f, t} is
isomorphic to B2. Therefore B2 is a model of L and L ≤ CL.

Proposition 6.5. The interval [BD, CL] splits into [BD,K] and [LP , CL]. All logics in
[BD,K] have the same theorems, as do all logics in [LP , CL].

Proof. Suppose that LP � L. Then ∅ �L p ∨ –p, so L has a reduced model
〈A, F 〉 such that a /∈ F for some a ∈ A such that –a ≤ a. Consider the submatrix
〈B, G〉 of 〈A, F 〉 generated by a. The universe of B is the set {f, –a, a, t} and
G := F ∩ A = {t}. The congruence 
(–a, a) onB is compatible with G and the matrix
〈B/
(–a, a), G/
(–a, a)〉 is isomorphic toK3. ThereforeK3 is a model ofL andL ≤ K.

The claim that LP and CL have the same theorems was proved by Priest [39]. To
prove that K and BD also have the same theorems, recall the contrapositive relation
between K and LP : ∅ �K ϕ implies –ϕ �LP ∅. But ExpBD LP = BD, so –ϕ �BD ∅,
and by contraposition ∅ �BD ϕ.

Note that the constants t and f are part of our signature, therefore BD does have
theorems. We omit the straightforward verification of the following fact.

Lemma 6.6. The algebra in Figure 4 is the free De Morgan algebra generated by a and b
modulo the inequalities b ≤ a and a ≤ –a ∨ b.

Proposition 6.7. [BD, CL] splits into [BD,LP ∨ ECQ] and [ET L, CL].
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b∧ −b

a ∧ −a

−a

−b

b

a

a ∨ −a

b∨ −b

t

Fig. 4. The free two-generated De Morgan algebra modulo b ≤ a and a ≤ –a ∨ b.

Proof. Suppose that ET L � L. Then p, –p ∨ q �L q and L has a reduced model
〈A, F 〉 such that a ∈ F and –a ∨ b ∈ F but b /∈ F for some a, b ∈ A. Without loss
of generality we may take b := a ∧ b and a := a ∧ (–a ∨ b), i.e., we may assume that
b ≤ a and a ≤ –a ∨ b.

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by a and b. LetC be the algebra
shown in Figure 4. By Lemma 6.6 there is a homomorphism h : C → B. Take H :=
h–1[G ]. Then the matrix 〈C , H 〉 is a model ofL, being an strict homomorphic preimage
of a model of L. We have a ∈ H and b /∈ H .

We distinguish two cases. If a ∧ –a /∈ H , then H = {a, a ∨ –a, b ∨ –b, t}, hence

(a, a ∨ –a) is compatible with H and the matrix 〈C/
(a, a ∨ –a), H/
(a, a ∨ –a)〉 is
isomorphic to P3 × B2. On the other hand, if a ∧ –a ∈ H , then H = {a, a ∨ –a, b ∨
–b, t, a ∧ –a, –a, –b}, hence 
(a ∧ –a, t) is compatible with H and the matrix 〈C/
(a ∧
–a, t), H/
(a ∧ –a, t)〉 is isomorphic to P3. Thus either P3 × B2 is a model of L and
L ≤ LP ∨ ECQ, or P3 is a model of L and L ≤ LP ≤ LP ∨ ECQ.

It follows that the join CL = LP ∨ ET L is canonical in the following sense.

Corollary 6.8. If CL = L1 ∨ L2 with L1 < CL and L2 < CL, then either LP ≤ L1 and
ET L ≤ L2 or ET L ≤ L1 and LP ≤ L2.

Proof. If LP � L1 and LP � L2, then L1 ∨ L2 ≤ K. Likewise, if ET L � L1 and
ET L � L2, thenL1 ∨ L2 ≤ LP ∨ ECQ. But ifLP ≤ L1 and ET L ≤ L1, then CL ≤ L1,
and likewise for L2.

Taking the above splittings together yields the following theorem.

Theorem 6.9. Each non-trivial proper extension of BD lies in one of the disjoint intervals
[LP ∩ ECQ,LP], [ECQ,LP ∨ ECQ], or [ET L, CL].

Proof. These intervals are indeed disjoint: ECQ � LP and ET L � LP ∨ ECQ
because p, –p � ∅ fails in P3 and p, –p ∨ q � q fails in B2 × P3.

Each of these three intervals in fact contains a continuum of finitary logics (Corollary
10.8). We can also split the lattice of super-Belnap logics into a finite upper part and an
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(a ∧ − b) ∨ (− a ∧ b)

b∨ (a ∧ − b)

− a ∧ − b

b∨ (− a ∧ − b)

− b

a

a ∨ (− a ∧ b)

a ∨ b

a ∨ (− a ∧ − b)

a ∨ b∨ (− a ∧ − b)

a ∨ − b

− a

− a ∨ b

− a ∨ − b

t

Fig. 5. The free two-generated De Morgan algebra modulo a ≤ –a and b ≤ –b.

infinite lower part. We omit the tedious but straightforward verification of the following
claim.

Lemma 6.10. The algebra shown in Figure 5 is the free algebra generated by a and b
modulo the inequalities a ≤ –a and b ≤ –b.

The following proposition extends the unpublished result of Rivieccio that K is an
upper cover of K– (defined semantically).

Proposition 6.11. [BD, CL] splits into [BD,K–] and [KO, CL].

Proof. Suppose that KO � L. Then (p ∧ –p) ∨ r �L (q ∨ –q) ∨ r and L has a
reduced model 〈A, F 〉 such thata ∨ d ∈ F and c ∨ d /∈ F for somea, c, d ∈ A such that
a ≤ –a and –c ≤ c. Let b := –d . Without loss of generality we may take d := c ∨ d .
It follows that b ≤ –b and –b /∈ F .
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Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by the elements a and b.
Let C be the algebra shown in Figure 5. By Lemma 6.10 there is a surjective
homomorphism h : C → B. Then the matrix 〈C , H 〉 with H := h–1[G ] is a model
of L, being a strict homomorphic preimage of a model of L. We have a ∨ –b ∈ H
and –b /∈ H . The congruence 
(–a ∨ –b, t) is then compatible with H, thus 〈D, I 〉 :=
〈C/
(–a ∨ –b, t), H/
(–a ∨ –b, t)〉 is a model of L.

There are now several cases to consider. If –a ∨ b /∈ I , then the congruence 
(a, –a)
is compatible with I and 〈D/
(a, –a), I/
(a, –a)〉 is isomorphic to the matrix ETL8
(recall Figure 3). In that case ETL8 is a model of L and L ≤ K–. On the other hand,
if a ∨ (–a ∧ b) ∈ I , then the rule p ∧ –p � q ∨ –q fails in 〈D, I 〉, hence LP ∩ ECQ �
LogD and L ≤ LogD = BD.

Finally, if –a ∨ b ∈ I and a ∨ (–a ∧ b) /∈ I , then 
(a ∨ b ∨ (–a ∧ –b), t) is a
congruence compatible with I and it yields either the matrix BD4 × B2 or the matrix
ETL4 × B2. In the former case L ≤ LogBD4 × B2 = ECQ� ≤ K–, while in the latter
case L ≤ LogETL4 × B2 = ET L� ≤ K–.

Recall the definition of KO– as LP ∩ K–.

Proposition 6.12. (LP ∩ EDSn) ∨ ET L = EDSn. KO– ∨ ET L = K–.

Proof. Let �n := (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) and Γ = {�n ∨ q, –q ∨ r}. Because
�n ∨ q, –(�n ∨ q) ∨ r �ET L r, to prove that Γ � q holds in (LP ∩ EDSn) ∨ ET L it will
suffice to show that Γ � –(�n ∨ q) ∨ r holds inLP ∩ EDSn. But Γ �BD –q ∨ r, therefore
it suffices to show that Γ � p ∨ –p ∨ r holds in LP ∩ EDSn. Let � := r ∨ (p ∧ –p).
Then Γ �BD –q ∨ � ∨ –α and Γ �BD �n ∨ q, so Γ �LP∩EDSn � ∨ –�. But� ∨ –� �BD
p ∨ –p ∨ r.
Theorem 6.13. [KO–, CL] splits into the intervals [LP , CL], [KO,K], and [KO–,K–],
where

[LP , CL] = {LP ,LP ∨ ECQ, CL},
[KO,K] = {KO,KO ∨ ECQ,K},

[KO–,K–] = {KO–,KO– ∨ ECQ,K–}.
Proof. The claim for [LP , CL] holds because each non-trivial super-Belnap logic

lies in one of the intervals [BD,LP], [ECQ,LP ∨ ECQ], [ET L, CL] and CL =
LP ∨ ET L. The claim for [KO,K] holds because KO = LP ∩ K and KO ∨ ECQ =
(LP ∨ ECQ) ∩ K and K = KO ∨ ET L, therefore [KO,K] ∩ [BD,LP] = {KO} and
[KO,K] ∩ [ECQ,LP ∨ ECQ] = {KO ∨ ECQ} and [KO,K] ∩ [ET L, CL] = {K}. Like-
wise, the claim for [KO–,K–] holds because KO– = LP ∩ K– and KO– ∨ ECQ =
(LP ∨ ECQ) ∩ K– and KO– ∨ ET L = K–. The second equality holds because (LP ∨
ECQ) ∩ K– = (LP ∪ ECQ�) ∩ K– = (LP ∩ K–) ∪ ECQ� = KO– ∨ ECQ, since (LP ∩
ECQ�) ∨ ECQ = ECQ� and ECQ� ≤ K–.

The interval [LP , CL] was already described by Pynko [42].

Theorem 6.14. Each non-trivial proper extension ofBD lies in one of the disjoint intervals
[KO, CL], [LP ∩ ECQ,KO–], [ECQ,KO– ∨ ECQ], or [ET L,K–].

Proof. This follows immediately from Theorems 6.9 and 6.13.

The following proposition extends the unpublished result of Rivieccio that ET L2 is
the smallest proper extension of ET L.
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Proposition 6.15. [BD, CL] splits into [BD, ET L] and [LP ∩ ECQ2, CL].

Proof. Suppose that LP ∩ ECQ2 � L. Then (p ∧ –p) ∨ (q ∧ –q) �L r ∨ –r by
Proposition 3.14 and L has a reduced model 〈A, F 〉 such that a ∨ b ∈ F for some
a, b ∈ A with a ≤ –a and b ≤ –b, and c /∈ F for some c ∈ A with –c ≤ c.

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by the elements a and b. LetC be
the algebra shown in Figure 5. As in the proof of Proposition 6.11 there is a surjective
homomorphism h : C → B, therefore 〈C , H 〉 is a model of L for H := h–1[G ]. We
have a ∨ b ∈ H .

If –a ∈ H or –b ∈ H , then there is some d ∈ F such that d ≤ –d : either d =
h(a ∨ (–a ∧ –b)) or d = h(b ∨ (a ∧ –b)). Since c /∈ F for some c ∈ A such that –c ≤ c,
it follows that the rule p ∧ –p � q ∨ –q fails in 〈A, F 〉, hence LP ∩ ECQ � Log〈A, F 〉
and L ≤ Log〈A, F 〉 = BD.

Finally, if –a /∈ H and –b /∈ H , then H is the principal filter generated by a ∨ b
and 
(a ∨ b, t) is compatible with H. The matrix 〈C/
(a ∨ b, t), H/
(a ∨ b, t)〉 is then
isomorphic to ETL4, hence ETL4 is a model of L and L ≤ ET L.

Theorem 6.16. [ET L, CL] has the structure ET L < [ET L2,K–] < K < CL.

In other words, the rule schema � ∨ p, –p ∨ q � q, where � ranges over all classical
contradictions, is the strongest set of rules which lies properly between the disjunctive
syllogism and the resolution rule.

Proposition 6.17. For each super-Belnap logic L either L ≤ ET L� or the rule (p ∧
–p) ∨ q ∨ –q, (q ∧ –q) ∨ p ∨ –p � p ∨ –p holds in L.

Proof. Suppose that (p ∧ –p) ∨ q ∨ –q, (q ∧ –q) ∨ p ∨ –p �L p ∨ –p. Then L has
a reduced model 〈A, F 〉 such that a ∨ –b ∈ F and b ∨ –a ∈ F but –b /∈ F for some
a, b ∈ A such that a ≤ –a and b ≤ –b.

We proceed as in the proofs of the previous propositions. Again, if we have a ∨ (–a ∧
b) ∈ H , then the rule p ∧ –p � q ∨ –q fails in 〈C , H 〉, hence L ≤ Log〈C , H 〉 = BD.
Suppose therefore that a ∨ (–a ∧ b) /∈ H . Then H is a principal filter generated either
by a ∨ (–a ∧ –b) or by a ∨ b or by a ∨ b ∨ (–a ∧ –b). In the first two cases, the Leibniz
reduct of 〈C , H 〉 is isomorphic to the matrix BD4 × B2, while in the third case it is
isomorphic to the matrix ETL4 × B2. But we know that LogBD4 × B2 = ECQ� ≤
ET L� and LogETL4 × B2 = ET L� . Therefore L ≤ Log〈C , H 〉 ≤ ET L� .

Proving an informative completeness theorem for the logic axiomatized by the above
rule remains an open problem. Apart from this logic, Figure 6 shows the relative
positions of the logics discussed above. It only depicts the inclusions among the selected
logics—it does not faithfully represent meets and joins.

The splittings established above can be used to determine which super-Belnap logics
satisfy various metalogical properties. This was already done in [2] to classify non-
trivial super-Belnap logics within the Leibniz and Frege hierarchies of abstract algebraic
logic. The only protoalgebraic one is CL, the only Fregean one is also CL, and the only
selfextensional ones are BD, KO, and CL.4 We shall provide two alternative proofs of
this last fact below.

4 Recall that a logicL is called protoalgebraic if there is a set of formulas in two variables Δ(p, q)
such that p,Δ(p, q) �L q and ∅ �L �(p, p) for each �(p, p) ∈ Δ(p, p). It is selfextensional
if the equivalence or interderivability relation ϕ 	�L � is a congruence on the algebra of
formulas, i.e., if replacing a subformula of α by an interderivable formula results in a formula
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BD
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ECQ

ET L

EDS1

EDS2

LP ∩ ECQ2

ECQ2

ET L2

. . .

. . .

. . .

. . .

LP ∩ ECQω

ECQω

ET Lω

KO−

KO− ∨ ECQ

K−

KO

KO ∨ ECQ

K

LP

LP ∨ ECQ

CL

Fig. 6. Part of the lattice of super-Belnap logics.

Following Cintula & Noguera [10], we say that a super-Belnap logic L enjoys the
(weak) proof by cases property if (for Γ = ∅)

Γ, ϕ ∨ � �L � ⇐⇒ Γ, ϕ �L � and Γ, � �L �.

Proposition 6.18. The only non-trivial super-Belnap logics which enjoy the (weak) proof
by cases property are BD, KO, LP , K, and CL.

Proof. Let L be a proper extension of BD with the weak proof by cases property.
Then LP ∩ ECQ ≤ L, i.e., p ∧ –p �L q ∨ –q. By the weak proof by cases property,
(p ∧ –p) ∨ r �L (q ∨ –q) ∨ r, i.e., KO ≤ L. Moreover, if ECQ ≤ L, then p ∧ –p �L q
and (p ∧ –p) ∨ q �L q, i.e., K ≤ L. But the only non-trivial proper extensions of KO
are LP , KO ∨ ECQ, LP ∨ ECQ, K, and CL. The logics KO ∨ ECQ and LP ∨ ECQ do
not enjoy the weak proof by cases property: they validate p � p and (q ∧ –q) � p but
not p ∨ (q ∧ –q) � p.

We say that L enjoys the contraposition property if ϕ �L � implies –� �L –ϕ.


 which is interderivable with α. The logic is called Fregean if this replacement principle
holds for interderivability modulo any set of formulas Γ, i.e., for the relation Γ, ϕ �L � and
Γ, � �L ϕ.
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Proposition 6.19. The only non-trivial super-Belnap logics which enjoy the contraposi-
tion property are BD, KO, and CL.

Proof. Let L be a super-Belnap logic with the contraposition property. Then ϕ �L
� and � �L � imply –� �L –ϕ and –� �L –�. Thus –� �L (–ϕ ∧ –�) and –(–ϕ ∧
–�) �L – –�, hence ϕ ∨ � �L �. The contraposition property therefore implies the
weak proof by cases property. It now suffices to verify that K and LP do not satisfy
the contraposition property: we have p ∧ –p �K q but –q �K –(p ∧ –p), and likewise
q �LP p ∨ –p but –(p ∨ –p) �LP –q.

Proposition 6.20. The only non-trivial selfextensional super-Belnap logics are BD, KO,
and CL.

Proof. These logics are selfextensional by virtue of their relation to varieties of
Boolean, Kleene, and De Morgan algebras (Proposition 4.1). Conversely, if L is a
selfextensional super-Belnap logic, then it enjoys the contraposition property: ϕ �L �
implies ϕ ��L ϕ ∧ �, hence –(ϕ ∧ �) ��L –ϕ and –� �L –(ϕ ∧ �) �L –ϕ. Therefore
L is one of the logics BD, KO, or CL by Proposition 6.19.

Alternatively, suppose that L is a selfextensional proper extension of BD.
Then LP ∩ ECQ ≤ L, so (p ∧ –p) ��L (p ∧ –p) ∧ (q ∨ –q). By selfextensionality,
(p ∧ –p) ∨ r ��L ((p ∧ –p) ∧ (q ∨ –q)) ∨ r, therefore (p ∧ –p) ∨ r �L q ∨ –q ∨ r and
KO ≤ L. By a similar argument, ECQ ≤ L implies K ≤ L.

It follows that L (if non-trivial) is one of the logics KO, LP , K, and CL. It remains
to prove that neither LP nor K is selfextensional: we have q ��LP (p ∨ –p) ∨ q but
(p ∧ –p) ∨ –q �LP –q. Likewise, q ��K (p ∧ –p) ∨ q but –q �K p ∨ –p.

A rule Γ � ϕ is called admissible in a logic L if adding it to L does not change the
set of theorems of L, or equivalently if for each substitution �

∅ �L �(	) for each 	 ∈ Γ =⇒ ∅ �L �(ϕ).

A logic L is structurally complete if each admissible rule of L is valid (derivable) in L,
or equivalently if each proper extension of L adds some new theorems to L.

Proposition 6.21. The only non-trivial structurally complete super-Belnap logics are K
and CL.

Proof. By Proposition 6.5 each non-trivial super-Belnap logic lies below K (in which
case it has the same theorems as BD) or above LP (in which case it has the same
theorems as CL). Thus K and CL are the only non-trivial super-Belnap logics which
cannot be properly extended without adding new theorems.

While the proof by cases property among super-Belnap logics is only enjoyed by the
five logics listed above, we shall see that other super-Belnap logics may satisfy a weaker
form of this property. We say that a super-Belnap logic L enjoys the restricted proof
by cases property in case

Γ, ϕ ∨ –ϕ �L � ⇐⇒ Γ, ϕ �L � and Γ, –ϕ �L �.

For example, ET L and K– enjoy this property by virtue of the fact that a ∨ –a = t if
and only if a = t or –a = t in ETL4 and ETL8. We now show that this extends to every
extension of ET L axiomatized by rules of a suitable form.

The key observation here is that if a ∨ –a = t in a De Morgan algebra A, then A is
isomorphic to [f, a] × [f, –a], where the De Morgan negations on the two intervals are
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a ∧ –x and –a ∧ –x. The isomorphism is given by the maps x �→ 〈a ∧ x, –a ∧ x〉 and
〈x, y〉 �→ x ∨ y.

Proposition 6.22. Let L be an extension of ET L axiomatized by rules of the form Γ � ϕ
where Γ is not an antitheorem of CL. Then L enjoys the restricted proof by cases property.

Proof. Suppose that Γ, ϕ ∨ –ϕ �L �, as witnessed by a valuation v on a model
〈A, {t}〉 of L where A is a De Morgan algebra. Let a := v(ϕ). Then a ∨ –a = t,
so 〈A, {t}〉 is isomorphic to the binary product of the matrices 〈[f, a], {a}〉 and
〈[f, –a], {–a}〉. By Corollary 3.20, both of these matrices are models of L (using the
assumption about the axiomatization of L). This yields two valuations wi = �i ◦ v,
where �1(x) := a ∧ x and �2(x) := –a ∧ x. Because v(�) is not designated in 〈A, {t}〉,
it fails to be designated by at least one of these two valuations, say by w1. Because
each formula in Γ is designated in 〈A, {t}〉, it is also designated by w1. Finally,
w1(ϕ) = �1(v(ϕ)) = �1(a) = a. The valuation w1 thus witnesses that Γ, ϕ �L �.

In particular, this proposition applies to the logics EDSn.

§7. Different frameworks. We now consider what happens if we modify the
definition of super-Belnap logics adopted above. The picture only changes marginally
if we drop the constants t and f from the signature. By contrast, if we use a multiple-
conclusion framework instead of the single-conclusion one, then the super-Belnap
family reduces to BD, KO, K, LP , and CL.

Let us first consider constant-free super-Belnap logics: extensions of the fragment of
BD without constants. This fragment has no theorems or antitheorems.

Proposition 7.1. Each super-Belnap logic is axiomatized relative to BD by a set of rules
which do not contain t and f.

Proof. Each formula is equivalent in BD to t or to f or to a constant-free formula.
(This is an immediate consequence of the fact that each formula can be transformed into
an equivalent formula in conjunctive normal form.) But the rule Γ, t � ϕ is equivalent
to the rule Γ � ϕ, the rule Γ � f is equivalent to Γ � p for some p not occurring in
Γ (renaming the variables in Γ if necessary), and the rules Γ � t and Γ, f � ϕ hold
in BD.

Dropping the constants from the signature of BD means that the undesignated
singleton matrix now becomes a submatrix of BD4. Such matrices, where the set of
designated elements is empty, will be called almost trivial. Each almost trivial matrix
determines the almost trivial logic axiomatized by p � q.

Proposition 7.2. An extension of the constant-free fragment of BD is the constant-free
fragment of an extension of BD if and only if it is complete with respect to a class of
matrices which are not almost trivial.

Proof. Left to right, no model of BD is almost trivial. Conversely, let L be an
extension of the constant-free fragment of BD complete with respect to a class of
matrices which are not almost trivial. Let Ltf be the super-Belnap logic obtained by
adding constants t and f and the rules ∅ � t and ∅ � –f and f ∨ p � p and –t ∨ p � p
to L. The logic Ltf is a conservative extension of the logic Lf which only adds the
constant f and the rules ∅ � –f and f ∨ p � p. This is because in each proof in Ltf we
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can substitute –f for t throughout to obtain a proof in Lf . We now show that Lf is a
conservative extension of L.

Let us fix a variable p. It will suffice to prove that Γ �Lf
ϕ implies Γ �L ϕ for Γ

and ϕ where p does not occur as a subformula. To see this, consider substitutions �p
and �p such that (�p ◦ �p)(ϕ) = ϕ for each ϕ and moreover �p(ϕ) never contains p as
a subformula. If Γ �Lf

ϕ, then �p[Γ] �Lf
�p(ϕ), hence, supposing that conservativity

holds in the special case where p does not occur in Γ and ϕ, �p[Γ] �L �p(ϕ) and
Γ = (�p ◦ �p)[Γ] �L (�p ◦ �p)(ϕ) = ϕ.

Now consider a proof of ϕ from Γ in Lf , where Γ and ϕ are constant-free and the
variable p does not occur in Γ and ϕ. Then ϕ has a proof from Γ ∪ {–f} which only
uses the (constant-free) rules of L and instances the rule f ∨ p � p. We now prove that
all applications of this rule are redundant.

Suppose therefore that f ∨ � has a proof from Γ ∪ {–f} in Lf which only uses the
rules of L. Then –p,Γ �L p ∨ �, where p does not occur in Γ or �, since we can
uniformly replace f by p in the proof (each step of the proof is a substitution instance
of a constant-free rule). We need to show that in fact Γ �L �.

If Γ �L �, there is a non-trivial model 〈A, F 〉 of L and a valuation v on A such that
v[Γ] ⊆ F and v(�) /∈ F . Since L is complete with respect to a class of matrices which
are not almost trivial, we may assume that 〈A, F 〉 is not almost trivial. Let v(�) = a.
It suffices to find b ∈ A such that –b ∈ F and b ∨ a /∈ F , since taking v(p) = b then
witnesses that –p,Γ �L p ∨ �. But we can always take b = a ∧ –c for some c ∈ F
(which exists because 〈A, F 〉 is not almost trivial).

This proves, by induction over well-founded trees, that every proof of ϕ from Γ in
Lf can be transformed into a proof of ϕ from Γ in L.

Intersecting the almost trivial logic (axiomatized by the rulep � q) with the constant-
free fragments of LP , LP ∨ ECQ, and CL yields the following three logics: LP–,
axiomatized by p � q ∨ –q relative to the constant-free fragment of BD, LP– ∨ ECQ,
and CL– = LP– ∨ ET L. We can observe that Γ �LP– ϕ if and only if Γ is non-empty
and Γ �LP ϕ, and likewise for LP– ∨ ECQ and CL–.

Theorem 7.3. There are exactly four extensions of the constant-free fragment of BD
which are not constant-free fragments of extensions of BD, namely the logics LP–,
LP– ∨ ECQ, CL– = LP– ∨ ET L, and the almost trivial logic.

Proof. LetL be a constant-free super-Belnap logic which is neither trivial nor almost
trivial. If L lies below the constant-free reduct of K, then the constant-free reduct of
K3 is a model of L. An almost trivial matrix is a submatrix of this reduct. Thus each
constant-free super-Belnap logic L below the constant-free fragment of K is complete
with respect to a class of matrices which are not almost trivial. It thus constitutes the
constant-free fragment of some super-Belnap logic by the previous proposition.

On the other hand, if L does not lie below the constant-free reduct of K, then
LP– ≤ L. This is because if L invalidates the rule p �L q ∨ –q, then the constant-free
reduct of K3 is a model of L. (The argument is identical to the proof that LP and K
form a splitting pair.) But each model of LP– which is not almost trivial validates the
rule ∅ � p ∨ –p, i.e., it is a model of the constant-free fragment of LP . Each extension
ofLP– is thus either an extension of the constant-free fragment ofLP or its intersection
with the almost trivial logic. But it was shown by Pynko [42] that the only non-trivial
extensions of the constant-free fragment of LP are the constant-free fragments of LP ,
LP ∨ ECQ, and CL.
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In the constant-free framework, the lattice of super-Belnap logics therefore has two
co-atoms, namely classical logic and the almost trivial logic.

Moving to a multiple-conclusion setting has more profound consequences. Recall
(e.g., from [46]) that a multiple-conclusion consequence relation is a relation between
sets of formulas, written Γ � Δ, which satisfies the following:

• ϕ �L ϕ (reflexivity),
• if Γ �L Δ, then Γ,Γ′ �L Δ,Δ′ (monotonicity),
• if Γ,Φ1 �L Δ and Γ �L Δ,Φ2 whenever Φ1 ∪ Φ2 = Φ, then Γ �L Δ (cut),
• if Γ �L Δ, then �[Γ] �L �[Δ] for each substitution � (structurality).

The multiple-conclusion logic determined by a class of matricesK is defined as expected.
That is, Γ � Δ if and only if for each valuation v on a matrix 〈A, F 〉 ∈ K we have that
v(�) ∈ F for some � ∈ Δ whenever v[Γ] ⊆ F .

By the multiple-conclusion versions of BD, LP , K, and CL, denoted BDmc, LPmc,
Kmc, and CLmc, we mean the multiple-conclusion logics defined semantically via the
matrices BD4, P3, K3, and B2. The multiple-conclusion version of KO is defined as
KOmc = LPmc ∩ Kmc. The multiple-conclusion version of the trivial logic is defined
as the logic axiomatized by the rule ∅ � ∅. (Note that this logic is only complete with
respect to the empty class of matrices.)

The designated sets of the above finite matrices form prime filters, therefore Γ � Δ
holds in the multiple-conclusion version of one of the logics above if and only if
Γ �

∨
Δ′ holds in the single-conclusion version for some finite Δ′ ⊆ Δ. We can infer

that the logic BDmc is axiomatized by the (“positive”) rules

p, q � p ∧ q, p ∧ q � p, p ∧ q � q,
p ∨ q � p, q, p � p ∨ q, q � p ∨ q,

and the (“negative”) rules

–p, –q � –(p ∨ q), –(p ∨ q) � –p, –(p ∨ q) � –q,

–(p ∧ q) � –p, –q, –p � –(p ∧ q), –q � –(p ∧ q),

and the four rules

p � – –p, – –p � p, ∅ � t, f � ∅.

The logicLPmc extendsBDmc by the rule ∅ � p, –p, the logicKmc extends it byp, –p � ∅,
the logic KOmc by p, –p � q, –q, and CL = LPmc ∨ Kmc (see [4]).

Theorem 7.4. The only proper non-trivial multiple-conclusion extensions of BDmc are
KOmc , Kmc , LPmc , and CLmc .

Proof. We show that each multiple-conclusion rule Γ � Δ is equivalent over BDmc

to one of the rules

∅ � ∅, p, –p � ∅, p, –p � q, –q, p � p.

Since each formula is equivalent over BD to a formula in conjunctive normal form and
a formula in disjunctive normal form, we may assume by appeal to cut that all formulas
in Γ and Δ are either atoms or negated atoms. Consider the substitution which assigns
t to each p such that p ∈ Γ, p /∈ Δ, –p ∈ Δ, and –p /∈ Γ and f to each q such that
–q ∈ Γ, –q /∈ Δ, q ∈ Δ, and q /∈ Γ. The effect of this substitution is to erase all such
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atoms p from the premises and all such atoms q from the conclusions. Moreover, if
there is some p ∈ Γ ∩ Δ or some –q ∈ Γ ∩ Δ, then the rule Γ � Δ already holds in BD.
We may therefore assume without loss of generality that if p ∈ Γ (q ∈ Δ), then p /∈ Δ
and –p /∈ Δ (q /∈ Γ and –q /∈ Γ).

If p, –p ∈ Γ for some p and q, –q ∈ Δ for some q, then the substitution which assigns
p to each variable in Γ and q to each variable in Δ shows that the rule Γ � Δ is equivalent
to p, –p � q, –q. If p, –p ∈ Γ for some p and there is no q such that q, – ∈ Δ, then the
substitution which assigns p to each variable in Γ and f (t) to each (negated) atom in Δ
shows that the rule Γ � Δ is equivalent to p, –p � ∅. Dually, if q, –q ∈ Δ for some q and
there is no p such that p, –p ∈ Γ, then the rule Γ � Δ is equivalent to ∅ � q, –q. Finally,
if at most one of the formulas p, –p occurs in Γ and at most one the formulas q, –q
occurs in Δ, a suitable substitution again shows that Γ � Δ is equivalent to ∅ � ∅.

The above argument does not depend essentially on the presence of t and f. Dropping
the constants from the signature would merely complicate the picture by forcing us to
distinguish (i) between the rules ∅ � ∅, p � ∅, ∅ � q, and p � q, (ii) between the rules
∅ � p, –p and q � p, –p, and (iii) between the rules p, –p � ∅ and p, –p � q. It would
not, however, yield any substantially new logic.

§8. Constructing finite reduced models ofBD from graphs. In the second half of this
paper, we study the relationship between finitary extensions of BD and finite graphs.
It turns out that graphs naturally come into play when we restrict the duality for De
Morgan algebras due to Cornish & Fowler [11] to finite reduced models of BD. This
allows us to describe each finite reduced model of BD up to isomorphism by a triple
〈G,H, k〉 where G and H are graphs and k ∈ �. Conversely, each such triple gives rise
to a finite reduced model �(G,H, k) of BD. Moreover, �(G,H, k) is a model of ET L
if and only if H = ∅.

Our first task will be to review the duality for finite De Morgan algebras and extend
it to finite De Morgan matrices, i.e., De Morgan algebras equipped with a lattice filter.
In particular, we need to describe the dual counterparts of strict homomorphisms and
reduced matrices.

The duality for finite De Morgan algebras expands the Birkhoff duality for finite
distributive lattices by an order-inverting involution on both sides. On the one side, we
have involutive posets, i.e., posets 〈P,≤〉 equipped with an order-inverting involution ∂ .
Their homomorphisms (embeddings) are monotone maps (order embeddings) which
commute with the involutions.

To obtain a De Morgan algebra from an involutive poset, we take the bounded
distributive lattice of upsets and expand it by the operation –U = P \ ∂[U ]. This results
in the complex algebra of the involutive poset P, denotedP+ here. Each homomorphism
of involutive posets f : P → Q then yields a homomorphism of De Morgan algebras
f+ := f–1 : Q+ → P+.

On the other side, we have De Morgan algebras and their homomorphisms. To
obtain an involutive poset from a De Morgan algebra A, we take the poset of prime
filters ordered by inclusion and expand it by the operation ∂U = A \ –[U ]. (Recall
that a prime filter is a proper lattice filter U such that a ∨ b ∈ U if and only if a ∈ U
or b ∈ U .) This results in the dual poset of A, denoted A+ here. A homomorphism
of De Morgan algebras h : A→ B then yields a homomorphism of involutive posets
h+ := h–1 : B+ → A+.

https://doi.org/10.1017/S1755020321000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000204


144 ADAM PŘENOSIL

The map �(a) = {a ∈ U | U ∈ A+} embeds the De Morgan algebra A into (A+)+.
This embedding is an isomorphism if A is finite. Conversely, the map ε(u) = {u ∈
U | U ∈ P+} embeds the involutive poset P into (P+)+. This embedding is also an
isomorphism if P is finite.

Theorem 8.1. The complex algebra and dual involutive poset constructions are functors
which form a dual equivalence between the categories of finite De Morgan algebras and
finite involutive posets, with unit � and counit ε.

Fact 8.2. Embeddings (surjective homomorphisms) between finite De Morgan algebras
are precisely the duals of surjective homomorphisms (embeddings) between finite
involutive posets.

The duals of De Morgan matrices are involutive posets expanded by an upset of
designated points. For the sake of brevity, let us simply call such structures frames.
Frames will be denoted by P or Q and the upset of designated points of P (Q) will
be denoted DP (DQ). Homomorphisms of frames are defined as homomorphisms of
involutive posets which preserve designation. That is, f : P → Q is a homomorphism
of frames if f is a homomorphism of involutive posets and DP ⊆ h–1[DQ].

The complex matrix of a frame P is the complex algebra P+ of the involutive
poset reduct of P equipped with the principal filter generated by the upset D ∈ P+.
Conversely, the dual of a De Morgan matrix 〈A, F 〉 is the involutive posetA+ expanded
by the upset D := {G ⊇ F | G ∈ A+}.

Theorem 8.3. The complex matrix and dual frame constructions are functors which form
a dual equivalence between the categories of finite De Morgan matrices and finite frames,
with unit � and counit ε.

Proof. Given Theorem 8.1, it suffices to make the following two observations. If
h : 〈A, F 〉 → 〈B, G〉 is a homomorphism of De Morgan matrices and V is a prime
filter ofB such that V ⊇ G , then h–1[V] is a prime filter ofA and h–1[V] ⊇ h–1[G ] ⊇ F ,
therefore the map h–1 is a homomorphism of frames.

Conversely, if f : P → Q is a homomorphism of frames and U is an upset of
Q such that U ⊇ DQ, then f–1[U ] ⊇ f–1[DQ] ⊇ DP , therefore the map f–1 is a
homomorphism of De Morgan matrices.

We now describe the duals of strict homomorphisms. The following notation will be
useful: ↑X will denote the upward closure of a set X in some given poset, and minX
(maxX ) will denote the set of minimal (maximal) elements of X.

Proposition 8.4. Let f : P → Q be a homomorphism of finite frames. Then f+ is strict
if and only if DQ = ↑f[DP], or equivalently DQ ⊆ ↑f[DP].

Proof. The inclusion ↑f[DP] ⊆ DQ holds for each homomorphism of frames.
Suppose therefore that DQ ⊆ ↑f[DP] and consider an upset U of Q such that f+(U )
is designated in P+. Then f–1[U ] ⊇ DP , henceU ⊇ f[DP] andU = ↑U ⊇ ↑f[DP] ⊇
DQ. The homomorphism f+ is therefore strict.

Conversely, let U := ↑f[DP]. Then f+(U ) = f–1[↑f[DP]] ⊇ f–1[f[DP]] ⊇ DP ,
hence f+(U ) is designated in P+. If f is strict, then U is designated in Q+, therefore
↑f[DP] ⊇ DQ.

In view of the above proposition, let us call a homomorphism f : P → Q of finite
frames strict if DQ = ↑f[DP], or equivalently if DQ ⊆ ↑f[DP].
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The duals of strict homomorphic images of P+ can be identified with certain
substructures of P. We say that a subframe of a finite frame P is a subposet Q closed
under ∂ with DQ := DP ∩Q. A strict subframe of P is then a subframe Q such that
DP = ↑DQ, or equivalently minDP ⊆ Q.

Proposition 8.5. Let P be a finite frame. Up to isomorphism, the strict homomorphic
images of P+ are the complex algebras of strict subframes of P.

Proof. By Proposition 8.4 and Fact 8.2, Q+ is a strict homomorphic image of P+

if and only if there is a homomorphism of frames f : Q → P such that f is an order
embedding and DP = ↑f[DQ]. Such a map f reflects designation: if f(u) ∈ DP , then
there is v ∈ DQ such that f(v) ≤ f(u), thus v ≤ u because f is an order embedding,
and u ∈ DQ because DQ is an upset. The map f is therefore an isomorphism between
Q and a strict subframe of P.

Proposition 8.6. Let P be a finite frame and Q be the subframe P over minDP ∪
∂[minDP]. Then the Leibniz reduct of P+ is isomorphic to Q+.

Proof. The Leibniz reduct of P+ is the smallest strict homomorphic image of P+.
The claim now follows from the previous proposition and the observation that the
subframe Q is strict if and only if minDP ⊆ Q.

Corollary 8.7. Let P be a finite frame. Then P+ is a reduced matrix if and only if
P = minDP ∪ ∂[minDP].

Accordingly, we call a finite frame P reduced if P = minDP ∪ ∂[minDP], and we
call the subframe Q of P over minDP ∪ ∂[minDP] the Leibniz subframe of P.

Each frame P is a disjoint union of its components, where a component of P is a
subframe whose underlying set is closed upward as well as downward in P (in addition
to being closed under ∂). Each component of P is a frame in its own right. We call P
connected if it has no non-empty proper components.

Proposition 8.8. If P is a finite reduced frame, thenP = minP ∪ maxP. If P is moreover
connected, then either P = {u, ∂u} for some u ∈ P or minP and maxP are disjoint. In
the latter case either DP = P or DP = maxP.

Proof. Because ∂u ∈ maxP if and only if u ∈ minP, for the first claim it suffices
to prove that for each u ∈ P either u ∈ maxP or ∂u ∈ maxP. Suppose therefore
that there are v > u and w > ∂u. If u /∈ minDP , then ∂u ∈ minDP , so w /∈ minDP
and ∂w ∈ minDP . But ∂w < u < v, therefore v /∈ minDP and ∂v ∈ minDP . This is
a contradiction: ∂v ∈ minDP and ∂u ∈ minDP but ∂v < ∂u. This proves that P =
minP ∪ maxP.

If u ∈ minP ∩ maxP, then there is no v > u and no v < u. Because P is connected,
P = {u, ∂u}. Let us therefore assume that minP ∩ maxP = ∅.

Suppose that u /∈ DP for some u ∈ P. Then ∂u ∈ minDP , therefore v > ∂u implies
v /∈ minDP and ∂v ∈ minDP . But ∂v < u /∈ DP , contradicting the fact that DP is an
upset. It follows that there can be no v > ∂u if u /∈ DP . In other words, if u /∈ DP , then
u ∈ minP. Equivalently, maxP ⊆ DP .

Conversely, suppose that u ∈ DP for some u ∈ minP. We wish to show thatw ∈ DP
for eachw ∈ minP. By connectedness, it suffices to prove that (i)w ∈ DP if u < ∂w ∈
DP , and (ii)w ∈ DP if u < v > w for some v ∈ P. The first claim holds because u < ∂w
implies ∂w /∈ minDP , sow ∈ DP . To prove the second claim, we apply (i) twice: u < v
implies ∂v ∈ DP , and now ∂v < ∂w implies w = ∂∂w ∈ DP .

https://doi.org/10.1017/S1755020321000204 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000204


146 ADAM PŘENOSIL

Fig. 7. The frame P(G2, K2, 1).

We can now determine every finite reduced frame up to isomorphism by a pair of
graphs G, H and a natural number k. The graph G will describe the non-singleton
components where each element is designated, the graph H will describe the non-
singleton components where exactly one of the elements u, ∂u is designated, and k will
specify the number of singleton components.

Let us first clarify our terminology. By a graph we mean a finite symmetric graph with
loops allowed, i.e., a finite (possibly empty) set X equipped with a symmetric binary
relation R. Vertices u ∈ X and v ∈ X will be called neighbors or adjacent vertices if uRv
(allowing for u = v). A vertex u ∈ X is reflexive if uRu, otherwise it is irreflexive. The
vertex u is isolated if it has no neighbors. (No reflexive vertex is isolated.) The complete
graph Kn on n vertices is the set {1, ... , n} equipped with the inequality relation. Thus
K1 is the irreflexive singleton graph and K2 is a single edge between two vertices. We
prefer the more suggestive notation • := K1. The disjoint union of two graphs will be
denoted G �H . A homomorphism h : G → H of graphs G = 〈X,R〉 and H = 〈Y,S〉
is a map h : X → Y such that uRv implies f(u)Sf(v).

A De Morgan matrix can be constructed from a finite graph G = 〈X,R〉 as follows.
Let X � ∂X be the disjoint union of two copies of X, denoted X and ∂X , with ∂ being
an involution in X � ∂X switching between the two copies. That is, each element of
X � ∂X has one of the forms u or ∂u for some u ∈ X . We define a partial order on this
set:

u ≤G v ⇐⇒ either u = v or v = ∂w for some w ∈ X such that uRw.

This partial order with the involution ∂ defines the involutive poset P(G).
We may now equip P(G) with two different sets of designated elements:

D+(G) := X ∪ ∂X, D–(G) := ∂X.

This results in the two frames P+(G) and P–(G), respectively. The frame P(G,H, k)
is then defined as the disjoint union of the frames P+(G) and P–(H ) and k singleton
reduced frames. An example is shown in Figure 7, where G2 is the graph consisting of
a reflexive vertex u, an irreflexive vertex v, and an edge between u and v, and K2 is the
complete graph on 2 vertices, i.e., it consists of two irreflexive vertices connected by
an edge. Observe that the complex matrix of P+(G2) is precisely the matrix ETL8 of
Figure 3.

The complex matrices of the frames P+(G), P–(H ), and P(G,H, k) will be denoted
�+(G), �–(H ), and �(G,H, k), respectively. That is:

�(G,H, k) ∼= �+(G) × �–(H ) × Bk2 .
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In particular, the matrix �(∅, ∅, k) is isomorphic to Bk2 . The matrices �(G,H, 1) and
�(G,H, n) are logically equivalent for n ≥ 1.5

Fact 8.9. �(G �G ′, H �H ′, i + i ′) is isomorphic to �(G,H, i) × �(G ′, H ′, i ′).

Fact 8.10. �+(G) is a model of ET L. �–(G) is not a model of ECQ.

Proof. �+(G) is a model of ET L because only its top element is designated. The
rule p, –p � ∅ fails in �–(G) if p is interpreted by D–(G).

In particular, Log�–(G) ≤ LP because [BD, CL] splits into [BD,LP] and
[ECQ, CL]. Let us explicitly compute the logics of these matrices:

Log�(G,H, 0) = (Log�+(G) ∩ Log�–(H )) ∪ ExpBD Log�+(G),

Log�(G,H, 1) = (Log�+(G) ∩ Log�–(H )) ∪ ECQ�.
Because ExpBD Log�–(H ) ≤ ExpBD LP = BD, we have

ExpBD Log�(G,H, 0) = ExpBD Log�+(G),

ExpBD Log�(G,H, 1) = ECQ�.
Fact 8.11. Let L ∈ Exp ExtBD be non-trivial. Then �(G,H, 0) is a model of L if and
only if �+(G) is a model of L. Each �(G,H, 1) is a model of L.

The above construction covers all finite reduced models of BD.

Theorem 8.12. The finite reduced models of BD are, up to isomorphism, precisely the
matrices �(G,H, k) for some graphs G and H and some k ∈ �.

Proof. Let P be a connected finite reduced frame which is not a singleton. Take
X := minP and define the binary relation R on X as follows: uRv if and only if
u ≤ ∂v. By Proposition 8.8 the frame P is isomorphic either to P+(G) or P–(G) where
G = 〈X,R〉.

If P is an arbitrary finite reduced frame, then P is the disjoint union of its components,
which either have the forms P+(G) or P–(G) or they are designated singletons. Taking
G to be the disjoint union of all graphs G such that P+(G) is a component of P, H
to be the disjoint union of all graphs H such that P–(H ) is a component of P, and k
to be the number of designated singleton components, we see that P is isomorphic to
P(G,H, k).

Theorem 8.13. The finite reduced models of ET L are, up to isomorphism, precisely the
matrices �(G, ∅, k) for some graph G and some k ∈ �.

Proof. Recall Proposition 4.5: a reduced model 〈A, F 〉 of BD is a model of ET L if
and only if F = {t}.

§9. Graph-theoretic completeness theorems. Because the finite reduced models of
BD correspond precisely to triples 〈G,H, k〉 where G and H are graphs and k ∈ �, a
completeness theorem for a super-Belnap logic may take the form of specifying a class
of such triples. Fortunately, for many logics, including the logics ECQn, ET Ln, and

5 The notation �+(G) is unrelated to the notation A+ for the dual frame of a De Morgan
matrix. No confusion threatens: the notation �(G) does not mean anything here.
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EDSn, it will suffice to only consider triples of the form 〈G, ∅, 0〉. This will yield genuine
graph-theoretic completeness theorems for such logics. For example, ET Ln turns out
to be complete, in a suitable sense, with respect to the class of all non-n-colorable
graphs.

Recall that a logic L is said to be �-complete with respect to a class of matrices K if
it is complete with respect to K as a finitary logic, i.e., if L = Log� K.

Theorem 9.1. Let L < ET L� be a finitary explosive extension of ET L. Then L is �-
complete with respect to all matrices of the form �+(G) × ETL4 where �+(G) is a model
of L and G has no isolated vertices.

Proof. Each non-trivial reduced model of L is logically equivalent to a model of the
form �+(G) for G non-empty or a model of the form �+(G) × B2.

Among models of L of the form �+(G), we may restrict to those where G has
exactly one isolated vertex, since Log�+(G � • � •) = Log�+(G � •) ≤ Log�+(G).
This holds because Log�+(G) × B2 = Log�+(G) ∪ ET L� and Log�+(G � •) =
Log�+(G) × ETL4 = ET L ∪ ExpET L Log�+(G). But the models�+(G) where G has
exactly one isolated vertex are up to isomorphism precisely the models �+(G) × ETL4
where G has no isolated vertices.

Among models of L of the form �+(G) × B2, we may restrict to ETL4 ×
B2 = �+(•) × B2. This is because Log�+(G) × B2 = Log�+(G) ∪ ET L� ≥ ET L� =
LogETL4 × B2. Finally, L < ET L� , so L must have at least one model of the
form �+(G) × ETL4. But then Log�+(G) × ETL4 = ET L ∪ ExpET L Log�+(G) ≤
ET L� , therefore we may also disregard the model ETL4 × B2.

Theorem 9.2. Let L be a proper finitary explosive extension of BD such that L < ECQ� .
ThenL is�-complete with respect to all matrices of the form �+(G) × BD4 where �+(G)
is a model of L and G has no isolated vertices.

Proof. Recall that L = ExpBD(ET L ∨ L) and ET L ∨ L = ET L ∪ L for L in
Exp Ext ECQ by Theorem 3.13. The inequality L < ECQ� implies L < ET L� , since
ET L ∨ L = ET L ∪ L. The logic ET L ∨ L is �-complete with respect to all of its
models of the form �+(G) × ETL4 where G has no isolated vertices, or equivalently
with respect to matrices �+(G) × ETL4 where �+(G) is a model of L and G has no
isolated vertices. Let us call this class of graphs K. Then

L = ExpBD(ET L ∨ L) ≈ ExpBD
⋂
G∈K

Log�+(G) × ETL4

=
⋂
G∈K

ExpBD Log�+(G) × ETL4 =
⋂
G∈K

Log�+(G) × BD4,

where the last equality holds because

ExpBD Log�+(G) × ETL4 = ExpBD(ET L ∪ ExpBD �+(G))

= ECQ ∪ ExpBD �+(G)

= ExpBD �+(G)

= Log�+(G) × BD4,

and by L1 ≈ L2 we mean that the finitary parts of L1 and L2 coincide.

To obtain a completeness theorem for a finitary explosive extension ofBD or ET L, it
thus suffices to describe the class of graphs G without isolated vertices for which �+(G)
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is a model of L. The following theorem records another situation where satisfactory
graph-theoretic completeness results may be obtained.

Theorem 9.3. Let L be a finitary non-classical extension of ET L (of BD) by a set of
rules of the form Γ � ϕ where Γ is not an antitheorem of CL. Then L is �-complete with
respect a class of matrices of the form �+(G) (or �–(H )).

Proof. It suffices to observe that Corollary 3.20 applies toL, so �(G,H, k) is a model
of L if and only if �+(G), �–(H ), and B2 (if k ≥ 1) are.

This applies in particular to the logic introduced in Proposition 6.17 as the smallest
super-Belnap logic which does not lie below ET L� , axiomatized by the rule (p ∧
–p) ∨ q ∨ –q, (q ∧ –q) ∨ p ∨ –p � p ∨ –p. Proving a non-trivial completeness theorem
for this logic is a problem that we leave open.

To understand which matrices of the form �+(G) are models of a given logic, it
will be helpful to consider a different, simpler matrix based on the graph G. This
matrix �(G) is the bounded distributive lattice of subsets of X equipped with the
operation –U := X \R[U ] for U ⊆ X and with the set of designated values {X},
where R[U ] := {v ∈ X | uRv for some u ∈ U}. In other words, –U is the set of all
vertices of G which are not neighbors of any vertex in U.6

The matrices �(G) themselves are almost never models of BD: the equality –(U ∩
V ) = –U ∪ –V will fail unless each vertex has at most one neighbor. However, the
following lemma demonstrates the value of these matrices for understanding which
rules hold in the matrices �+(G).

Lemma 9.4. Let Γ ∪ {ϕ} be a set of formulas where negation is only applied directly
to atoms, and let G = 〈X,R〉 be a graph without isolated vertices. If the rule Γ � ϕ is
valid in �+(G), then it is valid in �(G). If ϕ does not contain negation, then the opposite
implication also holds.

Proof. Recall that we identify the set X with a subset of P+(G). We define the maps
↑ : �(G) → �+(G) and ↓ : �+(G) → �(G) as follows: ↑U for U ⊆ X is the upward
closure of U in P+(G), while ↓V for V ⊆ P+(G) is the restriction of V to X as a
subset of P+(G), i.e., V ∩ X . These are not homomorphisms, but they enjoy some of
the useful properties of homomorphisms:

↓(U ∪ V ) = ↓U ∪ ↓ V , ↓–↑U = –U,

↓(U ∩ V ) = ↓U ∩ ↓ V , ↓–U ⊆ –↓U.
Moreover, U is designated in �(G) if and only if ↑U is designated in �+(G). Conversely,
V is designated in �+(G) if and only if ↓V is designated in �(G). (Here we use the
assumption that G does not contain isolated vertices.)

Given a valuation v on �(G), we define a valuation u on �+(G) such that u(p) :=
↑v(p). We prove by induction over the complexity of the formula� that ↓u(�) = v(�).
The inductive steps for meets and joins are trivial, as are the base cases for t and f. The
only non-trivial cases are

↓u(p) = ↓↑v(p) = v(p), ↓u(–p) = ↓–↑v(p) = –v(p) = v(–p).

6 The reader will observe that the operation –x can be expressed as �¬x where¬ is the Boolean
negation and � is the usual box operator of classical modal logic. The matrices �(G) are
thus reducts of matrices which arise in the context of classical modal logic.
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Consequently, v(�) is designated in �(G) if and only if u(�) is designated in �+(G).
A counterexample v to the rule Γ � ϕ on �(G) thus yields a counterexample u to this
rule on �+(G).

Conversely, let v be a valuation on �+(G) which invalidates the rule Γ � ϕ. Let w
be the valuation on �(G) such that w(p) = ↓v(p). We prove by induction over the
complexity of the formula � that ↓v(�) ⊆ w(�). The inductive steps for meets and
joins are again trivial, as are the base cases for t and f and for atoms p. The only non-
trivial case is ↓–v(p) ⊆ –↓v(p). Similarly, if � does not contain negation, we prove
by induction over the complexity of � that ↓v(�) = w(�). Consequently, if v(�) is
designated in �+(G), then w(�) is designated in �(G), and the converse implication
holds if � does not contain negation. A counterexample v to the rule Γ � ϕ on �+(G)
thus yields a counterexample w to this rule on �(G), provided that negation does not
occur in �.

With the help of this lemma, we can easily identify the graph-theoretic counterparts
of various logical rules considered so far. Recall that a graph G is called n-colorable if
there is an n-coloring of G, i.e., a homomorphism G → Kn.
Fact 9.5. The graph G is not n-colorable ( for n ≥ 2) if and only if the rule (p1 ∧ –p1) ∨
··· ∨ (pn ∧ –pn) � ∅ holds in �(G).

Proof. There is an immediate bijective correspondence between valuations on �(G)
which invalidate the rule and n-colorings of G.

The rules axiomatizing the logics EDSn correspond to a stronger property. We define
a partial homomorphism h : G → H as a homomorphism h : G ′ → H where G ′ is a
subgraph of G. That is,G ′ = 〈Y,S〉 where Y ⊆ X and S = R ∩ Y 2. A weak n-coloring
of G is a partial homomorphism h : G → Kn such that for at least one vertex u of G
the map h is defined on all the neighbors of u. In other words, the set of vertices where
h is undefined is small in the very modest sense that not every vertex of G is adjacent
to this set.

Fact 9.6. The graph G is not weakly n-colorable ( for n ≥ 1) if and only if the rule
(p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) ∨ q, –q ∨ r � r holds in �(G).

Proof. There is again an immediate correspondence between valuations on �(G)
which invalidate the rule and weak n-colorings of G.

A matrix separating EDSn and EDSn+1 may now be supplied.

Fact 9.7. ET Ln+2 � EDSn. Consequently, EDSn < EDSn+1.

Proof. The graphKn+2 is (n + 2)-colorable but not weakly n-colorable, so �+(Kn+2)
is a model of EDSn but not ET Ln+2. Because ET Ln+2 ≤ EDSn+1, it follows that
EDSn � EDSn+1.

The graph-theoretic counterparts of ET L� and EDS� can immediately be inferred
from the counterparts of ET Ln and EDSn.
Fact 9.8. The graph G contains a reflexive vertex if and only if the rules (p1 ∧ –p1) ∨
··· ∨ (pn ∧ –pn) � ∅ hold in �(G) for all n ∈ �.

Proof. The graph G is not n-colorable for any n if and only if it contains a reflexive
vertex.
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Fact 9.9. Each irreflexive vertex of G has a reflexive neighbor if and only if �(G) validates
the rules (p1 ∧ –p1) ∨ ··· ∨ (pn ∧ –pn) ∨ q, –q ∨ r � r for all n ∈ �.

Proof. A graph in which each irreflexive vertex has a reflexive neighbor is not
weakly n-colorable for any n, since a weak coloring is undefined on reflexive vertices.
Conversely, if u is a vertex of a graph G with no reflexive neighbors, then for large
enough n there is a partial homomorphism h : G → Kn defined on all neighbors of u.
Such a partial homomorphism is a weak n-coloring.

Given Theorems 9.1 and 9.2 and Lemma 9.4, the above facts yield graph-theoretic
completeness theorems for the logics ECQn, ET Ln, and EDSn.
Theorem 9.10. The logic ECQn ( for n ≥ 2) is�-complete with respect to the class of all
matrices of the form �+(G) × BD4, where G is a graph without isolated vertices which is
not n-colorable.

Theorem 9.11. The logic ET Ln ( for n ≥ 2) is�-complete with respect to the class of all
matrices of the form �+(G) × ETL4, where G is a graph without isolated vertices which
is not n-colorable.

Theorem 9.12. The logic EDSn ( for n ≥ 1) is �-complete with respect to the class of
all matrices of the form �+(G), where G is a graph without isolated vertices which is not
weakly n-colorable.

This last batch of completeness theorems is perhaps less satisfying than the
completeness theorems of ECQ and ET L, but we shall see in Section 10 that for
the logics ECQn and ET Ln this is unavoidable: apart from ECQ and ET L, none of
these logics are complete with respect to a finite set of finite matrices. We do not know
whether this holds for EDSn.

§10. Super-Belnap logics and the homomorphism order on graphs. Our description
of the finite reduced models of BD yields a connection between finitary explosive
extensions of BD and homomorphisms of finite graphs: the lattice of finitary explosive
extensions of BD turns out to be dually isomorphic to the lattice of homomorphic
classes of non-empty graphs, i.e., classes K such thatH ∈ K wheneverG ∈ K and there
is a homomorphism of graphs G → H . In the following, we write simply G → H to
abbreviate the claim that there is a homomorphism of graphs G → H .

Such classes correspond to upsets in the so-called homomorphism order on finite
graphs. The relation G → H between finite non-empty graphs yields a pre-order on
the class of all finite graphs. The homomorphism order on finite graphs is obtained
by factoring this pre-order on a proper class down to a partially ordered set. The least
element of this order is the equivalence class of •, consisting of graphs without any
edges. The least element above the equivalence class of • is the equivalence class ofK2,
consisting of all bipartite graphs. The top element of this order is the class of all graphs
with a loop. The fact that we allow for loops therefore does not have a substantial effect
on the homomorphism order.

The homomorphism order on graphs has been the object of much mathematical
attention, see in particular the monograph of Hell & Nešetřil [30]. We shall only need
the following property of this partial order, called countable universality.

Theorem 10.1. Each countable partial order embeds into the homomorphism order on
finite graphs.
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We now prove that almost every homomorphic class of non-empty graphs arises
as the class of all non-empty graphs G such that �+(G) ∈ ModL of some L ∈
Exp Ext� ET L. Moreover, our proof will be constructive: for each non-empty graph
G without isolated vertices we construct a certain rule (αG) and we take L to be the
extension of ET L by the rules (αG) for such G /∈ K.

There is only exception, namely the class of all graphs G such that K2 → G , or
equivalently the class of all graphs with at least one edge. We denote this class by
↑K2. To see that it does not correspond to any L ∈ Exp Ext� ET L, observe that ET L
corresponds to the class of all non-empty graphs, and ET L2 corresponds to the class
of all non-2-colorable graphs. The logic L corresponding to ↑K2 would thus have to lie
between ET L and ET L2. But no such logic exists.

We now define the rules (αG ). Consider a non-empty graph G = 〈X,R〉 without
isolated vertices. We want to describe the non-empty graphs H without isolated vertices
such that H �→ G by means of an explosive rule. Let us assign a propositional atom
pu to each u ∈ X and define the formula ϕu for u ∈ X as

ϕu := pu ∧
∧
v∈X
¬uRv

–pv.

In other words, the conjunctive clause ϕu contains the atom pu and a negated atom
for each vertex which is not adjacent to u. The explosive rule (αG) will be defined as∨

u∈X
ϕu � ∅. (αG)

Fact 10.2. Each homomorphism of graphs G → H yields a homomorphism of matrices
�+(H ) → �+(G).

Proof. Each graph homomorphism g : G → H extends to a homomorphism of
frames ĝ : P+(G) → P+(H ) such that ĝ(∂u) = ∂g(u), which corresponds dually to a
homomorphism of matrices �+(H ) → �+(G) by Theorem 8.3.

Lemma 10.3. Let G and H be non-empty graphs without isolated vertices. Then (αG)
holds in �+(H ) if and only ifH �→ G .

Proof. The valuation v on �(G) such that v(pu) := {u} witnesses that the rule fails
in �(G), since u ∈ v(ϕu). By Lemma 9.4 the rule thus fails in �+(G). If there is a graph
homomorphismH → G , then there is a homomorphism of matrices�+(G) → �+(H ).
But (αG) is an explosive rule, therefore if it fails in �+(G) and �+(H ) is non-trivial,
then it fails in �+(H ).

Conversely, suppose that the rule (αG) fails in �+(H ). By Lemma 9.4 it also fails
in �(H ), as witnessed by a valuation w. Let G = 〈X,R〉 and H = 〈Y,S〉. Consider
the relation Q ⊆ Y × X so that u′Qu if and only if u′ ∈ w(ϕu) for u ∈ X and u′ ∈ Y .
Firstly, each u′ ∈ Y is related to some u ∈ X by Q becausew(

∨
u∈X ϕu) = Y . Secondly,

we claim that u′Qu, v′Qv, and u′Sv′ imply uRv.
Suppose therefore that u′Qu and v′Qv. If u and v are not adjacent in G, then

w(ϕu) ⊆ w(–pv), therefore u′ ∈ w(ϕu) ⊆ w(–pv) = –w(pv). On the other hand, v′ ∈
w(ϕv) ⊆ w(pv). Thus u′ and v′ are not adjacent in H: no vertex in –w(pv) can be
adjacent to a vertex in w(pv).
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Now consider any function f : Y → X whose graph is contained in Q, i.e., u′ and
f(u′) are related by Q. By the first claim made above, such a function exists. By the
second claim, it is a graph homomorphism f : H → G .

Theorem 10.4. The lattice Exp Ext� ET L of finitary explosive extensions of ET L is
dually isomorphic to the lattice of homomorphic classes of non-empty graphs K other
than ↑K2 via the maps

L �→ KL := {G | �+(G) ∈ ModL}, K �→ LK := ET L + {(αG ) | G /∈ K}.
Proof. Consider a non-trivial finitary explosive extension L of ET L. If L < ET L� ,

then Theorem 9.1 states that L is complete with respect to models of the form
�+(G) × ETL4 where G is non-empty. Moreover, ET L� is the largest non-trivial
explosive extension of ET L and it is complete with respect to the matrix K3 × ETL4 ∼=
�+(H ) × ETL4 where H is a reflexive singleton graph. Each non-trivial finitary
explosive extension of ET L is therefore uniquely determined by its models of the form
�+(G) × ETL4. But if G is non-empty, then �+(G) × ETL4 is a model of an explosive
extension of ET L if and only if �+(G) is. Moreover, the matrix �+(∅) × ETL4 is
logically equivalent to �+(•) × ETL4. Each non-trivial finitary explosive extension of
ET L is thus uniquely determined by the class of all non-empty graphs G such that
�+(G) ∈ ModL. Let us call this class KL. Observe that KL = ∅ if and only if L is the
trivial logic.

The previous paragraph shows that L1 ≤ L2 if and only if KL2 ⊆ KL1 , where L1 and
L2 are finitary explosive extensions of ET L. Moreover, KL is a homomorphic class of
graphs: each homomorphism of non-empty graphs G → H yields a homomorphism
of non-trivial matrices �+(H ) → �+(G), so �+(G) ∈ ModL implies �+(H ) ∈ ModL
for each explosive extension L of ET L.

It remains to prove that each homomorphic class K of non-empty graphs other than
↑K2 has the form KL for some suitable L. For each such K either K2 /∈ K or • ∈ K. In
the latter case, we take L = ET L. Let us thus assume that K2 /∈ K.

Now consider the extension LK of ET L by the rules (αG) for each non-empty graph
G /∈ Kwithout isolated vertices. LetG denote the result of removing all isolated vertices
from G. If G is non-empty, then �+(G) ∈ ModLK if and only if �+(G) ∈ ModLK.
Moreover, G → H if and only if G → H , and H → G if and only if H → G . Thus
G ∈ K if and only if G ∈ K, provided that G �= ∅.

Suppose first thatG is non-empty. Then �+(G) ∈ ModLK is equivalent to �+(G) ∈
ModLK, which is equivalent by Lemma 10.3 to the claim thatG �→ H , or equivalently
G �→ H , for each non-empty H /∈ K without isolated vertices. This is equivalent to
the claim that if H is non-empty for H /∈ K, then G �→ H , or equivalently G �→ H .
Because G is non-empty, H = ∅ implies that G �→ H , therefore we may simplify this
claim to: there is no homomorphismG → H forH /∈ K. Because K is a homomorphic
class, this is equivalent simply to G ∈ K. Thus �+(G) ∈ ModLK if and only if G ∈ K,
provided that G is non-empty.

On the other hand, suppose that G = ∅. Then G /∈ K because • /∈ K. The matrix
�+(G) is logically equivalent to ETL4, therefore it remains to show that ETL4 /∈
ModLK. But K2 /∈ K, so LK validates the rule (αG) for G = K2. This rule is precisely
the rule (p ∧ –p) ∨ (q ∧ –q) � ∅ which axiomatizes ET L2.

Theorem 10.5. The lattice Exp Ext� ECQ of finitary explosive extensions of ECQ is
dually isomorphic to the lattice of homomorphic classes of non-empty graphs K other
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than ↑K2 via the maps

L �→ {G | �+(G) ∈ ModL}, K �→ ECQ + {(αG ) | G /∈ K}.
Proof. Exp Ext� ECQ and Exp Ext� ET L are isomorphic via L �→ L ∨ ET L and

L �→ ExpBD L. Concatenating these maps with the isomorphism from the previous
theorem yields the isomorphism L �→ KL and K �→ ExpBD LK = ECQ + {(αG ) | G /∈
K}.

The lattice Exp Ext� BD consists of BD and Exp Ext� ECQ (Theorem 5.13),
therefore it can be described even more easily.

Theorem 10.6. The lattice of finitary explosive extensions of BD is dually isomorphic to
the lattice of homomorphic classes of non-empty graphs.

The countable universality of the homomorphism order (Theorem 10.1), or more
precisely the fact that it contains an infinite antichain, yields a continuum of finitary
explosive extensions of ET L and BD.

Corollary 10.7. The lattices Exp Ext� ET L and Exp Ext� BD both have the cardinality
of the continuum.

Corollary 10.8. Each of the three intervals [BD,LP], [ECQ,LP ∨ ECQ], and
[ET L, CL] contains a continuum of finitary logics.

Proof. The lattices Exp Ext� ET L, Exp Ext� ECQ ⊆ [ECQ,LP ∨ ECQ], and LP ∩
Exp Ext� ECQ ⊆ [BD,LP] are isomorphic by Theorems 5.13 and 5.15.

We can now answer positively the question posed in [44] whether there are logics
strictly between ET Ln and ET Ln+1 for some n.

Corollary 10.9. There is an infinite increasing chain of explosive extensions of ET L
strictly between ET L2 and ET L3.

Proof. It suffices to find in the homomorphism order a decreasing chain of finite
3-colorable graphs which are not 2-colorable. The sequence of cycles of lengths 2n + 1
for n ≥ 1 is an example of such a chain.

We can also use the countable universality of the homomorphism order in a more
sophisticated way to construct a non-finitary explosive extension of ET L.

Proposition 10.10. There is a non-finitary explosive extension of ET L.

Proof. Given a graph G, let L′
G be the extension of ET L by the rule (αG).

Given a countable set of graphs K, let L′
K :=

⋂
G∈K L′

G . By the remarks preceding
Propositions 3.14 and 3.15 this logic is axiomatized by the rule {ϕG | G ∈ K} � ∅,
provided that we use distinct variables in each of the formulas ϕG , and moreover
ModL′

K =
⋃
G∈K ModL′

G . By Lemma 10.3 the matrix �+(H ) fails to be a model of
L′
K if and only if H → G for each G ∈ K.
If the logicL′

K is finitary, then there is some finiteK′ ⊆ K such that the rule {ϕG | G ∈
K′} � ∅ axiomatizes L′

K. In other words, there is some finite K′ such that L′
K = L′

K′ .
But then these two logics agree on models of the form �+(H ). That is, a graph lies
below all the graphs of K in the homomorphism order whenever it lies below all the
graphs in the finite set K′. All we have to do now is use the countable universality of
the homomorphism order to pick some K such that this equivalence does not hold for
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any finite K′ ⊆ K. For example, consider an embedding of the free countably generated
meet-semilattice into the homomorphism order and take K to be the set of its maximal
elements.

Some algebraic corollaries concerning antivarieties of De Morgan algebras may be
inferred from the above description of Exp Ext� ET L. The finitary extensions of ET L
are precisely those finitary logics which are �-complete with respect to classes of De
Morgan matrices of the form 〈A, {t}〉. They are thus in bijective correspondence
with quasivarieties of De Morgan algebras axiomatized by quasiequations where
each equality takes the form t ≈ u for some term u. Similarly, the finitary explosive
extensions of ET L are almost in bijective correspondence with antivarieties of De
Morgan algebras axiomatized by negative clauses where each equality takes the form
t ≈ u: the only difference is that the trivial singleton matrix is a model of each extension
of ET L, but it can be excluded by the negative clause t �≈ f. Finally, observe that the
negative clause t �≈ u1 or ... or t �≈ un is equivalent to t �≈ u1 ∧ ··· ∧ un.
Corollary 10.11. There are continuum many antivarieties of De Morgan algebras
(axiomatized by negative clauses of the form t �≈ u).

Corollary 10.12. There is a class of De Morgan algebras axiomatized by an infinitary
negative clause which is not an antivariety of De Morgan algebras.

These results depend essentially on the fact that the constants t and f are part of the
signature of De Morgan algebras. If we drop them from this signature, we obtain the
variety of De Morgan lattices, which has only finitely many subquasivarieties as shown
by Pynko [41]. In particular, the only non-empty proper antivariety of De Morgan
lattices is axiomatized by x ≈ –x.

The existence of continuum many antivarieties of De Morgan algebras complements
the result of Adams & Dziobiak [1] that there are continuum many quasivarieties of
Kleene algebras. Let us observe, for the sake of completeness, that by contrast the
lattice of proper antivarieties of Kleene algebras is rather trivial. Here by a proper
antivariety of Kleene algebras we mean an antivariety strictly included in the whole
variety.

Proposition 10.13. There are only two non-empty proper antivarieties of Kleene
algebras, namely those axiomatized by t �≈ f and by x �≈ –x.

Proof. The antivariety axiomatized by t �≈ f is the largest proper antivariety of
Kleene algebras, since it only excludes the trivial algebra. Conversely, let K be a
non-empty antivariety of Kleene algebras. Then K contains a non-trivial algebra,
therefore B2 ∈ K and B2 ×K3 ∈ K by closure under homomorphic preimages. Pynko
[41, proposition 4.5] shows that B2 ×K3 generates the quasivariety of Kleene algebras
axiomatized byx ≈ –x. The antivariety axiomatized byx ≈ –x is therefore the smallest
non-empty antivariety of Kleene algebras. On the other hand, if K contains a non-
trivial Kleene algebra which fails x �≈ –x, then it contains K3 and therefore all Kleene
algebras.

Finally, we can use the isomorphism between finitary explosive super-Belnap logics
and homomorphic classes of non-empty graphs to show that certain logics are not
complete with respect to any finite set of finite matrices.

For the purposes of the following theorems, a homomorphic class of non-empty
graphs is called non-exceptional if it is not ↑K2. Given a class K of non-empty graphs,
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the non-exceptional homomorphic class generated by K is the homomorphic class
generated by K, except when this class would be ↑K2. In that case, we take it to be the
class of all non-empty graphs instead.

Theorem 10.14. Consider a finitary explosive extension L of ET L and a class of non-
empty graphs K. Then L is �-complete with respect to �+[K] × ETL4 := {�+(G) ×
ETL4 | G ∈ K} if and only if KL is generated as a non-exceptional homomorphic class
of non-empty graphs by K.

Proof. By Theorem 10.4, the logic L is the largest finitary explosive extension of
L such that �+[K] ⊆ ModL (or equivalently, �+[K] × ETL4 ⊆ ModL) if and only if
KL is the smallest non-exceptional homomorphic class of non-empty graphs such that
K ⊆ KL.

Theorem 10.15. Consider a proper finitary explosive extension L of BD and a class of
non-empty graphs K. Then L is �-complete with respect to �+[K] × BD4 := {�+(G) ×
BD4 | G ∈ K} if and only if KL is generated as a non-exceptional homomorphic class of
non-empty graphs by K.

Proof. Replace ETL4 by BD4 and Theorem 10.4 by Theorem 10.5 in the previous
proof.

Fact 10.16. ECQn and ET Ln are not complete with respect to any finite set of finite
matrices for n ≥ 2.

Proof. IfL = ET Ln orL = ECQn, thenKL is the class of all non-n-colorable graphs.
It suffices to prove that KL is not finitely generated as a homomorphic class of graphs.
This is a corollary of the classical theorem of Erdős [22] which states that for each
positive n and g there is a graph of girth at least g which is not n-colorable. Here the
girth of a graph is the length of its shortest cycle (1 if the graph contains a loop). If
G → H , then the girth of H is at most equal to the girth of G. Thus if KL were finitely
generated, there would be an upper bound on the girth of graphs in KL, contradicting
the theorem of Erdős.

§11. A graph-theoretic description of Ext� ET L. In theory, the whole lattice
Ext� BD may be described in graph-theoretic terms. In practice, such a description
is rather cumbersome and inelegant, owing to the fact that we need to deal with
triples 〈G,H, k〉 rather than merely with individual graphs. Fortunately, restricting to
Ext� ET L will allow us to disregard the H component of these triples, and further
restricting to the interval [ET L, ET L�] will allow us to disregard the k component as
well. In this section, we work out the graph-theoretic description of Ext� ET L and its
restriction to [ET L, ET L�].

The key observation to recall here is that the lattice Ext� BD (Ext� ET L) is
isomorphic, by Theorem 2.2, to the lattice of classes of finite reduced models of BD
(ET L) closed under isomorphisms, Leibniz reducts of submatrices (S∗), and Leibniz
reducts of finite products (P∗

�). Because the class of finite reduced models of BD
(ET L) is closed under finite products, the last condition amounts to closure under
finite products (P�).

Theorem 11.1. Ext� BD (Ext� ET L) is isomorphic via L �→ Mod∗
� L to the lattice

of classes of matrices �(G,H, k) (with H = ∅) closed under finite direct products and
Leibniz reducts of submatrices.
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We already know that finite products correspond dually to finite disjoint unions. We
also know that the Leibniz reduct A∗ of a finite De Morgan matrix A corresponds
to the Leibniz subframe of the dual frame A+ of A (Proposition 8.6), obtained by
restricting to minA+ ∪ ∂[minA+]. The only remaining task is to describe in dual
terms the submatrices of a given finite De Morgan matrix A.

Subalgebras correspond dually to quotients of involutive posets in the duality of
Cornish & Fowler [11] for De Morgan algebras. If � is a compatible preorder on P,
i.e., u ≤ v implies u � v and moreover u � v implies ∂v � ∂u, then the quotient P/�
is the involutive poset of equivalence classes of � equipped with the natural order and
involution. If the relation � is the smallest compatible preorder on P such that u � v,
we say that � is the principal preorder generated by 〈u, v〉, or less formally that � is
obtained by adding u ≤ v to P. A principal quotient of P is a quotient by a preorder
generated by some pair 〈u, v〉.

If P is moreover a frame and � is a compatible preorder on P, then we can turn P/�
into a frame by taking the designated set to be the upward closure of DP with respect
to �. This is the only way to define a designated set on P/� which makes the canonical
map � : P → P/� strict. Submatrices of P+ thus correspond dually to quotients of P
in this sense, and up to isomorphism S∗(P+) consists of complex algebras of Leibniz
subframes of quotients of P.

It will be convenient to describe the result of taking the Leibniz reduct of a
submatrix, or dually the Leibniz subframe of a quotient frame, by a sequence of
simpler constructions. A proper immediate submatrix of a matrix A is a submatrix of
A which is a co-atom in the lattice of submatrices of A. An immediate submatrix of A
is either A itself or a proper immediate submatrix of A.

Dually, a proper immediate quotient of a finite frame P is a quotient of P with respect
to a compatible preorder which is an atom in the lattice of compatible preorders on P.
Each proper immediate quotient is principal.

Fact 11.2. If A is an immediate submatrix of B, then A∗ is isomorphic to C∗ for some
immediate submatrix C of B∗.

Proof. Let B = 〈B, G〉 and A = 〈A, F 〉 with A ≤ B and F = G ∩ B. Let 
 be the
Leibniz congruence ΩB(G). Then the restriction of 
 to A is compatible with F, hence
A∗ is isomorphic to the Leibniz reduct of the submatrix C := 〈A/
, F/
〉 of B∗. But
C is an immediate submatrix of B∗: if A/
 ≤ D ≤ B/
, then A ≤ �–1[D] ≤ B, where
� is the projection map � : B → B/
, so �–1[D] = A or �–1[B], and thus D = A/
 or
D = B/
.

Lemma 11.3. Let A and B be finite reduced models of BD. Then A ∈ S∗(B) if and only
if A can be obtained from B by repeatedly taking Leibniz reducts of proper immediate
submatrices. Equivalently, A ∈ S∗(B) if and only if A+ can be obtained from B+ by taking
Leibniz subframes of proper immediate quotients.

Proof. The second claim is simply a dual translation of the first claim. The right-
to-left direction holds because S∗S∗(K) = S∗(K). Conversely, A ∈ S∗(B) if and only if
there is a matrix C ≤ B such that A = C∗. But C ≤ B if and only if there is a sequence
of matrices C0 := C ≤ C1 ≤ ··· ≤ Ck := B such that Ci is an immediate submatrix of
Ci+1. By the previous lemma, C∗

i is the Leibniz reduct of an immediate submatrix of
C∗
i+1. But C∗

0 = A and C∗
k = B.
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The task of describing Ext� ET L has therefore been reduced to the task of describing
the Leibniz subframes of immediate quotients of the frames P(G, ∅, k). This can be
achieved by a straightforward case analysis.

Here by a homomorphic image of a graph G we mean a graph H such that there
is a surjective homomorphism G → H . In other words, H can be obtained from G
by identifying (collapsing) certain vertices and adding some edges. This should be
contrasted with Section 10, where we considered closure in the homomorphism order,
with no requirement of surjectivity.

Lemma 11.4. �(H, ∅, j) ∈ S∗(�(G, ∅, i)) if and only if the pair 〈H, j〉 can be obtained
from 〈G, i〉 by some sequence of operations of the following types:

1. 〈G, i〉 �→ 〈H, i〉 if H is a homomorphic image of G,
2. 〈G �K2, i〉 �→ 〈G � •, i〉,
3. 〈G �H, i〉 �→ 〈G, i + 1〉,
4. 〈G, i + 1〉 �→ 〈G, i〉 if i ≥ 1,
5. 〈G, 1〉 �→ 〈G, 0〉 if there is a loop in G.

Proof. The following case analysis shows that each of these operations can
be obtained by taking Leibniz subframes of immediate quotients repeatedly, and
conversely that taking the Leibniz subframe of an immediate quotient corresponds
to some sequences of these operations.

Consider points x and y in the frame P(G, ∅, i) with x � y such that the pair 〈x, y〉
generates an immediate quotient of P(G, ∅, i). Let P(H, ∅, j) be the Leibniz subframe
of this immediate quotient.

If x = u and y = ∂v for u, v ∈ G , then H is obtained from G by adding an edge
between u and v. If x = u and y = v, then the quotient is immediate only if each
neighbor of v in G is also a neighbor of u. If v has no neighbors, then H is obtained
by adding an edge between u and v. Otherwise, H is obtained by removing v from G.
This is equivalent to identifying u and v in G (even if u and v are neighbors or if v has
a loop).

If x = ∂u and y = v, then the quotient is immediate only if each neighbor of u is
adjacent to each neighbor of v. If u = v is an isolated vertex, then H is obtained from
G by adding a loop on this vertex. If u = v has a loop but no neighbors other than
itself, then H is obtained from G by removing this loop and j = i + 1. If u = v has
neighbors other than itself, then H is obtained from G by removing u. Otherwise, we
may assume that u �= v.

If the only neighbor of u is v (if the only neighbor of v is u), then H is obtained by
removing u (removing v) from G. If v (u) has neighbors other than u (v), this amounts
to identifying u (v) with some neighbor of v (u). Otherwise, this amounts to replacing
a K2 component by •. Finally, if u has a neighbor other than v and vice versa, then H
is obtained by removing u and v. This amounts to identifying u with some neighbor of
v and vice versa.

If x = u for u ∈ G and y = ∂y, then the quotient is immediate only if u has a
loop. Then H = G and j = i – 1. If x = ∂u and y = ∂y, then the quotient is never
immediate, being included in the quotient generated by 〈∂u, u〉.

Finally, if x = ∂x and y = ∂y, thenH = G and j = i – 1.
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We now have all the necessary ingredients to describe the lattice Ext� ET L in terms
of graphs. In the following, we refer to the operation of replacing G �K2 by G � • as
contracting an isolated edge.

Theorem 11.5. The map

L �→ 〈{G �= ∅ | �+(G) ∈ ModL}, {H �= ∅ | �+(H ) × B2 ∈ ModL}〉

is a dual isomorphism between Ext� ET L and the lattice (ordered by componentwise
inclusion) of pairs of classes of non-empty graphs 〈K0,K1〉 with K0 ⊆ K1 such that K0 and
K1 are closed under taking homomorphic images and disjoint unions and under contracting
isolated edges, and moreover

1. if G �H ∈ K1, then G ∈ K1,
2. if G ∈ K1 and G has a loop, then G ∈ K0.

Proof. By Lemma 11.4 this map yields a pair of classes of non-empty graphs
satisfying the required conditions. (The condition K0 ⊆ K1 follows from closure under
products and the fact that B2 is a model of each non-trivial super-Belnap logic.) Each
finitary extension of ET L is complete with respect to its models of the forms�+(G) and
�+(H ) × B2 for G non-empty, therefore the map is an order embedding. (The trivial
logic is complete with respect to the empty class of such models.) Finally, consider a
pair of classes of non-empty graphs 〈K0,K1〉 satisfying these conditions. We prove that
this pair arises from the logic L determined by the matrices �+(G) for G ∈ K0 and
�+(H ) × B2 forH ∈ K1.

By Theorem 2.2 we know that the class of all finite reduced models of L is obtained
by taking the Leibniz reducts of submatrices of finite direct products of the above
matrices �+(G) and �+(H ) × B2. We must therefore show that this does not result in
any new matrices of the forms �+(G) and �+(H ) × B2.

If the direct product only contains matrices of the form �+(G), then the closure of
K0 under disjoint unions and the operations mentioned in Lemma 11.4 ensures this. If
the product contains at least one matrix of the form �+(H ) × B2, then by the inclusion
K0 ⊆ K1 and the closure of K0 and K1 under disjoint unions the product has the form
�+(H ) × Bk2 for some H ∈ K1 and some k ≥ 1. The closure of 〈K0,K1〉 under the
conditions listed in Lemma 11.4 again ensures that �+(G) ∈ S∗(�+(H ) × Bk2 ) implies
that G ∈ K0, and �+(G) × B2 ∈ S∗(�+(H ) × Bk2 ) implies that G ∈ K1.

We shall not explicitly state the analogue of Theorem 11.5 for the whole lattice
Ext� BD, on account of it being too cumbersome. However, it is clear how such a
theorem would be obtained: one would merely extend the case analysis of Lemma 11.4
to all matrices of the form �(G,H, k). (There are no technical obstacles to be overcome
here, merely some tedious case analysis.) Instead of talking about pairs of classes of
graphs, one would talk about pairs of classes of pairs of graphs 〈G,H 〉.

Instead of going in the direction of increased complexity, let show how this
isomorphism can be simplified if we restrict to the interval [ET L, ET L�]. For such
logics L it suffices to record the non-empty loopless graphs G for which �+(G) is a
model of L. This yields a much neater description of [ET L, ET L�].

Theorem 11.6. The map

L �→ {G �= ∅ | �+(G) ∈ ModL and G has no loops}
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is a dual isomorphism between the interval [ET L, ET L�] ⊆ Ext� BD and the lattice
(ordered by inclusion) of classes of non-empty graphs without loops closed under taking
homomorphic images, disjoint unions, and contracting isolated edges.

Proof. Each of the matrices �+(H ) × B2 is a model of ET L� , while �+(G) ∈
Mod ET L� if and only if G contains a loop (Fact 9.8). Theorem 11.5 therefore yields
a dual isomorphism between [ET L, ET L�] and the lattice of pairs 〈K0,K1〉 satisfying
the conditions of Theorem 11.5 such that K0 contains each graph with a loop and
K1 contains each non-empty graph. Now consider the map which assigns to 〈K0,K1〉
the restriction L0 of K0 to loopless graphs. The closure conditions of Theorem 11.5
for 〈K0,K1〉 imply the required closure conditions for L0. Conversely, if L0 satisfies the
closure conditions of the current theorem and we take K1 to be the class of all non-
empty graphs and K0 to be the union of L0 and the class of all graphs with at least one
loop, then 〈K0,K1〉 rather trivially satisfies the closure conditions of Theorem 11.5.

Of course, closure under homomorphic images is interpreted here as closure
restricted to the class of loopless graphs.

We end with an example of how looking at super-Belnap logics from this dual,
graph-theoretic perspective can simplify our proofs. Namely, we provide an alternative,
and perhaps more transparent, proof of the completeness theorem for the logic K–

(Proposition 5.18) defined semantically by the matrix ETL8 shown in Figure 3.

Proposition 11.7. K– = LogETL8.

Proof. Observe that ETL8 = �+(G2), where G2 is obtained by adding a loop to K2,
i.e., the graph G2 consists of a reflexive and an irreflexive vertex which are neighbors.
By Theorem 9.3 and Fact 9.9, the logic K– is complete with respect to the class of all
matrices �+(G) such that each irreflexive vertex of G has a reflexive neighbor. We must
therefore show that if �+(G2) is a model of a super-Belnap logic L, then so is each
such matrix �+(G). By Theorem 11.5 it suffices to show that each such graph G can
be obtained from G2 by means of the operations allowed by this theorem. Indeed, we
can take a copy of G2 for each irreflexive vertex, a reflexive singleton for each reflexive
vertex, and consider their disjoint union H. A graph homomorphism from H onto G
is easily constructed using the assumption that each irreflexive vertex has a reflexive
neighbor.
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Michael Dunn on Information Based Logics. Outstanding Contributions to Logic, Vol.
8. Berlin: Springer International Publishing.
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[27] Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices:
An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations
of Mathematics, Vol. 151. San Diego, CA: Elsevier Science.

[28] Gorbunov, V. A. (1998). Algebraic Theory of Quasivarieties. Siberian School
of Algebra and Logic. New York: Springer.

[29] Grätzer, G., & Quackenbush, R. W. (2010). Positive universal classes in locally
finite varieties. Algebra Universalis, 64(1), 1–13.
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[38] Přenosil, A. (2018). Reasoning with Inconsistent Information. Ph.D. Thesis,
Charles University.

[39] Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1),
219–241.

[40] Pynko, A. P. (1995). Characterizing Belnap’s logic via De Morgan’s laws.
Mathematical Logic Quarterly, 41(4), 442–454.

[41] ———, (1999). Implicational classes of De Morgan lattices. Discrete Mathe-
matics, 205(1–3), 171–181.

[42] ———, (2000). Subprevarieties versus extensions. Application to the Logic of
Paradox. The Journal of Symbolic Logic, 65(2), 756–766.

[43] Rivieccio, U. (2011). On Extensions of the Belnap–Dunn Logic. Unpublished
research notes.

[44] ———, (2012). An infinity of super-Belnap logics. Journal of Applied Non-
Classical Logics, 22(4), 319–335.

[45] Sankappanavar, H. P. (1980). A characterization of principal congruences of
De Morgan algebras and its applications. In Arruda, A. I., Chuaqui, R., and Da
Costa, N. C. A., editors. Mathematical Logic in Latin America: Proceedings of the
IV Latin American Symposium on Mathematical Logic. Studies in Logic and the
Foundations of Mathematics, Vol. 99. Santiago: Elsevier, pp. 341–349.

[46] Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-Conclusion Logic. Cambridge:
Cambridge University Press.
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