
Robotica (2024), 1–16
doi:10.1017/S0263574724000857

RESEARCH ARTICLE

Control framework of the ROBILAUT soil sampling
robot: system overview and experimental results
Daniele Di Vito1 , Paolo Di Lillo1 , Filippo Arrichiello1 , Cesare Ferone2, Raffaele Amico3 and
Gianluca Antonelli1

1Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy
2Natura srl, Casoria, Italy
3OCIMA srl, Caivano, Italy
Corresponding author: Daniele Di Vito; Email: daniele.divito@unicas.it

Received: 13 November 2023; Revised: 26 February 2024; Accepted: 16 April 2024

Keywords: mobile robotics; field robotics; nonlinear control; model predictive control; environmental soil sampling

Abstract
The paper presents the control architecture of a crawler mobile robot designed and developed to sample potentially
contaminated lands. The robot, developed in the framework of an Italian national project named ROBILAUT, carries
a driller with a customized sampling mechanism to implement on-site the required quartering, and it is controlled
to move the drilling device on specific points acquired in real time before the mission starts. The paper describes
the software architecture for the navigation and control, focusing on the control framework of the robotic platform.
Specifically, the robot exhibits a differential drive kinematics with actuators’ constraints, and two different control
strategies have been experimentally tested for comparison both in a structured environment and in the real site in
May 2023.

1. Introduction
Soil sampling is required in several scenarios involving modern agriculture, construction, environmental
analysis, or, in the marine domain, concerning offshore engineering and seabed mineral analysis. In
recent years, several robotic platforms have been developed for sample collection. The work in ref.
[1] presents a proof-of-concept demonstrator of a semi-autonomous robotic system for collecting soil
samples, where a mechanical soil sampling and a storage system based on augers and turntable storage
are used, and where the robot autonomously navigates to desired sampling locations. The paper in ref.
[2] presents a planetary-like rover designed by a team of students as a testbed for planetary robotic
exploration, like soil and rocks extraction and sampling, and for autonomous navigation in unstructured
environment. In ref. [3], an unmanned ground vehicle with a custom-built robotic manipulator for oil
sampling and terramechanics investigations is presented. The paper in ref. [4] presents the case study
of a robotic soil sample collection system from bottom to top, where the sampling process automation
is solved by using the robotic platform and electro-hydraulic mechanism, while the control system is
connected with a cloud-based software that enables to create and manage the operation tasks. The work
in ref. [5] presents the mechanical design of a soil sampling device and the control software of a mobile
robotic platform for precision agriculture. The work in ref. [6] presents a prototype of two ground robots
developed, as a team of a robotic swarm, to collect soil samples. The paper in ref. [7] presents a human-
portable underwater robot for soil core sampling in the underwater domain; the paper in ref. [8] presents
a drilling robot, based on earthworm locomotion, that was developed for seafloor exploration, while the
work in ref. [9] presents a seafloor robotic explorer that can excavate and sample seafloor soil, with a
discharging mechanism utilizing water jetting to improve the excavation depth.

C© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857
https://orcid.org/0000-0001-5708-0468
https://orcid.org/0000-0003-2083-1883
https://orcid.org/0000-0001-9750-8289
https://orcid.org/0000-0002-5511-0165
mailto:daniele.divito@unicas.it
https://doi.org/10.1017/S0263574724000857


2 Daniele Di Vito et al.

Figure 1. Side view of the ROBILAUT robot: a crawler vehicle equipped with a driller to perform
potentially contaminated soil sampling.

Environmental sampling is required in several scenarios characterized by the existence of a pile of
land made by potentially contaminated soil. Current Italian legislation requires to sample a representa-
tive amount of soil within a range of 2÷ 4 kg, depending on the total volume of soils present in the area
under investigation, that has to be sent to chemical laboratories for the successive analysis. More in detail,
this operation, named quartering, consists in sampling several amounts of soils in specific 3D positions
that have to be mixed together. Such activity is currently done manually, which is a tautologically dan-
gerous process given the potential contamination of the site under analysis. The project ROBILAUT,
funded by the Italian Ministero dello Sviluppo Economico (Ministry of Economical Development), had
the objective to automatize the overall operation with benefits for the operators’ health, to improve the
representativeness of the sample and to decrease the operation’s costs. In a first phase, an operator man-
ually drives a drone in charge of building a 3D model of the soil pile; in the considered case, the pile is
up to 3000 m2 with an height of approximately 3 m. Then, the CAD model is sent to a motion planning
engine which, taking into account the legislation constraints and the energy-related optimizing criteria,
outputs the points where the samples need to be taken. Once the sampling point list is obtained, then the
ROBILAUT robot, shown in Fig. 1, autonomously drives toward them and samples/mixes the specific
amount of soil under the supervision of an operator that monitors the overall process using a properly
developed graphical user interface (GUI). Indeed, the operator is not in the line of sight with the vehicle
due to the pile height (usually 3 m); thus, there is the need to supervise the process and eventually acti-
vate an emergency procedure. The GUI is compatible with multiple devices over a local network; thus,
the monitoring can eventually be shared or done remotely.

Fig. 2 shows the drilling operation which, however, is beyond the scope of this paper.

2. System overview
The robotic system developed within the ROBILAUT project is represented by a crawler vehicle
equipped with a tethered drilling device. The vehicle carries all the computing modules, installed in
a proper electrical automation cabinet shown in Fig. 3, and all the sensors needed to perform the
autonomous navigation, that is:

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 3

Figure 2. Snapshot of the ROBILAUT robot during drilling, a mechanical sampling mechanics is embed
in the head and allows for the required quartering task.

Figure 3. Electrical automation cabinet containing the computing modules (Intel NUC and PC-104
class device), the motor drivers, and the general Power Switch.

• an Intel NUC PC used for the acquisition and processing of the data from the inertial sensors
and the localization module, and for the execution of the navigation control algorithm;

• an industrial computing module (PC-104 computer class), linked to the crawler motor drivers,
dedicated to setting the desired velocities from the control output and reading the current motor
status;

• a localization module based on global navigation satellite system (GNSS) technology; specif-
ically, a real-time kinematic positioning (RTK) system which represents the most performing
method to correct the errors in current GNSSs, obtaining an accuracy of the order of cm [10].
Such a system uses both information content and wave phase of satellite signals, and it relies on a
set of ground reference stations to mitigate the atmospheric effects, for example, the ionospheric
delay on the measured distance. The set of ground reference stations can include only one station;
however, the latter has to be positioned within a distance of 50 km from the target that needs to
be localized. This is the case of the ROBILAUT system where a commercial RTK kit is used,
that is, the ArduSimple Starter kit, which includes two GNSS receivers: one installed on top of
the vehicle (as shown in Fig. 4) and one to be used for the ground station. The two receivers
are equipped with two long-range modules that allow the communication for the localization
correction;

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


4 Daniele Di Vito et al.

Figure 4. RTK-GNSS receiver installed on top of the ROBILAUT vehicle.

• an inertial measurement unit (IMU), installed in the back of the ROBILAUT vehicle, for mini-
mizing interferences (see Fig. 5), represented by the Ellipse-E, a commercial solution provided by
SBG Systems. This module includes an accelerometer, a gyroscope, a magnetometer, as well as
a temperature sensor. Furthermore, it applies an internal data fusion algorithm, that is, a Kalman
filter, to provide a better estimation of navigation data such as the vehicle yaw, which can be
directly read from the magnetometer or taken from the data fusion algorithm output.

• a joystick allowing the human operator to manually move the vehicle both for safety and logistics
reasons (see Fig. 6); in addition to the direction (arrows) buttons, it is equipped with an emer-
gency stop button to be used in dangerous situations, such as a person moving close to the vehicle
during the parking maneuvers.

3. Overall software architecture
The software architecture has been developed using the robot operating system (ROS) middleware. Fig. 7
shows the overall architecture where each box represents the i-th ROS node running the corresponding
process and where each arrow represents a specific ROS topic used for data exchange. In particular:

• Web server: it is the web server that runs the GUI exchanging data with an interface node
through a socket. In particular, the GUI is used by the human operator to set the desired

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 5

Figure 5. Ellipse-E IMU by SBG Systems installed in the back of the ROBILAUT vehicle for minimizing
the interference.

Figure 6. Joystick for the manual movement of the ROBILAUT vehicle equipped with emergency button
for safety reasons.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


6 Daniele Di Vito et al.

Web

Server

Mission

Planner

KCL

Node

/wayPoint

/vehicle/cmdVel /vehicle/cmdVel

/vehicle/poseError

/vehicle/pose

/motors/setVelocityTorque
Diff.
Drive
Node

sio.on(wpSend)

sio.emit(message)

sio.emit(position)
Set

Node

Motors

Motors

Odom
Node

RTK

Node

IMU
Sensor

Sensor

Node

ROBILAUT

Vehicle
API BOSCH Motors/motors/odom

/vehicle/position

/vehicle/heading

Localization

Node

Start Vehicle
Node

Start Sampling
Node

Figure 7. ROBILAUT system software architecture based on the robot operating system (ROS)
middleware.

waypoints (sio.on(wpSend)) and to monitor the mission execution (textttsio.emit(message),
sio.emit(position)). A more detailed description of the GUI is reported in Section 3.1.

• Mission planner: it is the node that acts as the bridge between the GUI web server using Python
sockets and the ROS middleware. It receives as input the desired waypoints (sio.on(wpSend))
for the control node (/wayPoint), the trigger to let the vehicle start the movement, the
vehicle pose (/vehicle/pose), the pose error (/vehicle/poseError), and the reference
velocity (/vehicle/cmdVel). Then, it sends the current vehicle status back to the GUI web
server (sio.emit(message), sio.emit(position)). It is also in charge of sending the
starting trigger for the sampling operations.

• KCL node: the kinematic control layer (KCL) node runs the implemented controllers, described
in Section 5, necessary to compute the reference velocity (/vehicle/cmdVel) for the vehicle
to navigate following the desired waypoints (/wayPoint). The waypoint list and current vehicle
pose (/vehicle/pose) represent the node input, while it returns as output the reference velocity
(/vehicle/cmdVel) and the pose error (/vehicle/poseError).

• Diff. drive node: since the vehicle presents a differential drive kinematics, as described in
Section 4, this node is in charge to take the input reference velocity (/vehicle/cmdVel) and
to map it into proper desired velocities for the two crawl motors that are sent to motors set node
(/motors/setVelocityTorque).

• Motors set node: it represents a ROS wrapper for the API provided by the motors supplier,
that is, Bosch; therefore, it allows to interface the ROS middleware with the motors’ low-level
controllers.

• Motors odom node: it is a ROS wrapper for the Bosch API as well; in this case, the nodes give
as output of the motor odometry data, that is, the motor velocity and position.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 7

• RTK sensor node: it is in charge of acquiring the data from the RTK module via HTTP requests,
since the latter is interfaced with a micro web server implemented for the case at hand that
converts the GNSS coordinates into the UTM (Universal Transverse Mercator) reference system,
that is, North-East coordinates in meters. Then, position data are sent inside the ROS framework
via the topic (/vehicle/position).

• IMU sensor node: this is the ROS package provided by SBG which allows to access to every
information regarding the sensor status. In the specific case, the vehicle heading is the data of
interest (/vehicle/heading).

• Localization node: this node runs a proper data fusion algorithm, that is, the Kalman filter,
taking as input the data coming from motors, RTK and IMU sensor. It returns as output a noise-
filtered and continuous signal (/vehicle/pose), necessary for the proper operative functioning
of the controller, containing the robot pose estimate.

• Start vehicle node: it reads the status of the drilling unit by querying the programmable
logic controller (PLC) through a standard communication protocol, that is, the OPC UA (Open
Platform Communications Unified Architecture). Indeed, before moving the vehicle, it is neces-
sary to control that the system is not performing the sampling operation and that the drilling unit
is in its home position. If all the related checks are verified, then the start vehicle node sends a
trigger to the mission planner.

• Start sampling node: this node waits for a trigger from the mission planner. Indeed, when the
robot reaches the i-th desired point, the overall system movement is stopped and a consensus
signal is sent to the start sampling node. Then, the latter interacts with the PLC via OPC UA, as
mentioned for the start vehicle node. If the consensus is verified, then the PLC stars the drilling
operation that is implemented according to a state machine approach.

3.1. Graphical user interface (GUI)
As mentioned above, the human operator is not in line of sight with the vehicle due to the soil pile height.
Therefore, a tool for monitoring the overall process status is necessary. For this reason, a proper GUI
has been implemented to support the operator. More in detail, the GUI has been developed using web
frameworks and libraries resulting in a cross-platform application that is accessible from any mobile
and desktop web browser without requiring any installation. As shown in Fig. 8, a 3D scenario of the
environment with a CAD model of the robot system is rendered, allowing the operator to immediately
understand what is the mission status. Furthermore, it shows several indicators regarding the robot and
the controller status, for example, the vehicle reference velocity, the position error, and the battery charge.
Moreover, the operator can set the desired waypoints and track the robot’s movement in real time, as
noticeable in Fig. 9.

3.2. Waypoints generation
The human operator can set any waypoint through the GUI. However, it is worth noticing that the way-
point list is obtained by means of a digitalization operation of the soil pipe. In particular, using an aerial
drone equipped with a RGB-D sensor, a scan of the pile is performed. The obtained point cloud is
then used to construct the mesh corresponding to the pile and to generate the sampling waypoints list
according to the legislation, as observable in Fig 10.

4. Kinematic modeling
The ROBILAUT robot can be modeled as a differential drive kinematic robot, where the two crawlers
can be independently controlled, and where the control objective is the positioning of the drilling point.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


8 Daniele Di Vito et al.

Figure 8. ROBILAUT graphical user interface (GUI): the human operator can set the desired waypoint
and monitor the robot status.

Figure 9. ROBILAUT graphical user interface (GUI): monitoring of the robot movement through
waypoints (red markers).

Referring to Fig. 11, we denote as �i, xi, yi a fixed inertial reference frame, and as �b, xb, yb a body-fixed
frame located in the center of the crawler base

[
x′ y′

]T with xb in the advancing direction of the robot.
The drilling device positioning, denoted as p= [

x y
]T, is a point at distance δ from the center of the

crawler base. Furthermore, we denote as θ the vehicle orientation and as v, ω the linear and angular
velocities at the body-fixed frame. Denoting as ωR, ωL, r, l, respectively, the angular velocity of the
driving wheels of the right and left crawlers, the radius, and the inter-axis distance, then[

v

ω

]
=

[
r/2 r/2

r/l −r/l

] [
ωR

ωL

]
=B

[
ωR

ωL

]
(1)

The position of the controlled point is described by:{
x= x′ + δ cos θ

y= y′ + δ sin θ
(2)

characterized by dynamics
⎧⎪⎨
⎪⎩

ẋ= v cos θ − δω sin θ

ẏ= v sin θ + δω cos θ

θ̇ =ω

(3)

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 9

Figure 10. Mesh corresponding to the digitalized soil pile with the grid to determine the sampling
waypoints according to the legislation.

Figure 11. Kinematic model of the ROBILAUT robot.

that is, ⎡
⎢⎣

ẋ

ẏ

θ̇

⎤
⎥⎦=

⎡
⎢⎣

cos θ −δ sin θ

sin θ −δ cos θ

0 1

⎤
⎥⎦

[
v

ω

]
(4)

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


10 Daniele Di Vito et al.

5. Kinematic motion control
For the motion control of the robotic platform, two different control strategies taken from the literature
have been tested for the scenario at hand, respectively, a feedback linearization technique and a model
predictive control (MPC) strategy.

5.1. Feedback linearization
The feedback linearization technique, taken from [11,12], is an efficient design tool leading to a solution
simultaneously valid for both trajectory tracking and setpoint regulation problems. Referring to eq. (4),
the robot’s linear and angular velocity are computed as:[

v

ω

]
=

[
cos (θ ) sin (θ )

− sin (θ )/δ cos (θ )/δ

] [
ẋd + kx(xd − x)

ẏd + ky(yd − y)

]

where the subscript d denotes the desired value and kx and ky are properly positive gains to be designed.
The body-fixed linear and angular velocities are further converted into wheel velocities resorting to
eq. (1): [

ωR

ωL

]
=B−1

[
v

ω

]
=

[
1/r l/2r

1/r −l/2r

] [
v

ω

]
. (5)

5.2. Model predictive control
The MPC strategy is an optimal control technique based on the minimization of a cost index, that is, a
vector-dependent quadratic function of the state and the control inputs. At each time stamp, the MPC
output is iteratively computed as the control input that minimizes the cost index over a finite horizon,
eventually satisfying specific constraints.

In the considered case, the MPC is computed considering the error state dynamics. Thus, let us first
define the error state variable:

e=
⎡
⎢⎣

ex

ey

eθ

⎤
⎥⎦=

⎡
⎢⎣

xd − x

yd − y

θd − θ

⎤
⎥⎦

and compute its derivative:

ė=
⎡
⎢⎣

ėx

ėy

ėθ

⎤
⎥⎦=

⎡
⎢⎣

ẋd − ẋ

ẏd − ẏ

θ̇d − θ̇

⎤
⎥⎦ .

In a regulation problem, all the derivatives of the reference terms (ẋd, ẏd, θ̇d) are null; thus,

ė=
⎡
⎢⎣
−v cos (θd − eθ )+ δω sin (θd − eθ )

−v sin (θd − eθ )− δω cos (θd − eθ )

−ω

⎤
⎥⎦ .

The nonlinear model can be linearized around a working trajectory to assume the form (the increment
symbol δ will be omitted to increase readability):

ė=Ae+Bu

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 11

where u= [v ω]T,

A=
⎡
⎢⎣

0 0 −v sin (θd − eθ )− δω cos (θd − eθ )

0 0 v cos (θd − eθ )− δω sin (θd − eθ )

0 0 0

⎤
⎥⎦

and

B=
⎡
⎢⎣
− cos (θd − eθ ) δ sin (θd − eθ )

− sin (θd − eθ ) −δ cos (θd − eθ )

0 −1

⎤
⎥⎦ .

The model can be discretized, referring to the Euler method, in the form{
e(k+ 1) = Ake(k)+Bku(k)

y(k) = Cke(k)

where

Ak = I3 + TA

Bk = TB,

the matrix Ir is the r× r Identity matrix and T is the sampling time. The matrices Ak and Bk need to be
computed at each sampling time with respect to the current working point.

For the MPC strategy (see [13]), the minimization problem can be formulated as:

min
u

∑N−1
k=0

[
eT(k)Qe(k)+ uT(k)Ru(k)

]+ eT(N)Pe(N)

s.t. e(k+ 1)=Ake(k)+Bku(k)
(6)

where Q=QT ≥O ∈Rn×n and R=RT ≥O ∈Rp×p are the error state and the input weight matrices,
P= PT ≥O ∈Rn×n is a terminal cost, and N is the finite number of steps of the temporal prediction
horizon that is shifted forward at each iteration. This approach is also known as receding horizon, where
at instant k an optimal control problem is solved on the finite horizon of N steps, and, at k+ 1, the current
measured output is used to iterate the process taking as reference the current time instant k+ 1. The MPC
formulation in eq. (6) can also be extended by considering constraints on the input signal u.

5.3. Saturation management strategy
Considering that, at the wheels’ angular velocities level, saturation constraints apply (i.e.,

∣∣ωR,L

∣∣ < ωthld),
the smart saturation strategy described in Algorithm 1 has been applied to properly scale the input
generated by the motion control algorithms to affordable wheels’ angular velocities that do not change
the robot path.

6. Experiments
The kinematic control solutions described in the previous section have been experimentally tested with
the developed robotic platform. In particular, the robot has been commanded to reach a sequence of
waypoints using the following kinematic controls:

• feedback linearization;
• unconstrained MPC;
• constrained MPC.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


12 Daniele Di Vito et al.

Algorithm 1 Smart saturation
1: for i← 1 to #motors do
2: if abs(omega[i]) > maxOmega then
3: saturate← True
4: alpha←maxOmega/abs(omega[i])
5: if alpha <=minAlpha then
6: minAlpha← alpha
7: end if
8: end if
9: end for
10: if saturate then
11: for i← 1 to #motors do
12: omega[i]←minAlpha ∗ omega[i]
13: end for
14: end if

Figure 12. Soil pile of the experimental settings, aerial view.

Figure 13. Soil pile of the experimental settings, side view.

Specifically, in the constrained MPC, due to a specific request by one of the project partners, a con-
strain on the linear velocity has been included to make the vehicle move only in the forward direction
(0 < v < vmax).

All the three approaches are followed by the smart saturation strategy described in Sect. 5 to take into
account the maximum velocities of the motors, which is 4000 rpm after a gear reduction of 700.

The sampling time is T = 100 ms. For the feedback linearization solution, the gains have been chosen
as kx = ky = 0.5; for the MPC strategy, the weight matrices have been chosen as Q= I3, R= 2I2, and
P= 0.5I3 with horizon N = 5.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 13

0 50 100 150 200

-2

0

2

4

0 50 100 150 200

-4

-2

0

2

Vehicle position

Vehicle orientation

[m
]

[r
ad

]

time [s]

0 50 100 150 200
-0.1

0

0.1

0 50 100 150 200

-0.2

0

0.2

Forward velocity

Angular velocity

[m
/s

]
[r

ad
/s

]

time [s]

0 50 100 150 200
-6

-4

-2

0

2

4
Position error

[m
]

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

-1 0 1 2 3

Vehicle path

[m]

[m
]

1

2

3

4

Figure 14. Vehicle’s position and orientation, position error, linear and angular velocity, and path
using the feedback linearization kinematic control.

0 50 100 150 200

-2

0

2

4

0 50 100 150 200

-4

-2

0

2

Vehicle position

Vehicle orientation

[m
]

[r
ad

]

time [s]

0 50 100 150 200
-0.1

0

0.1

0 50 100 150 200

-0.2

0

0.2

Forward velocity

Angular velocity

[m
/s

]
[r

ad
/s

]

time [s]

0 50 100 150 200
-6

-4

-2

0

2

4
Position error

[m
]

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

-1 0 1 2 3

Vehicle path

[m]

[m
]

1

2

3

4

Figure 15. Vehicle’s position and orientation, position error, linear and angular velocity, and path
using the unconstrained MPC strategy.

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


14 Daniele Di Vito et al.

0 50 100 150

-2

0

2

4

0 50 100 150

-4

-2

0

2

Vehicle position

Vehicle orientation

[m
]

[r
ad

]

time [s]

0 50 100 150
-0.1

0

0.1

0 50 100 150

-0.2

0

0.2

Forward velocity

Angular velocity

[m
/s

]
[r

ad
/s

]

time [s]

0 50 100 150
-6

-4

-2

0

2

4
Position error

[m
]

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

-1 0 1 2 3

Vehicle path

[m]

[m
]

1

2

3

4

Figure 16. Vehicle’s position and orientation, position error, linear and angular velocity, and path
using the constrained MPC strategy.

The soil to be sampled is usually arranged as shown in Fig. 12 and 13. The initial vehicle position
is set at x′ = 0, y′ = 0, which implies x0 = x(t= 0)= [0.9 0]T m. A set of four waypoints have been
sequentially assigned to make the vehicle move in all directions:

p1 = [2.4 1.5]T m

p2 = [2.4 − 1.5]T m

p3 = [−0.6 1.5]T m

p4 = [−0.6 − 1.5]T m (7)

The waypoints have been kept close to each other for safety reasons, since the day of the experiments
there was no possibility to check for the proper consolidation of the side of the pile. The effective sam-
pling operation was not the objective of the reported experimental campaign; thus, the vehicle was
commanded to move to the successive way point just after one was reached. A threshold of 10 cm has
been assigned to the controller to command a switch toward the successive waypoint.

Fig. (14), (15), and (16) show the vehicle’s position and orientation, the position error, the linear and
angular velocity, and the followed path using the feedback linearization, the unconstrained MPC, and
the constrained MPC strategies, respectively. Since all of them have been implemented also considering
the smart saturation feature, all the computed velocities resulted physically executable for the low-level
controllers.

It can be noticed that all the controllers achieved satisfactory results and output smooth control
actions. As ex-post validation metrics, the sums of the distances of the path points from the segments
connecting two successive via points have been computed and normalized with respect to the largest
value (obtained with the constrained MPC); such values are reported in Table I together with the total

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857


Robotica 15

Table I. Sums of the distances of the points of the paths from the segments connecting two
successive via points, their total sums, and traveled time. All the values are normalized with
respect to the constrained MPC case.

Algorithm s(x0, p1) s(p1, p2) s(p2, p3) s(p3, p4) stotal Traveled time
Feedback linearization 0.04 0.12 0.34 0.10 0.60 1.05
Unconstrained MPC 0.07 0.12 0.20 0.13 0.53 1.025
Constrained MPC 0.07 0.16 0.54 0.23 1.00 1.00

-1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5
1

2

3

4

Feedback Lin.

MPC Unc.

MPC Con.

[m]

[m
]

Vehicle path comparison

Figure 17. Path of the experimental implementation of the three controllers.

traveled time (normalized as well with respect to the constrained MPC case). Fig. 17 reports the super-
imposition of the paths for the three tested controllers for a graphical comparison. In particular, the
two controllers allowed to implement negative velocities exhibit similar performances; considering the
rough terrain, indeed, the small difference can be considered as negligible. The constrained MPC, on
the other hand, needs larger maneuvering space. Concerning the traveled time, there are no significant
differences in the performance of the three controllers.

Another difference in the controllers is related to the ease of gain tuning. It is a common opinion
in the control community that, despite the easy theoretical interpretation of the MPC gains, their fine
tuning on real hardware turns out to be more time-consuming. Our experience is in line even for a so
simple mathematical model.

A video with some extracts of the vehicle movement together with a rendering of the real data is
available at https://youtu.be/PKliM3QHA4M.

7. Conclusions
The control architecture and the experimental validation of two motion control approaches for a crawler
robot have been discussed in this paper. The crawler robot, developed within the framework of an Italian
national project, is designed to properly sample soils for further chemical analysis to detect the eventual
presence of contaminants. Three different controllers have been implemented and tested, namely a non-
linear feedback linearization controller and two MPC-based approaches. For the reasons discussed in the
experimental section, the nonlinear controller exhibits better performance and has been implemented in
the final robot architecture.

Author contributions. Cesare Ferone conceived the Project. Raffaele Amico led the design of the mobile robot. Gianluca
Antonelli and Filippo Arrichiello analyzed the kinematics and dynamics and proposed the most suitable control algorithms for the

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://youtu.be/PKliM3QHA4M
https://doi.org/10.1017/S0263574724000857


16 Daniele Di Vito et al.

use-case scenario. Daniele Di Vito and Paolo Di Lillo implemented the entire control framework for the autonomous navigation
of the system and conducted the field experiments. Each author equally contributed to the writing of the paper.

Financial support. The research leading to these results has received funding from the Italian Government, Ministero per lo
Sviluppo Economico, Fondo per la Crescita Sostenibile – Sportello “Fabbrica intelligente” PON I&C 2014-2020, ROBILAUT
prog. n. F/190126/01-02-03/X44, and by Project “Ecosistema dell’innovazione – Rome Technopole” and “Centro Nazionale per
la Mobilità Sostenibile – CNMS” financed by EU in NextGenerationEU plan through MUR Decree n. 1051 23.06.2022 – CUP
H33C22000420001 and CUP H38H22000300001, respectively.

Competing interests. The authors declare no competing interests exist.

Ethical approval. None.

References
[1] V. Edulji, S. Soman, A. Pradhan and J. Shah, A mobile semi-autonomous robot for soil sampling, (2021).
[2] S. Chiodini, A. Carron, M. Pertile, M. Todescato, E. Bertolutti, A. Bilato, A. Boscardin, G. Corra, A. Correnti, R.

Dalla Vecchia, N. Dal Lago, M. Fadone, S. Fogarollo, H. Milani, E. Mion,D. Paganini, F. Quadrelli, G. Soldà, A.
Todescan, E. Toffanin and S. Debei, “Morpheus: A Field Robotics Testbed for Soil Sampling and Autonomous Navigation,”
In: Proceedings of the Proc. 1st Symposium on Space Educational Activities, (2015).

[3] N. A. Olmedo, M. Barczyk, H. Zhang, W. Wilson and M. G. Lipsett, “A UGV-based modular robotic manipulator for soil
sampling and terramechanics investigations,” J Unmann Vehi Syst 8(4), 364–381 (2020).

[4] E. Vaeljaots, H. Lehiste, M. Kiik and T. Leemet, “Soil sampling automation case-study using unmanned ground vehicle,”
Eng Rural Dev 17, 982–987 (2018).

[5] E. Väljaots, H. Lehiste, M. Kiik and T. Leemet, “Soil sampling automation using mobile robotic platform,” Agro Res 16,
917–922 (2018).

[6] C. N. A. David, J. V. Yumol, R. G. Garcia and A. H. Ballado, “Swarm Robotics Application for Gathering Soil Samples,”
In: Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment, and Management (HNICEM). IEEE, (2021) pp. 1–6.

[7] K. Yokoi, M. Kawabata, S. Sakai, S. Kawamura, N. Sakagami, S. Matsuda, A. Mitsui and K. Sano, “Improvement of a
Human-Portable Underwater Robot for Soil Core Sampling,” In: Proceedings of the 2014 Oceans-St. John’s. IEEE, (2014)
pp. 1–6.

[8] K. Isaka, K. Tsumura, T. Watanabe, W. Toyama, M. Sugesawa, Y. Yamada, H. Yoshida and T. Nakamura, “Development of
underwater drilling robot based on earthworm locomotion,” IEEE Access 7, 103127–103141 (2019).

[9] K. Isaka, K. Tsumura, T. Watanabe, W. Toyama, M. Okui, H. Yoshida and T. Nakamura, “Soil discharging mechanism
utilizing water jetting to improve excavation depth for seabed drilling explorer,” IEEE Access 8, 28560–28570 (2020).

[10] Y. Feng and J. Wang, “GPS RTK performance characteristics and analysis,” J Glob Position Syst 7(1), 1–8 (2008).
[11] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo, Robotics: Modelling, Planning and Control (Springer Verlag, 2009).
[12] G. Oriolo, A. De Luca and M. Vendittelli, “WMR control via dynamic feedback linearization: Design, implementation, and

experimental validation,” IEEE Trans Contr Syst Tech 10(6), 835–852 (2002).
[13] F. Borrelli, A. Bemporad and M. Morari, Predictive Control for Linear and Hybrid Systems (Cambridge University Press,

2017).

Cite this article: D. Di Vito, P. Di Lillo, F. Arrichiello, C. Ferone, R. Amico and G. Antonelli, “Control frame-
work of the ROBILAUT soil sampling robot: system overview and experimental results”, Robotica. https://doi.org/10.1017/
S0263574724000857

https://doi.org/10.1017/S0263574724000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000857
https://doi.org/10.1017/S0263574724000857
https://doi.org/10.1017/S0263574724000857

	Control framework of the ROBILAUT soil sampling robot: system overview and experimental results
	Introduction
	System overview
	Overall software architecture
	Graphical user interface (GUI)
	Waypoints generation

	Kinematic modeling
	Kinematic motion control
	Feedback linearization
	Model predictive control
	Saturation management strategy

	Experiments
	Conclusions


