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Invertibility Threshold for Nevanlinna
Quotient Algebras
Artur Nicolau and Pascal J. Thomas
Abstract. Let N be the Nevanlinna class, and let B be a Blaschke product. It is shown that the natural
invertibility criterion in the quotient algebra N/BN, that is, ∣ f ∣ ≥ e−H on the set B−1{0} for some
positive harmonic function H, holds if and only if the function − log ∣B∣ has a harmonic majorant
on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}, at least for large enough functions H. We also study the
corresponding class of positive harmonic functions H on the unit disc such that the latter condition
holds. We also discuss the analogous invertibility problem in quotients of the Smirnov class.

1 Introduction

The Nevanlinna class N is the algebra of analytic functions f in D, the unit disc of the
complex plane, such that log ∣ f ∣ has a positive harmonic majorant in D. Any f ∈ N
factors as f = BF, where B is a Blaschke product and F ∈ N is invertible, as are all
zero-free functions in the Nevanlinna class. Any principal ideal in N is thus of the
form BN, and if the zero set of B is Λ = (λk)k , this ideal is the set of functions in N

which vanish at Λ. If there are m distinct indices k such that λk = a, B is understood
to vanish at a with order m. Fix a Blaschke product B and f ∈ N. It is clear that the
class [ f ] = { f + Bh ∶ h ∈ N} is uniquely determined by the restriction of f to Λ. If
[ f ] is invertible in the quotient algebra N/BN, then there exists a positive harmonic
function H such that ∣ f (λk)∣ ≥ e−H(λk), k = 1, 2, . . . . However, the converse is not true
in general. For a given Blaschke product B, we would like to find out which positive
harmonic functions H will make the converse true.

The analogous problem for the algebra H∞ of bounded analytic functions f on the
unit disc, with the obvious necessary condition for invertibility ∣ f (λk)∣ ≥ ε > 0, was
studied in [6] in connection with the Corona Theorem and interpolating sequences.
We first need to give some background on the classical H∞ theory. Recall that H∞ is
endowed with the norm ∣∣ f ∣∣∞ ∶= sup{∣ f (z)∣ ∶ z ∈ D}.

We will use the standard pseudohyperbolic distance on D given by

ρ(a1 , a2) ∶= ∣a1 − a2∣∣1 − a2a1∣−1 ,

for a1 , a2 ∈ D.
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We now recall two classical results of Carleson. A sequence of (necessarily) distinct
points Λ = (λk)k in D is called an H∞-interpolating sequence if for any bounded
sequence of complex values {wk} there exists f ∈ H∞ such that f (λk) = wk , k =
1, 2, . . .. A celebrated result of Carleson states that Λ = (λk)k is H∞-interpolating if
and only if there exists a constant δ > 0 such that

(1 − ∣λk ∣2)∣B′(λk)∣ ≥ δ, k = 1, 2, . . . ,

where B is the Blaschke product with zeros (λk)k . Observe that

(1 − ∣λk ∣2)∣B′(λk)∣ = ∏
j∶ j≠k

ρ(λk , λ j).

The classical Corona Theorem states that the ideal generated by the functions
f1 , . . . , fn ∈ H∞ is the whole algebra H∞ if and only if inf{∣ f1(z)∣ + ⋯ + ∣ fn(z)∣ ∶ z ∈
D} > 0. See [3, 4] or Chapters VII and VIII of [5].

A function I ∈ H∞ is called inner if ∣limr→1 I(rξ)∣ = 1 for almost every ξ in the unit
circle ∂D. Any inner function I factors as I = BS, where B is a Blaschke product and S
is an inner function without zeros. It follows from the classical Theorem of Beurling
on the invariant subspaces of the shift operator, that any weak* closed ideal in H∞
is of the form IH∞ = {Ih ∶ h ∈ H∞} for some inner function I. See [5, p. 82]. Fix an
inner function I, and consider the quotient Banach algebra H∞/IH∞ with the norm

∣∣[ f ]∣∣
H∞/IH∞

= inf{∣∣ f + Ih∣∣∞ ∶ h ∈ H∞}, f ∈ H∞.

Let Λ = (λk)k be the zero set of I. It is clear that if [ f ] is invertible in H∞/IH∞, then
inf ∣ f (λk)∣ > 0. This condition is not always sufficient, as one can observe considering
the extreme situation where I is zero-free.

Let I be an inner function with zeros Λ = (λk)k . Let δ = δ(I) be the infimum of the
positive numbers γ > 0 such that if f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 satisfies inf k ∣ f (λk)∣ ≥ γ, then
[ f ] is invertible in H∞/IH∞, or equivalently, there exist g , h ∈ H∞ such that f g =
1 + Ih. If I is a nontrivial inner function without zeros in D, we set δ(I) = 1. Hence, if
γ > δ(I), for any f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 with inf k ∣ f (λk)∣ ≥ γ, we have that [ f ] is invertible
in H∞/IH∞; while if 0 < γ < δ(I), there exists f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 with inf k ∣ f (λk)∣ ≥
γ such that [ f ] is not invertible in H∞/IH∞.

Gorkin, Mortini, and Nikolski proved in [6] that δ(I) = 0 if and only if I satisfies,
for any ε > 0, the condition

inf{∣I(z)∣ ∶ ρ(z, Λ) > ε} > 0.(1.1)

If I is a Blaschke product whose zeros Λ are a finite union of H∞-interpolating
sequences (or, equivalently, if ∑k(1 − ∣λk ∣)δ(λk) is a Carleson measure), then condi-
tion (1.1) is satisfied. Here, δ(λk) denotes the Dirac mass at the point λk . However,
there are Blaschke products I satisfying (1.1) whose zeros are not a finite union of H∞-
interpolating sequences. See [1, 6]. For this reason, the authors of [6] called property
(1.1) the weak embedding property (WEP). It would be interesting to describe the
Blaschke products I satisfying the WEP in terms of the location of their zeros. Some
further results and questions on inner functions satisfying the WEP can be found
in [2].
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The study of the invertibility in H∞/IH∞was continued by Nikolskii and Vasyunin
in [11], where it was proved that for any 0 < δ < 1, there exists a Blaschke product I such
that δ(I) = δ. In other words, one can find an invertibility threshold at any level, by
choosing the Blaschke product appropriately. The main purpose of this paper is to
discuss the analogous problem in the Nevanlinna class.

We now turn to the analogues in the Nevanlinna class of the above results. In many
of those, positive harmonic functions will play the role that was played by positive
constants in the H∞ setting. We begin with interpolating sequences.

Let Har+(D) denote the cone of positive harmonic functions on D. Given a
sequence of distinct points Λ = (λk)k ⊂ D, let W(Λ) be the set of sequences of
complex numbers {wk} such that there exists H ∈ Har+(D) with log+ ∣wk ∣ ≤ H(λk),
k = 1, 2, . . .. Observe that { f (λk)} ⊂ W(Λ) for any f ∈ N. A sequence of points Λ =
(λk)k ⊂ D is called an interpolating sequence for N if for any sequence of values
{wk} ⊂ W(Λ) there exists f ∈ N such that f (λk) = wk , k = 1, 2, . . . . It was proved in
[7] that Λ = (λk)k is an interpolating sequence for N if and only if there exists H ∈
Har+(D) such that

(1 − ∣λk ∣2)∣B′(λk)∣ ≥ e−H(λk), k = 1, 2, . . . ,(1.2)

where B is the Blaschke product with zeros (λk)k .
Using a result of Wolff, Mortini proved the following version of the Corona

Theorem for N. Let f1 , . . . , fn ∈ N. Then there exist g1 , . . . , gn ∈ N such that f1 g1 +
⋯+ fn gn = 1 if and only if the function − log(∣ f1∣ + ⋯ + ∣ fn ∣) has a harmonic majorant
in D. See [10] or [8].

The analogue of the WEP in the Nevanlinna class was introduced in [9] where it
was proved that invertible classes [ f ] inN/BN are precisely the classes for which there
exists H = H( f ) ∈ Har+(D) such that ∣ f (λk)∣ ≥ e−H(λk), k = 1, 2, . . ., if and only if B
satisfies the following analogue of the WEP: for any H1 ∈ Har+(D), there exists H2 ∈
Har+(D) such that

∣B(z)∣ ≥ e−H2(z) if ρ(z, Λ) ≥ e−H1(z) .

In contrast with the situation in H∞, the main result in [9] states that this property
holds if and only if the zeros of B are a finite union (or, more properly, superposition)
of interpolating sequences in the Nevanlinna class.

As we said, the main purpose of the present paper is to discuss an analogue in the
Nevanlinna class of the result of Nikolski and Vasyunin [11] described above. Let B
be the Blaschke product with zero set Λ = {λk}. Consider the Nevanlinna quotient
algebra N/BN. Fix f ∈ N. As mentioned above, a necessary condition for the class
[ f ] to be invertible in N/BN is that there exists H ∈ Har+(D) such that

∣ f (λk)∣ ≥ e−H(λk) , k = 1, 2, . . . .(1.3)

In analogy with the definition of δ(B) in the context of H∞, we are interested in which
functions H ∈ Har+(D) have the property that (1.3) guarantees that the class [ f ] is
invertible in N/BN.

Because functions without zeros are invertible in N, to study the invertibility of
[ f ] in N/BN, we can assume that f is a Blaschke product. Multiplying f by a constant,
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we may also assume that H is bigger than any prescribed positive constant. So we
normalize our study of the “threshold” inside the cone of harmonic functions by
assuming f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1, and H ≥ c0 > 0.

Our first result says that the invertibility problem is roughly equivalent to the
existence of a harmonic majorant of − log ∣B∣ restricted to a certain subset of D.

Definition 1.1 A function F∶D�→ [0,+∞) has a harmonic majorant on the set E ⊂
D if there exists H ∈ Har+(D) such that F(z) ≤ H(z) for any z ∈ E.

We will need an auxiliary function associated to any Blaschke sequence.

Definition 1.2 Given a Blaschke sequence Λ = (λk)k , let HΛ denote the positive
harmonic function defined by

HΛ(z) = ∑
k
∫

Ik

1 − ∣z∣2
∣ξ − z∣2 ∣d ξ∣, z ∈ D,(1.4)

where Ik ∶= {ξ ∈ ∂D ∶ ∣ξ − λk/∣λk ∣∣ ≤ 1 − ∣λk ∣} denotes the Privalov shadow of λk .

Theorem 1.1 Let B be a Blaschke product with zero set Λ = (λk)k .
(1) For any C ∈ (0, 1), the following statement holds. Let H ∈ Har+(D), and assume

that the function − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥
e−H(z)}. Then, for any f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 such that

∣ f (λk)∣ > e−CH(λk), k = 1, 2, . . . ,(1.5)

there exist g , h ∈ N such that f g = 1 + Bh.
(2) For any C > 1, there exists a constant C0 > 0 such that the following statement holds.

Let H ∈Har+(D)with H ≥ C0HΛ . Assume that for any f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 such that

∣ f (λk)∣ > e−CH(λk), k = 1, 2, . . . ,

there exist g , h ∈ N such that f g = 1 + Bh. Then, the function − log ∣B∣ has a
harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}.

In Corollary 2.4, after the proof of this theorem in Section 2, we show how the result
can be extended to Bézout equations with any number of generators.

Observe that Theorem 1.1 is analogous to the equivalence of (a) and (b) in
[9, Theorem A]. Hence, given a Blaschke product B with zero set Λ, and for large
enough positive harmonic functions H, the invertibility problem in the quotient
algebra N/BN can be reduced to the study of the following class.

Definition 1.3 Given a Blaschke product B, let H(B) be the set of functions H ∈
Har+(D) such that − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥
e−H(z)}.

It is easy to see that constant functions are always in H(B) (see Proposition 4.1 of
[7] or Lemma 2.1 below), and that if H1 ∈H(B) and H2 ∈ Har+(D), H2 ≤ H1, then
H2 ∈H(B). In this language, the main result of [9] reads as follows: H(B) =Har+(D)
if and only if Λ is a finite union of interpolating sequences for N.

Our next result says that for any Blaschke product B, H(B) does contain
unbounded functions.
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Theorem 1.2 Let B be a Blaschke product with zero set Λ = (λk)k . Then,
(1) there exists a function H ∈ Har+(D) with lim supk→∞H(λk) = +∞, such that

− log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}.
(2) there exists a function H ∈ Har+(D) with lim supk→∞H(λk) = +∞ such that if

f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 satisfies ∣ f (λk)∣ ≥ e−H(λk), k = 1, 2, . . ., then there exist g , h ∈ N
such that f g = 1 + Bh.

Conversely, given two positive harmonic functions H1 , H2, where the condition
H1 ≤ H2 does not hold, we would like to see whether there exists a Blaschke product
that discriminates between them, that is to say, such that H2 ∈H(B) but H1 ∉H(B).
We obtain such a Blaschke product in two different cases.

Theorem 1.3 (1) Let H1 , H2 ∈ Har+(D) such that

lim sup
∣z∣→1

H1(z)
H2(z) = +∞.

Then, there exists a Blaschke product B with zero set Λ such that − log ∣B∣ has a
harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H2(z)} but has no harmonic
majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H1(z)}.

(2) For any η0 > 0, and any unbounded positive harmonic function H, there exists a
Blaschke product B such that H ∈H(B) but (1 + η0)H ∉H(B).

The first part of the theorem can be applied, in particular, when H2 = 1, which
means that for any unbounded H1 ∈ Har+(D), there exists a Blaschke product B, so
that H1 ∉H(B). It should be noted that in the second part of the theorem, the Blaschke
product B has zeros concentrated in a way controlled by the size of the harmonic
function H we started from. The next result involves this critical size. In order to state
it, we need more notation.

Consider the usual dyadic Whitney squares

Qk , j = {re iθ ∈ D ∶ 2−k ≤ 1 − r < 2−k+1 , j2π2−k ≤ θ < ( j + 1)2π2−k},

where k ≥ 0 and j = 0, . . . , 2k − 1. Consider also the corresponding projections on ∂D
given by

Ik , j = {e iθ ∈ ∂D ∶ j2π2−k ≤ θ < ( j + 1)2π2−k}.

Given a Blaschke sequence Λ = (λk)k and a dyadic Whitney square Q, let N(Q) =
#(Λ ∩ Q) be the number of indices k such that λk ∈ Q. Observe that there exists a
universal constant C > 0 such that for any dyadic Whitney square Q and any z ∈ Q,
we have HΛ(z) ≥ CN(Q).

In connection to part 2 of Theorem 1.3, it is interesting to observe that for functions
H ∈ Har+(D) growing sufficiently fast with respect to the number of zeros of B, we
have H ∈H(B) if and only if CH ∈H(B) for some (all) constants C > 0.

Theorem 1.4 Let B be a Blaschke product with zero set Λ. Let H ∈ Har+(D) such that

inf{eH(z) ∶ z ∈ Q} ≥ N(Q),(1.6)
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for any dyadic Whitney square Q. Assume that the function − log ∣B∣ has a harmonic
majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}. Then, for any C > 1, the function
− log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−CH(z)}.

Part (2) of Theorem 1.3 shows that the above result no longer holds when condition
(1.6) is not satisfied.

Our last result provides a sufficient condition for a function H ∈Har+(D) to belong
to H(B). Given a dyadic Whitney square Q, let z(Q) denote its center.

Theorem 1.5 Let B be a Blaschke product with zero set Λ. Let A be the collection of
dyadic Whitney squares Q such that N(Q) = #(Λ ∩ Q) > 0. Let H ∈Har+(D). Assume
that there exists H1 ∈ Har+(D) such that N(Q)H(z(Q)) ≤ H1(z(Q)) for any Q ∈ A.
Then, the function − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥
e−H(z)}.

Notice that we impose no direct restriction on the values of H in the dyadic squares
where no zero of B is present. Moreover, we will introduce a class of Blaschke products
for which this sufficient condition is also necessary. This is done at the end of Section
2. In Section 4, we study the corresponding invertibility problem in quotients of the
Smirnov class.

In this paper, C0 , C1 , C2 , . . . will denote absolute constants, whereas C(δ) will
denote a constant which depends on the parameter δ > 0.

2 Proofs of Theorems 1.1 and 1.2

Recall that if Λ is a Blaschke sequence, HΛ denotes the positive harmonic function
defined in (1.4). The proof of Theorem 1.1 uses two auxiliary results. The first one is
Proposition 4.1 of [7].

Lemma 2.1 Let B be a Blaschke product with zero set Λ. Then, for any δ > 0, there
exists Cδ > 0 such that − log ∣B(z)∣ ≤ Cδ HΛ(z) if ρ(z, Λ) ≥ δ.

Lemma 2.2 Let Λ be a Blaschke sequence, and let A be a sequence of points in D

satisfying that there exist a constant 0 < γ < 1 and a natural number k such that for any
a ∈ A, there is λ(a) ∈ Λ with ρ(a, λ(a)) ≤ γ and #{a ∈ A ∶ λ(a) = λ} ≤ k for any λ ∈ Λ.
Then, A is a Blaschke sequence, and for any δ > 0, there is a constant C = C(γ, δ, k) > 0
such that

∑
a∈A∶ρ(a ,z)>δ

log ∣ a − z
1 − az

∣ −1 ≤ CHΛ(z), z ∈ D.

Proof Because ρ(a, z) > δ, there is a constant C1 = C1(δ) > 0 such that

log ∣ a − z
1 − az

∣ −1 ≤ C1 (1 − ∣ a − z
1 − az

∣ 2) = C1
(1 − ∣a∣2)(1 − ∣z∣2)

∣1 − az∣2 .

Observe that because ρ(a, λ(a)) ≤ γ, there is a constant C2 = C2(γ) > 0 such that

∫
I(λ(a))

1 − ∣z∣2
∣ξ − z∣2 ∣dξ∣ ≥ C2

(1 − ∣a∣2)(1 − ∣z∣2)
∣1 − az∣2 .
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Recall that I(λ(a)) = {ξ ∈ ∂D ∶ ∣ξ − λ(a)/∣λ(a)∣∣ ≤ 1 − ∣λ(a)∣} is the Privalov shadow
of λ(a). We add up these inequalities, and, because any λ ∈ Λ will be repeated at most
k times, we get the result. ∎

A sequence A = (ak)k of (necessarily distinct) points in D is called separated if
η(A) = inf{ρ(ak , a j) ∶ j, k ∈ N, j ≠ k} > 0. The number η(A) is called the separation
constant of A.

Corollary 2.3 Let Λ be a Blaschke sequence, and let A be a separated sequence of points
in D with separation constant η = η(A). Assume that there exists 0 < γ < 1 such that for
any a ∈ A, there is λ(a) ∈ Λ with ρ(a, λ(a)) ≤ γ. Then, A is a Blaschke sequence, and
for any 0 < δ < 1, there is a constant C = C(η, γ, δ) > 0 such that

∑
a∈A∶ρ(a ,z)>δ

log ∣ a − z
1 − az

∣ −1 ≤ CHΛ(z), z ∈ D.

Proof Because A is a separated sequence, there exists a constant k = k(γ, η) > 0 such
that #{a ∈ A ∶ λ(a) = λ} ≤ k. Then, the result follows from Lemma 2.2. ∎

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 (1) We first show that for any C ∈ (0, 1), for any f ∈ H∞,
∣∣ f ∣∣∞ ≤ 1 satisfying (1.5), there exists H1 = H1( f , B) ∈ Har+(D) such that

− log(∣B(z)∣ + ∣ f (z)∣) ≤ min (− log ∣B(z)∣,− log ∣ f (z)∣) ≤ H1(z), z ∈ D.(2.1)

It will be enough to split D into subsets and find positive harmonic functions on D

that are majorants for one of the two terms over each subset. There will be four cases.
First, we need to choose δ > 0 such that δ verifies δ < 1−C

1+C , or equivalently, C < 1−δ
1+δ .

For any z ∈ D, let λz ∈ Λ be a point such that ρ(z, Λ) = ρ(z, λz).
Case 1. δ ≤ ρ(z, Λ). Then, Lemma 2.1 yields − log ∣B(z)∣ ≤ Cδ HΛ(z).
Case 2. e−H(z) ≤ ρ(z, Λ) ≤ δ. Then, the assumption of the theorem yields a har-

monic majorant for − log ∣B(z)∣.
Case 3. ρ(z, Λ) ≤ min(e−H(z) , δ), and H(λz) ≤ 1. Then, ∣ f (λz)∣ ≥ e−CH(λz) ≥ e−C ;

because by the Schwarz–Pick lemma, ρ( f (z), f (λz)) ≤ δ, then [5, Chapter 1, equation
(1.8)]

∣ f (z)∣ ≥ ∣ f (λz)∣ − δ
1 − δ∣ f (λz)∣

≥ e−C − δ
1 − e−C δ

> 0,

so − log ∣ f (z)∣ is bounded by a constant.
Case 4. ρ(z, Λ) ≤ min(e−H(z) , δ), and H(λz) ≥ 1. Then, Harnack’s inequality

implies

H(z) ≥ 1 − δ
1 + δ

H(λz).
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Then, another application of the Schwarz–Pick lemma yields

∣ f (z)∣ ≥ e−CH(λz) − ρ(z, Λ)
1 − ρ(z, Λ)e−CH(λz)

≥ e−CH(λz) − e−H(z)

≥ e−CH(λz) − e−
1−δ
1+δ H(λz) ≥ e−CH(λz) (1 − exp(C − 1 − δ

1 + δ
)) .

By another application of Harnack’s inequality, − log ∣ f (z)∣ ≤ C2H(z) + C3.
Having established (2.1), we can apply the Corona Theorem for the Nevanlinna

class to obtain functions g , h ∈ N such that f g = 1 + Bh.
(2) Let δ1 ∈ (0, 1), to be chosen later, and define U1 = {z ∈ D ∶ ρ(z, Λ) < δ1}. By

construction, there is an absolute constant C1 > 0 such that HΛ(λ) ≥ C1 for any λ ∈ Λ,
so by Harnack’s inequality, HΛ(z) ≥ 1−δ1

1+δ1
C1 for all z ∈ U1.

Consider the set E = {z ∈ D ∶ ρ(z, Λ) < e−H(z)}. Taking C0 large enough so that
C0

1−δ1
1+δ1

C1 > log δ−1
1 , we ensure E ⋐ U1. Let U2 ∶= U1/E.

We will construct a separated sequence A such that the values of log ∣B∣−1 on A
control its values on U2.

There are constants 0 < δ3 < δ2 < 1 such that the ρ-diameter of each Whitney
square does not exceed δ2, and any disk Dρ(z, δ3) intersects at most four Whitney
squares. In each Whitney square q such that q ∩U2 ≠ ∅, choose a point a = a(q) ∈
q ∩U2 such that

log ∣B(a(q))∣−1 = max{log ∣B(z)∣−1 ∶ z ∈ q ∩U2}.

Let A0 ∶= {a(q) ∶ q ∩U2 ≠ ∅}. Define an equivalence relation on A0 by a(q) ∼
a(q′) if there exists a finite chain of squares q i such that q1 = q, qm = q′, and
ρ(a(q i+1), a(q i)) < δ3/4, 1 ≤ i ≤ m − 1. Then, we always have m ≤ 4 for any class.
Define A by selecting one element a in each class by

log ∣B(a(q))∣−1 = max{log ∣B(a(q′))∣−1 ∶ a(q) ∼ a(q′)}.

Therefore, A is (δ3/4)-separated, and for any z ∈ U2, there exists a ∈ A such that
ρ(z, a) ≤ δ3+δ2

1+δ3 δ2
∶= δ4 < 1 and log ∣B(z)∣−1 ≤ log ∣B(a)∣−1.

Because A is a separated sequence, Corollary 2.3 gives that A is a Blaschke sequence,
and, if BA denotes the Blaschke product with zero set A, there exists a constant C2 =
C2(δ3) > 0 such that

log ∣BA(z)∣−1 ≤ C2HΛ(z) + log ρ(z, A)−1 , z ∈ D.(2.2)

Fix λk ∈ Λ, and ak ∈ A such that ρ(λk , ak) = ρ(λk , A). Recall that ak ∈ U2, so
e−H(ak) ≤ ρ(λk , ak) ≤ δ1. Then,

log ∣BA(λk)∣−1 ≤ C2HΛ(λk) + log ρ(λk , ak)−1

≤ C2

C0
H(λk) + H(ak) ≤ (

C2

C0
+ 1 + δ1

1 − δ1
)H(λk).

We can choose C0 and δ1 so that ( C2
C0
+ 1+δ1

1−δ1
) < C, then the function f = BA satisfies

estimate (1.5) with the constant C. By assumption, there exist g , h ∈ N such that
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Bg + BAh = 1. We deduce that there exists H1 ∈ Har+(D) such that − log ∣B(ak)∣ ≤
H1(ak), k = 1, 2, . . ..

For any z ∈ U2, there exists a ∈ A such that log ∣B(z)∣−1 ≤ log ∣B(a)∣−1 and H1(a) ≤
1+δ4
1−δ4

H1(z). Hence, − log ∣B∣ has a harmonic majorant in U2. Because, by Lemma 2.1,
− log ∣B∣ has a harmonic majorant on D/U1; the proof is complete. ∎

The proof of part (1) can be easily adapted to show the following more general fact.

Corollary 2.4 Let B be a Blaschke product with zero set Λ = {λk}. Then, for any
constant C < 1, the following statement holds. Let H ∈ Har+(D), and assume that the
function − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}. Then,
for any f1 , . . . , fn ∈ H∞, ∣∣ f i ∣∣∞ ≤ 1, i = 1, . . . , n, such that

n
∑
i=1
∣ f i(λk)∣ > e−CH(λk) , k = 1, 2, . . . ,

there exist g1 , . . . , gn , h ∈ N such that ∑i f i g i = 1 + Bh.

On the other hand, the n-tuple analogue of part 2 trivially holds, because the
hypothesis for n ≥ 1 implies the hypothesis for n = 1 which is the one used in The-
orem 1.1.

The proof of Theorem 1.2 uses the following auxiliary result.

Lemma 2.5 Let {Q j} be an infinite sequence of different dyadic Whitney squares, and
let {M j} be a sequence of positive numbers with lim j→∞M j = ∞. Then, there exist H ∈
Har+(D) and a constant C0 > 0 such that H j = sup{H(z) ∶ z ∈ Q j} satisfies H j ≤ M j +
C0 for any j = 1, 2, . . ., and lim sup j→∞H j = ∞.

Proof The idea is to construct by induction a variant of the function HΛ . For any
Whitney cube Q, let us set

hQ(z) ∶= ∫
I(Q)

1 − ∣z∣2
∣e iθ − z∣2

dθ
2π

,(2.3)

where I(Q) is the radial projection of Q onto ∂D.
Note that there exists an absolute constant c > 0 such that the function hQ has the

following properties:

0 ≤ hQ(z) ≤ 1,∀z ∈ D; hQ(z) ≤ l(Q)
c(1 − ∣z∣) ,∀z ∈ D; 0 < c ≤ hQ(z),∀z ∈ Q .

(2.4)

We will construct inductively a sequence of coefficients μm and an increasing
sequence of integers ( jm), so that H ∶= ∑m μm hQ jm

satisfies the conclusion of the
lemma. There is no loss of generality in assuming that l(Q j+1) ≤ l(Q j) for all j. Let
H0 ∶= 0. For any k > 0, let us denote H(k) ∶= ∑k

m=1 μm hQ jm
. Let H(k)j ∶= supQ j

H(k).
We want to prove by induction on k that:

H(k)j ≤ M j +
k
∑
m=1

2−m/2 , j = 1, 2, . . . .(2.5)
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In particular, this will show that supk H(k) will be bounded on any square Q j ;
therefore, H ∶= ∑∞j=1 μm hQ jm

will be well defined and will satisfy H j ≤ M j + C0, for
all j ∈ Z+.

For k = 0, the property (2.5) is vacuously true. Suppose it is satisfied for k. Because
H(k) is bounded and M j →∞, there exists R ∈ (0, l(Q jk)) such that for any j ∈ Z+
such that l(Q j) ≤ R, then M j − H(k)j ≥ 2(k+1)/2. Now, there exists R′ < R such that for
all z such that ∣z∣ ≤ 1 − R/2 (in particular, for z ∈ Q j with j ≤ jk) and for all Q such
that l(Q) ≤ R′, hQ(z) < 2−k−1. Pick jk+1 to be the smallest j such that l(Q j) ≤ R′, and
μk+1 ∶= 2(k+1)/2. Then, for all j such that l(Q j) ≥ R, by the induction hypothesis,

H(k+1)
j = H(k)j + μk+1hQ jk+1

≤ H(k)j + 2(k+1)/22−k−1 ≤ M j +
k+1
∑
m=1

2−m/2 .

On the other hand, for all j such that l(Q j) ≤ R,

H(k+1)
j = H(k)j + μk+1hQ jk+1

≤ H(k)j + μk+1 = H(k)j + 2(k+1)/2 ≤ M j ,

by the choice of R. The inductive condition (2.5) is satisfied. Finally, notice that for
z ∈ Q j so that j = jm for some m,

H(z) ≥ μm hQ jm
≥ c2m/2 →∞ as m →∞. ∎

Proof of Theorem 1.2 (1) For each dyadic Whitney square Q, recall
N(Q) = #(Q ∩ Λ), and let U(Q) be the collection of at most nine dyadic Whitney
squares Q1 such that Q1 ∩ Q ≠ ∅. Observe that there exists an absolute constant δ > 0
such that

δ ≤ ρ(Q ,D / U(Q)) ∶= inf{ρ(z, w) ∶ z ∈ Q , w ∈ D / U(Q)}

for any dyadic Whitney square Q. Consider also M(Q) = #(U(Q) ∩ Λ). Let {Q j}
be the collection of dyadic Whitney squares such that M(Q j) > 0. The Blaschke
condition gives that

∑M(Q j)l(Q j) < ∞.

Then, there exists a sequence {M̃ j}, M̃ j ≥ M(Q j) for any j ≥ 1, with

lim
j→∞

M̃ j/M(Q j) = +∞ and ∑ M̃ j l(Q j) < ∞.

Lemma 2.5 provides H ∈ Har+(D) such that H(z) ≤ M̃ j/M(Q j) + C0 for any z ∈ Q j
and lim sup j→∞ sup{H(z) ∶ z ∈ Q j} = +∞. Because the sequence Λ is contained in
∪Q j , Harnack’s inequality gives that lim supk→∞H(λk) = +∞. We will now show
that the function − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥
e−H(z)}. Because ρ(Λ,D/ ∪ Q j) ≥ δ > 0, Lemma 2.1 gives that− log ∣B∣has a harmonic
majorant on D/ ∪ Q j . Now, fix z ∈ Q j with ρ(z, Λ) ≥ e−H(z) and split Λ = Λ1 ∪ Λ2,
where Λ1 = {λk ∶ ρ(λk , z) ≤ δ} and Λ2 = {λk ∶ ρ(λk , z) > δ}. By Lemma 2.1, there
exists a constant C = C(δ) > 0 such that

∑
λk∈Λ2

log ρ(λk , z)−1 ≤ CHΛ(z).
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On the other hand, because ρ(λk , z) ≥ e−H(z), we have

∑
λk∈Λ1

log ρ(λk , z)−1 ≤ H(z)M(Q j) ≤ M̃ j + C0M(Q j) ≤ (1 + C0)M̃ j .

Consider the harmonic function H1 ∶= ∑ j M̃ j hQ j , where hQ is as in (2.3). By the
last estimate in (2.4), H1(z) ≥ cM̃ j for any z ∈ Q j . We deduce that

log ∣B(z)∣−1 ≤ CHΛ(z) + c−1(1 + C0)H1(z),

and this finishes the proof of part (1).
To prove part (2), let C be as in Theorem 1.1(1), and H̃ a function as in part (1). If

we set H ∶= CH̃, applying Theorem 1.1(1) yields our result. ∎

We now present a family of Blaschke products B for which the family H(B) can
be easily described. Let Λ = (λk)k be a separated sequence in D, that is, assume η =
inf{ρ(λk , λ j) ∶ k ≠ j} > 0. Let N = {N j} be a sequence of positive integers tending to
infinity such that

∑N j(1 − ∣λ j ∣) < ∞.

Consider the Blaschke product B(Λ, N) defined as

B(Λ, N)(z) =∏
j

⎛
⎝

λ j

∣λ j ∣
λ j − z
1 − λ jz

⎞
⎠

N j

, z ∈ D.(2.6)

Consider the pairwise disjoint pseudohyperbolic disks D j = {z ∈ D ∶ ρ(z, λ j) ≤ η/4},
j = 1, 2, . . .. By Lemma 2.1, − log ∣B(Λ, N)∣ has a harmonic majorant on D/ ∪ j D j .
Again, by Lemma 2.1, there exists a constant C > 0 and a function H1 ∈Har+(D) such
that

∑
k≠ j

log ρ(z, ak)−Nk ≤ CH1(z), z ∈ D j , j = 1, 2, . . . .

Fix H ∈ Har+(D). Then, − log ∣B(Λ, N)∣ has a harmonic majorant on {z ∈ D ∶
ρ(z, Λ) ≥ e−H(z)} if and only if there exists H2 ∈ Har+(D) such that

N j log ρ(z, a j)−1 ≤ H2(a j), j = 1, 2, . . . ,

whenever ρ(z, a j) ≥ e−H(z). Hence, − log ∣B(Λ, N)∣ has a harmonic majorant on {z ∈
D ∶ ρ(z, Λ) ≥ e−H(z)} if and only if the mapping a j → N jH(a j) has a harmonic
majorant. Hence, for the Blaschke products B(Λ, N), the sufficient condition given
in Theorem 1.5 is also necessary. In other words, we have H ∈H(B(Λ, N)) if and only
there exists H2 ∈ Har+(D) such that N jH(a j) ≤ H2(a j), for any j.

The examples of BΛ given here do not have simple zeros, in fact the multiplicities
are unbounded. However, one easily gets a similar example by replacing each point a j
with multiplicity N j by N j distinct points contained in a hyperbolic disc centered at
a j of radius, say, 10−3η.
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3 Proofs of Theorems 1.3–1.5

We start with the proof of part (1) of Theorem 1.3.

Proof of Theorem 1.3 (1) Let a j ∈ D with

lim
j→∞

H1(a j)
H2(a j)

= ∞.

Considering a subsequence if necessary, we can assume that ρ(a j , ak) ≥ 1/2 if k ≠ j.
Because H1(a j)(1 − ∣a j ∣) ≤ 2H1(0) for any j, we have lim j→∞(1 − ∣a j ∣)H2(a j) = 0.
Pick a sequence {N j} of positive integers such that lim j→∞ N j(1 − ∣a j ∣)H2(a j) = 0
and lim j→∞ N j(1 − ∣a j ∣)H1(a j) = +∞. Considering a subsequence of {a j} again if
necessary, we may assume that

∑N j(1 − ∣a j ∣)H2(a j) < ∞.(3.1)

Now, let B be the Blaschke product defined by

B(z) =∏
j

a j

∣a j ∣
(

a j − z
1 − a jz

)
N j

, z ∈ D.

As discussed at the end of the previous section, for any H ∈ Har+(D), the function
− log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, {a j}) ≥ e−H(z)} if and only
if the mapping F(H) defined by F(H)(a j) = N jH(a j), j ≥ 1, and F(H)(z) = 0 if
z ∉ {a j}, has a harmonic majorant. Because lim j→∞ N jH1(a j)(1 − ∣a j ∣) = +∞, the
mapping F(H1) cannot have a harmonic majorant. Consider the function

H3(z) =∑
j

N jH2(a j)hQ j ,

where Q j is the dyadic Whitney square containing a j . Here, hQ is the function defined
in (2.3). Because l(Q j) is comparable to 1 − ∣a j ∣, the above sum converges by (3.1).
Observe that last estimate of (2.4) gives that there exists an absolute constant C1 > 0
such that

H3(a j) ≥ C1N jH2(a j), j = 1, 2, . . . .

Hence, F(H2) has a harmonic majorant. ∎

Proof of Theorem 1.3 (2) By Harnack’s inequality, there is a constant γ ∈ (0, 1) such
that for any dyadic Whitney square Q, any positive harmonic function H, any z, z′ ∈ Q,
we have γH(z′) ≤ H(z) ≤ γ−1H(z′). Pick η ∈ (0, η0).

Given an unbounded positive harmonic function H, we can choose a sequence of
dyadic Whitney squares {Q j} such that
(1) l(Q j) = 2− j , j ≥ 1.
(2) If z j denotes the center of Q j ,

H(z j) → ∞ and H(z j) ≤
γ

2(1 + η) j.
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To prove that we can satisfy the second condition, in the case where

max
z∶∣z∣=1−2− j

H(z) ≤ γ
2(1 + η) j,

it is enough to choose Q j to be the dyadic Whitney square with l(Q j) = 2− j , where
the maximum is attained; otherwise,

max
z∶∣z∣=1−2− j

H(z) ≥ γ
2(1 + η) j.

Because H(0) ≥ min{H(z) ∶ ∣z∣ = 1 − 2− j}, for j large enough, we can find a point z,
∣z∣ = 1 − 2− j , such that

H(z) = γ3

2(1 + η) j.

We choose Q j to be the dyadic Whitney square containing z. Then,

γ4

2(1 + η) j ≤ H(z j) ≤
γ2

2(1 + η) j.(3.2)

Note that because H is unbounded, we have max{H(z) ∶ ∣z∣ = 1 − 2− j} → ∞ as j →
∞. Hence, the estimate (3.2) gives that lim j→∞H(z j) = ∞. We shall need to take
subsequences of {Q j}, while keeping the same name for the sequence. Choose a
sequence R j → 0 such that

lim
j→∞

log R−1
j

H(z j)
= 0.(3.3)

Observe that lim j→∞ l(Q j)2H(z j) log 1
R j
= 0. Indeed, for j large enough, we have

0 < l(Q j)2H(z j) log 1
R j

≤ l(Q j)2H(z j)2 ≤ (l(Q j)
γ

2(1 + η) log 1
l(Q j)

)
2

.

Now, with [⋅] denoting the integer part of a real number, define the sequence of
integers

N j ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

1

l(Q j) (H(z j) log 1
R j
)

1/2

⎤⎥⎥⎥⎥⎥⎥⎦

.(3.4)

For z0 ∈ D and t > 0, let Dρ(z0 , t) = {z ∈ D ∶ ρ(z, z0) ≤ t}denote the pseudohyper-
bolic disk of radius t centered at z0. We define the sequence Λ as the union of finite
sequences Λ(k) ⊂ Qk . For each k, Λ(k) is the union of
(1) the point zk with multiplicity Nk and
(2) a maximal subset of points λ j = λ j(k) contained in the pseudohyperbolic disc

Dρ(zk , Rk) such that for any i ≠ j, ρ(λ i , λ j) ≥ e−(1+η)H(zk).
Here, maximal means that for any z ∈ Dρ(zk , Rk), there exists λ j such that ρ(z, λ j) ≤
e−(1+η)H(zk). Observe that the number of points {λ j} is of the order of R2

k e2(1+η)H(zk).
See page 3 of [5]. Note that we are adding to the multiple zero zk a set of points λ j with a
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cardinality on the order of R2
k e2(1+η)H(zk), which tends to infinity by (3.3). We proceed

to take a subsequence of Λ (still denoted by the same letter) that will make it, among
other things, a Blaschke sequence.

First observe that

lim
j→∞

l(Q j)N j log 1
R j

= lim
j→∞

⎛
⎝

log 1
R j

H(z j)
⎞
⎠

1/2

= 0,(3.5)

and

lim
j→∞

l(Q j)N jH(z j) = lim
j→∞

⎛
⎝

H(z j)
log 1

R j

⎞
⎠

1/2

= ∞.(3.6)

On the other hand, applying the second inequality in (3.2) and passing to logarithms,
one gets

lim
j→∞

(l(Q j)e2(1+η)H(z j)R2
j log 1

R j
) = 0.(3.7)

We now complete the definition of Λ by restricting to a subsequence again denoted
by (Q j) such that ρ(Qk , Q j) ≥ 1/2 if k ≠ j and such that

∞

∑
j=1

l(Q j)(N j log 1
R j

+ e2(1+η)H(z j)R2
j log 1

R j
) < ∞,(3.8)

which is possible by (3.5) and (3.7). Let Λ = ∪Λ(k) be the resulting sequence.
Observe that an immediate consequence of this is that Λ is now a Blaschke

sequence, because
∞

∑
j=1

l(Q j) (N j + e2(1+η)H(z j)R2
j) < ∞.

Note that the estimate (3.8) is stronger. Actually, the extra factor log(1/R j) will be
needed later.

Claim 1. For k large enough,

{ζ ∈ Qk ∶ ρ(ζ , Λ) ≥ e−H(ζ)} ∩ Dρ(zk , Rk) = ∅.

Proof For any ζ ∈ D(zk , Rk), there is a λ j such that ρ(ζ , λ j) < e−(1+η)H(zk). Because
limk→∞ Rk = 0, by Harnack’s inequality, there is a number γk < 1 with limk→∞ γk =
1, such that γk H(zk) ≤ H(z) ≤ γ−1

k H(zk) for any z ∈ D(zk , Rk). Then, for k large
enough,

log ρ(ζ , λ j) < −(1 + η)H(zk) ≤ −γ−1
k H(zk) ≤ −H(ζ). ∎

We henceforth restrict attention to the tail of the sequence where the conclusion of
Claim 1 holds.

Claim 2. H ∈H(B).
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Proof Because ρ(Qk , Q j) ≥ 1/2 if k ≠ j, it is enough to majorize, on each Qk , the
part of the product corresponding to the local zeros, that is, to find H1 ∈ Har+(D)
such that

∑
λ∈Λ∩Qk

log 1
ρ(ζ , λ) ≤ H1(zk), ζ ∈ Qk , k = 1, 2, . . . ,

if ρ(ζ , Λ) ≥ e−H(ζ). By the previous claim, this only occurs when ζ ∉ Dρ(zk , Rk).
Then, the above sum breaks into two terms: those corresponding to λ = zk can
be estimated by −Nk log Rk , and those admit a harmonic majorant of the form
C′∑ j N j log 1

R j
hQ j , because by (3.8),

∞

∑
j=1

l(Q j)N j log 1
R j

< ∞.

The second term corresponds to the points λ = λ j ∈ Λ(k)/{zk}. After applying an
automorphism of the disc mapping λk to 0, the corresponding sum

∑
λ j∈Λ(k)/{zk}

log 1
ρ(ζ , λ)

reduces to a Riemann sum for the area integral of log 1
∣z∣ , with disks of (Euclidean)

radius e−(1+η)H(zk). The integral is convergent, and after an elementary computation,
one finds that the second term is bounded by a fixed multiple of e2(1+η)H(zk)R2

k log 1
Rk

.
Again by (3.8), this term also admits a harmonic majorant. ∎

We now want to show that − log ∣B∣ has no harmonic majorant on the set {z ∶
ρ(z, Λ) > e−(1+η0)H(z)}.

Claim 3. For k large enough,

{ζ ∈ Qk ∶ ρ(ζ , Λ) ≥ e−(1+η0)H(ζ)} ∩ D(zk , e−(1+η)H(zk)) ≠ ∅. ∎

Proof The choice of the points {λ j} gives that there is a point ζ such that ρ(zk , ζ) =
e−(1+η)H(zk) and for any λ j ∈ Λ(k)/{zk}, we have ρ(ζ , λ j) ≥ 1

2 e−(1+η)H(zk). Therefore,
because η < η0, for k large enough,

log ρ(ζ , Λ) ≥ − log 2 − (1 + η)H(zk) ≥ − log 2 − γ−1
k (1 + η)H(ζ)

≥ −(1 + η0)H(ζ). ∎

Let ζ be a point in the nonempty intersection given by Claim 3. Because B has a
zero at zk of multiplicity Nk ,

log 1
∣B(ζ)∣ ≥ Nk(1 + η)H(zk),

and (3.6) implies that this cannot admit a harmonic majorant, because any majorizing
function would have to grow faster than 1/l(Qk) at the points zk . ∎

The proof of Theorem 1.4 uses the following variant of Lemma 1.1 of [9].

https://doi.org/10.4153/S0008414X21000511 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000511


240 A. Nicolau and P. J. Thomas

Lemma 3.1 There exists a universal constant C0 ≥ 1 such that the following state-
ment holds. Let Λ be a Blaschke sequence and H ∈ Har+(D). Let z ∈ D with eH(z) ≥
max{C0 , #{λ ∈ Λ ∶ ρ(λ, z) ≤ 1

2}}. Then, there exists z̃ ∈ D with ρ(z̃, Λ) ≥ e−H(z̃) and
ρ(z̃, z) ≤ e−H(z)/C0 .

Proof We can assume that H(z) ≥ 100. A calculation shows that there exists a
constant C1 > 1 such that

C−1
1 t2(1 − ∣z∣)2 ≤ Area Dρ(z, t) ≤ C1 t2(1 − ∣z∣)2 .

See page 3 of [5]. Using these estimates and the fact that H(z) ≥ 100, one can
show that there exists a sufficiently large universal constant C0 > 0 such that the
pseudohyperbolic disk Dρ(z, e−H(z)/C0) contains more than e3H(z)/2 pairwise disjoint
pseudohyperbolic disks D j of pseudohyperbolic radius e−H(z j). Here, z j denotes the
center of D j . Because eH(z) ≥ #(Λ ∩ Dρ(z, 1

2 )), there exists at least one D j with
D j ∩ Λ = ∅, and we can take as z̃ the center of D j . ∎

Proof of Theorem 1.4 Let C0 ≥ 1 be the constant appearing in Lemma 3.1. Fix C > 1.
We will show that there exists a constant C1 = C1(C) > 0 such that for any z ∈ D with
C−1

0 ≥ ρ(z, Λ) ≥ e−CH(z), there exists z̃ ∈ D with ρ(z̃, Λ) ≥ e−H(z̃) and

log ∣B(z)∣−1 ≤ C1(log ∣B(z̃)∣−1 + HΛ(z̃)).(3.9)

Fix z ∈ D with C−1
0 ≥ ρ(z, Λ) ≥ e−CH(z). Apply Lemma 3.1 to find z̃ ∈ D with

ρ(z̃, z) ≤ e−H(z)/C0 such that ρ(z̃, Λ) ≥ e−H(z̃). Let Λ = (λk)k and split Λ = Λ1 ∪ Λ2 ∪
Λ3 where Λ1 = {λk ∶ ρ(z, λk) ≤ e−H(z)/2C0}, Λ2 = {λk ∶ e−H(z)/2C0 < ρ(z, λk) ≤ 1/2},
and Λ3 = {λk ∶ ρ(z, λk) ≥ 1/2}. By lemma 2.1, there exists a constant C2 > 0 such that

∑
λk∈Λ3

log ρ(z, λk)−1 ≤ C2HΛ(z).

If λk ∈ Λ2, we have ρ(z̃, λk) ≤ ρ(z, z̃) + ρ(z, λk) ≤ 2ρ(z, λk). Using the obvious esti-
mate 2x ≤ x 1/2, which holds for 0 ≤ x ≤ 1/

√
2, we deduce ρ(z̃, λk) ≤ ρ(z, λk)1/2.

Hence,

∑
λk∈Λ2

log ρ(z, λk)−1 ≤ 2 ∑
λk∈Λ2

log ρ(z̃, λk)−1 ≤ 2 log ∣B(z̃)∣−1 .

Finally, because ρ(z, Λ) ≥ e−CH(z), we have that

∑
λk∈Λ1

log ρ(z, λk)−1 ≤ CH(z)#Λ1 .

Observe that if λk ∈ Λ1, then ρ(z̃, λk) ≤ ρ(z, z̃) + ρ(z, λk) ≤ 2e−H(z)/2C0 , and we
deduce that there exists a universal constant C3 > 0 such that

log ∣B(z̃)∣−1 ≥ ∑
λk∈Λ1

log ρ(z̃, λk)−1 ≥ C3
H(z)

C0
#Λ1 .

Hence, there exists a constant C4 > 0 such that

∑
λk∈Λ1

log ρ(z, λk)−1 ≤ C4 log ∣B(z̃)∣−1 .
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Collecting these estimates, one finds a constant C5 > 0 such that

log ∣B(z)∣−1 ≤ C5(log ∣B(z̃)∣−1 + HΛ(z)).

Because by Harnack’s inequality HΛ(z) and HΛ(z̃) are comparable, this proves (3.9).
Now, (3.9), the assumption, and another application of Harnack’s inequality give
that − log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ C−1

0 ≥ ρ(z, Λ) ≥ e−CH(z)}.
By Lemma 2.1, there exists a constant C6 > 0 such that − log ∣B(z)∣ ≤ C6HΛ(z) if
ρ(z, Λ) ≥ C−1

0 . This completes the proof. ∎
Proof of Theorem 1.5 Fix z ∈ D with ρ(z, Λ) ≥ e−H(z). Consider Λ1 = {λk ∶
ρ(λk , z) ≤ 1/2} and Λ2 = {λk ∶ ρ(λk , z) > 1/2}. By Lemma 2.1, there exists an absolute
constant C1 > 0 such that

∑
λk∈Λ2

log ρ(λk , z)−1 ≤ C1HΛ(z).

On the other hand, because ρ(z, Λ) ≥ e−H(z), we have

∑
λk∈Λ1

log ρ(λk , z)−1 ≤ H(z)#Λ1 .

Let Q be the dyadic Whitney square containing z. Because there exists a universal
constant 0 < C2 < 1 such that each point λk ∈ Λ1 satisfies ρ(λk , z(Q)) ≤ C2, we deduce
that there exists a constant C3 > 0 such that H(z)#Λ1 ≤ C3H1(z). Hence, C1HΛ +
C3H1 is a harmonic majorant of − log ∣B∣ on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}. ∎
Corollary 3.2 Let B be a Blaschke product with zero set Λ. Let H ∈Har+(D) such that

∑N(Q)H(z(Q))l(Q) < ∞,

where the sum is taken over all dyadic Whitney squares Q such that N(Q) > 0. Then,
− log ∣B∣ has a harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}.

Proof of Corollary 3.2 Consider the harmonic function H1 ∈ Har+(D) defined by

H1(z) = ∑N(Q)H(z(Q))hQ , z ∈ D,

where the sum is taken over all dyadic Whitney squares Q with N(Q) > 0.
Observe that by (2.4), there exists a positive constant C > 0 such that H1(z(Q)) ≥
CN(Q)H(z(Q)) for any Q with N(Q) > 0. Now, the result follows from
Theorem 1.5. ∎

4 Smirnov quotient algebras

A quasibounded harmonic function is a harmonic function on the unit disc which
is the Poisson integral of an integrable function on the unit circle. We denote by
QB+(D) the cone of positive quasibounded harmonic functions on D. An analytic
function f on D is in the Smirnov class N+ if the function log+ ∣ f ∣ has a quasibounded
harmonic majorant in D. A function in the Nevanlinna class is in the Smirnov class
if and only if its canonical inner–outer factorization has no singular function in the
denominator. Hence, the Smirnov classN+ is an algebra where the invertible functions
are exactly the outer functions. Interpolating sequences in N+ were described as

https://doi.org/10.4153/S0008414X21000511 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000511


242 A. Nicolau and P. J. Thomas

those sequences {zn} of points in D for which there exists H ∈ QB+(D) such that
condition (1.2) holds. See Theorem 1.3 of [7]. Mortini proved in [10, Satz 4] the
following Corona-Type Theorem in the Smirnov class. Given f1 , . . . , fn ∈ N+, the
Bézout equation f1 g1 +⋯+ fn gn ≡ 1 can be solved with functions g1 , . . . , gn ∈ N+ if
and only if there exists H ∈ QB+(D) such that

n
∑
i=1
∣ f i(z)∣ ≥ e−H(z) , z ∈ D.

Given an inner function I with zero set Λ = {λk}, we want to study invertibility in
the quotient algebra N+/IN+. Let f ∈ N+ and assume that the class [ f ] is invertible
in N+/IN+, that is, there exist g , h ∈ N+ such that f g = 1 + Ih. Then, there exists H ∈
QB+(D) such that

∣ f (λk)∣ ≥ e−H(λk) , k = 1, 2, . . . .(4.1)

We are interested on studying the converse statement. Observe that if I had a non-
constant singular inner factor, then for any h ∈ N+, there would exist ξ ∈ ∂D such that
I(z)h(z) would tend to zero when z approaches ξ nontangentially. Actually, let S be
a nonconstant singular inner factor of I. Then, min{∣S(z)h(z)∣ ∶ z ∈ D} = 0, because
otherwise S would be invertible in N+. Hence, if I has a nonconstant singular inner
factor, we cannot expect that condition (4.1) implies that [ f ] is invertible in N+/IN+.
When I is a Blaschke product, we have the following analogue of Theorem 1.1.

Theorem 4.1 Let B be a Blaschke product with zero set Λ = (λk)k .
(1) For any C ∈ (0, 1), the following statement holds. Let H ∈ QB+(D), and assume

that the function − log ∣B∣ has a quasibounded harmonic majorant on the set {z ∈
D ∶ ρ(z, Λ) ≥ e−H(z)}. Then, for any f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 such that

∣ f (λk)∣ > e−CH(λk), k = 1, 2, . . . ,

there exist g , h ∈ N+ such that f g = 1 + Bh.
(2) For any C > 1, there exists a constant C0 > 0 such that the following statement holds.

Let H ∈ QB+(D)with H ≥ C0HΛ . Assume that for any f ∈ H∞, ∣∣ f ∣∣∞ ≤ 1 such that

∣ f (λk)∣ > e−CH(λk), k = 1, 2, . . . ,

there exist g , h ∈ N+ such that f g = 1 + Bh. Then, the function − log ∣B∣ has a
quasibounded harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}.

The proof is the same as that of Theorem 1.1, taking into account the fact that HΛ
is a quasibounded positive harmonic function.

Hence, as in the case of the Nevanlinna class, the invertibility problem in N+/BN+
roughly reduces to studying the set of functions H ∈ QB+(D) such that − log ∣B∣ has a
quasibounded harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}. So, given an
inner function I with zero set Λ, it is natural to consider the set HQB(I) of functions
H ∈ QB+(D) such that − log ∣I∣ has a quasibounded harmonic majorant on the set
{z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}. Our next result says that if I has a nonconstant singular
inner factor, then HQB(I) does not contain large functions.

https://doi.org/10.4153/S0008414X21000511 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000511


Invertibility Threshold for Nevanlinna Quotient Algebras 243

Lemma 4.2 Let I be an inner function with zero set Λ and nonconstant singular
inner factor S. Then, for any H ∈ Har+(D) with H > HΛ , the function − log ∣I∣ has no
quasibounded harmonic majorant on the set {z ∈ D ∶ ρ(z, Λ) ≥ e−H(z)}.

Proof We argue by contradiction. So assume that H, H1 are quasibounded positive
harmonic functions such that

− log ∣S(z)∣ ≤ − log ∣I(z)∣ ≤ H1(z) if ρ(z, Λ) ≥ e−H(z) .(4.2)

We want to show that − log ∣S(z)∣ ≤ H1(z) for any z ∈ D. Assume that H(z) > 10. Let
N(z) be the number of points λ ∈ Λ with ρ(λ, z) ≤ e−H(z)/10. Note that in the pseu-
dohyperbolic disc {w ∈ D ∶ ρ(w , z) ≤ e−H(z)/10}, there are at least eCH(z) pairwise
disjoint pseudohyperbolic discs {D j} of pseudohyperbolic radius e−H(z). Here, C > 0
denotes a small positive constant. We deduce that there exists D j such that D j ∩ Λ = ∅.
Otherwise, we would have a point of Λ in each D j and then N(z) ≥ eCH(z) which
contradicts the assumption H ≥ HΛ . Pick z̃ ∈ D j , and note that ρ(z, z̃) ≤ e−H(z)/10 and
ρ(z̃, Λ) ≥ e−H(z). Hence, (4.2) gives

− log ∣S(z̃)∣ ≤ H1(z̃).

By Harnack’s inequality, there exists an absolute constant C > 0 such that− log ∣S(z)∣ ≤
CH1(z). Because − log ∣S∣ is the Poisson integral of a nontrivial singular measure on
the unit circle, this is a contradiction. ∎

If I has a nonconstant singular inner factor and finitely many or very sparse zeros,
the set HQB(I) is empty. On the other hand, if I satisfies the WEP, then HQB(I)
contains the constants. When I is a Blaschke product, HQB(I) is the whole cone
of positive quasiharmonic functions if and only if the zeros of I are a finite union
of interpolating sequences in the Smirnov class. See [9]. We have not explored the
analogues of our Theorems 1.1–1.5 for the class HQB(B).
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