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Abstract
This paper proposed a reinforcement learning-based adaptive guidance method for a class of spiral-diving manoeu-
ver guidance problems of reentry vehicles subject to unknown disturbances. First, the desired proportional
navigation guidance law is designed for the vehicle based on the initial conditions, terminal constraints and the
curve involute principle. Then, the first-order multivariable nonlinear guidance command tracking model consid-
ering unknown disturbances is established. And the controller design problem caused by the coupling of control
variables is overcome by introducing the coordinate transformation technique. Moreover, the actor-critic networks
and corresponding adaptive weight update laws are designed to cope with unknown disturbances. With the help
of Lyapunov direct method, the stability of the system is proved. Subsequently, the range values of the guidance
parameters are analysed. Finally, the validity as well as superiority of the proposed method are verified by numerical
simulations.

Nomenclature
RBF radial basis function
RL reinforcement learning
VST virtual sliding target

1.0 Introduction
Reentry vehicles are a class of unpowered aircraft capable of flying in near space, with special large lift-
to-drag ratio aerodynamic profile, high manoeuverability and strong penetration ability. Different from
traditional inertial vehicles, reentry vehicles rely on aerodynamic control and can achieve large lateral
manoeuvering flight, which can significantly improve survivability [1, 2]. However, where there is a
spear, there is a shield. Reconnaissance surveillance and interception technologies for reentry vehicles
have also made great progress throughout the world [3, 4]. The interference and interception measures
faced by the vehicles in the dive flight phase are more diverse than those in the midcourse and reentry
phases, and the probability of being successfully intercepted will be greatly increased [5]. Therefore, it
is a very interesting research topic to provide a manoeuver for reentry vehicles in the dive phase with
high penetration ability and strong anti-disturbance ability [6, 7]. When the reentry vehicle does not
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have any prior information about the interceptor weapon, it is essential to choose a manoeuver mode
that is difficult to predict and has high penetration probability. The typical ones are snake manoeuver,
roller manoeuver and spiral manoeuver [8]. Among them, the spiral manoeuver has become a promising
research direction in recent years because of the advantages of large manoeuver range, time-varying
manoeuver frequency and unpredictable trajectory [9].

The main guidance techniques used for the dive phase are optimal guidance law, predictor-corrector
guidance law, sliding mode variable structure guidance law and proportional navigation guidance law
[10, 11]. An optimal guidance law design method based on block pulse function is proposed by Dou
et al. [12]. It is able to optimise the landing angle, miss distance and control energy consumption simul-
taneously. Wang et al. [13] proposes an energy-based predictor-corrector guidance algorithm to design
longitudinal and lateral guidance laws, respectively. Li and Qian [14] design a three-dimensional guid-
ance law considering target manoeuver, impact angle constraint and input saturation by using integral
sliding mode control and adaptive control. Dhananjay and Ghose [15] develop a proportional naviga-
tion guidance law incorporating a time-to-go estimation algorithm to strike stationary targets. Among
many guidance methods, the proportional navigation guidance has been widely studied in the field of
guidance because of its advantages of simplicity, high efficiency and small miss distance. Nevertheless,
the proportional navigation guidance is not competent for flight missions that need to perform specific
manoeuvering modes. For this reason, some studies have introduced the concept of virtual sliding tar-
get (VST) to extend the application scope of the proportional navigation guidance. Intuitively, it is the
mapping of the real flight trajectory of the vehicle to the trajectory of the virtual sliding target. And the
end point of the virtual sliding target overlaps with the real target point. As long as the vehicle flies in
the direction pointing to the virtual sliding target, it will eventually hit the real target. In the Mozaffari
et al. [16] and Raju and Ghose [17], specific manoeuvers of the vehicle are achieved by controlling the
speed and direction of the virtual sliding target. In this case, the parameters of the virtual sliding target
are selected empirically. By introducing a virtual sliding target, Hu et al. [18] designs a two-stage guid-
ance method combining non-singular terminal sliding mode guidance law and proportional navigation
guidance law, which can satisfy both impact angle and time constraints. For the stationary targets, an
adaptive proportional guidance navigation law based on the virtual sliding target is proposed by He and
Yan [19] to guide the vehicle to complete the spiral dive manoeuver. And the scope of application of
this method is extended to low-speed moving targets in He et al. [20]. Despite the very large contribu-
tions made by the mentioned works, none of them consider the effect of unknown disturbances on the
guidance effectiveness.

Fortunately, many nonlinear control methods are used to deal with the adverse effects of unknown dis-
turbances on the controlled system. Some of these are inherently robust to unknown disturbances, while
others combine various types of disturbance observers [21, 22]. Sliding mode control is frequently used
to design controllers for vehicles because of its insensitivity to matched disturbances [23]. Shen et al.
[24] proposes a continuous adaptive super-twisting sliding mode tracking control method, which com-
bines a conventional super-twisting sliding mode controller with an adaptive gain technique to overcome
bounded disturbances. By exploiting the constraint handling capability and enhanced anti-disturbance
capability of model predictive control, Chai et al. [25] presents a robust model predictive attitude control
algorithm. The nonlinear feedback law is designed, and the system constraints are tightened to ensure
that robust constraints are satisfied for all allowed uncertainties. A resilient attitude control method for
spacecraft is proposed by Cao and Xiao [26], which utilises a nonlinear disturbance observer to com-
pensate for unknown disturbances. Xiang et al. [27] proposes an adaptive backstepping attitude control
method for hypersonic vehicles with which a nonlinear disturbance observer is also used to estimate
unknown disturbances. In Refs (28–30), a single group or two groups of neural networks are utilised
to fit the unmodeled dynamics and external disturbances of hypersonic vehicles. In addition, reinforce-
ment learning (RL) is also introduced into the design of the controller. Ouyang et al. [31] introduces
actor-critic design into the tracking control problem of elastic joint robots to fit the system uncertain-
ties. Shi et al. [32] proposes a robust adaptive safety control framework for hypersonic vehicles based
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on reinforcement learning, in which the actor-critic networks are used to approximate the optimal con-
troller. Wang et al. [33] develops a reinforcement learning-based adaptive tracking control method for
a class of semi-Markovian non-Lipschitz uncertain systems, in which actor-critic networks are used to
handle unmatched disturbances. The actor-critic networks in reinforcement learning not only inherit the
good nonlinear processing ability of neural networks, but also introduce the error-related cost function.
Therefore, they have better performance than neural networks in theory.

Combined with the previous discussion, this paper further studies the problem of spiral-diving
manoeuver guidance for reentry vehicles considering unknown disturbances based on the results
achieved in He and Yan [19] and He et al. [20]. The main contributions of this paper are as follows:

• Compared with He and Yan [19] and He et al. [20], this paper considers the adverse effects
of unknown disturbances on the spiral-diving manoeuver of reentry vehicles. Specifically, the
guidance command tracking control problem model considering unknown disturbances is estab-
lished. This model is abstracted as a first-order coupled multivariable nonlinear system, which
is more relevant to engineering practice.

• The coordinate transformation technique is employed to overcome the controller design chal-
lenge caused by the coupling of control variables. Combined with the recursive design technique,
the first-order time derivative of the control variables is finally obtained, and the control variables
can be obtained by integrating it.

• By designing the actor-critic networks and the corresponding adaptive weight update law, the
unknown disturbances are compensated with high accuracy. Furthermore, by using the Lyapunov
method, it is proved that the tracking errors are uniformly ultimately bounded. As a result, the
assumption that the actual guidance commands are equivalent to the desired guidance commands
made in the convergence analysis of the guidance parameters in He and Yan [19] and He et al.
[20] is verified in this paper.

2.0 Problem formulation and preminimaries
2.1 Problem statement
The centroid dynamic model of unpowered reentry vehicle subjected to unknown disturbances is shown
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Vcosθcosψv

ẏ = Vsinθ

ż = −Vcosθsinψv

V̇ = − X

m
− gsinθ

θ̇ = Ycosγv

mV
− g

V
cosθ + d1 (t)

ψ̇v = − Ysinγv

mVcosθ
+ d2 (t)

(1)

where x, y, z are the positions of the vehicle in the inertial frame. V is the velocity. θ represents the angle
between the velocity vector and the horizontal plane, i.e., the path angle. When the velocity vector is
above the horizontal plane, the θ is positive.ψv represents the angle between the projection of the velocity
vector in the horizontal plane and the x axis, i.e., the deflection angle, measured counterclockwise in the
horizontal plane. α and γv are the angle-of-attack and back angle. m and g are mass and gravitational
acceleration. d1 (t) and d2 (t) are the unknown disturbances to the vehicle. X and Y are the drag and lift
forces, and the expression of Y is

Y = (C0
y + Cα

y α
)

qSref (2)
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where C0
y and Cα

y are the lift coefficients. Sref is the reference area. q is the dynamic pressure, and its
expression is

q = 1

2
ρV2 (3)

where ρ is the atmospheric density.
Define ξ = [θ ,ψv]

T as the state variables. Then, when the reentry vehicle performs a spiral-diving
manoeuver, the desired guidance commands can be expressed as ξd = [θd,ψvd]T . Up to now, the problem
of spiral-diving guidance for reentry vehicle subject to unknown disturbances can be essentially trans-
lated into the problem of tracking the desired guidance command. And this problem can be organized
as follows: {

ξ̇ = f1 (ξ)+ g1 (ξ , u)+ d

χo = ξ
(4)

where u = [α, γv

]T are the control variables. χo is the output vector. d = [d1, d2]T . f1 and g1 are smooth
nonlinear functions that can be expressed as

f1 (ξ)=
⎡
⎣− g

V
cosθ

0

⎤
⎦ (5)

g1 (ξ , u)=

⎡
⎢⎢⎢⎣
(
C0

y + Cα
y α
)

qSref cosγv

mV

−
(
C0

y + Cα
y α
)

qSref sinγv

mVcosθ

⎤
⎥⎥⎥⎦ (6)

The tracking error can be expressed as

e1 = ξ − ξd (7)

Assumption 1. The system represented by Equation 4 is controllable, which satisfies∣∣∣∣∂g1 (ξ , u)

∂u

∣∣∣∣ �= 0 (8)

Lemma 1. [34] For a Lyapunov function L (t), if its initial value L (0) is bounded and its time
derivative satisfies

L̇ (t)≤ −κL (t)+ δ (9)

where κ > 0 and δ > 0 are constants, then L (t) is bounded.
Lemma 2. [35] For vectors A ∈R

n and B ∈R
n, there always holds

2ATB ≤ ‖A‖2 + ‖B‖2 (10)

‖AB‖ ≤ ‖A‖ · ‖B‖ (11)

Remark 1. As shown in Equation 1, the impact of unknown disturbances are considered in this paper
when studying the spiral-diving guidance problem. This work is missing in He and Yan [19] and He
et al. [20]. For this reason, this paper is complemented by the design of the desired guidance command
tracking system as shown in Equation 4. Further, the objective of this paper is to design a reinforcement
learning based adaptive controller for system 4 such that ‖e1‖ ≤ ẽ1 as t → ∞, where ẽ1 is a sufficiently
small positive constant.
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2.2 Spiral trajectory parameters solving
The logarithmic spiral trajectory can be defined as

rs = r (ϑ)= r0e
ϑcot
 (12)

where r0 is the initial polar diameter. ϑ is the polar angle. 
 is the angle between the component of the
vehicle velocity vector in yaw plane and the polar diameter. It can be found from Equation 12 that once
the values of r0 and 
 are acquired, the shape of the spiral trajectory can be determined uniquely.

Figure 3 in He et al. [20] shows the geometric representation of the spiral trajectory in the yaw
plane. Where M0 and Ms are the initial position and the current desired position of the vehicle. T is the
target position. pxpzp denotes the polar frame, the pole p coincides with the rotation centre of the spiral
trajectory, the polar axis pzp points to the M0, and the polar axis pxp is perpendicular to pzp. rs0, rs and
rs1 are the polar diameters at M0, Ms and T , and the corresponding polar angles and deflection angles
are ϑ0, ϑ , ϑ1 and ψvs0, ψvs, ψvs1, respectively. η is the rotation angle of the polar frame with respect to
the inertial frame. If let (x0, z0) and (x1, z1) represent the coordinates at M0 and T , respectively, then the
initial condition set H0 and terminal constraint set H1 of the vehicle can be defined as

H0 = {(x0, z0) , ϑ0,ψvs0} , H1 = {(x1, z1) ,ψvs1}
It is worth noting that the definition of deflection angle direction in this paper is contrary to that in

He et al. [20]. Therefore, in order to facilitate understanding, it is necessary to deduce new expressions
related to the determination of spiral trajectory parameters. Referring to Fig. 3 in He et al. [20], the main
geometrical relation can be expressed as follows:

π

2
+ψvs = ϑ + η+
 (13)

Substituting the ψvs0 and ψvs1 into Equation 13, we get

η= π

2
+ψvs0 −
 (14)

ϑ1 =ψvs1 −ψvs0 (15)

The coordinates of the p can be solved by[
xp

zp

]
= 1

K1 − K0

[
K1x0 − K0x1 + K0K1 (z1 − z0)

K1z1 − K0z0 − (x1 − x0)

]
(16)

where K0 and K1 are slopes of the rays pM0 and pT , respectively, and their expressions are:

Ki = tan
(π

2
+ψvsi −


)
, i = 0, 1 (17)

Refer to He et al. [20] for the calculation of xp and zp when K0 and K1 do not exist. Next, the lengths
of the polar diameters rs0 and rs1 can be calculated:

‖rs0‖ =
∣∣∣∣ z0 − zp

sin (ψvs0 −
)

∣∣∣∣ (18)

‖rs1‖ =
∣∣∣∣ z1 − zp

sin (ψvs1 −
)

∣∣∣∣ (19)

Dividing Equation 19 by Equation 18 and combining Equations 12 and 17 yields

In

∣∣∣∣cos (ψvs0 −
−μ)

cos (ψvs1 −
−μ)

∣∣∣∣= ϑ1cot
 (20)

where μ= arctan
[
(x0 − x1) / (z0 − z1)

]
.
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Once the values in the sets H0 and H1 are given, 
 can be acquired by solving Equation 20. By
substituting 
 into Equations 16, 18, 14 and 15, the polar coordinates

(
xp, zp

)
, initial polar diameter r0,

the rotation angle η of the polar frame with respect to the inertial frame and the terminal polar angle ϑ1

can be calculated, respectively.

Remark 2. This subsection presents the procedure for calculating the spiral trajectory parameters in the
yaw plane. Without loss of generality, the spiral trajectory in three-dimensional space can be obtained
by stretching the yaw plane spiral trajectory along the vertical direction.

2.3 Neural networks in reinforcement learning
Neural networks are an important part of reinforcement learning and are powerful in coping with
nonlinearities. With the help of neural networks, a nonlinear function f can be expressed as

f = WT�
(
Z̄
)+ ε

(
Z̄
)

(21)

where W ∈R
l is the weight vector, l is the number of nodes in the hidden layer. Z̄ = [z̄1, z̄2, . . . , z̄m]T ∈

R
m are the inputs of neural networks with dimension m. �

(
Z̄
)= [ϕb1, ϕb2, . . . ϕbl]

T ∈R
l are the basis

functions. ε
(
Z̄
)

is the function reconstruction error. The optimal approximation can be obtained by
properly selecting the number of network nodes.

The radial basis functions (RBF) neural networks are selected as the basic network frame in this
paper, and its basis functions can be described as

ϕj (Z)= exp

(
−‖Z − ζj‖2

ς 2
j

)
(22)

where ζj =
[
ζj1, ζj2, . . . , ζjm

]T is the centre vector of the j-th node in the hidden layer. ςj is the width value.
Lemma 3. [31] The basis function �

(
Z̄
)

of neural networks is bounded, which satisfies
∥∥� (Z̄)∥∥≤

�M and
∥∥�̇ (Z̄)∥∥≤�dM, where �M and �dM are positive constants.

Lemma 4. [31] If the ideal weight W∗ is obtained, then there exists
∣∣ε (Z̄)∣∣≤ εm and

∣∣ε̇ (Z̄)∣∣≤ εdm,
where εm and εdm are positive constants.

3.0 Main results
This section fully presents the reinforcement learning spiral-diving manoeuver guidance method pro-
posed in this paper. The concept of virtual sliding target is employed to design the desired proportional
navigation guidance law. With the help of coordinate transformation technique, the desired guidance
command tracking controller design challenge arising from the coupling of control variables is over-
come. And the actor-critic networks and the corresponding adaptive weight update law are designed to
approximate the unknown disturbances. After proving that the tracking errors are uniformly ultimately
bounded by using the Lyapunov method, the range of guidance parameters is derived. The diagram of
proposed reinforcement learning spiral-diving manoeuver guidance framework for reentry vehicle is
shown in Fig. 1.

3.1 Desired proportional navigation guidance law
Figure 4 in He et al. [20] displays the motion of the vehicle and the virtual sliding target in the yaw
plane. Where M is the projection of the current position of the vehicle in the yaw plane, and Ms is the
closest point of M to the spiral trajectory.

Assumption 2. The polar angle at M is the same as the polar angle at Ms. Moreover, in order to keep
the shape of the spiral trajectory invariant, the pole p is assumed to have the same dynamic properties
as the target.
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Figure 1. Reinforcement learning adaptive spiral-diving manoeuver guidance framework.

Under Assumption 2, the polar angle ϑ corresponding to the M can be obtained by solving the
following equation:(

x − xp

)
sin (ϑ + η+
)+ (z − zp

)
cos (ϑ + η+
)= aeϑcot
cos
 (23)

The time derivative of Equation 23 can be arranged to obtain the time derivative of ϑ :

ϑ̇ = Vcosθsin (ϑ + η+
−ψv)− Vtsin (ϑ + η+
−ψvt)[‖rs‖cos2
/sin
− (x − xp

)
cos (ϑ + η+
)+ (z − zp

)
sin (ϑ + η+
)

] (24)

where Vt and ψvt are the size and direction angle of the target velocity, respectively. Note that ψvt is
meaningless when the target is stationary, i.e., Vt = 0.

The trajectory of the virtual sliding target T ′ is designed based on the curve involute principle and is
denoted as

rvt =
[

xp

zp

]
+ rs

[
sin (ϑ + η)

cos (ϑ + η)

]
+ lgo

[
sin (ϑ + η+
)

cos (ϑ + η+
)

]
(25)

where rvt = [xvt, zvt]
T represents the coordinate vector of the T ′. lgo is the remaining length of the spiral

trajectory and its value can be obtained by integrating Equation 12. The time derivative of Equation 25
yields

Vvt =
[

ẋvt

żvt

]
= Vt

[
cosψvt

−sinψvt

]
+ lgoϑ̇

[
cos (ϑ + η+
)

−sin (ϑ + η+
)

]
(26)

The virtual line-of-sight deflection angle from the current position of T ′ pointing to M is
defined as

ϕ = arctan
x − xvt

z − zvt

(27)

Taking the time derivative of Equation 27, and combining with Equation 1 and Equation 26, the
following equation can be obtained:

ϕ̇ = Vcosθ

s
sin (δψv)+ ϑ̇cos2 (�ϕ)− Vt

s
cos (ψvt − ϕ) (28)
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where

δψv = π

2
+ ϕ −ψv (29)

�ϕ = −π
2

+ψvs − ϕ (30)

s =
√
(x − xvt)

2 + (z − zvt)
2 is the remaining flight distance.

Similarly, the virtual line-of-sight path angle from the current position of T ′ pointing to M is
defined as

φ = arctan
(y

s

)
(31)

Combining Equations 1 and 26, the time derivative of Equation 31 can be derived:

φ̇ = V

r
(cosφsinθ + sinφcosθcos (δψv))+ lgo

r
ϑ̇sinφsin (�ϕ)+ Vt

r
sinφsin (ϕ −ψvt) (32)

where r =√s2 + y2 is the distance of the vehicle from the virtual target.
Furthermore, taking the time deriving of Equation 13 yields

ψ̇vs = ϑ̇ (33)

Based on Equations 28, 32 and 33, the desired proportional navigation guiding law of the vehicle
with respect to the virtual sliding target as shown in Equations 34 and 35 can be designed:

ψ̇vd = −λ1ϕ̇ + (1 + λ1) ψ̇vs (34)

θ̇d = −λ2φ̇ (35)

where λ1 and λ2 are user-defined guidance parameters, and their value ranges will be determined later.

3.2 Reinforcement learning adaptive controller
For the first-order multivariate tightly coupled system 4 considering the effects of unknown disturbances,
treat g1 (ξ , u) as the virtual control variable and define

e2 = g1 (ξ , u)− υ (ξ , u) (36)

where υ is the virtual control law.
Taking the time derivative of Equation 7 and combining it with Equation 36 yields

ė1 = f1 + e2 + υ + d − ξ̇d (37)

so the virtual controller can be designed as

υ = −k1e1 − f1 − d̂ + ξ̇d (38)

where k1 > 0 is a user-defined control gain. d̂ is the estimation of d.
Taking the time derivative of Equation 36 leads to

ė2 = ∂g1

∂ξ
ξ̇ + ∂g1

∂u
u̇ − υ̇ (39)

so the time derivative of the controller u can be designed as

u̇ =
(
∂g1

∂u

)−1 (
−k2e2 − e1 − ∂g1

∂ξ

(
f1 + g1 + d̂

)
+ υ̇

)
(40)

where k2 > 0 is a user-defined control gain. By integrating Equation 40, u can be obtained.
From Equations 38 and 40, it is clear that how to obtain the estimate of d is the premise of design-

ing the controller u. Ingeniously, the actor-critic networks in reinforcement learning provide a superior
alternative to deal with the problem.
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In the framework of the actor network, d can theoretically be expressed by

d = W∗T
a �a (ξ)+ εa (41)

where �a ∈R
la is the basis function of dimension la, which satisfies ‖�a‖ ≤�aM. εa ∈R

2 is the actor
reconstruction error and satisfies ‖εa‖ ≤ εam. W∗

a ∈R
la×2 is the real actor network weight. The reality is

that only the estimation of d can be obtained:

d̂ = ŴT
a�a (ξ) (42)

where Ŵa ∈R
la×2 is the estimated weight of the actor network.

In the framework of the critic network, the integral penalty function can be designed as

J (t)= ∫∞
τ

L (t) dt (43)

where L (t)= eT
1 Qe1, Q ∈R

2×2 is a positive definite matrix. J can theoretically be expressed by

J = W∗T
c �c (e1)+ εc (44)

where �c ∈R
lc is the basis function of dimension lc, which satisfies ‖�̇c‖ ≤�cdM. εc is the critic recon-

struction error and satisfies |ε̇c| ≤ εcdm. W∗
c ∈R

lc is the real critic network weight. The reality is that only
the estimation of J can be obtained:

Ĵ = ŴT
c �c (e1) (45)

where Ŵc ∈R
lc is the estimated weight of the critic network.

Define the weight error of critic network as Ŵc = Ŵc − W∗
c . In addition, define the critic error as

ec =L+ ˙̂J =L+ ŴT
c �̇c (46)

and the critic error function can be designed as

Ec = 1

2
e2

c (47)

According to the gradient descent criterion, the adaptive update law of Ŵc can be deduced as
follows:

˙̂Wc = −λc

(
L+ ŴT

c �̇c

)
�̇c − λc�cŴc (48)

where λc > 0 and �c > 0 are the user-defined learning rates of the critic network.
Define the weight error of actor network as Ŵa = Ŵa − W∗

a . And define the approximation error
Ha as

Ha = ŴT
a�a − W∗T

a �a = ŴT
a�a (49)

Then, the actor error can be defined as

ea = Ha +�aĴ (50)

where �a ∈R
2×1 is the user-defined gain matrix satisfying ‖�a‖ ≤�aM, and �aM is a positive constant.

Furthermore, the actor error function can be designed as

Ea = 1

2
eT

a ea (51)

According to the gradient descent criterion, the adaptive update law of Ŵa can be deduced as
follows:

˙̂Wa = −λa�ae
T
a − λa�aŴa

= −λa�a

(
�T

a Ŵa + Ĵ�T
a

)
− λa�aŴa (52)

where a> 0 and �a > 0 are the user-defined learning rates of the actor network.
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3.3 Stability and convergence analysis

Theorem 1. Consider the Assumptions 1–2 and Lemmas 1–4, if the control law 40 is designed for system
4, the actor-critic networks 42 and 45 and the corresponding adaptive weight update laws 48 and 52 are
designed to cope with d, and the Lyapunov candidate function as shown in Equation 53 is constructed,
then the tracking error e1 is uniformly ultimately bounded stable. As well, the weight errors Ŵa and Ŵc

of the actor-critic networks are uniformly ultimately bounded.

Proof . Construct the Lyapunov candidate function as follows:

L = L1 + L2 + L3 (53)

where

L1 = 1

2
eT

1 e1 + 1

2
eT

2 e2 (54)

L2 = 1

2
Tr
(

ŴT
a λ

−1
a Ŵa

)
(55)

L3 = 1

2
Tr
(

ŴT
c λ

−1
c Ŵc

)
(56)

By taking time derivative of Equation 54 and combining Equations 37–42, it can be deduced that

L̇1 = eT
1 ė1 + eT

2 ė2

= −k1eT
1 e1 + eT

1 e2 − eT
1 ŴT

a�a + eT
1εa − k2eT

2 e2 − eT
2 e1 − eT

2

∂g

∂ξ
ŴT

a�a + eT
2

∂g

∂ξ
εa

≤ −k1eT
1 e + 1

2
eT

1 e1 + 1

2
�T

a ŴaŴ
T
a�a + 1

2
eT

1 e1 + 1

2
εT

a εa

− k2e
T
2 e2 + 1

2
eT

2

∂g

∂ξ

(
∂g

∂ξ

)T

e2 + 1

2
�T

a ŴaŴ
T
a�a + 1

2
eT

2

∂g

∂ξ

(
∂g

∂ξ

)T

e2 + 1

2
εT

a εa

≤ − (k1 − 1) eT
1 e1 −

(
k2 − Tr

(
∂g

∂ξ

(
∂g

∂ξ

)T
))

eT
2 e2 +�2

aMTr
(

ŴT
a Ŵa

)
+ ε2

am (57)

By taking time derivative of Equation 55 and combining Equation 52, it can be deduced that

L̇2 = Tr
(

ŴT
a λ

−1
a

˙̂Wa

)
= Tr

(
W̃T

a λ
−1
a

[
−λa�a

(
�T

a Ŵa + Ĵ�T
a

)
− λa�aŴa

])
≤ −Tr

(
W̃T

a�a�
T
a W̃a

)+ 1

2
Tr
(
W̃T

a�a�
T
a W̃a

)+ 1

2
Tr
(
WT

a�a�
T
a Wa

)
+ 1

2
Tr
(
W̃T

a�a�
T
a W̃a

)+ 1

2
Tr
(
W̃T

c �c�
T
a�a�

T
c W̃c

)
+ 1

2
Tr
(
W̃T

a�a�
T
a W̃a

)+ 1

2
Tr
(
WT

c �c�
T
a�a�

T
c Wc

)
− �aTr

(
W̃T

a W̃a

)+ 1

2
�aTr

(
W̃T

a W̃a

)+ 1

2
�aTr

(
WT

a Wa

)
≤ −1

2

(
�a −�2

aM

)
Tr
(
W̃T

a W̃a

)+ 1

2

(
�a +�2

aM

)
Tr
(
WT

a Wa

)
+ 1

2
�2

cM�
2
aMTr

(
W̃T

c W̃c

)+ 1

2
�2

cM�
2
aMTr

(
WT

c Wc

)
(58)
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Similarly, by taking time derivative of Equation 3.3 and combining Equation 48, it can be deduced
that

L̇3 = Tr
(
W̃T

c λ
−1
c W̃c

)
= Tr

(
W̃T

c λ
−1
c

[
−λc

(
L+ ŴT

c �̇c

)
�̇c − λc�cŴc

])

≤ −Tr
(
W̃T

c �̇c�̇
T
c W̃c

)+ Tr
(
W̃T

c �̇c�̇
T
c W̃c

)+ Tr
(
WT

c �̇c�̇
T
c Wc

)+ 1

2
Tr
(
W̃T

c �̇c�̇
T
c W̃c

)
+ 1

2
ε2

cdm − �cTr
(
W̃T

c W̃c

)+ 1

2
�cTr

(
W̃T

c W̃c

)+ 1

2
�cTr

(
WT

c Wc

)
≤ −1

2

(
�c −�2

cdM

)
Tr
(
W̃T

c W̃c

)+ 1

2

(
�c + 2�2

cdM

)
Tr
(
WT

c Wc

)+ 1

2
ε2

cdm (59)

At last, by taking time derivative of Equation 53 and substituting Equations 57–59, we get

L̇ = L̇1 + L̇2 + L̇3

≤ − (k1 − 1) eT
1 e1 −

(
k2 − Tr

(
∂g

∂ξ

(
∂g

∂ξ

)T
))

eT
2 e2 − 1

2

(
�a − 3�2

aM

)
Tr
(
W̃T

a W̃a

)

− 1

2

(
�c −�2

cdM −�2
cM�

2
aM

)
Tr
(
W̃T

c W̃c

)+ ε2
am + 1

2
ε2

cdm

+ 1

2

(
�a +�2

aM

)
Tr
(
WT

a Wa

)+ 1

2

(
�c + 2�2

cdM +�2
cM�

2
aM

)
Tr
(
WT

c Wc

)
(60)

Equation 60 satisfies L̇ ≤ −κL (t)+ δ under the condition that (k1 − 1) > 0,
(

k2 − Tr

(
∂g
∂ξ

(
∂g
∂ξ

)T
))

>

0,
(
�a − 3�2

aM

)
> 0 and

(
�c −�2

cdM −�2
cM�

2
aM

)
> 0, where

κ = min

⎧⎨
⎩ 2 (k1 − 1) , 2

(
k2 − Tr

(
∂g
∂ξ

(
∂g
∂ξ

)T
))

,(
�a − 3�2

aM

)
,
(
�c −�2

cdM −�2
cM�

2
aM

)
⎫⎬
⎭

δ = 1

2

(
ηa +�2

aM

)
Tr
(
WT

a Wa

)+ 1

2
�2

cM�
2
aTr
(
WT

c Wc

)+ ε2
am + 1

2
ε2

cdm

Therefore, e1, e2, W̃a and W̃c are uniformly ultimately bounded.

Remark 3. e1 is bounded indicating that θ → θd, ψv →ψvd as t → ∞, that is, the objective of this
paper highlighted in Remark 1 is satisfied. W̃a, W̃c are bounded indicating that Ŵa → W∗

a , Ŵc → W∗
c as

t → ∞, that is, d̂ → d as t → ∞. In conclusion, the designed actor-critic networks and the corresponding
adaptive weight update laws can cope with unknown disturbances well.

Theorem 2. For the spiral trajectory in the yaw plane, consider Theorem 1 and the geometric relation-
ship shown in Fig. 4 of He et al. [20]. In addition, let the initial angle between the velocity vector of
the vehicle and the virtual line-of-sight be such that |δψv (0)|< π

2
. If |θ |< π

2
, the guidance parameter

λ1 <−1 renders s → 0 as t → ∞, regardless of the value of V . The guidance parameter λ1 <−2 not
only renders the flight trajectory converges to the spiral trajectory, but also renders the velocity vector
of the vehicle converges to the virtual line-of-sight, meaning that ϕ −ψv → − π

2
and ϕ −ψvs → − π

2
.

Proof. It follows from Theorem 1 that

ψv =ψvd + e12 (61)

where |e12| is an arbitrarily small constant. And the time derivative of Equation 61 gives

ψ̇v = ψ̇vd (62)
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Taking the time derivative of Equation 29 and substituting Equations 28, 34 and 62, the following
equation can be derived:

δψ̇v = ϕ̇ − ψ̇v = (1 + λ1)
(
ϕ̇ − ψ̇vs

)
= (1 + λ1)

(
Vcosθ

s
sin (δψv)− Vt

s
cos (ψvt − ϕ)− ϑ̇sin2 (�ϕ)

)
(63)

Neglecting the second-order small quantity ϑ̇sin2 (�ϕ) and the action term Vt
s

cos (ψvt − ϕ) of the
low-speed moving target in Equation 63, it can be rewritten as

δψ̇v = (1 + λ1)
Vcosθ

s
sin (δψv) (64)

A similar treatment to time derivative of s produces

ṡ = −Vcosθcos (δψv) (65)

Dividing Equation 65 by Equation 64, the Equation 66 can be obtained:
ds

d (δψv)
= − s

1 + λ1

cos (δψv)

sin (δψv)
(66)

And the Equation 67 can be obtained by integrating the Equation 66:

s = �|sin (δψv)|− 1
1+λ1 (67)

where � > 0 is the bounded integration constant.
If δψv (t) satisfies 0< δψv (0) < π

2
at t = 0, then by substituting Equation 67 into Equation 64, we

can get

δψ̇v = (1 + λ1)
Vcosθ

�
(sin (δψv))

λ1+2
λ1+1 (68)

Note that Vcosθ > 0 always holds no matter in which flight state. In the case 0< δψv (0) < π

2
,

when the guidance parameter λ1 <−1, there is δψ̇v < 0, which indicates that δψv → 0 as t → ∞. From
Equation 67, it can be found that the remaining flight distance between the vehicle and the virtual slid-
ing target s → 0 as δψv → 0. Furthermore, from Equation 29, it can be found that ϕ −ψv → − π

2
as

δψv → 0. From Equation 68, when λ1 <−2, there is δψ̇v → 0 as δψv → 0, so ϕ̇ − ψ̇v → 0, and combin-
ing Equations 34 and 62, it can be observed that ψ̇vs → ψ̇v. Therefore, the flight trajectory converges to
the spiral trajectory. This means that �ϕ→ 0, i.e. ϕ −ψvs → − π

2
. δψv → 0 and �ϕ→ 0 indicate that

velocity vector of the vehicle converges to the virtual line-of-sight. The same conclusion can be obtained
when − π

2
< δψv (0) < 0.

Theorem 3. Considering Theorem 1 and Theorem 2, the guidance parameter λ2 > 1 renders the dis-
tance from the vehicle to the virtual sliding target r → 0 as t → ∞. The guidance parameter λ2 > 2 also
renders φ + θ → 0.

Proof . It follows from Theorem 1 that

θ = θd + e11 (69)

where |e11| is an arbitrarily small constant. And the time derivative of Equation 69 gives

θ̇ = θ̇d (70)

Define σ = φ + θ , by taking its time derivative and combining Equations 35 and 70, we get

σ̇ = φ̇ + θ̇ = (1 − λ2) φ̇ (71)

Taking the time derivative of r, and then neglecting the low-speed moving target action term and
noting that δψv → 0, �ϕ→ 0 as t → ∞, yields

ṙ = −Vcosσ (72)
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Table 1. The parameters of two cases

Symbols Case 1 Case 2
λ1, λ2 −3, 3 −2.1 2.02
k1, k2 4, 4 4, 4
λc, �c, λa, �a 0.5, 2e-9, 0.0105, 0.0095 0.1, 1e-8, 0.01, 5

d

[
−0.01sin (0.023t)

−0.01sin (0.023t)

] [
0.02e−0.05t

−0.02e−0.05t

]

Similarly, there is

φ̇ = V

r
sinσ (73)

Dividing Equation 72 by Equation 71 yields
dr

dσ
= r

λ2 − 1

cosσ

sinσ
(74)

And the Equation 75 can be obtained by integrating the Equation 74:

r = �′|sinσ | 1
λ2−1 (75)

where �′ > 0 is the bounded integration constant. Combining Equations 71, 73 and 75, the Equation 76
can be organized:

σ̇ = (1 − λ2)
V

�′ (sinσ)
λ2−2
λ2−1 (76)

when 0<σ (0) < π , if the guidance parameter λ2 > 1, then σ̇ < 0. Therefore σ → 0 as t → ∞. From
Equation 75, it can be found that spatial distance from the vehicle to the virtual sliding target r → 0
as σ → 0. If λ2 > 2, there is σ̇ → 0. Because σ̇ = (1 − λ2) φ̇, so φ̇→ 0. Thus, φ approaches a constant
and θ approaches the negative of the same constant. That is, in the pitch plane, φ + θ → 0. The same
conclusion can be obtained when −π < σ (0) < 0.

Remark 4. As can be seen from Equations 61, 62 and Equations 69, 70, the assumptions that ψ̇v = ψ̇vd

and θ̇ = θ̇d made in the He and Yan [19] and He et al. [20] are verified.

4.0 Simulations
In this section, some simulations are presented to demonstrate the validity and superiority of the pro-
posed reinforcement learning based adaptive spiral-diving guidance method. Specifically, the validity
of the proposed method is verified by striking a stationary target and a low-speed moving target. For
convenience, the former is denoted as Case 1, and the latter is denoted as Case 2. Otherwise, the superi-
ority of the proposed method is demonstrated by comparing it with methods that without RL and RBF
neural networks for unknown disturbances.

The parameters of the vehicle are: vehicle mass m = 200 kg, the reference area Sref = 1.8 m. The
initial position (x0, y0, z0)

T = (0, 32, 60)T km, and the initial velocity V0 = 1200 m/s. The initial path
angle θ0 = −2◦, and the initial deflection angle ψv0 = 28◦. The terminal deflection angle ψvf = 363◦.
Moreover, the gravitational acceleration g = 9.81 m/s 2.The position of the stationary target is (0, 0, 0)T

km, which is also the starting point of the low-speed moving target. Note that the low-speed target moves
only in the horizontal plane with velocity Vt = 9 m/s and directional angleψvt = −90◦. Other parameters
of the two cases are shown in Table 1.

The simulation results for Case 1 and Case 2 are shown in Figs. 2 and 3, respectively. The 3-D spiral
trajectories of the vehicle in two cases are shown in Figs. 2(a) and 3(a). And corresponding trajectories
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Figure 2. Simulation profiles for Case 1. (a) 3-D trajectory of the vehicle. (b) Trajectories of the vehicle,
the target and the virtual sliding target in yaw plane. (c) Vehicle velocity. (d) Path angle tracking curve.
(e) Deflection angle tracking curve. (f) Tracking errors. (g) Control inputs. (h) Adaptive weights. (i) Real
and estimated values of disturbances.

of the vehicle, the target and the virtual sliding target in yaw plane are shown in Figs. 2(b) and 3(b).
They indicate that the vehicle is able to hit the target in both cases, and the respective miss distances are
0.449 m and 0.6092 m. Figures 2(c) and 3(c) show the vehicle velocity response profiles in two cases.
Figures 2(d) and 3(d) show the real path angle versus desired path angle for two cases. And Figs. 2(e)
and 3(e) show the real deflection angle versus desired deflection angle for two cases. At the moment
of hitting the target, the desired path angle and the deflection angle have a small jump. The reason for
this is that the vehicle needs to slow down the descent rate in the y-direction to adjust the motion in
the x, z-directions to reduce the miss distance. The tracking errors of the path angle and the deflection
angle in two cases are shown in Figs. 2(f) and 3(f). So the uniform ultimate boundedness of the tracking
error is proved. The control input profiles under reinforcement learning based adaptive law for two cases
are depicted in Figs. 2(g) and 3(g). Figures 2(h) and 3(h) show the adaptive adjustment profiles of the
weights in the two cases, and their effects are verified in Figs. 2(i) and 3(i). In other words, the unknown
disturbances are well compensated. In brief, the above simulation results fully demonstrate the validity
of the proposed method in this paper.

Without loss of generality, a comparative simulation of the proposed method with Without RL method
and RBF method is included based on Case 2. The striking effects of the three methods are shown in
Fig. 4. And as shown in Table 2, the miss distances under the three methods are 0.6092 m, 0.8718 m
and 0.7602 m, respectively. The strike accuracy of the proposed method has improved by 30.12% and
19.86% compared to without RL method and RBF method.
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Figure 3. Simulation profiles for Case 2. (a) 3-D trajectory of the vehicle. (b) Trajectories of the vehicle,
the target and the virtual sliding target in yaw plane. (c) Vehicle velocity. (d) Path angle tracking curve.
(e) Deflection angle tracking curve. (f) Tracking errors. (g) Control inputs. (h) Adaptive weights. (i) Real
and estimated values of disturbances.
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Figure 4. The striking effects under three methods.

5.0 Conclusion
In this paper, the reinforcement learning based adaptive method has been implemented for a class of
spiral-diving manoeuver guidance problems of reentry vehicles subject to unknown disturbances. By
designing the actor-critic networks and the corresponding adaptive weight update laws, the unknown
disturbances are well compensated. In addition, by introducing the coordinate transformation technique,
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Table 2. The miss distances under the three
methods

Three methods Miss distances
The proposed method 0.6092
Without RL 0.8718
RBF 0.7602

the controller design problem caused by the coupling of control variables is overcome. As a result, a
novel reinforcement learning based adaptive guidance framework has been constructed such that desired
guidance commands can be tracked stably. Some numerical simulations have been provided to demon-
strate the validity and superiority of the proposed method. Based on the work done in this paper, we will
study the cooperative spiral-diving guidance of reentry vehicle formation.
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