THE CLASSIFICATION OF COMMUTATIVE TORSION FILIAL RINGS

R. R. ANDRUSZKIEWICZ and K. PRYSZCZEPKO[™]

(Received 18 December 2012; accepted 6 March 2013; first published online 18 July 2013)

Communicated by B. Gardner

Abstract

The aim of this paper is to give a classification theorem for commutative torsion filial rings.

2010 *Mathematics subject classification*: primary 16D25; secondary 13C05, 13B02. *Keywords and phrases*: ideal, filial ring.

1. Introduction

All considered rings are associative but do not necessarily have identity. We say that a ring *R* is an *H*-ring if all its subrings are ideals. *H*-rings were investigated by many authors (see [1, 2, 9-12]). A detailed description of the structure of torsion *H*-rings turned out to be one of the most difficult problems.

A classification of H-rings was obtained independently by Kruse in his dissertation [9] and by Andrijanov in [2]. Andrijanov showed that there are sixteen types of these rings [2, Theorem 2]. Unfortunately, the still unanswered question is whether there exists any isomorphism between any two rings from the same class. This problem seems complicated because a variety of parameters define these classes.

A ring *R* is called filial (left filial), if for any ideal (left ideal) *J* of *R*, and any ideal (left ideal) *I* of *J*, *I* is an ideal (left ideal) of *R*. The notion of a filial ring is a natural generalization of the notion of an *H*-ring. Filial rings and left filial rings were investigated by many authors (see [5-8]). For example, Filipowicz and Puczyłowski in [8] obtained the structure of left filial algebras over a field.

However, the problem of a classification of filial rings is much more complicated and subtle. So far, the most important results concern the case of commutative filial rings (see [3–5]).

The purpose of this paper is to give a complete classification of commutative torsion filial rings. The main theorem of this work (Theorem 4.1) is a surprising analogue

^{© 2013} Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

of [8, Theorem 4.3]. Nevertheless, our proof is quite different from the one in [8] and requires fundamentally new ideas and methods.

2. Preliminary results

Throughout the paper, \mathbb{N} and \mathbb{P} stand for the set of all positive integers and the set of all primes, respectively. For a ring *R*, we denote by N(R) the nilradical of *R*, and by R^+ the additive group of *R*. We write o(x) for the order of an element *x* of the group R^+ . For $p \in \mathbb{P}$ we let $R_p = \{x \in R : p^k x = 0 \text{ for some } k \in \mathbb{N}\}$ and $R(p) = \{x \in R : px = 0\}$. We say that a ring *R* is of bounded exponent if there exists $M \in \mathbb{N}$ such that Mx = 0 for every $x \in R$, otherwise we say that *R* is of unbounded exponent. We say that a ring *R* is a *p*-ring if R^+ is a *p*-group for a prime number *p*. If *R* is both a *p*-ring and an *H*-ring, we shall say that *R* is an *H*-*p*-ring. For a subset *S* of a ring *R*, we denote by $\langle S \rangle$ the subgroup of R^+ generated by *S*, and by $l_R(S)$ the left annihilator of *S* in *R*.

The term almost null ring was introduced by Kruse in [10]. These rings play an important role in the study of certain H-rings.

DEFINITION 2.1 [10, Definition 2.1]. We say that a ring R is **almost null** if for every $a \in R$:

(i) $a^3 = 0;$

- (ii) $Ma^2 = 0$ for some square-free integer $M (M = M_a)$;
- (iii) $aR + Ra \subseteq \langle a^2 \rangle$.

Clearly, every almost null ring *R* is an *H*-ring such that $R^3 = 0$. Moreover, every homomorphic image and every subring of an almost null ring are almost null. The importance of this notion lies in the following proposition.

PROPOSITION 2.2 [10, Proposition 2.5]. A nil p-ring R of an unbounded exponent is an *H*-ring if and only if R is almost null.

We begin by recalling a few well-known facts.

PROPOSITION 2.3 [7, Corollary 2.3]. A commutative nil ring R is filial if and only if R is an H-ring.

LEMMA 2.4 (see [8, Theorem 3.3]). Let R be a nil H-ring such that pR = 0 for a prime p. Then R is almost null.

REMARK 2.5. Let *C* be a commutative ring with identity 1 and let *A* be a *C*-algebra. We denote by $(1_C, A)$ the *C*-algebra obtained from *A* by adjoining an identity 1 of *C*. Obviously, $(1_C, A)^+ = C^+ \oplus A^+$. For any $c \in C$, $a \in A$ we write c + a instead of the pair (c, a). According to this notation we have $A \triangleleft (1_C, A)$ and $(1_C, A)/A \cong C$. It is also clear that if *A* is commutative, then the algebra $(1_C, A)$ is commutative too. Moreover, if *A* possesses an identity, then $(1_C, A) \cong C \oplus A$. Note that every ring is a \mathbb{Z} -algebra in a natural way.

DEFINITION 2.6. We say that *R* is a K_0 -ring if *R* is a commutative filial ring with identity, such that $N(R) \neq 0$ and R/N(R) is a field.

In [5] we considered *K*-rings, that is, noetherian K_0 -rings. In that paper we proved the following result, which is important in the description of K_0 -rings.

THEOREM 2.7 [5, Theorem 4.3]. For a given ring R with identity 1, the following conditions are equivalent:

- (i) R is a K_0 -ring;
- (ii) there exists a commutative almost null ring N such that $N \triangleleft R$, pN = 0 for some $p \in \mathbb{P}$, $R = \langle 1 \rangle + N$, $o(1) = p^m$ for some $m \in \mathbb{N}$, and if m = 1, then $N \neq 0$.

A detailed study of a classification of *K*-rings, (especially the proof of [5, Theorem 4.5]) enables us to obtain a similar classification of K_0 -rings.

THEOREM 2.8. The rings described in Examples 2.9-2.11 are all K_0 -rings (up to isomorphism).

EXAMPLE 2.9 (see [5, Example 1]). Let $n \in \mathbb{N}$, $p \in \mathbb{P}$ and let N be a commutative almost null ring such that pN = 0. If n = 1 then we additionally assume that $N \neq 0$. Then N is a \mathbb{Z}_{p^n} -algebra with a natural external multiplication

$$k \circ a = ka$$
 for $k \in \mathbb{Z}_{p^n}, a \in N$,

and the ring $(1_{\mathbb{Z}_{p^n}}, N)$ is a K_0 -ring.

Let $m \in \mathbb{N}$ and let M be a commutative almost null ring such that pM = 0. If m = 1 then we additionally assume that $M \neq 0$. Then $(1_{\mathbb{Z}_{p^n}}, N) \cong (1_{\mathbb{Z}_{p^m}}, M)$ if and only if n = m and $N \cong M$.

EXAMPLE 2.10 (see [5, Example 2]). Let *p* be any prime and $m \ge 2$ be a positive integer, and let $t_0 \in \mathbb{Z}_p \setminus \{0\}$. Denote by *P* the \mathbb{Z}_{p^m} -algebra generated by 1, *x* with the relations px = 0, $x^2 = t_0 p^{m-1} \cdot 1$. Every element of *P* can be written as k + lx for uniquely determined $k \in \mathbb{Z}_{p^m}$, $l \in \mathbb{Z}_p$, and *P* is a filial ring.

Let *B* be a \mathbb{Z}_p -algebra such that $B^2 = 0$. Then *B* is a *P*-algebra with external multiplication

$$(k + lx) \circ b = kb$$
 for $k \in \mathbb{Z}_{p^m}, l \in \mathbb{Z}_p, b \in B$.

By Theorem 2.7, the ring $(1_P, B)$ is a K_0 -ring. Notice that, if in [5, Example 2] we replace |B| by dim_{\mathbb{Z}_p} B, and use the same arguments, then for p = 2, $t_0 = 1$ and for fixed $m \ge 2$ and fixed B there a exists uniquely determined (up to isomorphism) ring $(1_P, B)$, whereas for fixed $p \ge 3$, $m \ge 2$ and B there exist exactly two (up to isomorphism) rings $(1_P, B)$. One of them can be obtained by setting $t_0 = 1$. The other one can be obtained by taking t_0 as an arbitrary nonresidue modulo p.

EXAMPLE 2.11 (see [5, Example 3]). Let *p* be an odd prime and $m \ge 2$ be a positive integer and let $t_0 \in \mathbb{Z}_p \setminus \{0\}$. Denote by *P* the \mathbb{Z}_{p^m} -algebra generated by elements 1, *x*, *y* with the relations xy = yx = px = py = 0, $x^2 = t_0 p^{m-1} \cdot 1$, $y^2 = \alpha x^2$, where $-\alpha$ is a fixed nonresidue modulo *p*. Every element of *P* can be written as $k \cdot 1 + l_1 x + l_2 y$ for uniquely determined $k \in \mathbb{Z}_{p^m}$, $l_1, l_2 \in \mathbb{Z}_p$. From Theorem 2.7 it follows that *P* is a filial ring.

$$(k + l_1 x + l_2 y) \circ b = kb$$
 for $k \in \mathbb{Z}_{p^m}$, $l_1, l_2 \in \mathbb{Z}_p$, $b \in B$.

By Theorem 2.7, the ring $(1_P, B)$ is a K_0 -ring.

Let *C'* be a \mathbb{Z}_p -algebra with basis $\{x_1, x_1^2, y_1\}$ and the relations $x_1y_1 = y_1x_1 = x_1^3 = 0$, $y_1^2 = \beta x_1^2$ for a nonresidue $-\beta$ modulo *p*. Let $s_0 \in \mathbb{Z}_p \setminus \{0\}$. Denote by *P'* the $\mathbb{Z}_{p^{m'}}$ -algebra generated by the elements 1, x_1 , y_1 with the relations $x_1y_1 = y_1x_1 = px_1 = py_1 = 0$, $x_1^2 = s_0p^{m'-1} \cdot 1$, $y_1^2 = \beta x_1^2$.

If $(1_P, B) \cong (1_{P'}, B')$, then replacing |B| by dim $\mathbb{Z}_p B$ in [5, Example 3] and using the same arguments we obtain $m = m', P \cong P'$ and $B \cong B'$.

Conversely, assume that m = m' and let $g: B \to B'$ be an isomorphism of rings. Then there exists a nonzero $\gamma \in \mathbb{Z}_p$ such that $\beta = \gamma^2 \alpha$, because both $-\alpha$ and $-\beta$ are nonresidues modulo p. It is well known that $\{u^2 + v^2 \Delta : u, v \in \mathbb{Z}_p\} = \mathbb{Z}_p$ for a nonzero $\Delta \in \mathbb{Z}_p$. So, there exist $l_1, k_1 \in \mathbb{Z}_p$ such that $t_0 \equiv s_0(l_1^2 + k_1^2 \gamma^2 \alpha) \mod p$. Moreover, there exists $\gamma' \in \mathbb{Z}_p$ such that $\gamma \cdot \gamma' \equiv 1 \mod p$. Set $l_2 = -\alpha \gamma k_1, k_2 = \gamma' l_1$. One can easily check that a function $F: (1_p, B) \to (1_{P'}, B')$ given by

$$F(U \cdot 1 + Vx + Wy + b) = U \cdot 1 + (Vl_1 + Wl_2)x_1 + (Vk_1 + Wk_2)y_1 + g(b),$$

where $U \in \mathbb{Z}_{p^m}$, $V, W \in \mathbb{Z}_p$, is an isomorphism of rings.

This shows that for fixed $m \ge 2$ and *B* there exists a uniquely determined (up to isomorphism) ring $(1_P, B)$. We obtain this ring by setting, for instance, $t_0 = 1$ and taking $-\alpha$ as an arbitrary nonresidue modulo *p*.

A ring *R* is strongly regular if $a \in Ra^2$ for every $a \in R$. It is well known that all strongly regular rings are von Neumann regular, and for commutative rings this two properties coincide. The class of all strongly regular rings S form a radical in the sense of Kurosh and Amitsur. One can easily check that every strongly regular ring is filial.

LEMMA 2.12. Every K_0 -ring R is S-semisimple.

PROOF. Assume that $\mathbb{S}(R) \neq 0$. Then $N(R) \cap \mathbb{S}(R) = 0$ and $(N(R) \oplus \mathbb{S}(R))/N(R)$ is a nonzero ideal in the field R/N(R). Hence $N(R) \oplus \mathbb{S}(R) = R$. But *R* is a ring with identity, so N(R) is also a ring with identity, which is a contradiction. \Box

3. Useful lemmas concerning idempotents in filial rings

LEMMA 3.1. Let *R* be a commutative filial ring containing a nil ideal *I* such that *I* is a *p*-ring. Then, for every idempotent $e \in R$, eI = 0 or ei = i for every $i \in I$.

PROOF. Suppose the lemma does not hold. Then eI and $J = \{ei - i : i \in I\}$ are nonzero ideals of R contained in I and such that $eI \cap J = 0$. Because I is a nil p-ring, there exist nonzero $a \in eI$ and $b \in J$ such that $a^2 = b^2 = 0$ and pa = pb = 0. Hence ab = 0, $\langle a \rangle \cap \langle b \rangle = 0$ and this implies $\langle a + b \rangle = [a + b]$. From Proposition 2.3 it follows that I

is an *H*-ring, so by filiality of *R*, $\langle a + b \rangle \triangleleft R$. Therefore, e(a + b) = k(a + b) for some $k \in \mathbb{Z}$. But e(a + b) = ea + eb = a + 0 = a, so a = ka + kb. Hence $kb \in \langle a \rangle \cap \langle b \rangle = 0$, so kb = 0 and, in consequence, $p \mid k$ and ka = 0, so a = 0. This is a contradiction.

LEMMA 3.2. Let *R* be a commutative filial ring such that N(R) is a *p*-ring and $R/N(R) \in \mathbb{S}$. If $e \in R$ is an idempotent such that $ei \neq i$ for some $i \in N(R)$, then eN(R) = 0 and $Re \in \mathbb{S}$.

PROOF. From Lemma 3.1 we get at once that eN(R) = 0. Thus $N(R) \subseteq l_R(e)$ and $R = Re \oplus l_R(e)$, so $Re \cong (Re + N(R))/N(R) \triangleleft R/N(R)$. But $R/N(R) \in \mathbb{S}$ and the radical \mathbb{S} is hereditary, so $Re \in \mathbb{S}$.

LEMMA 3.3. Let *R* be a commutative filial ring such that N(R) is a *p*-ring and $R/N(R) \in S$. Then for every idempotent $e \in R$, $e \notin S(R)$ if and only if ei = i for every $i \in N(R)$.

PROOF. \Rightarrow . Suppose the assertion of the lemma is false. Then eN(R) = 0 by Lemma 3.1, and hence $eR \cap N(R) = 0$, because if $er \in N(R)$ for some $r \in R$, then $0 = e(er) = e^2r = er$. It follows that $eR \cong (eR + N(R))/N(R) \triangleleft R/N(R)$. But $R/N(R) \in \mathbb{S}$, so $eR \in \mathbb{S}$. Thus $eR \subseteq \mathbb{S}(R)$ and $e = e^2 \in eR$, so $e \in \mathbb{S}(R)$, which is a contradiction.

⇐. A ring $\mathbb{S}(R)$ is reduced and N(R) is a nil ring, so obviously $\mathbb{S}(R) \cap N(R) = 0$ and $\mathbb{S}(R) \cdot N(R) = 0$.

LEMMA 3.4. Let *R* be a commutative filial ring such that N(R) is a *p*-ring and $R/N(R) \in \mathbb{S}$. If $\mathbb{S}(R) + N(R) \neq R$, then there exists an idempotent $e \in R$ such that $N(R) \subseteq eR$ and $R = eR \oplus l_R(e)$. Moreover, $l_R(e) \in \mathbb{S}$.

PROOF. Take any $x \in R \setminus (\mathbb{S}(R) + N(R))$. Since R/N(R) is a strongly regular ring, there exists $y \in R$ such that $x - x^2y \in N(R)$ and yx + N(R) is an idempotent in R/N(R). But N(R) is a nil ideal, hence the Köethe-Dickson theorem on lifting idempotents implies $yx - e \in N(R)$ for some idempotent $e \in R$. Therefore, $x - ex = (x - x^2y) + x(xy - e) \in N(R)$, which yields $x \in eR + N(R)$. But $x \notin \mathbb{S}(R) + N(R)$, so $e \notin \mathbb{S}(R)$. By Lemma 3.3, ei = i for every $i \in N(R)$. Thus $N(R) \subseteq eR$ and N(eR) = N(R). Moreover, $R = eR \oplus l_R(e)$, so $l_R(e) \in \mathbb{S}$.

LEMMA 3.5. Let *R* be a commutative filial ring such that N(R) is a *p*-ring and $R/N(R) \in S$. If eN(R) = 0 for every idempotent $e \in R$, then $R = S(R) \oplus N(R)$.

PROOF. Take any $a \in R$. Since $R/N(R) \in \mathbb{S}$, there exist $b, e \in R$, $e = e^2$, and $i \in N(R)$ such that $a - ba^2 \in N(R)$ and ba = e + i. Hence $a - ae \in N(R)$ and $a \in Re + N(R)$. Lemma 3.2 implies that $Re \in \mathbb{S}$. In consequence, $a \in \mathbb{S}(R) + N(R)$.

LEMMA 3.6. Let *R* be a commutative filial *p*-ring such that N(R) is a ring of unbounded exponent. Then $R = S(R) \oplus N(R)$.

PROOF. Take any idempotent $e \in R$. If $eN(R) \neq 0$, then N(R) = N(R)e by Lemma 3.1. But $p^n e = 0$ for some $n \in \mathbb{N}$, so $p^n N(R) = 0$, which is a contradiction. We thus get eN(R) = 0 and, by Lemma 3.5, $R = \mathbb{S}(R) \oplus N(R)$. LEMMA 3.7. Let *R* be a commutative filial ring with identity such that N(R) is a *p*-ring and $R/N(R) \in \mathbb{S}$. Then $R = \langle 1 \rangle + \mathbb{S}(R) + N(R)$.

PROOF. By Proposition 2.3, N(R) is an *H*-ring. From [2, Lemma 1 and Theorem 2], it follows that N(R) is nilpotent. So, there exists nonzero $i_0 \in l_{N(R)}(N(R))$. Then $\langle i_0 \rangle \triangleleft N(R)$ and $\langle i_0 \rangle \triangleleft R$. Let $r \in R$. Then there exists an integer *k* such that $ri_0 = ki_0$. Hence, $r - k \cdot 1 \in l_R(i_0)$, and $R = \langle 1 \rangle + l_R(i_0)$. Moreover, $\mathbb{S}(R) \cap N(R) = 0$, so $\mathbb{S}(R) \subseteq l_R(i_0)$. Take any $a \in l_R(i_0)$. Then $R/N(R) \in \mathbb{S}$ implies that there exist *b*, $e \in R$, $e = e^2$, and $i \in N(R)$ such that $a - ba^2 \in N(R)$, and ba = e + i. But $ii_0 = 0$, $ai_0 = 0$, so $ei_0 = 0$. Lemma 3.2 now yields eN(R) = 0 and $Re \in \mathbb{S}$. But $a - ae \in N(R)$, so $a \in Re + N(R) \subseteq \mathbb{S}(R) + N(R)$. It follows that $l_R(i_0) \subseteq \mathbb{S}(R) + N(R)$ and $l_R(i_0) = \mathbb{S}(R) + N(R)$. Finally, $R = \langle 1 \rangle + \mathbb{S}(R) + N(R)$.

LEMMA 3.8. Let *R* be a commutative filial *p*-ring with identity such that $N(R) \neq 0$. Then $pR \subseteq p \cdot \langle 1 \rangle$. In particular, the group $pN(R)^+$ is cyclic and $N(R) = N(R)(p) + p \cdot \langle 1 \rangle$.

PROOF. Since R^+ is a *p*-group, there exists $n \in \mathbb{N}$ such that $o(1) = p^n$. Hence $p^n R = 0$ and $pR \subseteq N(R)$. By filiality of *R* and Proposition 2.3, we get that N(R) is an *H*-ring. But $\langle p \cdot 1 \rangle = [p \cdot 1] \triangleleft N(R)$, so $\langle p \cdot 1 \rangle \triangleleft R$. This means that $pR \subseteq p\langle 1 \rangle$. In particular, $pN(R) \subseteq p\langle 1 \rangle$, and the group $pN(R)^+$ is cyclic.

If pN(R) = 0, then $N(R) \subseteq N(R)(p)$ and $N(R) = N(R)(p) + p\langle 1 \rangle$. So, assume that $pN(R) \neq 0$. For every $i \in N(R)$ there exists $k \in \mathbb{Z}$ such that $pi = k(p \cdot 1)$.

If $p \nmid k$ then there exists $l \in \mathbb{Z}$ such that $lk \equiv 1 \mod p^n$, so $p \cdot 1 = lpi$. Thus $pN(R) \subseteq piN(R)$ and $pN(R) \subseteq pN(R)i^m$ for every $m \in \mathbb{N}$. But N(R) is a nil ring, which clearly forces pN(R) = 0. This is a contradiction.

Therefore, $p \mid k$. Hence, there exists $k' \in \mathbb{Z}$ such that k = pk'. Then $p(i - (pk') \cdot 1) = 0$, $i - (pk') \cdot 1 \in N(R)(p)$. Thus $i = (i - (pk') \cdot 1) + pk' \cdot 1 \in N(R)(p) + p \cdot \langle 1 \rangle$, and this leads to $N(R) = N(R)(p) + \langle p \cdot 1 \rangle$.

4. The classification theorem for torsion filial rings

We now state and prove the main theorem of this work.

THEOREM 4.1. All (up to isomorphism) commutative torsion filial rings are rings of the form $\bigoplus_{p \in \mathbb{P}} R_p$, where every R_p is one of the following rings:

- (i) $S \oplus N$, where N is a commutative nil H-p-ring and S is a commutative strongly regular p-ring;
- (ii) $(1_C, S) \oplus S_1$, where S and S_1 are commutative strongly regular p-rings and the *p*-ring C is a K_0 -ring.

PROOF. Every torsion ring *R* can be written in the form $R = \bigoplus_{p \in \mathbb{P}} R_p$, where every component R_p of this sum is uniquely determined. From [6, Proposition 2], *R* is filial if and only if R_p is filial for every $p \in \mathbb{P}$. Therefore, without loss of generality we can assume that *R* is a commutative *p*-ring.

Assume that the ring *R* is filial. From Proposition 2.3, *N*(*R*) is an *H*-*p*-ring. Moreover, the quotient *p*-ring *R*/*N*(*R*) is filial and reduced. According to [7, Theorem 4.1] we have $R/N(R) \in S$. So, if R = N(R) or N(R) = 0, then *R* is like in (i).

295

Assume now that $0 \neq N(R) \neq R$. If N(R) is a ring of unbounded exponent, then by Lemma 3.6, $R = \mathbb{S}(R) \oplus N(R)$.

It remains to consider the case when N(R) is a ring of bounded exponent. Since p(R/N(R)) = 0, we have $p^m R = 0$ for some $m \in \mathbb{N}$. Assume that $R \neq \mathbb{S}(R) \oplus N(R)$. From Lemma 3.4 there exists an idempotent $e \in R \setminus (\mathbb{S}(R) + N(R))$ such that $N(R) \subseteq eR$, $R = eR \oplus l_R(e)$ and $l_R(e) \in \mathbb{S}$. Hence, eR is a commutative filial ring with identity e and N(eR) = N(R), $p^m(eR) = 0$. Moreover, $(eR)/N(R) \in \mathbb{S}$ so, by Lemma 3.7, $eR = \langle e \rangle + \mathbb{S}(eR) + N(R)$. Denote $C = \langle e \rangle + N(R)$. From Lemma 3.8, $N(R) = N(R)(p) + p\langle e \rangle$ and $C = \langle e \rangle + N(R)(p)$. Theorem 2.7 implies that C is a K_0 -ring. By Lemma 2.12, $C \cap \mathbb{S}(eR) = 0$. Hence, eR is the direct sum of subrings C and $\mathbb{S}(eR)$. Moreover, for $k \in \mathbb{Z}$, $x \in N$, $s \in \mathbb{S}(eR)$ we have $(ke + x) \cdot s = (ke)s$. This means that $\mathbb{S}(eR)$ is a C-algebra in a natural way. Thus $eR \cong (1_C, \mathbb{S}(eR))$ and, finally, $R \cong (1_C, \mathbb{S}(eR)) \oplus l_R(e)$.

Conversely, if $R \cong S \oplus N$, where N is a nil *H*-*p*-ring and S is a strongly regular *p*-ring, then from [7, Theorem 3.2], it follows that R is filial.

Let $R \cong (1_C, S) \oplus S_1$, where *S* and S_1 are commutative strongly regular *p*-rings and the *p*-ring *C* is a K_0 -ring. The ring *R* is an extension of the ring $(1_C, S)$ by the ring S_1 , so from [7, Theorem 3.2], it is enough to prove that the ring $(1_C, S)$ is filial. But $(1_C, S)$ is an extension of the strongly regular ring *S* by the filial ring *C*, so from [7, Theorem 3.2], the ring $(1_C, S)$ is filial.

We will show that the rings described in (i), (ii) are determined uniquely up to isomorphism. Let S_1 , S_2 , S_3 , S_4 be any strongly regular *p*-rings, let N_1 , N_2 be any nil *H*-*p*-rings, and finally let the *p*-rings C_1 , C_2 be any K_0 -rings. Consider $R_1 = S_1 \oplus N_1$, $R_2 = S_2 \oplus N_2$. Assume that $g: R_1 \to R_2$ is an isomorphism of rings. Clearly, $N(R_1) = N_1$ and $N(R_2) = N_2$, so $g(N_1) = N_2$. Moreover, $\mathbb{S}(R_1) = S_1$, $\mathbb{S}(R_2) = S_2$, so $g(S_1) = S_2$. Hence, $N_1 \cong N_2$ and $S_1 \cong S_2$.

Let $A = (1_{C_1}, S_1) \oplus S_2$, $B = (1_{C_1}, S_3) \oplus S_4$. Assume that $f: A \to B$ is an isomorphism of rings. By Lemma 2.12, $\mathbb{S}(A) = S_1 \oplus S_2$, $\mathbb{S}(B) = S_3 \oplus S_4$. Hence $f(S_1 \oplus S_2) = S_3 \oplus S_4$ and, as a consequence, $C_1 \cong A/\mathbb{S}(A) \cong B/\mathbb{S}(B) \cong C_2$. Next $S_2 = l_A(C_1) \cong l_B(C_2) = S_4$, so $A/S_2 \cong B/S_4$, which yields $S_1 = \mathbb{S}(A/S_2) \cong \mathbb{S}(B/S_4) = S_3$.

Finally, if *R* is a ring described in (i), then $R/\mathbb{S}(R)$ is a nil ring. But, for every ring *T* described in (ii), $T/\mathbb{S}(T)$ ia a nonzero ring with an identity as a K_0 -ring. This shows that $R \not\cong T$.

From the classification of nil *H*-*p*-rings (see [2, Theorem 2]), it follows that every noetherian nil *H*-*p*-ring is finite. It is a well-known fact that every (up to isomorphism) nonzero commutative noetherian strongly regular *p*-ring is a finite direct sum of fields of characteristic *p*. Moreover, from Theorem 2.8 and Examples 2.9–2.11 it follows that a K_0 -ring is noetherian if and only if it is finite. Hence, by Theorem 4.1 and Remark 2.5, we have the following corollary.

COROLLARY 4.2. All (up to isomorphism) commutative torsion noetherian filial rings are rings of the form $\bigoplus_{p \in \Pi} R_p$, where Π is a finite subset of \mathbb{P} and every R_p is one of the following rings:

- (i) $S \oplus N$, where N is a finite commutative nil H-p-ring and S is a commutative strongly regular p-ring and S is a finite direct sum of fields of characteristic p;
- (ii) $C \oplus S$, where S is a finite direct sum of fields of characteristic p and the p-ring C is a finite K_0 -ring.

Recall that every field which is finitely generated as a ring is finite, and every commutative finitely generated ring is noetherian. Hence, by Corollary 4.2, we have the following corollary.

COROLLARY 4.3. All (up to isomorphism) commutative torsion finitely generated filial rings are rings of the form $\bigoplus_{p \in \Pi} R_p$, where Π is a finite subset of \mathbb{P} and every R_p is one of the following rings:

- (i) $S \oplus N$, where N is a finite commutative nil H-p-ring and S is a commutative strongly regular p-ring and S is a finite direct sum of finite fields of characteristic p;
- (ii) $C \oplus S$, where S is a finite direct sum of finite fields of characteristic p and the p-ring C is a finite K₀-ring.

References

- [1] V. I. Andrijanov, 'Mixed Hamiltonian nilrings', *Ural. Gos. Univ. Mat. Zap.* **5**(3) (1966), 15–30 (in Russian).
- [2] V. I. Andrijanov, 'Periodic Hamiltonian rings', *Mat. Sb. (N.S.)* 74(116) (1967), 241–261; translation in Mat. Sb. 74(116) (1967), 225–241.
- [3] R. R. Andruszkiewicz, 'The classification of integral domains in which the relation of being an ideal is transitive', *Comm. Algebra.* **31** (2003), 2067–2093.
- [4] R. R. Andruszkiewicz and K. Pryszczepko, 'A classification of commutative reduced filial rings', *Comm. Algebra.* 37 (2009), 3820–3826.
- [5] R. R. Andruszkiewicz and K. Pryszczepko, 'The classification of commutative noetherian, filial rings with identity', *Comm. Algebra.* 40 (2012), 1690–1703.
- [6] R. R. Andruszkiewicz and E. R. Puczyłowski, 'On filial rings', Port. Math. 45 (1988), 139–149.
- [7] M. Filipowicz and E. R. Puczyłowski, 'Left filial rings', Algebra Colloq. 11(3) (2004), 335–344.
- [8] M. Filipowicz and E. R. Puczyłowski, 'The structure of left filial algebras over a field', *Taiwanese J. Math.* 13(3) (2009), 1017–1029.
- [9] R. L. Kruse, 'Rings with periodic additive group in which all subrings are ideals', Dissertation, California Institute of Technology, 1964.
- [10] R. L. Kruse, 'Rings in which all subrings are ideals', Canad. J. Math. 20 (1968), 862–871.
- [11] L. Redei, 'Vollidealringe im weiteren Sinn. I', Acta Math. Acad. Sci. Hungar. 3 (1952), 243–268.
- [12] L. Redei, 'Die Vollidealringe', Monatsh. Math. 56 (1952), 89–95.

R. R. ANDRUSZKIEWICZ, Institute of Mathematics,

University of Białystok, 15-267 Białystok, Akademicka 2, Poland e-mail: randrusz@math.uwb.edu.pl

K. PRYSZCZEPKO, Institute of Mathematics,

University of Białystok, 15-267 Białystok, Akademicka 2, Poland e-mail: karolp@math.uwb.edu.pl

296